
The Effects of Omitting
Components in a
Multilevel Model With
Social Network Effects

Thomas Suesse1 , David Steel1

and Mark Tranmer2

Abstract

Multilevel models are often used to account for the hierarchical structure of

social data and the inherent dependencies to produce estimates of regres-

sion coefficients, variance components associated with each level, and accur-

ate standard errors. Social network analysis is another important approach

to analysing complex data that incoproate the social relationships between

a number of individuals. Extended linear regression models, such as network

autoregressive models, have been proposed that include the social network

information to account for the dependencies between persons. In this art-

icle, we propose three types of models that account for both the multilevel

structure and the social network structure together, leading to network

autoregressive multilevel models. We investigate theoretically and empiric-

ally, using simulated data and a data set from the Dutch Social Behavior

study, the effect of omitting the levels and the social network on the esti-

mates of the regression coefficients, variance components, network autocor-

relation parameter, and standard errors.
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Introduction
In the quantitative analysis of social data it is increasingly recognized that
people are not independent of each other and any analysis should account
for their social contexts and connections. Multilevel analysis is carried out
routinely to take into account group dependencies arising from people
being members of groups such as households, geographical groups such as
neighborhoods and organizational groups such as hospitals or schools.

Another source of dependencies for individuals, which may cross the other
groups to which they belong, is their social network. While social network
analysis (SNA) has recently received much attention in the social sciences,
SNA researchers often ignore other aspects of the multilevel population struc-
ture. Moreover, most multilevel modelers consider group dependencies (e.g.,
students in schools), but tend to ignore social network dependencies in their
analysis (e.g., students’ friendship networks). In this article, we develop a
new class of models called network autoregressive multilevel models
(NAMLMs), which include both social network effects and multilevel
effects that account for group dependencies when undertaking a regression
analysis of a response variable on a set of explanatory variables. It is
common to include only some of these effects in an analysis, either
because they are not considered or because of data limitations. Our aim is
to assess the effects of omitting the social network or group dependencies,
both theoretical and empirically.

If groups, such as households, local areas, or networks, are present in a
population, two people within the same group tend to be more similar than
two people, each from a different group. Multilevel models (MLMs) allow
for modeling this similarity. These models often focus on hierarchical
groups, although through cross-classified models non-hierachical groupings
can be included (Goldstein 2011). MLMs are usually specified that assume
the group effect is the same for all individuals in a particular group, although
more complex models can be used. An example of three inter-connected
groupings of individuals is people within households, neighborhoods and net-
works. Another example is students within classes and schools and friendship
networks.
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Failure to account for dependencies in a population usually leads to incor-
rect estimation of standard errors (SEs), leading to incorrect inferences
(Berkhof and Kampen 2004; Moerbeek 2004). In some circumstances,
such as in non-linear models, it may also lead to bias in the estimates of
regression coefficients. Non-independence of observations was initially
seen as a nuisance by statisticians, who developed methods to account for
the structure of the data, such as complex survey analysis methods, see
Chambers and Skinner (2003). However, the dependencies between people
are often of direct substantive interest. MLMs and network autoregressive
models (NAMs) provide information about these dependencies through the
estimates of the parameters in these models that reflect the correlations
between people, these being the variance of the group-level random effects
and the associated intra-group correlations that they explain in an MLM,
and the autocorrelation parameter in a network model.

In Section “Models for Multilevel Data and Social Networks,”we describe
regression models that include several levels, such as households and neigh-
borhoods or classes and schools. In Section “Models for Social Network
Dependencies,” we consider popular regression models that account for
dependencies induced by a social network. In Section “Extended Models
That Include Social Network and Group Dependencies: Network
Autoregressive Multilevel Models,” we propose three regression models
that take into account the levels and a social network, and outline
maximum likelihood estimation. In Section “Theoretical Impact of
Omitting Some Part of the Population Structure in the Analysis,” we consider
theoretically the likely impact of omitting some part of the population struc-
ture, such as levels or a network, in the analysis. A simulation study is con-
ducted in Section “Simulation Study.” Then in Section “Example With
School Data,” the models are applied to the Dutch Social Behavior Study
modeling delinquent behavior of school students. This article finishes with
a summary and conclusions.

Models for Multilevel Data and Social Networks

Households and Neighborhoods

A key feature of social structure is the household. Sample designs often
involve the household. It is common to select one person, or all people per
selected household, although other options are available (Clark and Steel
2002). Analysis of data from surveys in which all people or more than one
person is selected from a household may ignore the household, which will
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lead to incorrect variance estimates. In some cases, both individual and
household-level estimates or effects may be of interest. MLMs have also
been applied in a limited way to consider the household level for phenomena
such as voting behavior (Johnston et al. 2005).

Sometimes the household is ignored in analysis because a household iden-
tifier is not available, or because one person per selected household has been
sampled; in this case, the household and person-level effects cannot be sepa-
rated in the analysis.

Consider individual i, who has response variable Yi and a vector of p
explanatory variables xi, for i = 1, · · · , N. A standard two-level linear
regression model including a household random effect for individual i in
household j, for j = 1, · · · , M2, is

Yi = x⊤i β+ u(2)j + εi, (1)

where β is the vector of p regression coefficients, εi ∼ N(0, σ21) and u(2)j ∼
N(0, σ22) are the individual (level 1) and household (level 2) random
effects, respectively.

Individuals can be grouped into geographical areas. Statistics are produced
for geographical areas, such as local authorities, post-codes, or census output
areas. Geographical areas may be used in the selection of the sample for a
survey, through the use of cluster or multistage sampling. Multilevel model-
ing has been used for individuals grouped in areas, possibly incorporating
contextual variables such as area level means of explanatory variables
(Goldstein 2011), with respect to health, see, for example, Subramanian,
Jones, and Duncan (2003), for unemployment, see Fieldhouse and Tranmer
(2001), and other social outcomes. Standard MLMs assume constant within
area correlations between individuals and no correlations across areas,
although the latter assumption can be loosened.

A random effect can be added to (1) for areas, where the individual is
indexed by i, the household by j, and the area by k, for k = 1, · · · , M3:

Yi = x⊤i β+ u(2)j + u(3)k + εi, (2)

where u(3)k ∼ N(0, σ23) is the area (level 3) random effect. Let Y =
(Y1, · · · , YN)⊤ and X = (x1, · · · , xN)⊤, then this model can be written as:

Y = Xβ+ Z2u(2) + Z3u(3) + ε, (3)

where u(l) ∼ N(0, σ2l IMl ) and ε ∼ N(0, σ21IN) and Z2 and Z3 are matrices with
a “1” in the row corresponding to the household and area to which individual i
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belongs, respectively. The notation IN stands for the identity matrix of size
N × N. The linear mixed model (3) implies the mean is E(Y) = Xβ and the
covariance matrix is V = V(Y) = σ21IN + σ22Z2Z⊤

2 + σ23Z3Z⊤
3 . The

intra-group correlation of two individuals in the same group at level l due
to the level l random effect is σ2l /(σ

2
1 + σ22 + σ23) for l = 2, 3.

Setting Z = [Z2, Z3] and u = ((u(1))⊤, (u(2))⊤)⊤, the model is:

Y = Xβ+ Zu+ ε, (4)

with D = V(u) =
[
σ22IM2 0
0 σ23IM3

]
. Hence the covariance matrix can be

written as V(Y) = σ21IN + ZDZ⊤.

Classes and Schools

For educational data on students, the information on the classes and schools is
incorporated into the MLM, as students are nested within classes and classes
within schools. The MLM has students as level 1 units, classes as level 2
units, and schools as level 3 units (Berkhof and Kampen 2004). The residual
errors, ϵi ∼ N(0, σ21), refer to students, the lowest level, the random effects,
u(2)j ∼ N(0, σ22), to classes and the random effects, u(3)k ∼ N(0, σ23), to
schools. The model can also be written as (2), (3), or (4).

Models for Social Network Dependencies
People can also be grouped by their social network, and there is growing
interest in SNA following the publications of the books by Wasserman and
Faust (1994), Carrington, Scott, and Wasserman (2005) and Scott (2012).
Considerable work has been carried out to develop models for networks,
such as exponential random graph (p*) models (Snijders et al. 2006).
Reviews of statistical models for social networks were also given by
Snijders (2011) and Amati, Lomi, and Mira (2018). The importance of
social networks with respect to health is discussed by Kawachi and
Berkman (2000, 2003), Haines, Beggs, and Hurlbert (2011) and Lusher,
Koskinen, and Robins (2013).

Network Effects and Network Disturbance Models

Our interest is not in the modeling of the social network itself, but in account-
ing for the dependencies induced by the social network when modeling a
response variable. We consider two models that allow for the effects of
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social network dependencies on a response variable and allow for covariates
in the model. These are generally described as network autocorrelation
models (NAMs) in the social network literature (Leenders 2002).

A network effectsmodel allows for autocorrelation directly in the response
variable (Leenders 2002). For a population of N individuals, one way of
incorporating social network dependencies, but not other group dependen-
cies, is via the network effects model:

Y = Xβ+ ρWY+ ϵ, (5)

Here,W is the N × N social network connection or weight matrix for the indi-
viduals, also referred to as an adjacency matrix. If W is a connection matrix,
an elementWij takes a value of 1 if individuals i and j are connected and 0 if i
and j are not connected. “Connected” usually means a relationship, such as
being a best friend, exists between individual i and j. In general, the diagonal
elements, Wii, of W are set to equal 0. Sometimes W is not a series of con-
nections, but is a standardized version of the binary connection matrix, or
some other type of weight matrix. Leenders (2002) points out that the
choice ofW affects the results of using the model, and also makes recommen-
dations on whichW should be used. In this model, the response for individual
i is directly related to the responses of those people connected to individual i,
through the matrix W, and the parameter ρ reflects the extent of this relation-
ship. IfW is a connection matrix, the relationship between the response of the
focal individual and the response of each individual connected to them is
assumed to be the same.

