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Abstract
Climate change-related heatwaves are major threats to biodiversity and ecosystem 
functioning. However, our current understanding of the mechanisms governing com-
munity resistance to and recovery from extreme temperature events is still rudimen-
tary. The spatial insurance hypothesis postulates that diverse regional species pools 
can buffer ecosystem functioning against local disturbances through the immigration 
of better-adapted taxa. Yet, experimental evidence for such predictions from multi-
trophic communities and pulse-type disturbances, like heatwaves, is largely missing. 
We performed an experimental mesocosm study to test whether species dispersal 
from natural lakes prior to a simulated heatwave could increase the resistance and 
recovery of plankton communities. As the buffering effect of dispersal may differ 
among trophic groups, we independently manipulated the dispersal of organisms 
from lower (phytoplankton) and higher (zooplankton) trophic levels. The experimental 
heatwave suppressed total community biomass by having a strong negative effect 
on zooplankton biomass, probably due to a heat-induced increase in metabolic costs, 
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1  |  INTRODUC TION

Global climate change is characterised not only by rising means 
in annual surface temperatures but also by increasing frequency, 
magnitude and duration of heatwaves (IPCC,  2021). There is evi-
dence for these increasing trends in heatwaves across the terres-
trial (Fischer & Schär,  2010; Perkins-Kirkpatrick & Lewis,  2020), 
marine (Frölicher et al.,  2018; Oliver et al.,  2018), and freshwater 
realms (Woolway et al., 2021). Although the critical role of extreme 
weather events driving ecosystem changes has long been recog-
nized (Jentsch et al., 2007), much of the previous climate change re-
search has focused on the effects of rising mean temperatures. For 
example, a large majority of experimental studies aiming to unravel 
ecosystem responses to temperature increases applied static warm-
ing treatments without incorporating extreme events (Thompson 
et al., 2013; Woodward et al., 2016). Consequently, our understand-
ing of how ecological communities and ecosystems respond to ex-
treme weather events, such as heatwaves, is still limited.

Heatwaves often impose short but intense disturbances. By 
quickly pushing organisms beyond their thermal tolerance lim-
its, heatwaves may alter community composition and ecosystem 
functioning more strongly than a gradual rise in mean temperature 
(Bennett et al., 2021; Gutschick & BassiriRad, 2003; Stillman, 2019; 
Vasseur et al., 2014). It has been suggested that frequent heatwaves 
can reshuffle global biodiversity patterns by causing local extinc-
tions coupled with species range shifts (Smale & Wernberg,  2013; 
Wernberg et al.,  2013), modulating population dynamics (Davison 
et al., 2010; Jiguet et al., 2006) and altering species interactions (Sentis 
et al., 2013; Zhang et al., 2018). All these changes can in turn impair 
ecosystem functioning (Eggers et al., 2012; Thompson et al., 2015) 
and the provisioning of ecosystem services (Smale et al., 2019).

Aquatic ecosystems may be particularly susceptible to heatwaves 
as aquatic ectotherms tend to exhibit narrower thermal safety mar-
gins than terrestrial ones (Pinsky et al., 2019; Sunday et al., 2012). 
Higher sensitivities to warming imply more frequent extinctions 
and faster species turnover, with implications for aquatic ecosystem 
functioning (Comte & Olden, 2017; Pinsky et al., 2019). However, in 
contrast to a press disturbance of steadily rising mean temperatures, 

a short-term pulse disturbance caused by a heatwave is likely to be 
followed by a certain degree of community and ecosystem recovery 
(Bender et al., 1984; Harris et al., 2018). Management strategies will 
therefore critically depend on our understanding of the mechanisms 
that govern the resilience of ecosystems against heatwaves, in par-
ticular of its key components, resistance to and recovery from a dis-
turbance (Hodgson et al., 2015; Ingrisch & Bahn, 2018).

According to the spatial insurance hypothesis, the resilience 
of local communities to disturbance depends on the connectivity 
to and diversity of the surrounding regional species pool (Loreau 
et al., 2003; Thompson et al., 2017). This implies that habitats that 
are geographically isolated, either naturally or through anthropo-
genic impacts (e.g., habitat fragmentation), are likely to be more 
susceptible to environmental change, including more frequent heat-
waves. Immigration of species more tolerant to certain disturbances 
may allow better tracking of the changing environment, allowing for 
more stable ecosystem functioning if the colonising and resident 
species are redundant in maintaining specific ecosystem processes 
(Loreau et al., 2003).

Experimental evidence in support of the spatial insurance hy-
pothesis is however still contradictory and no consensus has been 
reached. This is partly due to the fact that the insurance effect 
depends on the type of stressor and the measure of ecosystem 
functioning (Symons & Arnott,  2013; Thompson & Shurin,  2012). 
The spatial insurance can also differ among trophic groups due to 
their different responses to environmental stressors and abilities to 
disperse (Limberger et al.,  2019). Yet, most previous experiments 
have focused only on simplified ecosystems composed of a single 
trophic group (de Boer et al.,  2014; Eggers et al.,  2012; Guelzow 
et al., 2017), or manipulated dispersal of only a single trophic group 
(Symons & Arnott, 2013; Thompson & Shurin, 2012). It has also been 
recently debated whether dispersal can provide spatial insurance 
against heatwaves. Laboratory experimental manipulations of a sin-
gle trophic level suggested either positive (de Boer et al., 2014) or 
neutral effects (Eggers et al., 2012). As dispersal of organisms from 
different trophic levels can cause different effects on metacommu-
nity structure and ecosystem function (Haegeman & Loreau, 2014), 
the direct experimental manipulation of multiple trophic levels in a 

resulting in weaker top-down control on phytoplankton. While zooplankton dispersal 
did not alleviate the negative heatwave effects on zooplankton biomass, phytoplank-
ton dispersal enhanced biomass recovery at the level of primary producers, providing 
partial evidence for spatial insurance. The differential responses to dispersal may be 
linked to the much larger regional species pool of phytoplankton than of zooplankton. 
Our results suggest high recovery capacity of community biomass independent of 
dispersal. However, community composition and trophic structure remained altered 
due to the heatwave, implying longer-lasting changes in ecosystem functioning.

K E Y W O R D S
dispersal, global change, mesocosm experiment, metacommunity, phytoplankton, trophic 
interactions, warming, zooplankton
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metacommunity context can provide a more realistic understanding 
of ecosystem resistance to and recovery from extreme heatwaves 
on a regional scale.

