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Abstract: A large number of smart devices in Internet of Things (IoT) environments communicate
via different messaging protocols. Message Queuing Telemetry Transport (MQTT) is a widely used
publish–subscribe-based protocol for the communication of sensor or event data. The publish–
subscribe strategy makes it more attractive for intruders and thus increases the number of possible
attacks over MQTT. In this paper, we proposed a Deep Neural Network (DNN) for intrusion detection
in the MQTT-based protocol and also compared its performance with other traditional machine
learning (ML) algorithms, such as a Naive Bayes (NB), Random Forest (RF), k-Nearest Neighbour
(kNN), Decision Tree (DT), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRUs).
The performance is proved using two different publicly available datasets, including (1) MQTT-IoT-
IDS2020 and (2) a dataset with three different types of attacks, such as Man in the Middle (MitM),
Intrusion in the network, and Denial of Services (DoS). The MQTT-IoT-IDS2020 contains three
abstract-level features, including Uni-Flow, Bi-Flow, and Packet-Flow. The results for the first dataset
and binary classification show that the DNN-based model achieved 99.92%, 99.75%, and 94.94%
accuracies for Uni-flow, Bi-flow, and Packet-flow, respectively. However, in the case of multi-label
classification, these accuracies reduced to 97.08%, 98.12%, and 90.79%, respectively. On the other
hand, the proposed DNN model attains the highest accuracy of 97.13% against LSTM and GRUs for
the second dataset.

Keywords: MQTT; IDS; IoT; security; classification

1. Introduction

Internet-of-Things (IoT) augments the physical objects (usually referred to as IoT
nodes) with internet connectivity such that they can collect and share data with other
nodes in the network without human interventions. To enable the secure and reliable
exchange of data among IoT nodes, different communication and messaging protocols have
been developed, such as Constrained Application Protocol (CoAP), Advanced Message
Queuing Protocol (AMQP), Message Queuing Telemetry Transport (MQTT), and Extensible
Messaging Presence Protocol (XMPP) [1]. Among all, MQTT has been widely used in smart
homes [2–4], agricultural IoT [5,6], and industrial applications [7], etc. The reasons include
support for communication on low bandwidths, low memory requirements, and reduced
packet loss [1,8,9].

MQTT communication protocol consists of four major components, including broker
(central device), clients (IoT nodes), topic, and message. The topic in the MQTT protocol
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also contains information about the source and destination nodes of transmission messages
among the networks. These topics are structured using the forward slash delimiter (/) with
messages consisting of data gathered by IoT sensors. Using the MQTT messaging transport
protocol, every node has three main associated tasks: topic selection, topic publication,
and topic subscription [9,10]. Primarily, the IoT nodes (clients) of MQTT communicate with
each other via a central node called a broker; a broker can be working on the edge, i.e., a
local broker, or it can be on the cloud, i.e., a remote broker. It allows IoT nodes to publish or
subscribe topics or publish and subscribe at the same time if the node functionality allows,
as shown in Figure 1 in general. For example, a Passive Infrared Sensor (PIS) for motion
detection publishes sensed data to the broker that is subscribed by a camera. As soon as
the PIS detects motion, the information is sent to the camera for further action.

Figure 1. IoT communication via MQTT protocol.

The IoT has been identified as the most vulnerable network to be attacked by external,
as well as internal, attackers [11–13]. External attackers try to corrupt the system from
outside the networks. On the contrary, internal attackers operate from inside the network
under threat. The internal attackers, however, can access information easily as compared
to external attackers. In either case, prior to initiating an attack, the attackers usually
gather information to check the vulnerability of the network or system using different tools,
such as Masscan, Network Mapper (NMAP), or Shodan [14]. For example, the paper [15]
presents a case scenario of an attacker using penetrating testing tools to collect information
of brokers through the Shodan tool. Furthermore, the Shodan tool provided connection
codes that indicate whether a broker needs authentication or not.

The different types of threats to the broker in an MQTT protocol are illustrated in
Figure 2. As an example, by breaching the broker security and making to all topics, an at-
tacker can expose critical information of the system. Similarly, if an attacker publishes a
topic the same as any other publisher, it can control the subscribers of a given topic [15].
For example, streetlights can be subscribers to a valid publisher in a smart streetlight
system [16]. An attacker connected to its broker can generate and send the wrong infor-
mation over to control these streetlights. In addition, an internal attacker can compromise
the integrity of MQTT data packets as they can have an opportunity of analysing and
modifying them.

Studies show that attackers usually target central communication devices, i.e., brokers,
in MQTT-based IoT systems. Denial-of-Service (DoS) [17], Man-in-the-Middle (MitM),
scanning, and Intrusion are a few examples of common attacks on brokers [15,17–19].
In principle, the MQTT client starts a connection with a broker by sending a connect packet,
and, since MQTT works on top of TCP/IP, the broker sends connection acknowledgement
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(connack). After receiving acknowledgement, the client starts data transmission to the
broker. MQTT protocol can provide three levels of Quality of Service (QoS) that define the
level of agreement and the assurance of successful communication between a transmitter
and receiver in the network. The QoS level 0 has no acknowledgement mechanism in com-
munication between the sender and receiver. [20]. In addition, an internal attacker sends
multiple messages with QoS1 and QoS2 to make the broker busy in acknowledgements,
thereby imposing a DoS attack [18].

Figure 2. Attack scenario over MQTT protocol.

Machine learning (ML) has shown efficiency in different application areas, including
intrusion detection systems for IoT [21–23]. Some researchers opine that ML has the
potential to not only efficiently detect but also predict the attacks given efficient data have
been used to train them. Therefore, in this paper, we propose an Intrusion Detection System
(IDS) for MQTT protocol based on the ML algorithm, i.e., a Deep Neural Network (DNN).
The proposed DNN algorithm is evaluated on the latest dataset named MQTT-IoT-IDS2020
and the dataset (https://joseaveleira.es/dataset; access date was 8 July 2021) discussed
in [24] that contains three well-known attacks: MitM, Intrusion, and DoS over MQTT. The
selected datasets [24,25] are generated in an MQTT simulated environment. In MQTT-IoT-
IDS2020, there are three abstract-level features, such as Packet-flow, Uni-flow, and Bi-flow,
as mentioned in [25]. Detailed statistics of this dataset will be found in the upcoming
section of this paper. The contributions can be summarised as follows.

• A DNN is proposed in this work for intrusion detection in MQTT-based protocol.
Additionally, a number of ML models have been evaluated and compared for three
different scenarios, including Bi-flow, Uni-flow, and Packet-flow, of abstract levels in
the MQTT-IoT-IDS2020 dataset. The evaluation has been performed for binary as well
as multi-class classification.

• The performance of the proposed DNN model is also evaluated for different attacks,
including DoS, Intrusion, and MitM, in another dataset [24].

https://joseaveleira.es/dataset
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The remainder of this paper is organised as follows. Section 2 presents a literature
review and a detailed discussion about related works. Section 3 provides a detailed expla-
nation of the proposed intrusion detection system and other classical ML models. Section 4
illustrates the experimental setup, dataset selection criteria, results, and a discussion of the
results. Section 5 concludes the paper and highlights potential future directions.