A network disturbance model allows for autocorrelation in the error term,
see Leenders (2002) for a review. HereW can be incorporated into the model
through the error term νi, as shown in the network disturbance model (6)
below. The term ϵi is an additional error term to account for any noise that
is not reflected by the network dependencies (as νi, is assumed to do). As
before, ϵi is assumed to be normally distributed, with variance σ21, then the
network disturbance model in vector form is:

Y = Xβ+ ν,
ν = ρWν+ ϵ,

(6)

with ν = (ν1, · · · , νN)⊤.
In the geographical literature, (5) and (6) are both examples of spatial auto-

regressive regression models (Lesage and Pace 2009), where the connection
matrices represent geographical connections such as contiguity, or some other
type of geographical link, rather than social network dependencies. In this
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literature, model (5) is often described as a spatially lagged dependent vari-
able model, and model (6) as a spatial error model (Ward and Gleditsch
2008). As noted by Leenders (2002), this model can also be labeled as a
spatial moving average model, see Muir (1999). Model (5) is a simultaneous
autoregressive model. An alternative approach in the spatial statistics litera-
ture is a conditional autoregressive model; see Cressie (1993: section 6.3)
for a discussion of these two different approaches. For this article, we gener-
ally use the terminology from the social network literature.

In the geographical literature, Ward and Gleditsch (2008:70) argue, from a
social science perspective, that “if we expect to see, or are interested in, feed-
back, then the spatially lagged/network effects model seems most appropri-
ate, and that the spatial error/network disturbance model is appropriate
primarily when researchers believe that there is some spatial (or more gener-
ally dependence) pattern that will be reflected in the error term, but the
researchers are unwilling or unable to make assumptions about the origin
of the error.”

The models specified by (5) and (6) differ according to whether the
network dependence is in the regression or error terms part of the model.
Model (5) accounts for autocorrelation directly in the response variable,
after allowing for the covariates, and would be useful when we suspect
such effects exist and are substantively interested in them. In model (6),
the autocorrelation is in the individual-level error terms and any apparent
autocorrelation in the response variable is due to this.

The theoretical and practical similarities and differences in these two
models can be clarified by considering the variance and mean structure that
they imply. Set A(ρ) = IN − ρW, then for both models
V(Y) = σ21A

−1(A−1)⊤. The main difference is that for the network effects
model (5) the mean is given by E(Y) = A−1Xβ, whereas for the network dis-
turbance model (6) it is E(Y) = Xβ. If ρ is small we can approximate
A−1 ≈ IN + ρW, so that E(Y) ≈ Xβ+ ρWXβ. The matrix WX = �X can be
termed a network contextual variable since the ith row contains the totals
(binary W) or means (W weighted with row-sums of 1) of the explanatory
variables for the set of individuals connected to individual i. The product
of the parameters, ρβ, can be termed the corresponding network contextual
effects. Hence, our consideration in choosing these two models is whether
there is reason to believe network contextual effects are present or of substan-
tive interest. It also suggests that a simple diagnostic to check which model is
appropriate is to undertake a standard regression analysis that includes �X in
the regression part of the model. An alternative is to adopt a network disturb-
ance model, with X and �X in the regression part of the model, although this
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doubles the number of regression parameters to be estimated. The role of con-
textual effects and considerations relevant to whether effects should be treated
as random or fixed are discussed for the standard MLM, for example, by De
Leeuw andMeijer (2008), and Snijders and Bosker (2012), and the arguments
used are also applicable here.

Multiple Membership (MM) Models

Tranmer, Steel, and Browne (2014) and Tranmer and Lazega (2016) consider
an alternative to NAMs using a particular linear mixed model, the MMmodel,
to model the dependencies arising from the network. The MM model is:

Yi = x⊤i β+
∑

j∈group(i)
Wijuj + εi; i = 1, · · · , N; group(i) ⊂ 1, · · · , J (7)

where uj ∼ N(0, σ2u) is the jth random effect associated with the jth ego-net
out of J total ego-nets, and where εi ∼ N(0, σ21) are the individual error
terms. The term group(i) is the set of ego-nets to which i is a member. In
the MM model σ2u/(σ

2
u + σ21) is the analog of ρ in the NAMs. The weight

that is given to each individual for their ego-net membership is Wij. In prin-
ciple the same matrix, W, used for the NAMs could be used for the MM
model.

The MM model can be written in matrix form as:

Y = Xβ+Wu+ ε. (8)

This model imposes a different covariance structure compared to NAMs; see
Online Appendix A for details and comparisons. Our focus is on the standard
NAMs and their extension to incorporate multilevel group dependencies via
random effects.

Extended Models That Include Social Network and
Group Dependencies: Network Autoregressive
Multilevel Models
Bringing together the ideas of statistical models in social network analysis
and MLMs, we can consider how the multiple dependencies associated
with households, social networks, and geographical groups, for example,
can be considered in the same analysis and the consequences of omitting
one or more of them in an analysis. In general, we have an individual-level
outcome, Y , and various individual-level explanatory variables, x. We need
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to recognize that both Y and x for person i are embedded in, and influenced
by, the second level (households/classes) and third level units (neighbor-
hoods/schools), and the other people to whom the individual is connected
socially. Hence we have three types of connections:

1. Within household/class connections.
2. Connections due to proximity, which may be approximated by geo-

graphical groups with a particular scale and boundary, or connections
to the same school.

3. Connections via social networks.

We can add random effects for households and neighborhoods, or for classes
and schools, in the two social network models considered inSection “Network
Effects and Network Disturbance Models.” As in Section “Network Effects
and Network Disturbance Models,” the social network dependence may act
directly on the response variable, giving a network effects MLM.
Alternatively, the network dependence may apply to the error terms,
leading to a network disturbance MLM. Once random effects for the higher
levels are included in the model, the network dependence may affect both
the individual level and higher level random effects or just the individual
level error term, leading to two versions of the network disturbance MLM.
The three resulting models are described in more detail below. All these
extended models combine NAMs with MLMs to produce NAMLMs.

Model I: Network Effects MLM. In this model, the social network dependence
acts on the response variable:

Y = Xβ+ ρWY+ Zu+ ϵ. (9)

For this model, E(Y) = A−1Xβ, which depends on the network through the
matrix A = IN − ρW. The covariance matrix is V(Y) = A−1(σ21IN +
ZDZ⊤)(A−1)⊤ in which the network and random effects are multiplicative.

In the network disturbance model, the random effects may or may not be
affected by the social network, leading to two types of models.

Model II: Type I Network Disturbance MLM. In this model, the network
dependence affects both the individual level and higher level random effects:

Y = Xβ+ ν, ν = ρWν+ Zu+ ϵ. (10)

For this model, E(Y) = Xβ, which does not depend on the network.
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The covariance matrix is V(Y) = A−1(σ21IN + ZDZ⊤)(A−1)⊤ in which the
network and random effects are multiplicative, as they are in Model I.

Model III: Type II Network Disturbance MLM. In this model, the network
dependence affects only the individual level error term:

Y = Xβ+ Zu+ ν, ν = ρWν+ ϵ. (11)

For this model, E(Y) = Xβ, which does not depend on the network. The
covariance matrix is V(Y) = σ21A

−1(A−1)⊤ + ZDZ⊤ in which the network
and random effects are additive.

Maximum likelihood estimation of the parameters β, ρ, and σ2l for
l = 1, 2, 3 for each of the three NAMLMs is outlined in Appendix B.

Which of these models is appropriate in a particular situation depends on the-
oretical and empirical considerations that are similar to those expressed in
Section “Network Effects and Network Disturbance Models.” If there are sub-
stantive reasons or empirical evidence from considering diagnostics involving
the network contextual variable �X, to believe that the regression term is affected
by the network then Model I can be considered. If not, then choosing between
Models II and III depends on whether there are substantive reasons, or empirical
evidence, to suspect that the impact of the network and random effects behave in
a multiplicative or additive fashion on the covariance matrix, which would lead
to Models II and III, respectively. Standard model selection methods, such as the
Bayesian information criterion (BIC) or alternatively goodness-of-fit tests can
also be applied to help choose the most appropriate NAMLM.

We have considered the common situation where the groups are hierarchal.
More general relationships between individuals and non-nested groups can be
incorporated in a multilevel framework using MM and multiple classification
(MMMC) models (see Browne, Goldstein, and Rasbash 2001). Cross-classified
MLMs can be used to analyze data in which individuals belong to two or more
types of groups that are not nested, for example, schools and neighborhood.
The MMmodel can be used to allow an individual to be a member of several dif-
ferent groups at the one level and weights can be applied to reflect the importance
of each of these groups to the individual, for example, a student attending two
schools in a time period. These MMMC models can be analyzed using standard
multilevel modeling software, such as MLwiN. The random effects in NAMLMs
can also be extended to incorporate MMMC population structures.

As mentioned in Section “Multiple MMs,” Tranmer, Steel, and Browne
(2014) and Tranmer and Lazega (2016) show how MM models provide an
alternative to NAMs. They also consider NAMs, but only include group
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effects as fixed effects, which limits the number of levels and the number of
groups at each level that it is feasible to include. The NAMLMs developed
here fully combine the autoregressive and multilevel structures and allow
for the complexity of multilevel effects.