There has been mounting evidence that the impacts of warming 
critically depend on the trophic level (and associated traits such as 
body size) of organisms, driven by their different physiological con-
straints and changes in the strength of trophic interactions (Kratina 
et al., 2022; Petchey et al., 1999; Shurin et al., 2012). For instance, in-
creased metabolic demands of ectothermic consumers can result in 
higher feeding rates, resulting in stronger top-down control (Brown 
et al., 2004; Romero et al., 2018; Zhang et al., 2020). At the same 
time, large consumers are more prone to starvation under warmer 
conditions, which increases the risk of local extinction (Fussmann 
et al., 2014; Rall et al., 2010). This is further accentuated by their 
generally smaller population sizes and slower growth rates (Petchey 
et al., 1999; Purvis et al., 2000). Moreover, the successful establish-
ment of consumer populations in a new habitat strongly depends 
on the availability of resources (Thompson & Gonzalez,  2017). 
Therefore, consumers may be more dispersal-limited than their re-
sources, resulting in stronger and longer-lasting responses to and 
slower recovery from disturbance. Lastly, it is essential to partition 
dispersal and associated diversity changes at different trophic lev-
els, as responses of ecosystem functioning (e.g., primary produc-
tion) to diversity changes directly depend on the affected trophic 
group (Duffy et al., 2007; Thébault & Loreau, 2003).

Here, we tested how multi-trophic plankton communities re-
spond to heatwaves, and whether the spatial insurance provided by 
dispersal buffers the negative effects. We performed a mesocosm 
experiment where we first established plankton communities from 
a geographically isolated mountain lake. We then tested whether 
an initial dispersal event from a diverse regional species pool con-
tributed to the resistance and recovery of the experimental com-
munities during and after the heatwave manipulation. To be able to 
partition the effects of dispersal of different trophic levels, dispersal 
was manipulated separately for phytoplankton and zooplankton. We 
first predicted that disturbance caused by the experimental heat-
wave would result in reduced total community biomass. Second, 
given the different metabolic constraints and sensitivity to resource 
availability, we predicted that organisms at higher trophic levels (i.e., 
zooplankton) would be more negatively affected than those at lower 
levels, resulting in weaker top-down control. Third, we expected that 
increased connectivity to a regional species pool would enhance 
community resistance and recovery and this spatial insurance effect 
would be of higher importance for organisms at higher trophic levels.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental setup

We performed an outdoor mesocosm experiment between June 
and August 2018 at the Biological Station of WasserCluster Lunz, 
Austria. We investigated the independent and interactive effects of 

heatwave and dispersal on community composition and ecosystem 
functioning in a full-factorial design. The presence (H+) or absence 
(H−) of the heatwave was crossed with the manipulation of disper-
sal, represented by a dispersal event from the regional species pool 
of natural lakes and applied separately for phytoplankton (P−, P+) 
and zooplankton (Z−, Z+). The experimental setup thus comprised 8 
treatments and 5 replicates per treatment for a total of 40 experi-
mental units.

The experimental system consisted of 40 land-based meso-
cosms (height: 81 cm, inner diameter: 77 cm) made of food-safe 
PE containers (ARICON Kunststoffwerk GmbH). We placed them 
on an unshaded meadow approximately 500 m from Lake Lunz, 
Eastern Alps (N 47°51'15.7", E 15°04'3.8", 608 m a.s.l.). Each me-
socosm was insulated with mineral wool and covered by white 
opaque plastic foil on the outer side to reduce the thermal impact 
of air temperature and irradiation. As a result, the average diurnal 
fluctuations in mesocosm water temperatures were in the range 
commonly seen in the surface water of Lake Lunz. We covered the 
mesocosms with 250 μm-mesh net lids to minimise the introduc-
tion of particles while allowing for air exchange. Each mesocosm 
was also equipped with a removable, black-coloured plastic inner 
wall and bottom plates, which we turned every other week of the 
experiment to minimise the growth of periphyton and its impact 
on the planktonic system.

At the start of the experiment, we filled the mesocosms with 
300 L of water (resulting in a water depth of 66.6 cm) from Lake Lunz. 
Water was collected from a 2-m depth (i.e., from the lake epilim-
nion) by a centrifugal pump, transported by a water truck to the 
experimental site, and randomly pumped into the mesocosms after 
passing through a coarse sieve (500 μm) to exclude fish larvae. As 
mesozooplankton (especially cladocerans) were impaired by pump-
ing, we also introduced natural lake zooplankton from net hauls to 
set a starting density of approximately three Daphnia individuals L−1 
in the mesocosms. This density corresponded to the mean summer 
density of Daphnia in natural lakes in the area (Horváth et al., 2017). 
In the oligotrophic (5–8 μg total phosphorus L−1) Lake Lunz, phos-
phorus is the limiting nutrient for primary production. After filling 
the mesocosms with lake water and organisms, total phosphorus 
concentrations were raised to 15 μg L−1 by the addition of K2HPO4 
to set slightly mesotrophic conditions, as we expected a reduction 
of nutrients through sedimentation throughout the experiment. No 
experimental treatments were applied for 8 days, allowing for local 
species sorting and community establishment.

To simulate dispersal from the regional species pool, we intro-
duced a pooled inoculum consisting of either phytoplankton (P+ 
treatment), zooplankton (Z+ treatment) or both (P+Z+ treatment), 
originating from 15 regional lakes (Table S1). Among these source 
lakes, we also included peri-alpine lowland habitats that likely har-
bour more heat-tolerant planktonic taxa than our focal site. To apply 
the treatments, we first collected samples of phytoplankton and 
zooplankton from each source lake. For phytoplankton, we collected 
a 20-L vertically integrated epilimnetic water sample with a Van 
Dorn bottle. In the next step, samples were pooled and screened 
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through a plankton net (mesh size: 30 μm) to remove larger organ-
isms, especially metazoans. Thus, this pooled sample contained all 
microorganisms <30 μm (i.e., viruses, bacteria and protists). Still, we 
label it ‘phytoplankton’ for simplicity, as phytoplankton comprised 
an important part of biomass and we have detailed data for all time 
points only for this group. We collected zooplankton by vertical net 
hauls (mesh size: 100 μm, opening diameter: 40 cm) from the epilim-
nion of the 15 source lakes. These samples were first subsampled 
to the same effective volume per lake (20 L) as in the case of phy-
toplankton. Next, we performed the dispersal manipulations by 
introducing an inoculum of standardised volume independently for 
the phytoplankton (P+) and zooplankton (Z+) dispersal treatments. 
From the pooled phytoplankton sample, we introduced a 3-L subsa-
mple (representing 1% of total mesocosm volume) to inoculate the 
P+ mesocosms (N = 20). Before applying the Z+ dispersal treatment, 
the pooled community was washed gently by retaining zooplank-
ton in a 100-μm-mesh plankton net that was kept submerged in a 
large bucket just below the rim while gently pouring water in. This 
way, we ensured the animals did not fall dry while most bacteria and 
protists were washed out. We then added a zooplankton dispersal 
inoculum (volume: 0.5 L) corresponding to 3 L of lake water to each 
Z+ mesocosm. As the volume introduced by the dispersal inocula 
represented ≤1% of the total volume of water in the mesocosms, 
we did not immediately compensate for this in the control (P−, Z−) 
mesocosms. We equalled the water level in the mesocosms after the 
subsequent sampling. To reliably assess the number of phytoplank-
ton taxa introduced with dispersal (P+), besides microscopic counts 
of the inoculum sample (~33 new taxa introduced; Table  S2), we 
also performed an estimation based on species accumulation curves 
using our existing phytoplankton dataset for alpine and peri-alpine 
lakes. While the microscopic counts likely underestimated the tax-
onomic richness of the inoculum due to the large fraction of rare 
taxa, the second approach indicated ~53 new taxa for 15 source 
lakes (Figure S1). With zooplankton dispersal (Z+), we introduced 4 
cladoceran and 4 copepod species that were not present in the local 
community (Table S3), and on average, 160 individuals of cladocer-
ans (corresponding to a density of ~0.5 individuals L−1 in the meso-
cosms) and 412 individuals of copepods (~1.4 individuals L−1). The 
dispersal event (P+ and Z+ treatments) was simulated on day 8 of 
the experiment, prior to the experimental heatwave, which started 
48 h later (i.e., on day 10, Figure 1).