2. Related Works

IoT security is an open research area currently being addressed by researchers around
the globe. Different security-enhancing methods have been proposed to protect IoT against
anomalous adversarial attacks. These methods commonly aim at detecting intruders in the
network by monitoring network activities, such as data flow rate. Here, a short literature
review is presented to put forward current advances in IoT security, with a focus on
intrusion detection systems targeting the MQTT messaging protocol of IoT. The authors
of [26] presented an attack detection strategy for MQTT protocols based on a process
tree. It models the network behaviour in terms of hierarchical branches of a tree, where
it is further applied to detect attacks or anomalous behaviours. The model is evaluated
using a detection rate where a total of four common types of attacks are induced in the
network. However, newly developed adversarial attacks and intrusions have not been
addressed. Furthermore, the paper [27] presents a fuzzy logic-based intrusion detection
model specifically designed for protecting IoT nodes with the MQTT protocol against DoS
attacks. Although fuzzy logic has shown its efficiency for different applications, including
sensor fault detection in IoT [28]; however, its high complexity with an increase in the input
dimension limits its potential in intrusion detection for IoT where huge data are transferred
continuously. In addition, more advanced and complex attacks have been left untouched
in paper [27] that raises questions over the efficiency of the proposed model for detecting
other types of attacks.

ML and DL has shown efficiency in detecting complex and unknown intrusions, such
as MitM, DoS, etc. [23]. Commonly used algorithms include Support Vector Machine
(SVM) [29,30], Semi-supervised Spatio-Temporal Deep Learning Intrusions Detection (SS-
Deep-ID) [31], and Deep Feed-Forward Neural Network (DFFNN), ref. [32] etc.

In [33], multiple ML algorithms, including Autoencoder, RF, K-Means clustering,
and Isolation Forest (IF), are employed to detect attacks in the IoT. However, the paper
does not present clarity about the type of attacks considered in this work. In addition,
the authors developed and evaluated an intrusion detection strategy on the network layer
of the IoT that is not necessarily based on the MQTT messaging protocol.

Faker and Dodge [32] proposed a DL-based network intrusion detection system and
evaluated it against CIC-IDS2017 and UNSW-NB15 datasets where accuracy and prediction
time are used as evaluation metrics. The results show the significance of applying deep
learning (DL) algorithms while designing intrusion detection systems for IoT. A total of
32 attack types from CIC-IDS2017 and UNSW-NB15 were included in the experiment
using accuracy and prediction time as evaluation metrics. CIC-IDS2017 and UNSW-NB15
datasets are general purpose datasets not representing MQTT specifically. In [34], authors
have worked on a new dataset known as MQTTset and proposed various ML algorithms
for intrusion detection.
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In [35], performances of eight different ML algorithms, including DNN, Logistic
Regression (LR), NB, SVM, Adaptive Boosting (AB), kNN, DT, and RF, are analysed
against six datasets, such as KDD-99, NSL-KDD, UNSW-NB15, Kyoto2006+, and WSN-DS
CICIDS2017. Intuitively, the DL achieved the best accuracy as compared to classical ML
classifiers at the cost of the high computational requirements. This paper also does not
address MQTT messaging protocol-related issues.

Tables 1 and 2 summarise intrusion detection systems proposed in recent literature
with a tick (3) in the last column indicating the given model is developed targeting the
MQTT protocol. The first four columns show the reference number for the paper, the ML
model exploited the evaluation method, and the evaluation metrics, respectively.

Table 1. Intrusion detection systems for MQTT protocol.

Paper Ref Method Used Evaluation Method Evaluation Metrics MQTT Protocol

[26] Process Tree Network modeling Detection rate 3

[27]

Detection efficiency
Fuzzy Logic Network traffic Detection rate 3

Detection accuracy
False positive ratio

[31] Deep Learning(DL) CIC-IDS2017 Accuracy, Precision 5
CIC-IDS2018 Recall, F1 score

[25]

Gaussian NB Accuracy 3
LR Precision

KNN MQTT-IoT-IDS2020 Recall
SVM F1-score
DT
RF

[34]

RF Accuracy
NB, Neural network F1-score 3

DT MQTTset Confusion matrix
Gradient boost

Multi-Layer Perceptron (MLP)

[35]

NB, SVM UNSW-NB15 Accuracy
Adaptive Boosting Kyoto2006+ Precision

KNN WSN-DS Recall x
DT CICIDS2017 F1-score
RF RoC,AUC

[36]

NB, SVM
DT ADFA-LD Precision 5

SVM-RBM, GRU KDD-99 Recall
Text-CNN F1-score

[37]

CNN-LSTM, BLSTM CIDDS-001 Accuracy
Ensemble, DNN UNSWNB15 Specificity 5

MLP KDD-99 Sensitivity
DT
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Table 2. Review of Intrusion detection systems for MQTT protocol.

Paper Ref Method Used Evaluation Method Evaluation Metrics MQTT Protocol

[24]

XGBoost Log loss 3
GRUs Intrusion dataset Cross entropy

Neural network Accuracy
LSTM F-beta score

[38]

31 ML algorithms Accuracy
supervised and CICIDS2017 precision and recall
Unsupervised F-beta score 5

True positive
negative rate

[32]
Deep Learning CICIDS2017 Accuracy 5

Gradient boosting UNSW-NB15 prediction time
Random Forest

[39]
CNN–GRUs MQTT-IoT-IDS2020 Accuracy

BoT-IoT precision and recall
F-score 5

Accuracy
Proposed DNN MQTT-IoT-IDS2020 Precision 3

Intrusion dataset Recall
F1-measure

In [24], a number of ML algorithms, such as eXtreme Gradient Boosting (XGBoost),
GRUs, and LSTM, are used to design security models for the MQTT protocol in IoT. For the
verification of the proposed algorithms, the author’s used the MQTT dataset containing
three types of attacks such as intrusion (illegal entry), DoS, and MitM. Different ML
algorithms, such as NB, RF, DT, LR, KNN and SVM, are evaluated using the MQTT-IoT-
IDS2020 dataset [25]. The acceptable performance of these ML models for the proposal
of the MQTT intrusion detection system was reported. The author of [40] proposed a
single-layer ANN-based model for intrusion detection in an MQTT-enabled IoT system.
The proposed model is evaluated on the KDD-99 and NSL-KDD dataset with acceptable
performance measures. However, these datasets do not represent the MQTT-enabled IoT
system-based environment. In [39], the author proposed a model for anomaly-based IDS
in IoT systems using a Convolutional Neural Network (CNN) and GRUs for MQTT-IoT-
IDS2020. This study presents a comparison of several ML-based models for intrusion
detection in MQTT-enabled IoT systems with the proposed DNN.

3. Proposed Deep Neural Network (DNN) Based Intrusion Detection System

Deep learning (DL) is a sub-field of machine learning inspired by the biological
brain. These algorithms, also known as Artificial Neural Networks (ANNs), have better
predictive capabilities as compared to conventional Multi-Layer Perceptron (MLP) because
of a higher number of hidden layers. Primarily, ANNs consist of neurons connected with
a neighbouring layer, which processes the input data using activation functions [41] in
order to predict the output. Our proposed model consists of an input layer, two fully
connected hidden layers, and an output layer. The data processing from input through
the hidden layer to the output layer follows forward and backward propagation. Figure 3
shows the framework of DNN-based IDS for attack classification. The output layer is
different depending upon the classification task, such as binary or multi-class. The input
layer of our proposed DNN-based learning model takes into account the features of the
MQTT protocol-based network, two hidden layers with Rectified Linear Unit (ReLU)
activation, and an output layer with sigmoid activation in the case of binary classification
and softmax for multi-class attacks classification. The reason behind choosing the softmax
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for multi-classification is based on our experimental results performed in this paper. As the
MQTT-IoT-IDS2020 dataset contains three abstract-level features of MQTT protocol, i.e.,
Packet-flow, Bi-flow, and Uni-flow data. The proposed model is tested for all of the three
mentioned features of MQTT contained in MQTT-IoT-IDS2020.