Lazega and Snijders (2016), and the chapters in it, consider a range of issues
associated with multilevel network analysis. The focus is on multilevel network
analysis, where there are networks within groups, and also analysis of multilevel
networks that may involve modeling links across levels. In these situations, the
aim is modeling the network structure, so the network is the dependent variable.
The focus in this article is in modeling the attributes of actors, that is, individuals
and how those may be affected by network and group effects. The chapter by
Snijders (2016) also reviews multivariate models used in modeling attributes
of actors, and mentions NAMs as an alternative approach, and the chapter by
Tranmer and Lazega (2016) considers the use of MM models, as described in
Section “Multiple MMs.” The NAMLMs developed here combine the multilevel
and autoregressive approaches in one model and can be considered a standard
approach to combine existing NAMs and MLMs.

Theoretical Impact of Omitting Some Part of the
Population Structure in the Analysis
Regardless of whether the dependencies between individuals are of substan-
tive interest, or are regarded as a nuisance that needs to be recognized in the
analysis, an MLM-based approach can be applied. However, the social net-
works of individuals have not commonly been considered in such analyses;
largely a reflection of data availability, but also because the importance of
social networks is still to be fully realized. If an important level or grouping
is ignored then the model is misspecified. However, the effect on the variation
in the outcome variable due to the omitted level does not disappear, rather it
affects the estimates of variation for the levels that are included in the ana-
lysis, see Tranmer and Steel (2001).

If the impact of both social networks and random effects are of direct inter-
est, we should attempt to include them in the model underpinning our ana-
lysis, for example, using one of the NAMLMs in Section Extended
Models That Include Social Network and Group Dependencies: Network
Autoregressive Multilevel Models.” However, this is not always feasible.

Ignoring the effect of important groupings or social networks can lead to
biases in estimates of the regression parameters that reflect the impact of dif-
ferent variables on social and health outcomes, alter variances on estimates of
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key parameters and result in incorrect inferences. Omitting a component of
the variance structure can also lead to biases in the estimates of components
that are included. We consider the consequences of omitting levels and social
networks in the more complex NAMLMs.

These issues can lead to incorrect social analysis and models and incorrect,
ineffective, or counterproductive social policies. For example, in a study of
obesity, an analysis of individuals that does not take into account the influ-
ence of other people in the household, characteristics of the neighborhood
in which a person lives, and the influence of their social network may miss
or overstate the impact of important factors that affect obesity, and exaggerate
the impact of purely person-level attributes.

It is important to explicitly recognize the potential simultaneous roles of
households, neighborhoods, and social networks, for example, but in practice,
we may omit one or more of these components. Hence, understanding the
impact of omitting a component is important.

Mathematically, omitting an effect will involve the estimation being based
on a model that does not include the omitted effect. So, for example, omitting
the network effect would mean estimation is based on a standard MLM,
which would usually be done using software, such as MLwiN. Omitting
the effects for each level would involve an analysis based on a pure NAM,
using appropriate software, such as the R package sna (Butts 2020).

Results From Standard MLMs

Firstly, we summarize the results that have been established for standard
MLMs (Tranmer and Steel 2001; Berkhof and Kampen 2004; Moerbeek
2004; Van Landeghem, De Fraine, and Van Damme 2005).

For random intercept-only models and balanced data, the effects of omit-
ting a level are relatively easy to describe and can be derived algebraically.
For unbalanced data, the effects are more difficult to summarize, but are
similar to the balanced case. The following general rules apply. The variance
estimate σ̂2l of the level l that is omitted is divided between the flanking levels
σ̂2l−1 and σ̂2l+1. If all the higher levels are omitted, the estimate of the
individual-level variance is increased. Similarly, the estimates of the SEs of
the fixed and the random parameters may change. Effects on the SEs of
fixed effects are usually almost exclusively found at the omitted and the adja-
cent level(s). For a balanced design, the omission of the kth level random
intercept leads to underestimated SEs of the kth level predictors and overes-
timated SEs of the (k − 1)th level predictors (Van Landeghem, De Fraine, and
Van Damme 2005).
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Re-expressing the Covariance Matrix of NAMLMs

The covariance matrix for Models I and II is V(Y) = A−1(σ21IN
+ZDZ⊤)(A−1)⊤, where A = IN − ρW. The term σ21IN + ZDZ⊤ can be
re-expressed as σ2111 + σ2212 + σ2313, where 1l is a block-diagonal matrix
with the block matrices being matrices of ones and of a size equal to the
size of the units at level l. For example, the block matrices in 12 are of a
size equal to the households or classes and 13 has blocks of ones of sizes
equal to the sizes of areas or schools, and 11 = IN .

The true covariance matrix for Models I and II is:

V = σ21A
−111(A−1)⊤ + σ22A

−112(A−1)⊤ + σ23A
−113(A−1)⊤.

A Taylor-series expansion of A−1 is A−1 = IN +∑∞
k=1 ρ

kWk. Hence we can
write:

V =
∑L
l=1

σ2l
∑∞
j=0

∑∞
k=0

ρ j+kW j1l(Wk)⊤.

A first-order Taylor series approximation gives:

V ≈ σ2111 + σ2212 + σ2313 + σ21ρ(W11 + 11W⊤)+ σ22ρ(W12 + 12W⊤)

+ σ23ρ(W13 + 13W⊤),

(12)

which has the structure of a standard MLM with additional terms. These
terms can produce correlations between people at, below, or above the
levels in the MLM, depending on how the network and the levels interact.
This makes the theoretical prediction of the effect of omitting a level or the
network difficult. In some situations, the network may act much like a
level. For example, suppose W mainly connects people in different groups
of level 3 units, then W can be considered as an approximate level 4
random effects design matrix. When W connects only people within level
l, then W1l + 1lW⊤ is also of level l. When W is at level k with k < l, then
W1l + 1lW⊤ refers to level l. In these cases, adding a network to an MLM
is similar to adding additional terms to an MLM, possibly affecting multiple
levels. If the network is at level k with k ≤ L, then adding the network implies
adding terms from levels k to L, where L is the highest level. When k > L, that
is, people in different level L units are connected through the network, then
adding a network is like adding another higher level. In these cases, the stand-
ard rules for the effect of omitting one or more levels may apply. However,
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the coefficients for W1l + 1lW⊤ are products of ρ and σ2l , and are not inde-
pendent. Due to the dependence of these coefficients, we may not necessarily
observe the standard rules when omitting a level or the network.

Similarly, for Model III, the first-order approximation is:

V ≈ σ2111 + σ2212 + σ2313 + σ21ρ(W11 + 11W⊤). (13)

Here due to the additivity of the random and network effects, the joint
dependence issue appears less problematic compared to (12), as there is
only one additional term reflecting the network.

Impact of Omitting Network Dependencies
Fixed effects. The impact of omitting the network dependencies on the esti-
mates of the regression parameters differs for the different NAMLMs
described in Section “Extended Models That Include Social Network and
Group Dependencies: Network Autoregressive Multilevel Models.” For the
network effects MLM given by (9), the expectation of the vector of response
variables depends on the network dependencies through A−1. Hence the
expectation of the OLS estimate of the regression coefficients is
(X⊤X)−1X⊤A−1Xβ. Using a first-order Taylor-series approximation, the
resulting bias is (X⊤X)−1X⊤ �Xβρ and depends on the network contextual vari-
able, �X, and ρ. Similar results can be obtained for generalized least squares
estimates of β.

For the network disturbance Models II and III, the network dependencies
do not affect the expectation of the vector of response variables, and so omit-
ting them does not introduce bias into the estimation of the regression
coefficients.

Random effects. The covariance matrix for Models I and II can also be
re-expressed as

V = σ21A
−111(A−1)⊤ + σ22A

−112(A−1)⊤ + σ23A
−113(A−1)⊤

= σ21M1 + σ22M2 + σ23M3, (14)

a linear combination of three matrices M1, M2, and M3 with
Ml = A−11l(A−1)⊤. This also shows that the variance associated with each
level is modified by the social network dependencies.

Comparing the true covariancematrixwith the one omittingnetwork depend-
encies, we find that (some of) the estimates of the variance components of the
MLM will be overstated, when ρ > 0. This is because using a Taylor-series
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expansion of A−1, it can be shown that V ≥ σ2111 + σ2212 + σ2313 for ρ ≥ 0,
becauseMl ≥ 1l. This means that when using the true values of σ21, σ

2
2 and σ23

and ignoring the network, the implied variance, σ2111 + σ2212 + σ2313, is less
than the true variance V. Because 1l ≥ 0, then at least some of the estimates,
σ̂2l , of the variance components omitting network dependencies will be over-
estimated compared to the true σ2l of the full model to compensate for the other-
wise underestimated variance V. Only for the unusual case of negative ρ can
under-estimation occur for some levels.

Appendix C provides some details of this argument. Generally, an analysis
that does not account for the network gives estimates of the variance compo-
nents that are too large, when ρ > 0. Using only the first-order term in the
Taylor-series Ml ≈ (I+ ρW)1l(I+ ρW)⊤ ≈ 1l + ρ(W1l + 1lW⊤), which
suggests that the amount by which σ2l is over-estimated depends on ρ and
how the level and network are related as reflected by W1l + 1lW⊤.

