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With the improvement in sensitivity of gravitational wave (GW) detectors and the increasing
diversity of GW sources, there is a strong need for accurate GW waveform models for data analysis.
While the current model accuracy assessments require waveforms generated by numerical relativity
(NR) simulations as the “true waveforms”, in this paper we propose an assessment approach that
does not require NR simulations, which enables us to assess model accuracy everywhere in the
parameter space. By measuring the difference between two waveform models, we derive a necessary
condition for a pair of waveform models to both be accurate, for a particular set of parameters. We
then apply this method to the parameter estimation samples of the Gravitational-Wave Transient
Catalogs GWTC-3 and GWTC-2.1, and find that the waveform accuracy for high signal-to-noise
ratio events in some cases fails our assessment criterion. Based on analysis of real events’ posterior
samples, we discuss the correlation between our quantified accuracy assessments and systematic
errors in parameter estimation. We find waveform models that perform worse in our assessment
are more likely to give inconsistent estimations. We also investigate waveform accuracy in different
parameter regions, and find the accuracy degrades as the spin effects go up, the mass ratio deviates
from one, or the orbital plane is near-aligned to the line of sight. Furthermore, we make predictions
of waveform accuracy requirements for future detectors and find the accuracy of current waveform
models should be improved by at least 3 orders of magnitude, which is consistent with previous
works.

I. INTRODUCTION

Over 90 gravitational wave (GW) events have been
detected since 2015 [1–12] by Advanced LIGO [13] and
Advanced Virgo [14], all of them are from compact bi-
nary coalescences (CBCs), where GW waveforms can
be modeled by various methods. The data analysis for
CBCs such as signal searching [15] and parameter esti-
mation [16–19], are based on the these waveform models
of CBCs. Therefore, inaccurate waveforms may cause
systematic errors in the scientific interpretation of GW
data [20].

For binary black holes, the evolution can be divided
into 3 stages: inspiral, merger, and ringdown, while bi-
nary neutron stars and neutron star black hole binaries
may exhibit tidal disruption prior to the formation of a
final black hole or hypermassive neutron star. The post-
Newtonian (PN) expansion gives a good approximation
of the inspiral stage [21], and black hole ringdown can be
described by quasi-normal modes [22]. Other than the-
oretical approximations that only give the waveform of
one of the stages, the most accurate GW waveforms of
the whole process of CBCs are generated by numerical
relativity (NR) [23–25], where the Einstein Field Equa-
tions are solved numerically. However, NR waveforms
are so expensive to compute that the latest SXS NR
waveform catalog contains less than 2000 waveforms [25].
Besides, NR waveforms are generally short: the inspiral
stage is usually calculated for only the last few cycles
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of the binary (there are exceptions, e.g., Ref. [26]), plus
their sparsity in the parameter space, it is impractical
to use them directly in data analysis. Coverage of the
parameter space is also uneven, as NR waveforms with
unequal masses and high spins are more difficult to com-
pute.

These NR waveforms are therefore used to tune more
tractable approaches to waveform modeling, with the
aim of minimising the difference between the full NR
model and the approximate model. Several methods
exist to compute GW waveforms rapidly, for example,
the IMRPhenom [27–31] family, the SEOBNR [32–37] family,
TEOBResumS family [38–40], and surrogate models [41–45]
like NRSur family. These waveform approximants origi-
nate from different ideas of approximation or interpola-
tion, and are calibrated with NR waveforms or hybridized
waveforms of NR simulation and PN approximation.
They are widely used in GW data analysis. The state-
of-art waveform models from the two families mentioned
above, IMRPhenomXPHM [31] and SEOBNRv4PHM [37], are
employed in the latest third Gravitational-Wave Tran-
sient Catalog (GWTC-3) to extract source properties [3].
NRSur and TEOBResumS waveforms are also used in sev-
eral analyses of LIGO-Virgo data release [1, 2, 46, 47].