Figure 4 shows the number of input neurons, hidden layer, and output neurons.
The data from the input layer is forward propagated through the hidden layer neurons
during model training and backward propagated to update the weights and reduce the loss
function until the model learns the proper weights and bias. Mathematically, the processing
of data through the dense layer of neurons can be expressed as: O : Rm ×Rn, where m
represents the input vector size, while n is the size of the output vector. Suppose X presents
the input vector such that X = x1, x2, x3 . . . xm−1, xm, then the mathematical computation of
the hidden layer can be expressed as a product of weights and an addition of bias as in the
following equation:

hi(X) = f
(

WT
i X + bi

)
(1)

where hi is defined as hi : Rdi−1 → Rdi , f is function from f : R→ R defined by (2a) for the
hidden layer. In Equation (1), the bi ∈ Rdi presents the bias that add to the product input
and weights, i.e., Wi ∈ Rd×di−1.

ReLU = max(0, x) (2a)

So f tmax(xi) =
exi

∑n
1 exj

(2b)

Sigmoid =
1

1 + e−x (2c)

Figure 3. Proposed IDS framework.
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An Artificial Neural Network (ANN) consists of many stacked hidden layers that
become a deep network. In general, these hidden layers can be expressed mathematically
via Equation (3).

H(X) = Hl(Hl−1(Hl−2(...(H1(X)))) (3)

Our proposed model is tested for binary as well as multi-class attack classification.
Therefore, two different activation functions at the output layer are used. For binary
classification, ŷ is calculated at the last layer via sigmoid, as presented with mathematical
expression in Equation (2c). Depending on the classification task, we utilised different
cost functions; for binary attack classification, we used binary cross-entropy, as presented
in Equation (4), while in the case of multi-attack classification, we utilised categorical
cross-entropy, as presented in Equation (5). The loss function calculated the amount of
difference between predicted labels and actual labels. The smaller the reduction in the loss
function, the more accurate the prediction of the model. Optimisation algorithms play
the main role in finding parameters in order to minimise or maximise any mathematical
functions. In deep learning, such optimisation algorithms helps to reduce the cost function
for particular. Out of many existing optimisation algorithms used in deep learning, we
adopted Adaptive Moment Estimation (ADAM) as an optimiser to reduce the cost function
of our proposed model. The ADAM optimiser combines the best feature Root Mean Square
Propagation (RMSProp) optimiser and momentum. That is why it is still the best optimiser
in most DL-related tasks and is used in lots of optimisation problems in deep learning
function:

J(y, ŷ) =
1
t

t

∑
i=1
−(yi × log(ŷ) + (1− y)× log(1− ŷ)) (4)

J(y, ŷ) =
1
t

t

∑
i

c

∑
j

yij log(ŷ) (5)

where J is a function defined on y and ŷ, ŷ is predicted output calculated at the last layer
by sigmoid or softmax of our proposed model, and y is the actual label, t is the batch size,
and c denotes the class category.

Figure 4. The proposed model’s training setup for binary and multi-attack classifications.

3.1. Other Classical ML Models

This subsection highlights the brief theoretical concepts behind the other classical ML
models that are used for cross-comparison in this study with the proposed Deep Neural
Network model.
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3.1.1. K-Nearest Neighbour

This learning algorithm is categorised as a supervised learning model and known as a
lazy learner because of the fact that it does not learn a discriminative function from the
training data rather memorise it. For example, the weights during the training process
of the logistic regression are learned. The KNN algorithm is relatively straightforward,
the working of KNN can be summarised in the following three main points:

• Choose the number of k neighbour and distance metrics.
• Locate the k neighbour of the test sample.
• Assign label accordingly to the majority of the label in k neighbour.

Different distance metrics exist such as Manhattan distance, Minkowski distance,
and Euclidean distance, etc. Among all of these, the euclidean is widely used as a distance
metric in KNN. The Euclidean distance and Manhattan distance is a specialised form
of Minkowski. The mathematical representation of these distances is given as below in
Equation (6).

d(xi, xj) = p

√
∑
k

∣∣∣xi
k xj

k

∣∣∣p (6)

where the parameter p, if changes then the above equation change to other distance metrics.
For example, if p = 2 then the above equation becomes euclidean, and if p = 1 then it
becomes Manhattan distance.

3.1.2. Decision Tree

This model breaks our data into a hierarchical manner, so that to make predictions
on new data, that is why due to this hierarchical learning style of this model it is called
a decision tree. This learning model also belongs to supervised learning and can handle
both classification & regression problem. This model makes tree, where each node of the
decision tree model represents an attribute and each leaf node represents a class label.
The main working of the decision tree can be described as:

• Find the best attribute and place it in the root of the tree.
• Make subset of training data in such a way that each subset contains data with the

same value for an attribute.
• Repeat above two steps until reach to the leaf node.

Assume a dataset consist of n attributes, for the selection of best attribute as the root
node of the tree, researcher work on mathematical measures, these mathematical measured
values are used for such attribute selection, these measures are information gain and Gini-
index. Mostly the information gain is used when the attribute is categorical, while for
continuous attributes the Gini index is favourable. An information gain is a reduction in
entropy. Entropy is a measure used to calculates the randomness of data within attributes
or features of a dataset. Mathematically entropy can be represented as bellow equation

Entropy =
c

∑
i=1
−pi ∗ log2(pi) (7)

here pi denotes the proportion of the sample that belongs to class c. The following steps
are used in calculating the information gain using entropy.

• Calculates the entropy of the target attribute.
• Calculates the entropy of other attributes and subtract from the entropy of target.

Mathematically it is represented as:

In f ormation Gain = E(Target)− E(Target, Attribute) (8)
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3.1.3. Random Forest

Random Forest learning model is a type of supervised ML model. It is an ensemble
model which makes use of multiple trees in predictions of a target. This model is used for
regression and classification problems. It takes n samples as input and creates multiple
trees based on a subset of input features. Then on the results of every tree, a majority voting
is performed in order to get the final prediction for the target class variable.

Assume m denotes the total features in data, the main working of this learning model
can be summarised in the following points.

• Select k number of features randomly from m features of data such that k < < m.
• Calculates the best split for k selected features.
• Split the node into child nodes using best split.
• Repeat above until leaf node reached.
• Build a forest of trees by repeating the above steps.

3.1.4. Naive Bayes

This learning model is based on Bayes rules in learning and predicting the new in-
stances class label. Bayes theorem provides the way of calculating the posterior probability
of class as depicted in Equation (9) below.

p(c | x) =
p(x | c) p(c)

p(x)
(9)

where p(c | x) indicates the posterior probability of the target class given independent
variable x, p(c) indicates the prior probability of the target class, p(x | c) represents the
likelihood and p(x) is the prior probability of independent variable. In comparison to other,
the NB performs better and fast prediction of the test set. This model performs better in
multi-classification problems. sci kit-learn provides three types of models for Naive Bayes,
these are Gaussian, Multinomial, Bernoulli.

4. Experimental Setup and Results
4.1. Dataset Selection

Dataset helps in evaluation of ML model performance against attack detection for
the network.

Numerous datasets for the evaluation of IDS are proposed by researchers in the area
of network security. That helps in understanding the performance of particular machine
learning or deep learning algorithms for intrusion detection. We reviewed the existing
publicly available dataset for IDS evaluation in order to find the best representative for
our proposed IDS evaluation in MQTT enables IoT systems. There are two types of
datasets available in network security. Table 3 compares the existing datasets available for
evaluations and the representation of each dataset for MQTT protocol, whether a dataset is
a general-purpose or special purpose.
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Table 3. Special and general purposed dataset for IDS evaluation.