When using the arguments of Section “Re-expressing the Covariance
Matrix of NAMLMs,” the additional terms refer to a certain level or levels.
Ignoring a network should lead to different variance estimate at the affected
level and at adjacent levels and likewise for SEs. For example, when the
omitted network is above the highest level (level 3), then the level 3 variance
estimate component should change. Since the fixed intercept can be consid-
ered as a level 4 predictor, then the SE of the fixed intercept should also be
affected. However, due to the joint dependence of ρ and σ2l , other levels
may still be affected.

For Model III, similar results can be obtained by noting that for this model:

V = σ21M1 + σ2212 + σ2313. (15)

For this model, only the variance associated with the individual level is modi-
fied by the social network dependencies.

Impact of Omitting Multilevel Dependencies

To assess the impact of omitting a level in the NAMLMs the method of
moments is applied, following Berkhof and Kampen (2004). First let us
assume the network parameter can be estimated consistently, which may
not always hold, but the simulation study (Section “Example With
School Data”) indicates that the estimates of the network parameters
are roughly the same regardless of the number of levels used in the
model. For Model II, the residuals are r = Y− Xβ̂ where β̂ = β̂OLS.
Then r is approximately zero mean normal with covariance
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V = σ21A
−1(A−1)⊤ + σ22A

−112(A−1)⊤ + σ23A
−113(A−1)⊤. Let r̃ = A(ρ)r.

Provided a consistent estimate of ρ exists (or alternatively the estimate of ρ
is the same when a level is ignored compared to the full model), the variance
of r̃ is approximately σ2111 + σ2212 + σ2313 (consistency of ρ̂ implies consist-
ency of ˆ̃r), that is, the transformed residuals have the same form as those from
a standard MLM. Estimation of the random intercept variances can now be
based on the transformed residuals r̃. Therefore, the same rules for omitting
a level in a MLM apply, see for example, Tranmer and Steel (2001) and
Berkhof and Kampen (2004). For example, omitting the area level will
give an inflated estimate of the household-level variance, whereas omitting
the household level will lead to increased area-level and individual-level var-
iances. Also, similar rules apply to SEs, as for standard MLMs. If ρ is esti-
mated correctly then these rules apply.

However, as we have seen in Section “Re-expressing the Covariance
Matrix of NAMLMs” by re-expressing the covariance (12), adding the
network to a standard MLM is equivalent to adding other terms related to
existing or higher level(s) and the coefficients of these terms are functions
of ρ and σ2l . Ignoring the joint dependence, we would expect that ignoring
a level only affects estimates of the same level or adjacent levels. For
example, if the network is at level 4 and level 3 is ignored, then we would
expect level 2 and level 3 variance estimates to be affected and also the ρ esti-
mate, but not level 1 estimates, that is, σ21 and SEs of level 1 predictors to be
unaffected, since level 1 is not adjacent to level 3. Using that argument, we
would expect the level 4 estimate to change, that is, we would expect ρ̂ to
change as well, and hence the above situation (ρ̂ to remain the same) is not
always valid.

Simulation Study

Setup of Simulation Study

In this section, we consider a situation involving people within households,
which are located within areas and are involved in a social network. To
assess the impact of omitting one of the components (network, household,
and area) of the model, we conduct a simulation study.

For Models I, II and III, we randomly generate 200 areas, and each area
has 10 households. The size for each of the 10 households is randomly
chosen using the probabilities 0.294, 0.332, 0.136, 0.146, 0.063, 0.020,
0.006, and 0.002 for household sizes 1,2,3, …, 8. Those probabilities are
taken from the Household, Income and Labor Dynamics in Australia
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(HILDA) survey using the observed frequencies from wave 8 (2008)
(Summerfield et al. 2015). The simulations take the number of households
in an area as fixed, which is often the case in social surveys. The theoretical
results do not assume groups of equal size, nor does the analysis of real data in
Section “Example With School Data.”

The data are generated under Models I, II, and III to assess the effect of
omitting any combination of the three components. The variance parameters
are set to σ21 = 1.0 (individuals), σ22 = 0.3 (households), and σ23 = 0.1
(areas). As covariates we consider a household level covariate represented
by X(2), an area level covariate X(3), and a individual-level covariate X(1).
The models also include an intercept, so x = (1, X(1), X(2), X(3))⊤, and
β = (− 1, 2, 0.2, 0.3)⊤.

The covariates were all generated from the standard normal distribution,
that is, X(k) ∼ N(0, 1). To assess the effect of a positive and a negative
network parameter ρ, we consider the values ρ = 0.3 and ρ = −0.3 for all
three models. The number of simulated data sets is 10,000. The empirical
mean for the 10,000 simulations of the estimates of the fixed effects β, the
random effects parameters σ2l , l = 1, 2, 3, and ρ were calculated, as well as
the empirical standard deviations (SDs) of the estimates of the fixed effects
parameters. These means and SDs of the regression coefficient estimates
give the expectation and the true SEs of the estimates of the regression coef-
ficients, respectively.

In practice, the SEs of the regression coefficients will be estimated for a
model or sub-model using the available data. The SE estimates may be
biased and not estimate the true SEs well when the network or one or more
levels are omitted, which can affect statistical inferences. The effect of omit-
ting the network or levels on statistical inference for the regression coeffi-
cients was evaluated in the simulations by examining the relative bias of
the SE estimates and coverage of the associated nominal 95 percent confi-
dence intervals (i.e., proportion of times the true regression parameter is
included). SEs were estimated in a standard way, using the inverse of the
Fisher information matrix (see Appendix B.2) and confidence intervals con-
structed by adding and subtracting 1.96 times the estimated SE to the esti-
mated regression coefficient. A negative bias will lead to underestimation
of the true SEs and overstate the statistical significance (i.e., p-value too
small) and reduced coverage of the true regression coefficients by the asso-
ciated 95 percent confidence intervals.

For each of Models I, II, and III, results were generated for the full model
and for all submodels, that is, for any combination of the components
referring to the household and area level and the network. That means in
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total 23 = 8 submodels (including the full model) were fitted for each data set
for each of the three NAMLMs, for the parameter values specified. Further
simulation studies could use other parameter values.

The network comprising all individuals was generated by an ERGM
(Snijders et al. 2006) with a GWESP (geometrically weighted edgewise
shared partner) statistic, or sometimes called distribution, and an edge statistic
with the parameters set to 1 and −4 to have on average approximately 4.5
links per individual. This was done using the ergm R package (Handcock
et al. 2010). We also considered a scenario in which the network was
limited to within areas, similar to the inter-school network in Section
“Example With School Data.” For this scenario, the two parameters were
set to 1 and −2 in order to have roughly the same number of links for both
cases.

Results of Simulation Study

Table 1 shows the results for the three models with ρ = 0.3 and the network
comprising all individuals, allowing network dependencies between indivi-
duals in different areas. Table 2 shows the results when ρ = 0.3 but with
the network connections restricted to within areas. Tables S1 and S2 (see
Supplemental Material) are similar to Tables 1 and 2, except that ρ = −0.3
is negative, which is a less common situation.

Effect of omitting levels on estimates of variance components and network
parameter. The results in Table 1 show that when the social network is
included, omitting one or more levels has a very similar effect on the esti-
mates of the remaining variance components as in a standard MLM described
in Section “Re-expressing the Covariance Matrix of NAMLMs.” There is no
appreciable effect on the estimation of the network parameter, ρ, except in
Model III, where there is some reduction when the household level is ignored.

Effect of omitting network dependencies on estimates of variance components.
When no network is included, there is no appreciable effect on the estimates
of the variance components when all are included. However, the omission of
the area level component decreases the household level and increases the
individual-level variance components considerably. When the household
level is omitted, the area-level variance component increases considerably.
This does not happen when the network is included, suggesting that it
plays a role in the effects of omitting a level.
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Effect of omitting network dependencies or levels on estimates of regression
parameters. The mean of the estimates of the regression parameters is not
affected at all by omitting the social network or levels in Models II and III.
Even in Model I, where an effect might be expected when the network is
omitted, there is no impact on the individual-level regression parameter and
very small effects for the regression parameters of household and area level
covariates, although the estimation of the intercept is affected.

Effect on SEs and inferences for regression coefficients. The SEs of the regres-
sion coefficients estimates shown in Table 1 reflect the loss of efficiency as
levels or the social network are omitted from the variance structure, V(Y ),
used in estimating these coefficients. For a particular submodel, the loss of
efficiency is the ratio of the square of the SE to that of the full model (i.e.,
ratio of variances). When only the network is omitted, so a standard MLM
is fitted, the SEs are essentially the same as for the full model and there is
no loss of efficiency. The SEs are the highest when all levels and the
network are omitted, resulting in the efficiency losses ranging between 3
percent and 21 percent. These SEs are close to the case when only the
network is included. In general, provided at least one of the household or
area level is included any efficiency loss is small. An exception to these
results is the intercept in Model I, where omitting the network leads to
smaller SEs. In all cases, the SEs for the regression coefficients obtained
using Model III are appreciably larger than for Models I and II, which are
similar to each other.