The experimental heatwave (H+ treatment) was simulated by 
gradually increasing temperatures to reach a 5°C offset (required 
4 days of initial heating) compared to the control (H−) conditions, 
which was subsequently maintained for 7 days (heatwave culmina-
tion phase). Temperature was regulated by submersible aquarium 
heaters (200 W, thermocontrol 200, Eheim GmbH) connected to a 
computer-controlled heating system. To set temperature levels in the 
H+ treatment, the mean temperature of the control (H−) mesocosms 
(N = 20) was used as baseline. While we planned to use the ambient 
temperatures as baseline, due to unusually cold weather conditions, 
H− mesocosms were also heated to 21.0°C from the third day of 
the heatwave until the end of the heating in the H+ mesocosms. 

After turning off the heating, water temperature in H+ mesocosms 
cooled to ambient levels within 3 days. The heatwave, including its 
initial heating, culmination, and cooling phases, thus lasted 14 days 
(Figure 1) and was followed by a 21-day recovery phase. The entire 
experiment (including the establishment, heatwave and recovery 
phases) lasted for 44 days (Figure  1). We applied an airlift system 
to prevent vertical temperature gradients in the tanks (Striebel 
et al., 2013). Compressed air released from a tube produced a very 
gentle upward current in a PVC pipe hanging in the centre of each 
mesocosm, and this kept the entire water column constantly mixed 
during the experiment.

2.2  |  Sampling and sample processing

In vivo chlorophyll a (Chl-a) autofluorescence (hereinafter referred 
as Chl-a fluorescence) was measured daily by a handheld fluorom-
eter (AquaPen-C AP-C 100, PSI) after a 30-min dark-adaptation pe-
riod and served as a proxy for phytoplankton biomass. Samples were 
taken from the central surface water of the mesocosms. Over the 
experimental duration, samples were collected twice per week for 
total phosphorus, Chl-a (based on pigment extraction), particulate 
organic carbon (POC) as well as phyto- and zooplankton. Microscopic 
analysis of plankton community samples was carried out on four 
focal sampling dates: (i) 2 days after the introduction of the regional 
inoculum but before starting the heatwave manipulation (day 10, t1), 
(ii) at the end of the culmination phase of the experimental heatwave 
when the heaters were turned off (day 21, t2), as well as (iii) 10 days 
(day 31, t3) and (iv) 17 days (day 38, t4) later, in the recovery phase 
(Figure 1). Samples were collected through a tap at the side of each 
mesocosm (inner diameter: 10 cm, height from the ground: 50 cm) to 
reduce the risk of unintentional dispersal (e.g., by a sampling device) 

F I G U R E  1  Temporal dynamics of daily mean water temperature 
and ambient air temperature over the experimental duration. 
Heatwave treatment (H+) is indicated with red, while control (H–) 
mesocosms are indicated with black (N = 20 per treatment and 
per day). Red-coloured shading denotes the time interval of the 
simulated heatwave in H+ treatments (light shading: heating and 
cooling phases, dark shading: culmination phase with a + 5°C offset 
in H+ vs H–). Triangles show the timing of the four focal sampling 
campaigns (i.e., t1, t2, t3, and t4). Solid lines represent fitted GAM 
models illustrating the temperature dynamics. The vertical dashed 
line indicates the timing of the dispersal manipulations.
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among the experimental units. Prior to the sampling, we increased 
airflow and gently mixed the water column of each mesocosm with a 
clean plastic tube, ensuring a homogenous distribution of plankton. 
We then collected zooplankton samples by releasing 20 L from the 
tap into a clean container, thereby ensuring fast flow that prevents 
the zooplankton from escaping the suction. Subsequently, we fil-
tered the volume through a 30-μm mesh plankton net and preserved 
the retained organisms in absolute ethanol. To obtain samples of 
phytoplankton, Chl-a, POC and water for nutrient analysis, another 
3-L water sample was collected and filtered through a 100-μm mesh 
to remove large zooplankton. For phytoplankton samples, 200 mL of 
water was preserved with Lugol's iodine solution. 500 mL of water 
were filtered through glass microfiber filters (Whatman GF/F, pore 
size: 0.7 μm) for analyses of Chl-a and POC, and filters were kept 
frozen (−20°C) until analysis. We then replaced the sampled water 
volume in each mesocosm with sterile-filtered (polyethersulfone 
membrane, pore size: 0.2 μm, MTS & APIC Filter), chlorine-free tap 
water, and added 15 μg L−1 K2HPO4 corresponding to the exchanged 
volume of water. As a result, total phosphorus concentrations gener-
ally varied between 10 and 15 μg L−1 over the experimental period, 
and we did not find any systematic deviations across treatments 
(Figure S2).

Chl-a concentration in water samples was determined by fluoro-
metry after acetone extraction (Arar & Collins, 1997), without cor-
recting for pheophytin. POC content was measured by an elemental 
analyser (vario MICRO cube™, Elementar Analysensysteme GmbH). 
The concentration of total phosphorus was measured by the ascor-
bic acid colorimetric method (Hansen & Koroleff, 1999) after persul-
fate digestion (Clesceri et al., 1999).

2.3  |  Microscopic analyses

We estimated phytoplankton densities according to Utermöhl (1958) 
method with an inverted microscope (DMI3000 B, Leica 
Microsystems). We counted and identified (to species level when 
possible) at least 400 sedimentation units (filaments, colonies, 
or single cells) in each sample (Lund et al., 1958). To obtain taxon-
specific biovolume and wet weight, we applied conversion factors 
for corresponding geometrical shapes (Hillebrand et al., 1999), based 
on measurements of axial dimensions of at least 30 individuals for 
dominant taxa. We then converted wet weight to carbon mass by a 
conversion factor of 14% (Vadstein et al., 1988).

To obtain zooplankton density data, we counted all crustacean 
individuals in the 20-L samples. For rotifers, we counted all indi-
viduals in subsamples representing 10% of the sampled volume. 
Individuals were identified to species level when possible. Specimens 
belonging to the Daphnia longispina species complex were pooled 
due to the difficulty of reliable phenotypic differentiation between 
parental taxa and interspecific hybrids during routine identifica-
tion (Dlouhá et al., 2010). We determined crustacean zooplankton 
body size by measuring the length of the first 20 individuals of each 
dominant species using a stereo microscope (Stemi 2000-C, Carl 

Zeiss AG), while we used published average length data for rotifers 
(Koste, 1978). Body length of cladocerans was measured from the 
top of the head to the base of the caudal spine, while length of cope-
pods was measured from the tip of the cephalothorax to the base of 
the furca (Bottrell et al., 1976). For rare crustacean species, we used 
mean body size measurements obtained from replicates of the same 
treatment combination with higher densities. When a species oc-
curred at low densities in all replicates of a treatment combination, 
mean body size was obtained from all the individuals available. For 
copepod nauplii, we used the published mean body length of Cyclops 
abyssorum nauplii, the dominant species in our experiment (Ludovisi 
et al., 2008). We subsequently converted body length to dry mass 
following the length-weight relationships (McCauley, 1984), and ap-
plied a factor of 0.4 to convert dry mass to carbon mass (Reiss & 
Schmid-Araya, 2008).