Dataset Reference General Purpose Special Purpose MQTT Protocol Algorithms Evaluated Paper References

CIC-IDS2017 RF, SVM, DT
Kyoto 3 5 5 DNN, NB, kNN [35]

WSN-DS LR, AB
UNSW-NB

KDD-99
GA

NSL-KDD 3 5 5 RF, SVM, DT [42]
Kernel ELM, kNN

NB, MLP
DNN [43]

KDD-99 3 5 5 NB, DT, RF [44]
ontology

RF, SVM, DT
DNN, NB, kNN [35]

LR
DFFNN [32]

CICIDS2017 3 5 5 GBT
RF, SVM, DT

DNN, NB, kNN [45]
LR, AB

Bot-IoT 5 3 5 SNN [46]
Ton-IoT 5 3 5 NB, SVM, RF, kNN [47]

DT, LR, LSTM, LDA
MQTT-IoT-IDS2020 5 3 3 NB, SVM, RF, kNN

DT, LR [25]
(DoS)

(Man in the middle) 5 3 3 XGBoost, LSTM [24]
(Intrusion) [48] GRU, NN

MQTTset 5 3 3 NN, RF, MLP
DT, GBT [34]

4.1.1. General Purpose

The general-purpose datasets are referred to as those which are generally used for
IDS evaluation representing a general computer network. They are not created for specific
networks nor replicating the specific types of IoT protocols. For example, Canadian
Institute for Cybersecurity proposed several general-purpose NIDS datasets such as CIC-
DoS dataset [49], CIC-IDS2017 [49] and CIC-IDS2018 [50], which helps the researchers
community in intrusion detection to test the performance of ML or DL based learning
models. In the literature, there are multiple datasets for general-purpose Network Intrusion
Detection System (NIDS) evaluation, most common of them used for example KDD-99 [49],
NSL-KDD [49] etc. The researcher evaluates the performance of the proposed IDS by using
such a dataset for generalised networks. A lot of research exists over these datasets, that
shows the significance of each ML, DL, or Ensemble Learning (EL).

4.1.2. Special Purpose

The dataset was created for special purposes to represent specific types of networks
or protocols. There are some specialised networks, such as IoT-based [51], Internet of
Vehicles (IoV) networks [52], and Supervisory Control and Data Acquisition (SCADA)
network [53]. These networks are comprised of some specialised devices that can not be
found in other networks. These devices are especially dedicated to such networks, for
example, remote terminal units [54] in SCADA networks, etc. Table 2 shows the special
and general-purpose datasets along with evaluated algorithms of very recent research.
After our review, we selected the MQTT-IoT-IDS2020 dataset to check the performance of
our proposed algorithm for the MQTT protocol. However, this table clearly shows that a
Deep Neural Network for MQTT protocol is still an interesting idea. The focus of this work
is to evaluate the Deep Neural Network for the MQTT protocol.

4.1.3. Prepossessing and Description of Selected Datasets

For our proposed IDS, we chose MQTT-IoT-IDS2020 [25] and the other latest published
MQTT dataset (https://joseaveleira.es/dataset; access date was 8 July 2021) [24] for testing
the performance of the proposed DNN algorithm. There were sensors, a camera, and other
devices that communicate with each other via the MQTT protocol while capturing these

https://joseaveleira.es/dataset
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datasets. Tables 4 and 5 show the statistics of these two datasets used in the current study
for the performance evaluation of the proposed IDS. These are the latest datasets and are
created in an MQTT protocol-enabled simulated environment; hence, they better represent
the features of the MQTT protocol-based IoT network.

Table 4. Three abstract-level feature statistics of MQTT-IoT-IDS2020.

Classes Total Instances Normal Attack

Bi-flow

Biflow_mqtt_bruteforce 16,696 2152 14,544
Biflow_normal 86,008 86,008 5
Biflow_scan_A 25,693 5786 19,907
Biflow_scan_sU 39,664 17,230 22,434
Biflow_sparta 91,318 77,202 14,116

Uni-flow

Uniflow_mqtt_bruteforce 33,079 4205 28,874
Uniflow_normal 171,836 171,836 5
Uniflow_scan_A 51,358 11,561 39,797
Uniflow_scan_sU 25,845 34,409 22,436
Uniflow_sparta 182,407 154,175 28,232

Packet-flow

mqtt_bruteforce 90,876,584 70,980,732 19,895,852
Normal 1,056,230 1,056,230 5
scan_A 111,392 70,768 40,624

Biflow_scan_sU 233,255 210,819 22,436
Biflow_sparta 130,876,584 90,980,732 39,895,852

Table 5. MQTT dataset 1 statistics.

File Name Total Normal Attacked

DoS.CSV 94,625 49,112 45,513
Intrusion.CSV 80,893 78,995 1898
MitM.CSV 110,668 106,813 3855

1 https://joseaveleira.es/dataset.

Five scenarios were launched during the creation of the MQTT-IoT-IDS2020 dataset.
These scenarios are normal operation, aggressive scan, UDP scan, Sparta SSH brute-force,
and MQTT brute-force attack [25]. Each of these scenarios is recorded in separate files for
three abstraction level network flow features of MQTT enabled simulated network. These
flow features include Packet-flow, Uni-flow, and Bi-flow features. Every flow-level features
of MQTT have five files representing attack and normal of particular scenario as mentioned
above. For all of these Packet-flow, Bi-flow, Uni-flow data, we implemented a python script
to combine all of these five files in each network flow-level into one combined CSV and
create a combined dataset for each network flow-level feature. The combined CSV contains
the binary label and multi-class label attribute in order to test the proposed algorithm
performance over the MQTT protocol recorded traffic for binary as well as multi-attack
classification. Figure 5 presents files of MQTT-IoT-IDS2020 in each network flow feature
and their combined version dataset for each flow-level features of MQTT-IoT-IDS2020. For
example, in Uni-flow feature data of MQTT, there are five files, and we combined all of
these five files into one CSV with two extra columns with attack and the type of attack.
The statistic of the combined version data for Packet-flow, Bi-flow, and Uni-flow is given
in Figures 6–8 in the form of nested pie plot. The most outer plot shows the normal and
attacked instances, and the inner pie plot shows the statistics of each of the five scenarios
separately presenting the distribution of multi-type attacks. The reason behind merging
and creating binary as well as multi-class combined version datasets is to test the proposed
IDS performance on binary and multi-class attack classification for each type of network
features, i.e., Packet-flow, Bi-flow, and Uni-flow [25]. The final prepossessed dataset is split
into two parts: 80% for training and 20% for testing the trained ML model performance.

https://joseaveleira.es/dataset
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Figure 5. MQTT-IoT-IDS2020 pre-processing.

Figure 6. Five files statistics of Uni-flow.

Figure 7. Five files statistics of Bi-flow.
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Figure 8. Five files statistics of Packet-flow.