The relative biases of the SE estimates and the coverage of the associated
95 percent confidence intervals are given in Table 3 for the simulations allow-
ing network dependencies between individuals in different areas, correspond-
ing to Table 1. Poor coverage can arise due to underestimation of the SE and/
or bias in the estimate of the regression coefficients. For the individual-level
regression coefficients, the relative bias of the SE estimates is very small and
the coverage is always close to the nominal 95 percent (i.e., 5 percent signifi-
cance level) for all models or submodels used, including the submodel omit-
ting the network and levels. For the household and area-level regression
coefficients the omission of the network has a little or no effect on coverage
provided the levels are included. Including only the network leads to appre-
ciable negative relative biases in the SE estimates and poor coverage.
Omitting only the household (area) leads to negative biases in the SE esti-
mates and poor coverage of the household (area)-level regression coefficient.
When the network is omitted, omitting the household (area) leads to a poor
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Table 3. Relative Bias (%) of SE Estimates of Regression Parameter Estimates (and

Coverage of 95% Confidence Intervals in Percentages) for Different Models and

Sub-models Using Simulated Data Based on ERGM Network With Inter-Area

Network Connections and Positive ρ = 0.3.

Model I: Network acts on response variable

Intercept Subjects HH Area

Submodel β0 = −1 β1 = 2 β2 = 0.2 β3 = 0.3

Full −3.6 (93.8) −0.8 (94.7) −1.7 (94.5) −6.4 (92.0)

No area −12.2 (91.2) −1.4 (94.6) −0.5 (94.9) −30.3 (82.6)

No HH −4.2 (93.9) 1.4 (95.3) −19.2 (88.8) −6.1 (91.8)

No network −34.4 (1.3) 1.0 (95.2) −0.7 (94.6) −6.9 (91.9)

Just network 3.8 (95.8) −1.3 (94.7) −21.4 (87.8) −43.1 (73.7)

Just HH −34.2 (1.3) 3.1 (95.6) −18.1 (88.9) −6.7 (91.7)

Just area −50.9 (0.5) 0.3 (95.0) 0.2 (94.8) −30.2 (82.7)

No levels −59.8 (0.3) 0.6 (95.2) −20.2 (88.2) −42.5 (73.9)

Model II: Network affects individual and higher level random effects

Intercept Subjects HH Area

Submodel β0 = −1 β1 = 2 β2 = 0.2 β3 = 0.3

Full −0.3 (92.9) −0.7 (94.9) −1.5 (94.6) −1.9 (93.4)

No area −29.5 (82.4) −1.3 (94.8) 0.0 (94.9) −29.6 (83.3)

No HH 0.2 (92.8) 1.4 (95.4) −19.1 (88.8) −1.7 (93.2)

No network −30.9 (81.4) 0.2 (95.1) −0.9 (94.7) −2.0 (93.0)

Just network −43.1 (72.5) −1.1 (94.8) −21.2 (87.9) −42.9 (73.8)

Just HH −30.7 (81.3) 2.5 (95.6) −18.7 (89.2) −1.7 (93.0)

Just area −50.9 (66.4) −0.5 (94.9) 0.4 (95.1) −30.1 (82.8)

No levels −60.2 (57.0) −0.4 (94.9) −21.0 (88.0) −43.1 (73.6)

Model III: Network affects only individual-level error term

Intercept Subjects HH Area

Submodel β0 = −1 β1 = 2 β2 = 0.2 β3 = 0.3

Full −0.7 (93.4) −1.0 (94.7) −0.5 (95.0) −3.1 (91.9)

No area −22.3 (86.0) −1.1 (94.6) 2.3 (95.5) −32.1 (81.5)

No HH −3.2 (92.3) −0.2 (95.0) −16.9 (89.7) −2.7 (91.7)

No network −12.7 (89.1) 0.5 (94.9) 0.2 (94.9) −2.3 (92.1)

Just network −35.2 (78.4) −0.4 (95.0) −16.2 (89.9) −44.9 (72.3)

Just HH −13.3 (88.6) 1.1 (95.2) −16.1 (90.1) −2.2 (91.9)

Just area −37.3 (77.4) 0.4 (95.0) 2.9 (95.4) −31.0 (82.2)

No levels −49.3 (67.5) 0.7 (95.0) −16.1 (89.9) −43.9 (73.1)
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coverage for the area (household) regression coefficient. For the intercept in
Models II and III, there is a large negative relative bias in the estimated SEs
leading to a poor coverage, except for the full model or where the household
is omitted. For Model I, even worse coverages are obtained because of the
bias in the estimation of the intercept when there is no network already
shown in Table 1, combined with underestimation of the SEs. We see that
the expectation of the estimates of the regression coefficients and inferences
about the individual-level regression coefficient are generally not affected by
the omission of the network or levels. However, the inferences about the
household and area-level regression coefficients and the intercept can be
affected due to the underestimation of the SEs, which leads to overstating
the statistical significance and poor coverage.

Results when social network contained within areas. The results in Table 2 cor-
respond to the case when the social network is contained within the area level,
but can still connect different households. Many of the observations made for
Table 1 apply, however, there are some noteworthy differences associated
with the interplay between the network and the area-level effect. When the
area level is omitted, the estimate of ρ increases considerably. When the
network is omitted, the estimate of the area-level variance component
increases considerably. Also, omitting the network increases the regression
coefficient for the area-level covariate in Model I. These results arise
because in this case, the network and area effects both produce within-area
correlations. For the SEs, the effect of using different types of models and
omitted components of variance structure are similar to those shown in
Table 1. The relative bias of the estimated SEs and the associated coverage
of the 95 percent confidence intervals are given in Table 4. The general con-
clusions are similar to those in Table 3. There are some additional cases of
poor coverage in Model I: in the estimation of the individual-level regression
coefficient with no network effect or levels, or just an area effect, and also in
the area-level regression coefficient when there is no network or just house-
hold, which is due to the bias in the coefficient noted previously.

Results with negative ρ. In Supplemental Table S1, where ρ is negative and
there are inter-area connections, the results are similar to Table 1 for the esti-
mates of the regression coefficients, the network parameter, variance compo-
nents, and the SEs. The estimates of the regression coefficient are not affected
by omitting levels or the network. Omitting a level results in increases in the
variance component for the levels included in the model. Estimation of ρ is
not substantially affected by the levels included, and omission of the
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Table 4. Relative Bias (%) of SE Estimates of Regression Parameter Estimates (and

Coverage of 95% Confidence Intervals in Percentages) for Different Models and

Submodels Using Simulated Data Based on ERGM Network Without Inter-Area

Network Connections and Positive ρ = 0.3.

Model I: Network acts on response variable

Intercept Subjects HH Area

Submodel β0 = −1 β1 = 2 β2 = 0.2 β3 = 0.3

Full −3.4 (93.6) −0.8 (94.8) −2.4 (94.3) −6.6 (92.8)

No area −19.6 (78.7) −0.7 (94.3) −0.4 (94.9) −25.7 (83.7)

No HH 8.0 (95.3) −0.3 (94.9) −20.3 (88.4) −3.3 (93.4)

No network −3.0 (12.6) −0.6 (92.2) −0.8 (94.4) −2.3 (79.2)

Just network −16.5 (63.4) 0.8 (93.7) −20.5 (88.3) −31.5 (73.7)

Just HH −3.2 (12.8) −0.8 (92.7) −18.6 (88.7) −2.0 (79.1)

Just area −46.0 (1.9) −1.1 (87.8) 7.0 (96.2) −46.0 (48.0)

No levels −58.1 (1.2) −0.9 (84.8) −20.2 (88.0) −58.4 (35.7)

Model II: Network affects individual and higher level random effects

Intercept Subjects HH Area

Submodel β0 = −1 β1 = 2 β2 = 0.2 β3 = 0.3

Full −2.0 (93.4) −0.8 (94.8) −1.6 (94.6) −1.6 (93.4)

No area −17.3 (88.6) −0.9 (94.7) −0.7 (94.8) −17.4 (88.9)

No HH −2.3 (93.0) −0.8 (94.7) −19.9 (88.5) −1.5 (93.4)

No network −2.2 (93.2) −1.5 (94.7) −1.1 (94.5) −1.4 (93.4)

Just network −22.0 (86.3) −1.0 (94.8) −20.4 (88.4) −22.5 (86.6)

Just HH −2.3 (93.0) −1.5 (94.6) −19.3 (88.7) −1.1 (93.5)

Just area −46.6 (70.4) −2.3 (94.5) 5.8 (96.1) −46.6 (70.7)

No levels −58.9 (58.5) −2.6 (94.2) −21.7 (87.8) −59.2 (57.8)

Model III: Network affects only individual-level error term

Intercept Subjects HH Area

Submodel β0 = −1 β1 = 2 β2 = 0.2 β3 = 0.3

Full −2.3 (92.5) −1.7 (94.6) −3.1 (93.9) 0.6 (93.0)

No area −15.8 (88.9) −1.6 (94.7) −2.6 (94.0) −13.5 (89.4)

No HH −3.6 (91.7) −0.4 (94.9) −21.7 (87.2) 0.4 (92.5)

No network −3.9 (91.5) −1.5 (94.5) −3.0 (93.8) −1.2 (91.9)

Just network −20.8 (86.6) −0.1 (94.8) −21.7 (87.1) −17.4 (87.8)

Just HH −4.4 (91.1) −0.9 (94.7) −20.9 (87.6) −0.6 (91.9)

Just area −36.1 (79.0) −1.0 (94.8) −2.3 (94.2) −35.8 (78.8)

No levels −49.0 (68.4) −2.1 (94.6) −23.5 (86.5) −47.7 (69.0)
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network does not affect the estimation of the other variance components when
all are included. As in Table 1 when no network is included, the omission of
the area-level component decreases the household level and increases the
individual-level variance component. When the household level is omitted,
the area-level variance component increases considerably. As in Table 1
this does not happen when the network is included. When the social
network is contained within the area level and ρ is negative, the interplay
between the network and area-level effect has a dampening effect when
either is omitted, as shown in Supplemental Table S2. Omitting the area-level
effect contributes some positive correlations within the network that is con-
tained within the areas, and this works against the negative autocorrelation
to move the estimate of ρ towards zero, or to make it positive. Omitting
the network in this case, the means some negative correlations are influencing
the within area correlations, reducing the estimate of the area-level variance
component. The relative biases of the SE estimates and associated coverage
are given in Supplemental Table S3 for the case where there are inter-area
network connections, and in Supplemental Table S4 when the network con-
nections are contained within areas. The general conclusions are the same as
for the corresponding case of positive ρ.