Due to the high time demand for taxonomic identification, 
counting and size measurements, three randomly selected repli-
cates per all treatment combinations were processed. These data 
(i.e., N = 3 per treatment) were then used to analyse species richness 
and community composition. For zooplankton, the dominant taxa 
(i.e., cladoceran genera, Cyclopoida, and Calanoida) were identified 
in all five replicates per treatments, which we used to calculate taxa-
specific biomass and to analyse resistance and recovery of zooplank-
ton. As rotifers occurred in very low abundances from t2 till the end 
of the experiment (contributing on average <1% to total zooplankton 
biomass at t2 and t4), we considered the biomass of crustaceans as a 
representative proxy for total zooplankton biomass.

2.4  |  Data analysis

2.4.1  |  Temperature dynamics and the effect of 
dispersal on species diversity

Temporal dynamics of daily mean temperatures were visualised by 
smoothed conditional mean curves based on generalised additive 
models (GAM) with the stat_smooth function (using mgcv gam fit-
ting and formula: y ~ s(x,k = 12)) of the ‘ggplot2’ R package (Wickham 
et al., 2021).

To visualise the effect of the dispersal treatments at t1 (before 
the heatwave manipulation) on phytoplankton and zooplankton 
alpha diversity, we compared rarefied (i.e., testing for density-
independent differences in taxon richness) mean taxon richness 
between the treatments with and without dispersal manipulations 
by the ‘mobr’ R package (McGlinn et al., 2021). Effect sizes were 
calculated as the mean absolute differences between treatments 
(D̅), and p-values were determined by a Monte Carlo permutation 
procedure (n = 1000 permutations) following the framework de-
scribed in McGlinn et al.  (2019). To visualise the effect of disper-
sal on gamma diversity, we constructed sample-based rarefaction 
curves for both phyto- and zooplankton based on 1000 random 
permutations using the specaccum function of the ‘vegan’ R pack-
age (Oksanen et al., 2020).
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2.4.2  |  Community composition

To test how taxa responded to treatments, we analysed the 
changes in community composition based on taxon-specific bio-
mass and tested for significant associations between specific taxa 
and treatments. We tested for significant treatment effects using 
permutational multivariate analysis of variance (PERMANOVA; 
Anderson, 2001) based on Bray-Curtis distances and 1000 random 
permutations. Taxa with less than three occurrences were excluded 
from the analysis given their minor contribution to similarities be-
tween samples. We then visualised phytoplankton and zooplank-
ton composition across all treatment combinations with non-metric 
multidimensional scaling (NMDS) based on Bray–Curtis dissimilarity 
matrices. To identify taxa with the strongest contribution to com-
positional changes among significantly different treatments, we 
performed a similarity percentages (SIMPER) analysis. Significant 
associations between taxa and treatments were tested by 1000 ran-
dom permutations. The analyses were performed with the functions 
metaMDS (NMDS), adonis2 (PERMANOVA), and simper in the ‘vegan’ 
R package.

2.4.3  |  Biomass resistance and recovery of different 
trophic levels

To assess the effect of the experimental treatment on the resist-
ance and recovery of community biomass, which is a widely used 
measure of ecosystem functioning (Cardinale et al., 2012), we fitted 
linear models (LMs) on multiple measures characterising the biomass 
of different trophic levels. We quantified resistance based on the 
biomass change from the pre-disturbance state (t1) to the end of the 
heatwave (t2) and recovery on the change in biomass between t1 
and the final sampling date t4 (Figure  1 and Figure  S3). With bio-
mass change used as dependent variable, we accounted for potential 
temporal asynchrony and differences among mesocosms developed 
during the establishment phase. By calculating biomass change from 
the pre-disturbance state (i.e., t1), we were able to test temporal pat-
terns of biomass over the experiment in each treatment combina-
tion, as well as the individual effects of the dispersal treatments.

For both resistance and recovery, we created separate LMs 
with the following dependent variables: (1) change of total plank-
ton biomass, that is, the sum of zooplankton carbon mass and POC, 
(2) change of zooplankton biomass (expressed as carbon mass), (3) 
change of Chl-a and (4) change of POC. POC was used as a proxy for 
phytoplankton biomass (even though it included all microorganisms 
<100 μm) as it generally corresponded well to phytoplankton carbon 
mass estimated from biovolumes (Text S1 and Figure  S4). To test 
potentially different responses of the major zooplankton groups, we 
also created separate LMs with the biomass change of Cladocera and 
Copepoda as dependent variables.

All models included heatwave with two levels (H+, H−) and dis-
persal with four levels (P−Z−, P+Z−, P−Z+, and P+Z+), together with 
their interaction as fixed factors. In this model structure, heatwave 

and dispersal parameters show whether changes in average biomass 
were different in mesocosms as a response to a single treatment 
(heat or dispersal) compared to the control mesocosms, while the 
interaction terms indicate the potential insurance effect of dispersal 
against the heatwave. To account for any potential differences in 
initial (i.e., t1) biomass values, mean-centred initial biomass was also 
included in all models as a predictor. Assumptions of normality and 
homoscedasticity of residuals were assessed by diagnostic plots. In 
case assumptions were violated, data were log-transformed, except 
for Cladocera and Copepoda biomass, where square-transformation 
was applied.

2.4.4  |  Resistance and recovery of phytoplankton 
based on daily Chl-a fluorescence