In order to test the performance of the proposed DNN approach for IDS in an MQTT-
based IoT system, we performed some pre-processing to the combined version of each
feature level data in order to further prepare it. Because ML/ DL algorithms have require-
ments before applying these algorithms to data. All the features explanations of the dataset
are available in detail in [25]. We analysed the data in each network flow-level features data
of MQTT-IoT-IDS2020, i.e., Uni-flow, Bi-flow, and Packet-flow. As discussed above and
mentioned in Figure 5, for each flow-level feature, all the attacked and normal scenarios
were combined into one combined.csv file. Among all these, the Packet-flow features
have some attributes that contained nulls value above 90 percent; these attributes are
mqtt_flag_uname, mqtt_flag_passwd, mqtt_flag_retain, mqtt_flag_qos, mqtt_flag_willflag,
mqtt_flag_clean, and mqtt_flag_reserved. We removed such attributes by threshold. For the
remaining features in packet featured data, we put the median to fill the null-valued vari-
able as the median is less susceptible to an outlier. Apart from this, we perform label
encoding and one-hot label encoding as all TCP and IP flags were label encoded, and
we perform one-hot encoding to express protocol features more clearly to our proposed
model, due to which the packet feature increased as there were different protocols in the
dataset. In Uni-flow and Bi-flow featured data, we removed certain features, such as
source, destination IP address, and time stamp, etc. Besides this, certain features, such
as MQTT flags, were removed in [25]; however, we have not removed such categorical
features, but we instead prepared it by numerically encoding by the label encoder. Some
features contained multi-type data, for example, string and int64 in one feature, so we
converted the string into int64 representation in order to prepare for deep learning model.
Features such as tcp_flag_res, tcp_flag_ns, tcp_flag_ecn, and protocols are converted, as
and we performed label encoding as they are categorical in nature. Apart from this, we
performed feature scaling to some features in Packet, Uni-flow, and Bi-flow data. Features
such as mean_pkt_len, num_byte, min_pkt_len, max_pkt_len in Uniflow; fwd_num_byte,
fwd_num_byte, fwd_max_pkt_len in Bi-flow; and ip_len in Packet-flow have scaled using
feature scaling in python.

4.2. Experimental Setups
4.2.1. Evaluation Metrics

Understanding the model performance requires the statistical ground truth values,
which measure how the model performs in attack classification from normal data. Several
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evaluation metrics can be used to check the performance of an IDS. These metrics are
shown from Equation (10a–d).

Accuracy =
TP + TN

TP + TN + FP + FN
(10a)

Precision =
TP

TP + FP
(10b)

Recall =
TP

TP + FN
(10c)

F1−measure = 2×
(

Precision× Recall
Precision + Recall

)
(10d)

where:

• TP is the correct classification of normal as normal flow.
• TN is the correct classification of attacked as attacked flow.
• FP is the incorrect classification of normal as attacked flow.
• FN is the incorrect classification of attacked as normal flow.

Accuracy is the ratio of the correctly classified connection records to the complete test
dataset. Machine learning (ML) or deep learning (DL) algorithms are considered to be the
best model if their accuracy is high. Precision refers to the ratio of the accurate detection
of attacked instances to the number of all detected attacked instances. This is the second
measure for the evaluation of the machine learning algorithm: if the model is categorised
high, it is a good model. A recall is another measure used to evaluate the ML algorithm
performance that gives the relation between true positive ( TP) predictions to true positive
( TP) and false negative ( FP) predictions. In calculating the F1 measure, the precision and
recall are both used as a harmonic mean.

4.2.2. Programming Libraries and Parameters Setup

Keras (the Python deep learning API) with a hardware specifications Core i7 processor
(16 GB RAM) is used in this work. The experiment was implemented in python 3.9.5
programming language using an interactive Python-based IDE named Jupyter notebook
inside Anaconda distribution used as a software tool for the implementation and evaluation
of proposed experiments. We used the pandas-profiling 2.11.0, which is an open-source
module of python that provides the facility for data analysis. There are various things that
have an effect on the results of the DL algorithm, for example, batch size, learning rate,
type of optimiser for reduction of the loss function. The optimiser in designing the deep
learning algorithms plays the main role because it reduces the cost function with less effort
and less resource usage, but it depends on the nature of the optimiser. Accuracy increases
as the reduction in the loss function. For the reduction in the loss function in our proposed
model, i.e., binary-cross entropy or categorical-cross entropy, we studied and reviewed the
existing optimiser, and we select the ADAM [55] optimiser out of the existing available
optimisers because it will optimise the categorical cross-entropy loss function in the case of
multi-classification, while binary-cross entropy will be optimised via ADAM in the case of
binary classification in the proposed model.

ADAM combines the advantages of two Stochastic Gradient Descent (SGD) extensions,
i.e., Adaptive Gradient Algorithm (Adagrad) [56] and Root Mean Square Propagation
(RMSProp) [57]. ADAM implements momentum that brings smoothing and fast searching
during training [57], and with the help of RMSProp optimiser, they change the learning
rate efficiently during training time [57], which converges very quickly towards the global
minima. Due to both of the mentioned advantages, we choose the ADAM as an optimiser
in our proposed model. Certain studies have revealed that the learning rate and batch size
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have high correlations between each other [58–60], which is if there is a change in learning
rate or in batch size, then the accuracy is impacted by such changes. In [58], it is clearly
showed that when the learning rate is small, with the increase in batch size, the accuracy
slows down, and while increasing the batch size with a slightly large learning rate, the
accuracy increases. Therefore, we run multiple experiments to find the optimal batch size
of our final model for binary as well as multi-attack classifiers. We summarised all of the
results of different batch sizes, as shown in Tables 6–8. They also show a comparison among
batch size performance of the classification MQTT. Out of our experiment with different
batch sizes and different activation functions in the last layer that has the same hidden
layer activation (relu) and network architecture, the higher batch for all three abstraction
level features is recommended.

We tested the 32, 64, 128, and different activation functions in the last layer for binary
as well as multi-attack classification. As the batch size increases, the accuracy increases.
Out of all the experiments, the batch size of 128 proved optimal and gave good results in
comparison to other lower batches. Based on the results in Tables 6–8, we recommend a
higher batch size for the MQTT-IoT-IDS2020 dataset. Another advantage with the higher
batch size is the number of iterations in each epoch decreases, which saves much of the
learning time, and the model runs efficiently and fast.

Table 6. Binary-class attack classification with the sigmoid activation function in the output layer.

Network Feature Batch Size Training Accuracy Testing Accuracy

Packet-flow
32 93.74 92.93
64 93.43 93.43

128 94.99 94.57

Bi-flow
32 99.32 99.29
64 99.59 99.66

128 99.99 99.92

Uni-flow
32 99.73 99.74
64 99.63 99.77

128 99.94 99.98

Table 7. Multi-class attacks classification with sigmoid activation function on output layer.

Network Feature Batch Size Training Accuracy Testing Accuracy

Packet-flow
32 88.66 88.62
64 88.71 88.78

128 89.51 89.71

Bi-flow
32 94.32 93.89
64 93.59 94.06

128 93.99 93.92

Uni-flow
32 94.13 93.99
64 93.83 93.77

128 94.04 93.98
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Table 8. Multi-class attacks classification with softmax activation function on output layer.

Network Feature Batch Size Training Accuracy Testing Accuracy

Packet-flow
32 90.02 90.17
64 90.71 90.78

128 91.71 91.96

Bi-flow
32 97.32 98.89
64 97.59 97.99

128 98.02 98.34

Uni-flow
32 96.99 97.39
64 97.97 97.87

128 97.04 97.91

4.3. Performance Analysis and Discussion

This section discusses the results obtained. Based on the experiments of Tables 6–8,
we selected 128 batch size with a sigmoid output function at the last layer for binary classi-
fication, softmax for multi-classification, and the ADAM optimiser, which will optimise
our cost function for binary classification as well as multi-classification of an attack for our
proposed deep learning model toward intrusion detection in MQTT protocol-based smart
IoT systems. Choosing a higher batch size reduces the iteration in each epoch, which saves
a lot of time during model training. Due to the stochastic nature of the proposed algorithms,
the results may vary each time the model runs because the weights are randomly assigned
during training the model each time. Every time the model runs, it learns differently
because of its stochastic nature. Furthermore, we performed a five-fold cross-validation
evaluation on the proposed model to find the average evaluation metrics, i.e., accuracy,
precision, recall, etc., with standard deviation. Tables 9 and 10 show the five-fold cross-
validated evaluation accuracy of our proposed model against binary as well as multi-class
attack classification, respectively. For binary classification, the proposed model performed
well on both Bi-flow and Uni-flow features data of MQTT with 99.753 and 99.927 mean
accuracy, respectively. While in the case of Packet-flow data of MQTT, it performed with a
mean accuracy equal to 94.943. Figure 9a–f shows learning curves of the five-fold binary
attack classification and multi-attack classification in terms of loss and accuracy for each
abstraction level of the feature of MQTT, i.e., Uni-flow, Bi-flow, and Packet flow.