When ρ = 0 or ρ > 0.3. We have not shown simulation study results for ρ = 0
(no network effects) and for larger values of ρ, for example, ρ = 0.7. However,
the results presented in the tables (including Tables 5 and 6 for the data set con-
sidered in Section “Example With School Data”) suggest what happens in both
cases. When ρ = 0, the estimated ρwill be, on average, near zero, but for a given
data set, ρ̂ is almost certainly non-zero. So we can compare the rows “no
network” (ρ̂ = 0) with “full” (ρ̂ ≠ 0) to see the effect of incorporating the
network, that is, some or all variance components will generally decrease
(more so if ρ̂ > 0). The case of ρ > 0.3 is similar to the case ρ = 0.3, only the
effects are larger. Since the matricesMl depend on ρ and the size of the elements
of Ml relative to 1l will increase with ρ (for ρ > 0), the effects relating to the
network will generally be larger. For example, omitting the network leads to
larger increases in the estimated variance components.

Example With School Data

School Data Details

For an illustration based on real data, we use a data set about a friendship
network and delinquent behavior of students in school classes, collected in
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a two-wave survey, the Dutch Social Behavior study (Houtzager and
Baerveldt 1999). Students from the third and fourth years of the
lower middle level of the Dutch secondary school system answered a
questionnaire, with a total sample size of 990. A more detailed description
can be found at https://www.stats.ox.ac.uk/~snijders/siena/BaerveldtData.
html.

The data were collected from 19 schools with two variables of
main interest in this article: gender and a measure of delinquent behavior
(DB), defined as the number of minor offenses that the respondent states
to have committed. The measure was transformed Y = ln (1+ DB) to
obtain less skewed data. The network relationship is defined as giving
and receiving emotional support: there is a connection from student i to
student j if i indicates that i receives and/or gives emotional support
from/to student j.

The data only have two levels, schools and students. We artificially added
another level, classes, so that we could investigate the effect of ignoring levels
in a more complex model with three levels, as we did in Section “Results of
Simulation Study.”

The school sizes of the data set are between 31 and 91. We divided the
students of each school into classes, such that class sizes are approximately
equal and have a maximum size of 31. For example, a school with 31 students
was considered to have only one class, but a school with 54 students was split
into two classes with 27 students each. The allocation of the students to
classes was done randomly until the resulting NAMLM had non-zero esti-
mates of the variance and network parameters.

The response variance Y is the log-transformed delinquent behavior
and the student-level covariate is gender. Often covariates are given at
several levels. Here we constructed a school- and class-level contextual
variable defined as the average gender for schools and classes, respect-
ively, that is, the average rate of males was calculated for each class
and each school and were added as covariates (called sex class and sex
school).

The network referring to giving and/or receiving emotional support was
restricted to within the schools, that is, connections do not exist between
any two students of different schools. W is row-normalized, such that the
rows sum to one. The original network has an average of 2.19 links per
student. We also artificially created between school connections by
adding randomly approximately 0.6 links per student, leading to 2.80
links per student for the new network. The resulting interschool network
is denoted by WIS.
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Results of Analysis of School Data Using NAMLMs
Effect of omitting levels and networks on estimates of variance components and
network parameter. The results for this data set for each of the three
NAMLMs are presented in Table 5 (no between school connections) and
Table 6 (with between school connections) with the estimates obtained for
the full model, containing all three levels and the network, and all submodels
obtained by ignoring the network or one or more levels. The tables show the
estimates of the regression parameters, their estimated SEs and the estimates
of the variance and network parameters. We do not consider the SEs of the
variance parameters, because Wald-type confidence intervals are often not
applicable and therefore SEs of such variance estimates are of limited use,
see Chambers and Chandra (2013) for an alternative bootstrap method to con-
struct confidence intervals.

These results show that when a level, for example, schools or classes, is
omitted, then the variance of the omitted level is approximately distributed
to the two adjacent levels. For example, when the school level is omitted,
then the class-level variance is increased by the variance of the school
level. When the class level is omitted, then the variances of the student and
school levels are inflated by an amount that sums up to the class-level
variance.

The estimate of ρ remains essentially the same provided the school and/or
class level is included in the model. When neither level is included, the esti-
mate of ρ increases appreciably as it picks up some of the effects of the
omitted levels.

When the network is omitted, then the variances of the levels are all
increased for Models II and III. For Model I, there is no or negligible increase,
because the network parameter estimate for Model I is very small.

Effect on estimates of regression coefficients. For all three models, the estimates
of the regression coefficient for the individual-level covariate do not change
as the network or levels are omitted, except for Model I in Table 5 when the
network is omitted, consistent with the discussion in Section “Theoretical
Impact of Omitting Some Part of the Population Structure in the Analysis.”
For the estimates of the regression coefficient of the class-level covariate,
ignoring the network has some modest effect in all three models, but ignoring
any of the levels has little effect. Similar effects can be seen in the estimates of
the regression coefficients for the school-level covariate, although these esti-
mates have quite large estimated SEs due to the small number of schools in
the sample.
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The observation that ignoring the network affects the estimates of the
regression coeffcients for the class and school-level covariates in Models II
and III might contradict the discussion in Section “Theoretical Impact of
Omitting Some Part of the Population Structure in the Analysis.” However,
Tables 5 and 6 show the ML estimates and not OLS estimates, explaining
the change of the fixed effects, which is due to the non-zero efficiency
effect of the ML estimator, see equation (3) in Berkhof and Kampen
(2004). For larger sample size and a larger number of schools and classes,
the fixed effects of Models II and III would stay relatively constant, as was
seen in the simulation study which involves larger sample sizes. These obser-
vations overall confirm the anticipated behavior outlined in Section
“Theoretical Impact of Omitting Some Part of the Population Structure in
the Analysis.”

Differences between Models I, II, and III. These results also shed some light on
the differences and similarities in the results obtained from applying the three
different full NAMLMs. For Models II and III, the regression coefficients are
the same for the individual-level covariate and very similar for the class and
school-level covariates. Comparing results with the naive model that ignores
all the dependencies, the individual-level regression coefficients are the same
and the estimates for the class, and school covariates tend to be stronger in
Models II and III. For Model I, the regression estimates are a little different
but still similar to those from Models II and III, and also stronger than
those from the naive model. So, for regression coefficients, the models gen-
erally give broadly similar estimates, but accounting for the dependencies
produces stronger estimates for the higher-level covariates than the estimates
obtained from the naive model, although not for the individual-level covari-
ate. This confirms that, especially if higher-level covariates are included, the
dependencies should be taken into account, even if not of direct interest. The
estimates of the variance components are virtually the same for Models II and
III and similar for Model I. When these parameters are of substantive interest,
there is little to choose between all three models. The estimate of the network
parameter is very similar in Models II and III, but much smaller in Model
I. This shows the main difference between Model I and Models II and III.
In the latter two, the network dependencies only affect the variance structure,
whereas in the former the regression term is also affected, as shown in Section
“Extended Models That Include Social Network and Group Dependencies:
Network Autoregressive Multilevel Models.” This leads to a smaller
network parameter.
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Effects on estimated SEs of regression coefficient estimates. Tables 5 and 6
contain the estimated SEs for the estimates of the regression coefficients. It
is noticeable that the SEs are smaller when the full model is used, or if
only one of the class or school-level effects is omitted. Once simpler variance
structures are used, in which any two or more of the network, class, or school
effects are omitted, the SEs increase. These increases do not affect the statis-
tical significance of the regression coefficient of the student-level covariate,
which stays strongly statistically significant. However, for the class-level cov-
ariate, these increases in SEs change the inference from statistically signifi-
cant to non-significant. The SEs for the school-level regression coefficients
are already large because of the small-sample size, and even with the full
model are generally non-significant, or sometimes a borderline case, and
the increase in SEs leads to strongly non-significant results.

Interpretation of models. Network models and the MLMs both describe
dependencies across observations and have been developed in different situa-
tions, often influenced by differences in data availability concerning network
connections and membership of groups. Using the NAMLMs described in
Section “Extended Models That Include Social Network and Group
Dependencies: Network Autoregressive Multilevel Models” these two
general approaches can be incorporated and interpreted within the same
framework. In Section “Network Effects and Network Disturbance
Models,” it was noted that autocorrelation in the response variable implicitly
introduces a contextual variable determined by the network into the regres-
sion part of the model. This is similar to the common and explicit use of con-
textual variables, such as group means, in MLMs. Examining the variance
structures in Section “Re-expressing the Covariance Matrix of NAMLMs,”
we can see that the standard MLM can be interpreted in a manner similar
to a network model in which each individual is equally connected to all,
and only, the individuals within its class or school. The variance component
for a level can be converted to an intra-group correlation by dividing by the
total of the variance components, and then has a similar interpretation as the
network correlation parameter (although in comparing these parameters the
fact that the connections due to common group membership are not usually
row normalized is relevant). Some of these aspects are discussed by
Tranmer and Lazega (2016).