The temporal dynamics of daily Chl-a fluorescence over the ex-
perimental duration was visualised by fitting GAMs using the same 
method as in the case of daily mean temperature (see above). 
To account for the high temporal variability of phytoplankton 
biomass, we also tested the responses of the daily Chl-a fluo-
rescence (dependent variable) to the experimental treatments to 
analyse resistance and recovery. To this end, three separate lin-
ear mixed-effect models (LMEMs) were constructed, covering the 
experimental period from the start of the experimental heatwave 
until the end of the experiment. To determine resistance, the first 
model was fitted to the data of the heatwave period (from days 
10 to 21, n = 12 days). As microorganisms such as phytoplankton 
can rapidly respond to disturbances due to high population growth 
rates, we decided to analyse short-term and delayed effects of the 
experimental treatments by building separate models for the first 
and second part of the recovery phase. We tested short-term re-
covery immediately after the culmination phase of the heatwave 
(from days 22 to 33, n = 12 days). We chose this period as Chl-a 
fluorescence values were lowest at the end of the experimental 
heatwave in all treatment groups and started to increase from day 
22 (Figure S5). In the third model, we analysed the temporal pat-
tern of Chl-a in the second part of the recovery phase (from days 
34 to 44, n = 11 days) to test for any lagged effects of the experi-
mental treatments. In all LMEMs, we included the experimental 
treatments, time (with starting day set to 1 in each model), as well 
as their two- and three-way interactions as fixed factors. Here, a 
significant interaction with time can be interpreted as a temporal 
trend within the experimental treatments, and the three-way inter-
actions show the potential insurance effect of dispersal against the 
heatwave. We also included initial zooplankton biomass observed 
at the beginning of the three analysed periods as an explanatory 
variable to account for the effect of top-down control. We set in-
dividual mesocosm as a random intercept and included the AR(1) 
error structure to account for temporal autocorrelation (Pinheiro 
& Bates, 2000). Model comparison by the Akaike information cri-
terion indicated that accounting for temporal autocorrelation im-
proved the model fit in all models. Chl-a fluorescence data were 
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log-transformed in all models to normalise residuals and improve 
the homoscedasticity of variances. Linear mixed-effects models 
were constructed with the lme function of the ‘nlme’ R package 
(Pinheiro et al., 2022). Marginal and conditional R2 of the models 
were calculated by the r.squaredGLMM function of the ‘MuMIn’ R 
package (Bartoń, 2022).

2.4.5  |  Relative strength of top-down versus 
bottom-up control

To reveal how trophic structure and trophic transfer efficiency 
changed in response to the experimental manipulation, we tested 
treatment-specific differences in the ratio of zooplankton carbon 
mass to POC. This biomass ratio between organisms with higher and 
lower trophic positions is a proxy for the strength of top-down con-
trol (Shurin et al., 2012). We constructed separate LMs for all four 
time points with heatwave and dispersal as fixed factors, treated the 
same way as in the models for resistance and recovery. We assured 
that normality and homoscedasticity of residuals were met by using 
diagnostic plots.

All data analyses and visualisations were performed in R version 
4.0.2 (R Core Team, 2020).

3  |  RESULTS

In total, 147 phytoplankton taxa were identified (Table S2). Based 
on their mean biomass at each focal sampling date, the communities 
were dominated by the chrysophyte Chromulina sp. (t1), the diatom 
Nitzschia sp. and the green alga Ankyra judayi (t2), and Nitzschia sp. 
and the green algae Scenedesmus group Acutodesmus (t4). We found 
21 zooplankton taxa (Table S3), of which four were dominant (based 
on the frequency of occurrence and contribution to total biomass) 
during the experiment. These were the cladocerans Daphnia cf. 
longispina and Bosmina longispina, and the copepods Eudiaptomus 
gracilis and Cyclops abyssorum. The most dominant taxon was D. cf. 
longispina, which accounted for 47.5 ± 18.9 (at t2) to 61.5 ± 15.1% (at 
t5) of total zooplankton biomass during the experiment (mean ± SD, 
N = 24).

During the 7-day-long culmination of the heatwave period, 
we maintained an approximately 5°C offset between the H+ and 
H− treatments (Figure  1), which resulted in mean water tempera-
tures of 25.5 ± 1.3°C (mean ± SD, N = 20) in the H+ treatment and 
20.9 ± 1.2°C (mean ± SD, N = 20) in the H− treatment. Experimental 
phytoplankton dispersal (P+) had an immediate positive effect on 
phytoplankton taxonomic richness expressed as both alpha and 
gamma diversity (Figure  2a,b). Rarefied richness at the local scale 

F I G U R E  2  Richness of (a, b) phytoplankton and (c, d) zooplankton at time point t1, i.e., after applying the dispersal treatments (P+ and 
Z+), but prior to the experimental heatwave. (a) Boxplots illustrate that rarefied richness of phytoplankton at the local scale (i.e., alpha-
diversity) increased significantly in the presence of dispersal (P+). D̅ stands for mean absolute differences between treatments, the p-values 
are obtained from a Monte Carlo permutation procedure with 1000 permutations. (b) Species accumulation curves (mean ± 2SD based on 
1000 random permutations) show that P+ also increased gamma-diversity. (c) Boxplots illustrate that rarefied richness of zooplankton at the 
local scale (i.e., alpha-diversity) was not significantly different among the dispersal treatments. (d) Species accumulation curves (mean ± 2SD 
based on 1000 random permutations), however, show a higher zooplankton gamma-diversity with Z+.
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(i.e., alpha-diversity) was significantly higher compared to the con-
trol (D̅  = 3.86, p < .05, Figure  2a). Zooplankton dispersal (Z+) did 
not result in increased zooplankton alpha-diversity relative to the 
control (D̅  = 0.24, p = .62, Figure 2c), even though there were overall 
more zooplankton species (i.e., greater gamma-diversity) in the Z+ 
treatments (Figure 2d).

The heatwave (H+) and phytoplankton dispersal (P+) treat-
ments both had a significant effect on community composition of 
phytoplankton, which became evident towards the end (t4) of the 
experiment (PERMANOVA, p < .05, Table 1, Figure 3a). Among the 
most influential taxa in terms of total explained variation across 
treatments, the green algae Scenedesmus group Acutodesmus, 
Ulotrichales sp. 1, Monoraphidium minutum and Ankyra sp. 
were positively associated with H+ (Figure  3a, SIMPER, p < .05, 
Table S4). Another green alga, Mougeotia sp., exhibited significantly 
lower biomass values in the P− vs P+ treatments (SIMPER: p < .05, 
Table S4). Zooplankton community composition was only affected 
by H+, which was evident already from t2 (PERMANOVA: p < .01, 
Table  1, Figure  S6) and lasted until the end of the experiment 
(PERMANOVA, p < .01, Table 1, Figure 3b). At both t2 and t4, D. cf. 
longispina had the largest contribution to the overall dissimilarity 
across treatments, and it had significantly lower biomasses in the 
H+ treatments (SIMPER, p < .01, Table  S4). Another cladoceran, 

B. longispina, was negatively associated with H+ at t2 (SIMPER, 
p < .01, Table S4).

The H+ treatment suppressed total plankton biomass (LM, 
p < .001, Table  2, Figure  4a, Figure  S3). This significant decrease 
in biomass was primarily driven by zooplankton (LM, p < .001, 
Table  2). The biomass of cladocerans declined significantly in 
response to H+ (LM, p < .001), while the negative effect on co-
pepods was only marginally significant (LM, p = .07, Table  S5, 
Figure  S7). Besides the biomass decline, the proportion of egg-
carrying females in the populations of the dominant cladoceran, D. 
cf. longispina, also dropped from 35.1 ± 9.4% (t2) to 0.0 ± 0.0% (t5) 
in the H+ treatments (mean ± SD, N = 20), but this decrease was 
similar in the control treatments (mean ± SD at t2: 31.6 ± 8.0%, t5: 
0.3 ± 0.6%, N = 20). In contrast to the negative effects of H+ on 
total plankton and zooplankton biomasses, we did not find any sig-
nificant effect of the heatwave on Chl-a concentration and POC 
(LM, p > .1, Table 2), nor on the pattern of daily Chl-a fluorescence 
(LMEM, p > .1, Table 3). Our results did not provide evidence for 
enhanced resistance to H+ following dispersal from the regional 
species pool. None of the experimental dispersal treatments miti-
gated the heatwave-driven decline observed in total plankton bio-
mass and zooplankton (LM, p > .1, Table 2, Figure 4a). Zooplankton 
dispersal (P−Z+ and P+Z+) had a negative effect on zooplankton 

TA B L E  1  Summary statistics of PERMANOVA testing for treatment-specific differences in community composition (based on biomass) of 
phytoplankton and zooplankton at the end of the heatwave (t2) and at end of the experiment (t4).