Table 9. Binary-class attack classification with five-fold cross validation results in terms of accuracy.

Network Features Accuracy Mean Standard Deviation

Packet-flow

94.996

94.943 0.034
94.907
94.936
94.966
94.911

Bi-flow

99.788

99.753 0.029
99.730
99.711
99.778
99.759

Uni-flow

99.9333

99.927 0.030
99.929
99.950
99.869
99.953
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Table 10. Multi-class attacks classification results with five-fold cross validation in terms of accuracy.

Network Features Accuracy Mean Standard Deviation

Packet-flow

91.900

90.798 2.498
91.022
85.932
92.524
92.615

Bi-flow

98.063

98.127 0.154
97.966
98.340
98.275
97.993

Uni-flow

96.872

97.084 0.524
96.916
97.549
96.306
97.779

The quick convergence of the model can be observed. Learning curves help in un-
derstanding and diagnosing an over-fit, under-fit, or well-fit model on the training and
testing datasets. A model is said to be under-fitted in two cases identified from the learning
curve: in case 1, the training loss curve will form a straight line, i.e., no change, and in
case 2, the model loss will continuously decrease at the end of the model training process.
While in over-fitting, the testing loss begins to increase after some time faster than the
training loss curve. The well-fit model shows a different learning curve than over-fitted
and under-fitted models. That is, a model is said to be well-fit if the training and testing
curves have a small gap or it decreases to a point of stability. Similarly, as mentioned above,
we can understand the model performance on the MQTT-IoT-IDS2020 dataset by observing
Figure 9a–f. Packet-flow accuracy is less than the others, i.e., Uni-flow and Bi-flow. One
of the reasons for low accuracy on Packet-flow feature data of MQTT is the imbalance
of the attack classes’ distribution of Packet-flow data in each file. In order to reduce the
imbalanced class problem, we have selected the data from five files of Packet-flow feature
data of the MQTT-IoT-IDS2020 dataset. We further evaluate our model in order to test
its performance on other evaluation metrics, such as precision, recall, and F1-measure.
Tables 11–13 show the binary classification of our proposed model in terms of precision,
recall, and F1-measure, respectively. Tables 14–16 show the multi-attack classification
evaluation in terms of precision, recall, and F1-measure. To further test the suitability of the
proposed model for intrusion detection in MQTT-based smart IoT systems, we compared
its performance with other classical machine learning models, such as DT, RF, NB, and
KNN for binary and multi-class classification.

Tables 17 and 18 show the comparison of the proposed model with other classical
machine learning models. The comparison was carried out using a number of parameters,
such as accuracy, precision, recall, F1 measure, and training and testing times. The training
and testing time in Tables 17 and 18 are measured in seconds. Depending on the specifica-
tion of the system, the training and testing times may vary (we have already previously
mentioned the system specifications). All of the classical machine learning algorithms
mentioned in Tables 15 and 16 perform well on Uni-flow and Bi-flow data of MQTT pro-
tocol. However, on the Packet feature of MQTT data, our proposed model, in most cases,
provides better results than other classical machine learning models. We also tested and
compared the performance of our proposed model with other deep learning models’, such
as GRUs and LSTM, performance against MitM, Intrusion, and DoS over MQTT-enabled
IoT network. One can see from Table 19 that the accuracy and F1-score of the proposed
model are higher than other traditional learning models.
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Table 11. Binary-class attack classification results in terms of precision.

Network Feature Precision Mean Std

Packet-flow

93.833

93.853 0.099
93.752
93.638
93.943
94.001

Bi-flow

99.911

99.881 0.021
99.857
99.873
99.863
99.902

Uni-flow

99.986

99.953 0.034
99.914
99.986
99.972
99.910

Table 12. Binary-class attack classification results in terms of recall.

Network Feature Recall Mean Std

Packet-flow

86.733

86.815 0.119
86.852
86.648
86.843
87.001

Bi-flow

88.711

88.699 0.015
88.697
88.693
88.720
88.675

Uni-flow

87.996

88.064 0.058
88.110
88.105
87.991
88.120

Table 13. Binary-class attack classification results in term of F1-score.

Network Feature F1 Score Mean Std

Packet-flow

90.143

90.188 0.118
90.170
90.007
90.253
90.365

Bi-flow

93.978

93.958 0.011
93.946
93.951
93.962
93.954

Uni-flow

93.609

93.633 0.025
93.641
93.670
93.600
93.645
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Table 14. Multi-class attacks classification results in term of precision.

Network Feature Precision Mean Std

Packet-flow

89.693

89.4118 1.115
90.970
88.187
88.099
90.110

Bi-flow

95.378

95.109 0.142
95.116
94.991
94.988
95.074

Uni-flow

94.654

94.761 0.535
94.641
95.670
93.998
94.845

Table 15. Multi-class attacks classification results in term of recall.

Network Feature Recall Mean Std

Packet-flow

81.385

81.640 0.403
81.970
82.107
80.999
81.743

Bi-flow

86.331

86.717 0.433
87.116
86.591
86.222
87.324

Uni-flow

85.966

86.435 0.421
86.817
86.398
87.002
85.990

Table 16. Multi-class attacks classification results in term of F1-score.

Network Feature F1 Score Mean Std

Packet-flow

85.337

85.346 0.620
86.235
85.038
84.399
85.722

Bi-flow

90.629

90.718 0.235
90.940
90.596
90.393
91.034

Uni-Flow

90.101

90.605 0.375
90.560
90.798
90.364
90.201
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Table 17. Performance comparison of the proposed DL-based IDS with other ML algorithm-based IDSs (binary-class classification).

Dataset Models Accuracy Precision Recall F1 Score Training Time (s) Testing Time (s)

K-NN 83.980 80.643 78.654 79.636 63.33 14.47
NB 49.780 45.503 50.003 47.646 7.70 4.41
DT 90.970 91.211 89.108 90.147 9.10 4.18
RF 89.985 90.345 88.976 89.655 10.37 4.65

Packet-flow

Proposed 94.943 93.853 86.815 90.188 195.83 6.10

K-NN 98.999 99.673 81.991 89.971 53.77 12.30
NB 94.188 94.007 80.693 86.843 5.80 3.20
DT 98.698 99.467 84.377 91.303 7.80 3.15
RF 99.537 99.631 84.117 91.219 8.10 3.35

Bi-flow

Proposed 99.753 99.881 88.699 93.958 168.83 4.70

K-NN 99.125 99.116 98.023 98.566 48.88 11.55
NB 90.065 88.213 70.003 78.060 6.92 3.90
DT 99.111 99.345 97.932 98.633 7.39 3.05
RF 99.061 99.111 97.999 98.551 8.51 3.83

Uni-flow

Proposed 99.144 98.395 98.984 98.688 145.68 4.90

Table 18. Performance comparison of proposed DL-based IDS with other ML algorithm-based IDSs (multi-class classification).