To illustrate the use and interpretation of these models, consider the results
for Model II with inter-school connections in Table 6. We will consider sub-
models with no class effect in the variance structure, as this was artificially
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generated. In the submodel with network and school (no class sub model), all
the regression coefficients are statistically significant and ρ̂ = 0.266 and the
intra-group correlation for schools is δ̂ = 0.004. When the school level is
omitted, so only the network is included, the regression coefficient for
class is just statistically significant and the school regression coefficient is
not. The network parameter increases to 0.335 as some of the missing
within school correlations are picked up by the network effect. When the
network is omitted and the school included (just school submodel) the regres-
sion coefficients for class and school both are non-significant and the school
intra-group correlation increases to 0.016, with some of the omitted network
effect also serving to increase the student-level variance from 0.812 to 0.864.

We can compare ρ̂ and the intra-school correlation δ̂3 in terms of the cor-
relations between the values of different individuals that they imply. In doing
so, we must account for the row normalization of W used in the analysis.
Using the first-order term in the Taylor-series expansion of A noted in
Section “Results From Standard Multilevel Models,” the correlation
between the values for individuals i and j arising from the individual-level
errors is approximately ρ(Wij +Wji). Due to the row normalization
Wij = n−1

i , where ni is the size of the network centered on individual i. In
this example, the average network size is ≈ 2.8, and we can use this
average value to give an indication of the correlation between two individuals
in the network, as 0.266 × 2/2.8 = 0.19, compared with δ̂3 = 0.004.

Summary
In this article, we have combined two popular approaches to modeling
dependencies across units, such as people, these being network autocorrel-
ation models, and MLMs. This is useful because dependencies arising from
a hierarchical structure and network structure may be found together. An
example is given in Section “Example With School Data,” where class and
school-level random effects are included, as well as a social network reflect-
ing emotional support between students. Depending on assumptions about the
components of the MLM that the social network acts upon, three models can
be differentiated. In Model I, autocorrelation associated with the network acts
directly on the response variable and this leads to the regression component
implicitly including a network contextual effect and the variance at each level
being affected. In Model II, the network applies to the individual and higher-
level random effects, so that the variance at each level is affected, but the
regression term is not affected by the network. In Model III, the network
applies only to the individual-level random error, so only the variance at

36 Sociological Methods & Research 0(0)



the individual level is affected, and the regression term is not affected by the
network. These models can be described as NAMLMs. Which of these
models is appropriate in a particular situation depends on theoretical and
empirical considerations. In practice, we would tend to prefer Model I
because it allows network dependencies in both the regression terms, impli-
citly allowing for a network contextual effect, and the variance components,
although we would check diagnostics.

In practice, not all the potential sources of dependencies may be included
in an analysis, either because they have not been identified or the data on the
network and/or all the group memberships are not available. In some situa-
tions, the size of the data set may not be able to support fitting a suitably
complex model. Several authors have considered the effect of omitting a
level in an MLM on the estimates of the variance components that have
been included, and the SEs of the estimates of the regression coefficients.
However, there has previously been no consideration of the impact of ignor-
ing a component, either one or more levels and/or the network in the more
general framework of NAMLMs. This framework has enabled us to consider
these issues analytically, by simulation, and for a real data set. The results
show that the expectation of the estimates of the fixed regression coefficients
are affected little by omitting the social network or any of the levels. The coef-
ficient of the individual-level covariates is very stable. For Model I, there can
be a small effect on the estimates of regression coefficients of the higher-level
covariates and the intercept when the network is omitted.

Irrespective of the particular NAMLM used, the results of omitting a com-
ponent of the variance structure (either the levels of a MLM or the network)
are similar. When a level is ignored then the impact on the network parameter
(measuring social dependence) generally is minimal, unless the network level
is adjacent to or at the omitted level, and usually only the variance parameters
of the other, not omitted, levels are affected. Essentially similar rules apply in
this case as when ignoring a level in a standard MLM.

Omitting a component of a MLM in a NAMLM has an impact on the vari-
ance component estimates, and also on the estimated SEs of the regression coef-
ficients, which may affect the statistical significance of those referring to
group-level covariates. Similar conclusions apply as for omitting a level in
an MLM (Tranmer and Steel 2001; Berkhof and Kampen 2004; Moerbeek
2004; Van Landeghem, De Fraine, and Van Damme 2005), for example, omit-
ting a level leads to increased variance estimates of the flanking-level variance
components and also incorrect estimated SEs of the regression coefficients
referring to the omitted (decreased estimated SE) and the flanking levels
(often increased estimated SE of the lower flanking level).
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However, when the network is omitted then other variance parameters are
inflated, depending on how the network and levels interact. Often only the
variance parameters of the network level or levels adjacent to the network
level are affected.

What happens if several components are omitted at once? When the two
levels of the multilevel are ignored, then it seems this also has an effect on
the estimation of ρ and not only on the remaining level(s). If the estimated
ρ remains constant, then standard MLM results would apply. As we outlined
in Section “Theoretical Impact of Omitting Some Part of the Population
Structure in the Analysis,” adding a network can be considered as adding
other terms in an MLM referring to existing or new level(s). Hence omitting
the network, might only affect the same or adjacent levels, for example when
the network is at a higher level than the highest level, then only that highest
level might be affected. When the network and another level is ignored, then
this affects some or all estimated variance parameters. Generally, multiple
effects are observed and to avoid incorrect conclusions omitting several com-
ponents should be avoided, as it is difficult to draw conclusions what would
have happened had all levels and the network been accounted for. In general,
omitting a component of the variance structure can affect the estimates of
those components that are included.

The estimates of the individual-level regression coefficients are robust to
omitting components of the variance structure, although there can be some
effect on regression coefficients of higher level covariates. The true SEs on
the estimates of the regression coefficients were not appreciably affected,
but the estimated SEs can be. Even if a full NAMLM cannot be fitted, it is
still worthwhile including those components that can be included, and
worth bearing in mind that any omitted components may be affecting the esti-
mates of the components that are included in the analysis.

Increases in estimated SEs when levels or the network are omitted reduce
the statistical significance of the parameter estimates, leading to some loss of
power, but do not lead to incorrectly declaring statistical significance. This
was observed in the analysis of the schools data set, which was based on a
relatively small sample. In the simulation study, which has a larger sample
size, the estimated SEs had negative bias for the regression coefficient of
an omitted level. However, this situation is unlikely in practice, since
having a covariate for a level usually means we know the level for each indi-
vidual and can account for it in the variance structure. For the school data set,
a reduction in the estimated SEs for a regression coefficient also occurred
sometimes, for example, for parameters for covariates for levels adjacent to
the omitted level. Hence, for smaller data sets, we need to be careful with
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declaring significant results for covariates of adjacent levels. Generally, the
estimated SEs of the individual-level regression coefficient did not decrease;
incorrectly declaring statistically significant results for individual-level cov-
ariates is very unlikely to occur when some levels or the network are
omitted. Further development of SE estimates for NAMLMs should consider
robust SE estimation and bootstrap methods.

The R code produced to fit the NAMLMs is not necessarily made compu-
tationally efficient. Furure research could investigate computationally effi-
cient methods to fit these models and also investgate the effects of omitting
a level in a MM model to model network and group dependencies proposed
by Tranmer, Steel, and Browne (2014) and Tranmer and Lazega (2016), an
alternative model approach to the NAMLMs proposed in this article.

Appendix A

Comparison of NAMs and MM Models

The covariance matrix of the network disturbance model can be approximated
using a first-order Taylor series with A = I− ρW as

V(Y) = A−1(A−1)⊤σ21 ≈ Iσ21 + σ21ρ(W+W⊤)+ ρ2WW⊤σ21

≈ Iσ21 + σ21ρ(W+W⊤)

The covariance matrix MM can be written as

V(Y) = Cov(W, u)+ Cov(e) = W(Iσ2u)W
⊤ + Iσ21

= Iσ21 +WW⊤σ2u

Even when using a first-order approximation, the two (co)variance matrices
are usually different and show the two models are generally different.

Appendix B

Maximum Likelihood Estimation for Network Autoregressive MLMs
Appendix B.1. General Form of Log-Likelihood and Maximization. Let the resi-
duals be r = Y− E(Y) (≡ symbol is used to define new terms), then twice
the negative log-likelihood expressed in terms of r and V ≡ V(Y) is:

L̃ ≡ −2L = n log (2π)+ log |V| + r⊤V−1r
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We consider parameter estimation of β, ρ, and σ2l for l = 1, 2, 3 by maximum
likelihood. Maximizing L corresponds to minimizing L̃. In some cases, L̃ can
be simplified, for example, under Model I: log |V| = log |σ21A−1(Z D

σ21
Z⊤ +

In)(A−1)⊤| = n log σ21 − 2 log |A| + log |ZD̃Z⊤ + In| where D̃ ≡ D/σ21.
For details of ML estimation for the simpler sub-class of spatial autore-

gressive models without random effects, see Ord (1975). To obtain ML
estimates we apply the general purpose optimization R-function optim
using the method “L-BFGS-B,” see Byrd et al. (1995). It requires the
value of L̃ and its first derivatives and allows the specification of con-
straints on the parameters space, for example, ρ ∈ (− 1, 1). To assess
SEs the information matrix is needed. In the next subsection of the
Appendix, we provide an explicit form of L̃ for all three models, its first
derivatives and the elements of the information matrix J. It is widely
known that ML estimation of the variance components leads to a negative
bias. Restrictive ML estimation (REML), see Patterson and Thompson
(1971) or for a later derivation Verbyla (1990), overcomes this problem
and we applied this bias reduction method to Models II and III. For
Model I, the parameters of the mean also appear in the variance compo-
nents meaning REML is not applicable for Model I. Note that the restricted
likelihood is a sum of the log-likelihood and the additional term
1
2 log (X

⊤V−1X), see Lindstrom and Bates (1988). The first derivatives
and the information matrices for REML are not presented due to the com-
plexity and in order to preserve space.