While no approximate waveform will be perfect, we
are interested in the question of whether these approxi-
mate waveforms are accurate enough for the analysis of
data from current and future gravitational wave detec-
tors. Ref. [20] gives an accuracy standard of a wave-
form model used in data analysis under a particular de-
tector noise curve.. It calculates the difference between
a model and the “true waveform”, which in practice is
often represented by NR simulations due to their high
accuracy, and states the waveform difference should lie
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within the unit ball centered on the true waveform. Here,
the waveform difference is regarded as a vector, and
its length can be calculated by the noise-weighted in-
ner product with itself. If the length is less than the
unit radius, the detector could not distinguish the model
and the true waveform, thus the waveform model is ac-
curate enough for data analysis. The assessment against
NR simulations is widely used in the waveform commu-
nity [31, 37, 41, 43, 48, 49].

However, as mentioned before, the number of NR
waveforms is limited, and the assessment against NR is
only available on the parameter grids where NR sim-
ulations are available. With the improvement of de-
tector sensitivity and accumulating observation time,
the diversity of GW sources will increase, and they
may be located in parts of the parameter space where
waveform approximants have poor or unknown perfor-
mance. In fact, several intriguing GW events like this
have been revealed in GWTC-3. GW191219 163120
has mass ratio estimated outside of where the wave-
form models have been calibrated, which results in the
uncertainties in its pastro [3, 50]. Parameter estima-
tion of GW200129 065458 shows notable inconsistencies
between the results from two different waveform mod-
els IMRPhenomXPHM and SEOBNRv4PHM [3, 50], which is
a source of systematic uncertainty on the presence of
orbital precession in this system [51]. Assessing and
mitigating waveform systematics for current and future
detectors has received considerable attention in recent
works [48, 52–56].

To assess the waveform accuracy in the regions where
NR waveforms are not available, we need an alternative
approach. In this work, we address this problem by ex-
tending the method of [20] using the triangle inequality
in the noise-weighted inner product space. Instead of cal-
culating the difference between one waveform model and
NR simulations, we calculate the difference between two
waveform models. We will derive a necessary condition of
a pair of the waveform models are both accurate enough,
a violation of which means at least one of the waveform
models is not accurate. Although we can not tell whether
one model is inaccurate or both are, the violation of this
condition still gives information of waveform model va-
lidity to a certain degree, especially when the violation is
strong. The model-pair assessment does not require NR
simulations, and can be performed anywhere in the pa-
rameter space as long as the models are able to generate
GW waveforms.

We will discuss three types of GW waveforms: bi-
nary black hole (BBH) waveform, neutron star-black
hole (NSBH) waveform, and binary neutron star (BNS)
waveform, for compact binaries are the main sources
of current GW detection. For BBH waveform, we fo-
cus on IMRPhenomXPHM and SEOBNRv4PHM which are used
in GWTC-3 and GWTC-2.1 data analysis. We assess
their accuracy on the parameter estimation samples of
GWTC-3 and GWTC-2.1. We find only part of the sam-
ples can pass our assessment, and the overall accuracy

performance is on the edge of our criterion. Further
analysis and simulations shows the inaccurate samples
are basically located in the low mass ratio region (we
define mass ratio q < 1), the high spin region and the
edge-on region (θJN ∼ π/2). Based on this, we conclude
that waveform accuracy should be improved by at least
3-4 orders of magnitude for the 3rd generation GW de-
tectors, which is consistent with previous works [48]. Be-
sides, thanks to the sufficient amount of BBH events,
we are able to perform a population-level analysis on
the relation between the difference of the waveform mod-
els and the posterior sample inconsistency the different
waveforms lead to. We find events with less than 40%
posterior samples that can meet our accuracy standard
tend to have inconsistent results from IMRPhenomXPHM
and SEOBNRv4PHM. For NSBH and BNS waveform mod-
els, we perform similar but simpler analysis, as most of
them do not include higher modes and precession effects,
which may constrain their validness in data analysis.