Dataset Models Accuracy Precision Recall F1 Score Training Time (s) Testing Time (s)

K-NN 81.333 78.993 77.991 78.489 61.74 13.90
NB 48.786 70.332 49.156 57.868 7.20 3.90
DT 90.539 89.832 79.195 84.178 8.90 4.37
RF 89.865 88.991 81.327 84.987 9.30 3.98

Packet-flow

Proposed 90.798 89.4118 81.640 85.346 198.45 6.35

K-NN 96.976 88.321 82.333 85.221 54.80 11.90
NB 91.188 91.996 79.375 85.220 6.64 3.82
DT 97.039 95.479 80.998 87.644 6.10 2.89
RF 97.979 96.391 84.373 89.982 8.39 3.97

Bi-flow

Proposed 98.127 95.109 86.717 90.718 163.27 4.44

K-NN 96.992 96.973 76.111 85.284 46.88 10.98
NB 70.765 69.185 70.988 70.075 6.49 3.46
DT 96.171 96.140 75.899 84.828 7.70 2.98
RF 95.297 95.117 73.995 83.236 8.29 3.37

Uni-flow

Proposed 97.084 94.761 86.435 90.605 143.38 4.58

Table 19. Comparison with other deep learning models.

Models Accuracy F1 Score

LSTM [24] 0.9337 0.9328
GRUs [24] 0.9608 0.9577
Proposed 0.9713 0.9599
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(A) Binary Classification results (B) Binary Classification results

(a) Uni-flow: mean = 99.927 std = 0.030, n = 5

(b) Bi-flow: mean = 99.753 std = 0.029, n = 5

(c) Packet-flow: mean = 94.943 std = 0.034, n = 5

(d) Uni-flow: mean = 97.084 std = 0.524, n = 5

(e) Bi-flow:mean = 98.127 std = 0.154, n = 5

(f) Packet-flow: mean = 90.798 std = 2.498, n = 5

Figure 9. Five-fold cross validated accuracies for 3 abstraction-level features of MQTT.

5. Conclusions and Future Direction

This paper presents a DNN-based intrusion detection system for MQTT-enabled
IoT smart systems. A recently published MQTT-IoT-IDS2020 and another MQTT dataset
are used to evaluate the performance of the proposed model. The MQTT-IoT-IDS2020
dataset contains three abstraction-level features of MQTT-enabled IoT, including Packet-
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flow, Bi-flow, and Uni-flow features. There are five files in each of these featured data
representing attack and normal scenarios. The data were organised such that each separated
feature gets a subset in order to assess the performance in binary-class and multi-class
attack classification. The tests were conducted under different batch sizes, such as 32, 64,
and 128, for binary and multi-classifications. The results show that increasing the batch
size of the training subset improves the convergence and performance of the classifier.
The performance of the proposed DL-based IDS with a default learning rate and using
the ADAM optimiser was compared with the performance of conventional ML-based
IDSs, including KNN, NB, DT, and RF. Furthermore, the proposed model was tested for
binary-class as well as multi-class attack classification with different activation functions
at the output layers. The results show that the DL-based model for Bi-flow and Uni-flow
featured data can achieve 99% accuracy and 98% accuracy for binary and multi-class
attack classification, respectively. However, in Packet-flow featured data, the accuracy for
binary and multi-class were 94% and 90%, respectively. Additionally, we also tested the
performance of the proposed model against DoS and MitM, etc., over an MQTT-based IoT
system. From the results and comparison tables, it was evident that the proposed model
has higher accuracy than other state-of-the-art deep learning models. In the future, we
intend to investigate the vulnerability of new types of attacks on various IoT protocols.
Our aim is to propose a novel deep learning-based model for new vulnerabilities.

Author Contributions: Conceptualisation, M.A.K. (Muhammad Almas Khan), M.A.K. (Muazzam A.
Khan), S.S.J., A.A.S. and J.A.; Experimental analysis, M.A.K. (Muhammad Almas Khan); Writing—
original draft preparation, M.A.K. (Muhammad Almas Khan), S.U.J. and S.S.J.; Review and editing,
M.A.K. (Muazzam A. Khan) and J.A.; Supervision, M.A.K. (Muazzam A. Khan), S.U.J., J.A., N.P.
and W.J.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The publicly available data set can be found at: https://joseaveleira.es/
dataset and https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-
detection-dataset.

Acknowledgments: One of the authors, Sajjad Shaukat Jamal, extends his gratitude to the Deanship
of Scientific Research at King Khalid University for funding this work through a research groups
program under grant number R. G. P. 1/77/42.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Masri, E.; Kalyanam, K.R.; Batts, J.; Kim, J.; Singh, S.; Vo, T.; Yan, C. Investigating messaging protocols for the Internet of

Things (IoT). IEEE Access 2020, 8, 94880–94911. [CrossRef]
2. Kodali, R.K.; Soratkal, S. MQTT based home automation system using ESP8266. In Proceedings of the 2016 IEEE Region 10

Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–5.
3. Cornel-Cristian, A.; Gabriel, T.; Arhip-Calin, M.; Zamfirescu, A. Smart home automation with MQTT. In Proceedings of the 2019

54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; pp. 1–5.
4. Prabaharan, J.; Swamy, A.; Sharma, A.; Bharath, K.N.; Mundra, P.R.; Mohammed, K.J. Wireless home automation and security

system using MQTT protocol. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics,
Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 2043–2045.

5. Kodali, R.K.; Sarjerao, B.S. A low cost smart irrigation system using MQTT protocol. In Proceedings of the 2017 IEEE Region 10
Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5.

6. Mukherji, S.V.; Sinha, R.; Basak, S.; Kar, S.P. Smart agriculture using internet of things and mqtt protocol. In Proceedings of the
2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India,
14–16 February 2019; pp. 14–16.

7. Atmoko, R.A.; Yang, D. Online monitoring & controlling industrial arm robot using mqtt protocol. In Proceedings of the
2018 IEEE International Conference on Robotics, Biomimetics, and Intelligent Computational Systems (Robionetics), Bandung,
Indonesia, 8–10 August 2018; pp. 12–16.

https://joseaveleira.es/dataset
https://joseaveleira.es/dataset
https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset.
https://ieee-dataport.org/open-access/mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset.
http://doi.org/10.1109/ACCESS.2020.2993363


Sensors 2021, 21, 7016 24 of 25

8. Safaei, B.; Monazzah, A.M.H.; Bafroei, M.B.; Ejlali, A. Reliability side-effects in Internet of Things application layer protocols. In
Proceedings of the 2017 2nd International Conference on System Reliability and Safety (ICSRS), Milan, Italy, 20–22 December 2017;
pp. 207–212.

9. Soni, D.; Makwana, A. A survey on mqtt: A protocol of internet of things (iot). In Proceedings of the International Conference on
Telecommunication, Power Analysis And Computing Techniques (ICTPACT-2017), Chennai, India, 6–8 April 2017; Volume 20.

10. Hunkeler, U.; Truong, H.L.; Stanford-Clark, A. MQTT-S—A publish/subscribe protocol for Wireless Sensor Networks. In
Proceedings of the 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops
(COMSWARE’08), Bangalore, India, 6–10 January 2008; pp. 791–798.

11. Zriqat, A.I.; Altamimi, A.M. Security and privacy issues in eHealthcare systems: Towards trusted services. Int. J. Adv. Comput.
Sci. Appl. 2016, 7, 229–236.