Phytoplankton Zooplankton

df. Sum of sqs F R2 p df. Sum of sqs F R2 p

Sampling t2

H+ 1 0.059 0.790 .034 .525 1 0.414 16.636 .423 <.001

P+ 1 0.018 0.238 .010 .959 1 0.030 1.191 .030 .268

Z+ 1 0.185 2.475 .107 .069 1 0.070 2.815 .072 .074

H+ × P+ 1 0.070 0.938 .040 .412 1 0.006 0.260 .007 .835

H+ × Z+ 1 0.068 0.910 .039 .429 1 0.027 1.100 .028 .328

P+ × Z+ 1 0.109 1.454 .063 .206 1 0.025 1.003 .026 .335

H+ × P+ × Z+ 1 0.027 0.363 .016 .882 1 0.007 0.281 .007 .815

Residuals 16 1.196 .691 16 0.398 .407

Total 23 1.732 1.000 23 0.977 1.000

Sampling t4

H+ 1 0.458 2.189 .092 .029 1 0.379 6.497 .232 <.001

P+ 1 0.434 2.074 .087 .044 1 0.084 1.432 .051 .220

Z+ 1 0.085 0.406 .017 .943 1 0.045 0.778 .028 .512

H+ × P+ 1 0.249 1.188 .050 .285 1 0.060 1.026 .037 .387

H+ × Z+ 1 0.164 0.784 .033 .619 1 0.026 0.438 .016 .793

P+ × Z+ 1 0.097 0.461 .019 .915 1 0.041 0.698 .025 .576

H+ × P+ × Z+ 1 0.136 0.647 .027 .769 1 0.069 1.180 .042 .321

Residuals 16 3.350 .674 16 0.939 .570

Total 23 4.972 1.000 23 1.637 1.000

Note: Significant (p < .05) results are highlighted in bold.
Abbreviations of treatments: H+: heatwave, P+: phytoplankton dispersal, Z+: zooplankton dispersal.
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resistance, i.e., suppressed biomass during the heatwave manipu-
lation (LM, p < .05, Table 2).

While we found no indication for enhanced resistance to heat-
wave, our results showed that phytoplankton dispersal contributed 
to faster growth of phytoplankton biomass (measured as Chl-a flu-
orescence) in the presence of heatwave. This was visible in the first 
part of the post-heatwave recovery phase, indicated by the signifi-
cant interaction between day × H+ × P+Z− (LMEM, p < .05, Table 3, 
Figure 5), but not when combined with Z+ (LMEM, p > .1, Table 3, 
Figure 5). The insurance effect of P+ was no longer detectable in the 
second part of the recovery phase. We also found that H+ enhanced 
phytoplankton biomass, but only towards the end of the experi-
ment (i.e., significant day × H+ interaction, LMEM, p < .05, Table 3, 
Figure S8). At the same time, zooplankton biomass had a significant 
negative effect on Chl-a fluorescence (i.e., negative effect on the 
intercept, LMEM, p < .05, Table  3), indicating that top-down con-
trol was a major driver of phytoplankton dynamics in the recovery 
phase. Dispersal had no significant effect either on the recovery of 
total plankton biomass (LM, p > .1, Table 2, Figure 4b), zooplankton 
biomass, or the phytoplankton biomass proxies (Chl-a, POC) when 
analysed between t1 and t4 (LM, p > .1, Table 2, Figure 4b). Relative 
strength of top-down control decreased as a response to H+, indi-
cated by the significant negative effect on zooplankton carbon mass 
to POC ratios (LM, p = .007, Figure 4c,d, Table S6). This effect be-
came evident after the heat wave and lasted until the end of the 
experiment (Table S6).

4  |  DISCUSSION

The experimental heatwave had a strong negative effect on total 
community biomass, supporting our first prediction. This nega-
tive effect was driven by the decline in zooplankton biomass. The 
heatwave-driven disruption of the trophic structure resulted in 
weakened top-down control in agreement with our second predic-
tion. Weakened top-down control contributed to elevated phyto-
plankton biomass, however, this effect became visible only about 
2 weeks following the heatwave. These results illustrate that some 
consequences of heatwaves may only manifest with a time lag after 
disturbance as a result of cascading interactions (Ross et al., 2022).

Experimental dispersal did not increase total plankton and zoo-
plankton biomass resistance to the heatwave. In contrast to our 
third expectation, our results provided no evidence for the buffer-
ing effect of dispersal on zooplankton recovery either. Regardless 
of the dispersal treatments, the negative heatwave effect on total 
plankton and zooplankton biomass diminished by the end of the 
experimental period, indicating a high capacity for community re-
covery. In contrast to no effect of dispersal on zooplankton, the 
analysis of daily Chl-a fluorescence data provided some evidence 
for a positive dispersal effect on phytoplankton biomass recovery. 
Specifically, we found faster phytoplankton growth following the 
heatwave with phytoplankton dispersal, which can be interpreted 
as spatial insurance, as higher biomass of primary producers may 
provide a basis for faster recovery of secondary producers and 

F I G U R E  3  NMDS plots illustrating (a) phytoplankton and (b) zooplankton community composition (based on biomass) as a function of 
the heatwave (H–, H+) and dispersal treatments (phytoplankton: P–, P+, zooplankton: Z–, Z+) at the end of the experiment (t4). N = 3 for 
each treatment combination. Ellipses indicate 95% confidence intervals for samples of the H+ and H– treatments, as H+ had a significant 
influence on the composition of both communities (PERMANOVA, p < .05, Table 1). Taxa are indicated with points and labels (for full names 
see Tables S2 and S3), where font type indicates the results of a SIMPER analysis, with taxa significantly related to the H+ treatment 
(p < .05) presented by bold black letters. For phytoplankton, labels are only presented for the 15 taxa with the highest contribution to overall 
variability (based on SIMPER analysis).
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hence total community biomass over time. Even though the overall 
dispersal effects were relatively weak, our finding corroborates 
earlier observations from laboratory microcosm experiments that 
dispersal can potentially buffer the negative effect of heatwaves 
(de Boer et al., 2014). Also, dispersal effects may be more evident 
in unicellular organisms than in larger organisms at upper trophic 
levels (Limberger et al., 2019).