This paper is organized as follows. In Sec. II, we intro-
duce our accuracy assessment method, including assess-
ment for detector response in Sec. II A and normalization
of the waveform difference and its relation to overlap (or
mismatch) in Sec. II B. In Sec. III, we apply our method
on the 3 types of waveforms mentioned above. Results
of BBH waveforms are showed in Sec. III A; NSBH and
BNS waveform are showed in Sec. III B. In Sec. IV we
summarize our methods and conclusions.

II. ASSESSING WAVEFORM ACCURACY

In this section we will introduce the waveform accuracy
standard proposed in Ref. [20], then extend it to model-
pair case. We will discuss different standards for the
detector response and for waveforms at a fixed signal-to-
noise ratio (SNR), which reflects the intrinsic accuracy
in the parameter space.

A. Assessment of the detector response

We will use frequency domain waveforms hi(f), where
f means frequency, i = 0 denotes the true waveform,
and i = 1, 2 denotes the 1st and 2nd waveform models.
We define inner product between two frequency series as
follows:

(a | b) = 4

∫ +∞

0

a∗(f)b(f)

Sn(f)
df, (1)

where star means complex conjugate, and Sn(f) is the
power spectral density (PSD) of the detector which is
defined as

< n∗(f)n(f ′) >=
1

2
Sn(f)δ(f − f ′). (2)

Here < · · · > denotes ensemble average and n is the
detector noise. Note that Eq. 1 defines an inner product
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space, in which frequency series can be treated as vectors.
We can define the length (or norm) of a vector:

‖a‖ =
√

(a|a). (3)

Some literature defines the inner product as the real part
of Eq. 1, but there is no difference between two definitions
when it comes to the length. As other inner product
spaces, the Cauchy-Schwarz inequality and the triangle
inequality hold:

‖a‖2‖b‖2 ≥ |(a|b)|2 (4)

‖a‖+ ‖b‖ ≥ ‖a± b‖ ≥| ‖a‖ − ‖b‖ | . (5)

A model waveform can be thought as “accurate
enough” when the detector can not distinguish it from
the real one. Ref. [20] constructs a waveform family H
to quantify the detector’s ability to measure the differ-
ence between the model and the real waveform, which
will be used and extended in this section. Let h0 be the
the true waveform, h1 be the waveform given by the first
model, and δh1 = h1 − h0 represents their difference.
We construct the following waveform family of the first
model

H1(λ) = (1− λ)h0 + λh1 = h0 + λδh1, 0 < λ < 1, (6)

where λ is a parameter which interpolates between the
two models. If the measurement error on λ is greater
than the length of its domain of definition (i.e. the para-
metric distance between real and model waveforms), we
can claim the detector is not able to distinguish the wave-
forms, thus the model is accurate enough. The error σλ
is given by [57, 58]

σ−2
λ =

(
∂H1

∂λ

∣∣∣∣∂H1

∂λ

)
= (δh1 | δh1). (7)

Therefore, the accuracy standard for a waveform model
is

‖δh1‖2 = (δh1 | δh1) < 1. (8)

Eq. 8 implies the waveform difference should lie within
a unit ball in the inner product space, any violation of
which means the model is not accurate enough. Since,
< n|n >= 1 [59], another way to understand Eq. 8 is
that if the distance to the real waveform is longer than
the length of detector noise, the detector will be able to
tell the error of the model. From this angle, the waveform
we are considering here should be the detector response,
i.e.,

h0 = F+h
+
0 + F×h

×
0

h1 = F+h
+
1 + F×h

×
1 ,

(9)

where F+, F× are antenna response functions determined
by source sky direction and detector orientation [60].

+,× denote plus and cross polarizations of GWs. We
only consider polarizations under Einstein’s general rel-
ativity in this work.

We note that some works [20, 59, 61] propose a less
stringent criterion than Eq. 8 by changing the upper limit
to 2ερ2, where ρ is SNR and ε is the maximum tolerated
fractional loss in SNR which needs to be appropriately
chosen for detection. In this work, we focus more on
the waveform systematics in measurement rather than in
detection, so we keep using Eq. 8, i.e., the strict distin-
guishability criterion.