Appendix B.2. Formulae for L̃, Likelihood Equations and the Fisher Information
Matrix. For notational convenience reparameterize, the variance parameters
such that D̃ = D/σ2ε .

Model I: Define rZ ≡ AY− Xβ and G ≡ ZD̃Z⊤ + In

ω ≡ ω1 ≡ σ21, ω2 ≡ σ22, ω3 ≡ σ23,

Ck ≡ G−1 ∂G
∂ωk

G−1.

Let λ1, . . . , λn be the eigenvalues of matrixW. The L̃ denotes minus twice the
log-likelihood and is given by:

L̃ = n log (2π)+ n logω− 2 log |A| + log |G| + 1
ω
r⊤ZG

−1rZ .
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The first derivatives are:

∂L̃
∂β

= − 2
ω
X⊤G−1rZ ,

∂L̃
∂ωk

= tr G−1 ∂G
∂ωk

( )
− r⊤ZCkrZ ,

∂L̃
∂ρ = − ∂ log |A|

∂ρ − 1
ω (WY)⊤G−1rZ , where

∂ log |A|
∂ρ = −∑n

i=1
λi

1−ρλi
(Ord 1975),

∂L̃
∂ω

= n

ω
− 1

ω
r⊤ZG

−1rZ .

The entries of Information Matrix (notation Zk is the design matrix of random
effects for level k) are:

E
∂2L̃
∂ω2

( )
= n

ω2
,

E
∂2L̃

∂ωk∂ω j

( )
= −1+ 2

ω

( )
tr C jZkZ⊤

k

[ ]
,

E
∂2L̃

∂β∂β⊤

[ ]
= − 2

ω
X⊤G−1X,

E
∂2L̃
∂ρ2

( )
= 2

∑n
i=1

λ2i
(1− ρλi)2

+ 2tr W⊤G−1WA−1G(A−1)⊤
[ ]

+ 2
ω
tr (A−1Xβ)⊤(W⊤G−1W)(A−1Xβ)
[ ]

,

E
∂2L̃
∂ωkρ

( )
= 2tr ZkZ⊤

k G
−1WA−1[ ]

,

E
∂2L̃
∂β∂ρ

[ ]
= − 2

ω
X⊤G−1WA−1Xβ,

E
∂2L̃

∂β∂ωk

[ ]
= 0, E

∂2L̃
∂β∂ω

[ ]
= 0,

E
∂2L̃

∂ω∂ωk

[ ]
= 1

ω
tr G−1 ∂G

∂ωk

[ ]
,
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E
∂2L̃
∂ω∂ρ

( )
= 2

ω
tr WA−1[ ]

.

Model II: Define rA ≡ Ar and minus 2 times the log-likelihood as:

L̃ = n log (2π)+ n logω− 2 log |A| + log |G| + 1
ω
r⊤AG

−1rA.

The first derivatives are given by:

∂L̃
∂β

= − 2
ω
X⊤A⊤G−1rA,

∂L̃
∂ωk

= tr G−1 ∂G
∂ωk

( )
− r⊤ACkrA,

∂L̃
∂ω

= n

ω
− 1

ω
r⊤AG

−1rA,

∂L̃
∂ρ = − ∂ log |A|

∂ρ − 1
ω (Wr)⊤G−1rA, where

∂ log |A|
∂ρ = −∑n

i=1
λi

1−ρλi
.

The Information Matrix has the elements:

E
∂2L̃
∂ω2

( )
= n

ω2

,

E
∂2L̃

∂ωk∂ω j

( )
= −1+ 2

ω

( )
tr G−1 ∂G

∂ω j
G−1 ∂G

∂ωk

[ ]
,

E
∂2L̃

∂β∂β⊤

[ ]
= − 2

ω
(AX)⊤G−1AX,

E
∂2L̃
∂ρ2

( )
= 2

∑n
i=1

λ2i
(1− ρλi)2

+ 2tr W⊤G−1WA−1G(A−1)⊤
[ ]

,

E
∂2L̃
∂ωkρ

( )
= 2tr ZkZ⊤

k G
−1WA−1[ ]

,

E
∂2L̃
∂β∂ρ

[ ]
= 0,
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E
∂2L̃

∂β∂ωk

[ ]
= 0, E

∂2L̃
∂β∂ω

[ ]
= 0,

E
∂2L̃

∂ω∂ωk

[ ]
= 1

ω
tr G−1 ∂G

∂ωk

[ ]
,

E
∂2L̃
∂ω∂ρ

( )
= 2

ω
tr WA−1[ ]

.

Model III: Let us first re-define for Model III the matrix
G ≡ ZD̃Z⊤ + A−1(A−1)⊤. Then minus twice the log-likelihood is given by:

L̃ = n log (2π)+ n logω+ log |G| + 1
ω
r⊤G−1r.

The first derivatives are:

∂L̃
∂β

= − 2
ω
X⊤G−1r,

∂L̃
∂ωk

= tr G−1 ∂G
∂ωk

( )
− r⊤Ckr,

∂L̃
∂ρ

= tr G−1 ∂G
∂ρ

[ ]
− 1

ω
r⊤G−1 ∂G

∂ρ
G−1r,

where ∂G
∂ρ = A−1WA−1(A−1)⊤ + A−1(A−1WA−1)⊤.

∂L̃
∂ω

= n

ω
− 1

ω
r⊤G−1r.

The entries of the Information Matrix are:

E
∂2L̃
∂ω2

( )
= n

ω2
,

E
∂2L̃

∂ωk∂ω j

( )
= −1+ 2

ω

( )
tr G−1Z jZ⊤

j G
−1ZkZ⊤

k

[ ]
,

E
∂2L̃

∂β∂β⊤

[ ]
= − 2

ω
X⊤G−1X,
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E
∂2L̃
∂ρ2

( )
= −1+ 2

ω

( )
tr G−1 ∂G

∂ρ
G−1 ∂G

∂ρ

[ ]
− 1+ 1

ω

( )
tr G−1 ∂

2G
∂ρ2

[ ]
,

E
∂2L̃
∂ωkρ

( )
= −1+ 2

ω

( )
tr G−1 ∂G

∂ωk
G−1 ∂G

∂ρ

[ ]
,

E
∂2L̃
∂β∂ρ

[ ]
= 0, E

∂2L̃
∂β∂ωk

[ ]
= 0, E

∂2L̃
∂β∂ω

[ ]
= 0,

E
∂2L̃

∂ω∂ωk

[ ]
= 1

ω
tr D−1 ∂G

∂ωk

[ ]
,

E
∂2L̃
∂ω∂ρ

( )
= 1

ω
tr G−1 ∂G

∂ρ

[ ]
.

Appendix C

Omitting the Network

The true variance isV = σ21A
−111(A−1)⊤ + σ22A

−112(A−1)⊤ + σ23A
−113(A−1)⊤

which is a linear combination of three matrices M1, M2, and M3 with
Mi = A−11i(A−1)⊤. In practice, we estimate it from the residuals or using
estimated parameters leading to V̂.

A Taylor series of A−1 is A−1 = In +
∑∞

k=1 ρ
kWk. Using this formula, it

can be easily shown that V ≥ σ2111 + σ2212 + σ2313, because Mi ≥ 1i when
ρ > 0.

Suppose we fit the incorrect model without network, that is,
Vc = (σ21)c11 + (σ22)c12 + (σ23)c13, and we aim at obtaining the coefficients

(σ2i )c stored in the vector σ2c . To obtain σ2c we apply the OLS estimator σ2c =
(X̃

⊤
c X̃c)−1X̃

⊤
c
�̂V with “design” matrix X̃c = (�11, �12, �11). Similarly define

X̃ = ( �M1, �M2, �M3). Here �Vc is the formed vector of matrix �Vc, such that

X̃cσ2c = �Vc for the incorrect model and X̃σ2 = �V for the true model.
Suppose now V is available, then:

σ̂2c = (X̃
⊤
c X̃c)

−1X̃
⊤
c
�V = (X̃

⊤
c X̃c)

−1X̃
⊤
c X̃σ

2

(X̃
⊤
c X̃c)

−1X̃
⊤
c (X̃c + X̃D)σ

2 = σ2 + (X̃
⊤
c X̃c)

−1X̃
⊤
c X̃Dσ

2,
(16)

where X̃D = X̃− X̃c ≥ 0 is the difference of the two design matrices. We
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conducted many numerical experiments and they showed that the matrix B =
(X̃

⊤
c X̃c)−1X̃

⊤
c X̃D had always positive entries. When this is the case then

clearly σ̂2c ≥ σ2. However in our numerical experiments this only holds for
ρ > 0. For ρ < 0 some entries can be negative leading in some instances to
some smaller values of σ̂2c , as shown in Supplemental Table S2 for Models
I and II for the third level.

Author’s Note

R-code (R-Development-Core-Team 2023) is available for fitting the proposed three
NAMLMs including all submodels for the school data set from the Dutch Social
Behavior study (see https://www.stats.ox.ac.uk/~snijders/siena/BaerveldtData.html)
on the following link https://figshare.com/articles/software/R˙code˙SMR˙zip/
21901440.
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