The decline of total plankton biomass during the heatwave 
is consistent with the prediction that increasing temperatures 
reduce total community biomass (O'Connor et al.,  2009). This 
prediction is based on the differential temperature scaling of res-
piration- and photosynthesis-limited metabolism, which implies 
a greater sensitivity and, therefore, stronger responses of hetero-
trophic organisms to temperature changes compared to autotrophs 
(López-Urrutia et al., 2006; O'Connor et al., 2011). Increased grazing 
pressure in aquatic ecosystems with moderate warming, driven by 
increased metabolic demands, generally results in a shift towards 

stronger top-down control and decreasing autotroph relative to het-
erotroph biomass (Kratina et al., 2012; O'Connor et al., 2009; Shurin 
et al., 2012; Velthuis et al., 2017). However, a greater proportion of 
consumers is expected to result in a decline in total biomass given 
the inefficient conversion of phytoplankton to consumer biomass 
(Persson et al.,  2007; Slobodkin,  1959). In contrast, we observed 
weakened top-down control following the experimental heatwave 
resulting from the negative (direct or indirect) temperature effects 
on zooplankton biomass.

The biomass of cladocerans (dominated by Daphnia cf. longispina) 
declined strongly as a result of the heatwave, which was the major 
driver of the observed decline in total plankton biomass. While cla-
docerans can rapidly respond to temperature stress by adjusting 
their physiology (e.g., Yampolsky et al., 2014), the abrupt decline in 
biomass may indicate a failed acclimation. Besides direct tempera-
ture effects, the timing and magnitude of temperature fluctuations, 
and their interactions with food-limited periods, are also crucial for 

F I G U R E  4  (a) Resistance and (b) recovery of the plankton community measured as the change of total plankton biomass (carbon mass; 
mean ± SD) between the pre-disturbance state and (a) the end of the heatwave (difference between t1 and t2) and (b) the final sampling 
date in the recovery period (difference between t1 and t4). N = 5 for each treatment combination. (a) The experimental heatwave (H+) had 
a significant negative effect on plankton biomass (p < .05, Table 2), with no significant effects of the dispersal treatments (phytoplankton: 
P– and P+; zooplankton: Z– and Z+). (b) None of the experimental treatments had a significant influence on the recovery of total plankton 
biomass. Summary statistics are presented in Table 2. The ratio of carbon mass (mean ± SD) between zooplankton and POC as a proxy 
for the strength of top-down control shown at (c) the beginning (sampling point t1) and (d) the end (t4) of the experiment. N = 5 for each 
treatment combination. The ratio decreased as a response to the heatwave (H+) treatment at t4 (LM with log-transformed data, p < .05, see 
Table S6 for the statistical summary).
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TA B L E  3  Summary statistics (estimated parameters, standard error and p-values) of linear mixed-effects models testing the effects of 
the experimental treatments (H+: heatwave, P+: dispersal of phytoplankton, Z+: dispersal of zooplankton) on resistance and recovery of 
phytoplankton biomass (estimated by log-transformed chlorophyll a in vivo fluorescence).

Resistance Recovery 1 Recovery 2

Estimate SE p Estimate SE p Estimate SE p

Intercept 4.07 0.24 <.001 2.73 0.64 <.001 4.68 0.49 <.001

H+ 0.22 0.27 .431 −0.16 0.54 .766 −0.79 0.52 .143

P+Z– 0.23 0.27 .410 0.53 0.46 .259 0.30 0.50 .556

P–Z+ 0.10 0.27 .724 0.80 0.46 .097 −0.48 0.49 .341

P+Z+ −0.13 0.27 .629 0.31 0.48 .532 0.40 0.49 .810

Day −0.19 0.03 <.001 0.20 0.04 <.001 −0.09 0.04 .022

Zooplankton biomass −0.01 0.01 <.01 −0.01 0.00 .087 −0.02 0.01 .027

H+ × P+Z– −0.28 0.38 .474 −0.70 0.65 .290 0.44 0.71 .543

H+ × P–Z+ −0.26 0.38 .504 −0.26 0.65 .696 0.48 0.70 .494

H+ × P+Z+ −0.15 0.38 .699 −0.44 0.66 .512 0.59 0.70 .401

Day × H+ 0.01 0.04 .822 −0.08 0.06 .181 0.13 0.06 .024

Day × P+Z– −0.01 0.04 .837 −0.09 0.06 .151 −0.03 0.06 .546

Day × P–Z+ 0.02 0.04 .663 −0.12 0.06 .054 0.03 0.06 .658

Day × P+Z+ 0.06 0.04 .120 −0.05 0.06 .375 −0.03 0.06 .649

Day × H+ × P+Z– 0.00 0.06 .936 0.18 0.08 .030 −0.01 0.08 .917

Day × H+ × P–Z+ 0.02 0.06 .759 0.08 0.08 .347 −0.04 0.08 .583

Day × H+ × P+Z+ −0.01 0.06 .806 0.13 0.08 .126 −0.11 0.08 0.179

Marginal R2 .57 .36 .33

Conditional R2 .57 .36 .33

Note: Models were built for the period of the experimental heatwave (12 days between days 10 and 21 and t2, ‘Resistance’), and for the first (12 days 
between days 22 and 33, ‘Recovery 1’) and second part (11 days between days 34 and 44, ‘Recovery 2’) of the recovery phase. Significant results 
(p < .05) are highlighted in bold, while marginally significant ones (p < .1) with italics.

F I G U R E  5  Increases in daily in vivo 
fluorescence of chlorophyll a following 
the experimental heatwave, grouped 
according to the dispersal treatments 
(phytoplankton: P– and P+; zooplankton: 
Z– and Z+) and coloured according to the 
heatwave treatment (H– and H+). N = 5 
for each treatment combination per day. 
Solid lines represent fitted linear models 
(error bands: 95% confidence intervals) to 
visualise temporal trends. Based on linear 
mixed-effects models, recovery in the 
H+ treatments after the heatwave was 
enhanced by P+ (LMEM: significant day × 
H+ × P+Z–, p < .05, Table 3).
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zooplankton phenology (Huber et al.,  2010). In our study, the pe-
riod of experimental heatwave coincided with a ‘clear-water phase’ 
in all treatments, that is, a trophic cascade where zooplankton in-
crease leads to phytoplankton decrease to the point zooplankton 
likely becomes food-limited (Lampert et al., 1986). This clear-water 
phase was indicated by the general decrease in POC and Chl a fluo-
rescence during the period of the experimental heatwave. Average 
POC concentration reached minimum values (0.046 ± 0.012 and 
0.045 ± 0.014 mg C L−1 in H− and H+) by the end of the heatwave 
period, representing values below the threshold (0.05 mg C L−1) 
where food limitation is likely to occur in Daphnia (Gliwicz, 1990). 
Furthermore, zooplankton biomass also decreased in the first 
part of the recovery period even in the H− treatments (Figure S7). 
Altogether, these lines of evidence suggest that the negative effect 
of elevated temperature was amplified by starvation of key consum-
ers. The lack of egg-carrying females even in the control (i.e., H−) 
mesocosms further indicated that Daphnia did not have sufficient 
food supply to invest into reproduction. While the experimental 
heatwave clearly affected population dynamics of cladocerans, it 
had a weaker impact on copepod biomass (marginally significant 
negative effect), possibly because copepods have a broader diet 
which includes rotifers and ciliates (Adrian & Schneider-Olt, 1999; 
Brandl,  2005). Copepods are also more buffered against starva-
tion due to their greater ability to accumulate storage lipids (Brett 
et al., 2009; Lampert & Muck, 1985). Taken together, these findings 
also indicate that copepods may be generally more robust to tem-
perature fluctuations than cladocerans.