12. Mathur, A.; Newe, T.; Rao, M. Defence against black hole and selective forwarding attacks for medical WSNs in the IoT. Sensors
2016, 16, 118. [CrossRef] [PubMed]

13. Butt, S.A.; Diaz-Martinez, J.L.; Jamal, T.; Ali, A.; De-La-Hoz-Franco, E.; Shoaib, M. IoT smart health security threats. In
Proceedings of the 2019 19th International Conference on Computational Science and Its Applications (ICCSA), St. Petersburg,
Russia, 1–4 July 2019; pp. 26–31.

14. Markowsky, L.; Markowsky, G. Scanning for vulnerable devices in the Internet of Things. In Proceedings of the 2015 IEEE 8th
International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), Warsaw, Poland, 24–26 September 2015; Volume 1, pp. 463–467.

15. Andy, S.; Rahardjo, B.; Hanindhito, B. Attack scenarios and security analysis of MQTT communication protocol in IoT system.
In Proceedings of the 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI),
Yogyakarta, Indonesia, 19–21 September 2017; pp. 1–6.

16. Gujar, N.S. Message Queuing Telemetry Transport (MQTT) based hybrid smart streetlight system for smart applications. In
Proceedings of the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India,
27–29 November 2019; pp. 832–836.

17. Vaccari, I.; Aiello, M.; Cambiaso, E. SlowITe, a novel denial of service attack affecting MQTT. Sensors 2020, 20, 2932. [CrossRef]
18. Firdous, S.N.; Baig, Z.; Valli, C.; Ibrahim, A. Modelling and evaluation of malicious attacks against the iot mqtt protocol.

In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
Exeter, UK, 21–23 June 2017; pp. 748–755.

19. Potrino, G.; De Rango, F.; Santamaria, A.F. Modeling and evaluation of a new IoT security system for mitigating DoS attacks to
the MQTT broker. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh,
Morocco, 15–18 April 2019; pp. 1–6.

20. Al Enany, M.O.; Harb, H.M.; Attiya, G. A Comparative analysis of MQTT and IoT application protocols. In Proceedings of the
2021 International Conference on Electronic Engineering (ICEEM), Menouf, Egypt, 3–4 July 2021; pp. 1–6.

21. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data
analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]

22. da Costa, K.A.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of Things: A survey on machine learning-
based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [CrossRef]

23. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network intrusion detection for IoT security based on
learning techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [CrossRef]

24. Alaiz-Moreton, H.; Aveleira-Mata, J.; Ondicol-Garcia, J.; Muñoz-Castañeda, A.L.; García, I.; Benavides, C. Multiclass classification
procedure for detecting attacks on MQTT-IoT protocol. Complexity 2019, 2019, 6516253 . [CrossRef]

25. Hindy, H.; Bayne, E.; Bures, M.; Atkinson, R.; Tachtatzis, C.; Bellekens, X. Machine learning based IoT Intrusion Detection
System: An MQTT case study (MQTT-IoT-IDS2020 Dataset). In Proceedings of the International Networking Conference, Online,
19–21 September 2020; Springer: Cham, Switzerland, 2020; pp. 73–84.

26. Ahmadon, M.A.B.; Yamaguchi, N.; Yamaguchi, S. Process-Based Intrusion Detection Method for IoT System with MQTT Protocol.
In Proceedings of the 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 15–18 October 2019;
pp. 953–956.

27. Haripriya, A.; Kulothungan, K. Secure-MQTT: An efficient fuzzy logic-based approach to detect DoS attack in MQTT protocol for
internet of things. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 90.

28. Jan, S.U.; Lee, Y.D.; Koo, I.S. A distributed sensor-fault detection and diagnosis framework using machine learning. Inf. Sci. 2021,
547, 777–796. [CrossRef]

29. Mohammadi, M.; Rashid, T.A.; Karim, S.H.T.; Aldalwie, A.H.M.; Tho, Q.T.; Bidaki, M.; Rahmani, A.M.; Hoseinzadeh, M. A
comprehensive survey and taxonomy of the SVM-based intrusion detection systems. J. Netw. Comput. Appl. 2021, 178, 102983.
[CrossRef]

30. Jan, S.U.; Vu, V.H.; Koo, I.S. Performance analysis of support vector machine-based classifier for spectrum sensing in cognitive
radio networks. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), Zhengzhou, China, 18–20 October 2018; pp. 385–3854.

http://dx.doi.org/10.3390/s16010118
http://www.ncbi.nlm.nih.gov/pubmed/26797620
http://dx.doi.org/10.3390/s20102932
http://dx.doi.org/10.1016/j.dcan.2017.10.002
http://dx.doi.org/10.1016/j.comnet.2019.01.023
http://dx.doi.org/10.1109/COMST.2019.2896380
http://dx.doi.org/10.1155/2019/6516253
http://dx.doi.org/10.1016/j.ins.2020.08.068
http://dx.doi.org/10.1016/j.jnca.2021.102983


Sensors 2021, 21, 7016 25 of 25

31. Abdel-Basset, M.; Hawash, H.; Chakrabortty, R.K.; Ryan, M.J. Semi-supervised Spatio-Temporal Deep Learning for Intrusions
Detection in IoT Networks. IEEE Internet Things J. 2021, 8, 12251–12265. [CrossRef]

32. Faker, O.; Dogdu, E. Intrusion detection using big data and deep learning techniques. In Proceedings of the 2019 ACM Southeast
Conference, Kennesaw, GA, USA, 18–20 April 2019; pp. 86–93.

33. Ciklabakkal, E.; Donmez, A.; Erdemir, M.; Suren, E.; Yilmaz, M.K.; Angin, P. ARTEMIS: An intrusion detection system for MQTT
attacks in Internet of Things. In Proceedings of the 2019 38th Symposium on Reliable Distributed Systems (SRDS), Lyon, France,
1–4 October 2019; pp. 369–3692.

34. Vaccari, I.; Chiola, G.; Aiello, M.; Mongelli, M.; Cambiaso, E. MQTTset, a New Dataset for Machine Learning Techniques on
MQTT. Sensors 2020, 20, 6578. [CrossRef]

35. Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep learning approach for
intelligent intrusion detection system. IEEE Access 2019, 7, 41525–41550. [CrossRef]

36. Zhong, M.; Zhou, Y.; Chen, G. Sequential model based intrusion detection system for IoT servers using deep learning methods.
Sensors 2021, 21, 1113. [CrossRef]

37. Jothi, B.; Pushpalatha, M. WILS-TRS—A novel optimized deep learning based intrusion detection framework for IoT networks.
Pers. Ubiquitous Comput. 2021. [CrossRef]

38. Maseer, Z.K.; Yusof, R.; Bahaman, N.; Mostafa, S.A.; Foozy, C.F.M. Benchmarking of Machine Learning for Anomaly Based
Intrusion Detection Systems in the CICIDS2017 Dataset. IEEE Access 2021, 9, 22351–22370. [CrossRef]

39. Ullah, I.; Ullah, A.; Sajjad, M. Towards a Hybrid Deep Learning Model for Anomalous Activities Detection in Internet of Things
Networks. IoT 2021, 2, 428–448. [CrossRef]

40. Shalaginov, A.; Semeniuta, O.; Alazab, M. MEML: Resource-aware MQTT-based machine learning for network attacks detection
on IoT edge devices. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing
Companion, Auckland, New Zealand, 2–5 December 2019; pp. 123–128.

41. Berner, J.; Grohs, P.; Kutyniok, G.; Petersen, P. The Modern Mathematics of Deep Learning. arXiv 2021, arXiv:2105.04026.
42. Ghasemi, J.; Esmaily, J.; Moradinezhad, R. Intrusion detection system using an optimized kernel extreme learning machine and
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