The decrease of crustacean zooplankton in the H+ treatments 
resulted in elevated phytoplankton biomasses due to weakened 
top-down control, which occurred with a time lag at the end of 
the experiment. H+ was associated with the dominance of green 
algae, which are superior competitors under warm, nutrient-rich 
conditions. Small-sized green algae (Scenedesmus gr. Acutodesmus, 
Monoraphidium minutum, Ankyra sp.) likely benefited from nutrient-
rich conditions once released from grazing pressure. We cannot 
exclude that the cladoceran decline released herbivorous protists 
from competition, compensating for reduced crustacean zooplank-
ton grazing on phytoplankton. However, the heatwave had only a 
marginally significant negative effect on copepods, the main preda-
tors of ciliates and large phytoplankton (Sommer & Sommer, 2006). 
Therefore, it is likely that predation pressure on microzooplankton 
did not change substantially. Moreover, the biomass of algivorous 
ciliates collapsed during the heatwave in all treatments, and the 
ciliate community shifted towards the dominance of benthic and 
primarily bacterivorous taxa with low abundances (E. Mironova, per-
sonal observation). Therefore, it is unlikely that microzooplankton 
could significantly compensate for the reduced grazing pressure on 
phytoplankton.

Phytoplankton taxon richness responded much stronger to dis-
persal than of zooplankton, which reflected the richness differences 
in the regional dispersal inocula. The richness and abundance of 
introduced zooplankton cannot be considered low, as it fell in the 
ranges observed in studies of natural dispersal and colonisation rates 

(Cáceres & Soluk,  2002; Cohen & Shurin,  2003; Vanschoenwinkel 
et al.,  2008). Still, a single dispersal event did not provide a buff-
ering effect on zooplankton biomass. In contrast, phytoplankton 
dispersal enhanced the growth of phytoplankton biomass (as esti-
mated by Chl-a fluorescence) following the heatwave. However, this 
was only observed for a limited period (ca. 2 weeks) and only in the 
phytoplankton dispersal treatment without zooplankton dispersal 
(H+ × P+Z–). Besides, by the end of the experiment, species originally 
initially present in the local (i.e., Lake Lunz) community dominated 
even in the phytoplankton dispersal treatments.

A possible explanation for the limited effect of dispersal on bio-
mass resistance and recovery may be related to the timing of the 
experimental dispersal manipulations. Colonisation success de-
pends on arriving at a window of opportunity, that is, empty niche 
space in the resident community (Clark & Johnston, 2011; Symons & 
Arnott, 2014; Thompson & Gonzalez, 2017). Generally, high levels 
of available resources in a local community increase the opportu-
nity for successful invasion (Davis et al., 2000). By the time of the 
dispersal manipulation, experimental plankton communities were 
strongly consumer-controlled, and high zooplankton grazing de-
pleted phytoplankton during the period of the heatwave (i.e., even 
in the H− treatments). Therefore, zooplankters introduced from the 
regional pool faced intense competition for limited food resources, 
which may have reduced their establishment success in the meso-
cosms. Their chances would likely have been higher following the 
heatwave, after the decline in zooplankton and increase of phyto-
plankton biomass in the recipient communities. In contrast, phyto-
plankton dispersal took place when phytoplankton biomass in the 
recipient community was steadily declining. The heatwave may have 
also contributed to a successful establishment by suppressing their 
grazers (zooplankton) and thereby releasing available nutrients. 
While this might have contributed to the positive dispersal effect on 
phytoplankton biomass, our overall results suggest a high recovery 
capacity of local communities from the effects of a single heatwave 
independent of dispersal.

It is important to highlight to what extent our conclusions apply 
to natural ecosystems. Mesocosm experiments are powerful tools 
for studying the impacts of climate change by balancing experi-
mental power with ecological realism (Kratina et al.,  2012; Spivak 
et al., 2011; Stewart et al., 2013). Like other mesocosm studies, our 
experiment was limited in the number of replicates, with relatively 
low habitat complexity (e.g., no vertical gradients), and contained 
simplified pelagic communities (e.g., top predators such as fish were 
missing). However, plankton taxonomic diversity and composition 
were very similar to natural lakes in the region (Horváth et al., 2017), 
providing sufficient trophic complexity to investigate the effects 
of heatwaves on pelagic multi-trophic ecosystems. Our results 
also imply that the consequences of the relative timing of heat-
waves and dispersal are likely to be substantial. The experimental 
setup consisted of a single dispersal event preceding the heatwave, 
thereby testing the effects of initial differences in species pools 
for spatial insurance. In natural ecosystems, dispersal events occur 
repeatedly over time, creating more opportunities for successful 
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colonisation (Havel & Shurin, 2004). Besides, we applied one heat-
wave in our experiment. However, disturbance frequency and inten-
sity jointly affect the community and ecosystem recovery (Jacquet & 
Altermatt, 2020), and the effect of repeated pulse disturbances may 
accumulate over time (Villnäs et al., 2013). Consequently, recurring 
heatwaves may have more lasting effects on natural communities, 
whereas more frequent dispersal from the regional pool could pro-
vide stronger spatial insurance than we found in our study. These 
considerations warrant promising venues for future research.

Global climate warming is accelerating with more frequent and 
severe heatwaves in the aquatic (Woolway et al., 2021) and terres-
trial realms (Perkins-Kirkpatrick & Lewis, 2020), with negative con-
sequences for biodiversity, ecosystem functioning, and services. 
Our results illustrate that a relatively short heatwave can alter 
the main pathways of energy flow in pelagic ecosystems through 
differential responses across trophic groups. While total plankton 
biomass appeared to recover from the experimental heatwave in 
approximately 20 days, phytoplankton and zooplankton community 
compositions remained altered. This supports the observation that 
compositional recovery from pulse disturbances occurs less fre-
quently than functional recovery (Hillebrand & Kunze,  2020). The 
altered trophic structure (i.e., top-down control) at the end of the 
experiment also suggests potentially long-lasting consequences for 
ecosystem functioning that our experiment could not reveal. We did 
not find strong evidence for spatial insurance. However, our results 
indicate that dispersal from the regional species pool can enhance 
biomass recovery at the level of primary producers, which may 
contribute to more stable levels of total community biomass over 
time. As a consequence of accelerating habitat loss and fragmen-
tation, aquatic habitats become spatially more isolated (Davidson 
& Davidson, 2014; Hassall, 2014), which results in biodiversity loss 
(Horváth et al.,  2019) and consequently lower buffering capacity 
against ongoing and future climate change. We therefore call for fu-
ture studies in ecologically realistic settings and longer time scales 
to better understand the vulnerability of aquatic ecosystems to 
heatwaves.
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