However, to compute ‖δh1‖, the true waveform h0

is needed, which is usually replaced by the computa-
tionally expensive NR simulations that can not span
all over the parameter space. As a result, the un-
certainties are unknown for the waveforms out of the
model’s calibration range and this may cause some un-
known systematic errors in data analysis. An example is
GW191219 163120 [3], of which mass ratio is estimated
to be out of the waveform calibration region (≤ 0.041) so
that there are potential uncertainties in its pastro.

To avoid being limited by the true waveform h0, we
introduce another waveform model h2 to be paired with
h1. Although δh1 and δh2 are unknown, their difference
δh1 − δh2 can be easily calculated:

∆ = δh1 − δh2

= (h1 − h0)− (h2 − h0)

= h1 − h2.

(10)

Assuming both of two waveforms are accurate, i.e., they
both satisfy Eq. 8, we can obtain an upper limit of ‖∆‖
using the triangle inequality:

‖∆‖ ≤ ‖δh1‖+ ‖δh2‖ < 2. (11)

Eq. 11 is a necessary condition if h1 and h2 are both
accurate. That is to say, if Eq. 11 is violated, at least
one of the waveform models does not satisfy Eq. 8.

We illustrate possible cases for the ‖∆‖ in Eq. 11 in
the vector plots Fig. 1, in which waveforms are treated as
vectors in the noise-weighted inner product space. The
black circle denotes the sphere of radius 2. Vectors δh1

and δh2 denote the difference between the real waveform
h0 and the models h1, h2, respectively, and different line
styles denote different possibilities. δhi lies in the circle
means the i-th model is accurate and satisfies Eq. 8. If
the length of ∆ is greater than the upper limit 2 (the
diameter of the black circle), as shown in case I, at least
one of the waveform model errors can not be put inside
the circle, i.e., it does not meet the accuracy standard.
However, ‖∆‖ < 2 does not mean both of the waveforms
are accurate, as shown in Case II. Small ‖∆‖ only implies
the two models give similar predictions of the waveform
but can not guarantee their accuracy. The key idea of this
method is: if two waveforms have significant difference,
they can not both be correct.

Eq. 11 is not a strong criterion; it can not tell which
waveform causes the violation (case I), and may miss
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FIG. 1. Vector plots to illustrate all cases of ∆. Blue vec-
tors are the difference between waveform models and the real
waveform, and black circles represent the sphere of radius 2,
the upper limit of length of δhi if hi is accurate (i = 1, 2). Red
vectors are ∆, the difference between two waveform models
(defined in Eq. 10). Different line styles denote different pos-
sibilities. In Case I, ‖∆‖ exceeds the upper limit given by
Eq. 11, so at least one in h1, h2 is not accurate enough. In
Case II, ‖∆‖ satisfies Eq. 11, there may be 0, 1, 2 inaccurate
waveforms, corresponding to solid line, dotted-dashed line and
dashed line, respectively. We can not determine the accuracy
of a waveform pair in Case II.

some waveform errors (case II). Despite this, we suppose
it still gives certain information about the correctness
of waveform modeling. If ‖∆‖ > 2, the waveform pair
should become less reliable; if ‖∆‖ � 2, the systematic
errors in waveform models should not be neglected as it is
highly possible that either of the waveforms is accurate,
or one of them has seriously deviated. If ‖∆‖ < 2, no evi-
dence of waveform inaccuracy is found by this approach,
although we could not exclude the possibility that two
waveforms have large but similar errors. The advantage

of this method is that it can be performed everywhere in
the parameter space, as long as waveform models work
in that region.

Eq.11 can be extended to a detector network by defin-
ing inner product between matrices (whose elements are
frequency series):

C = (D|B)⇒ Cjk =

n∑
p=1

(Djp | Bpk) , (12)

where D is an m × n matrix, B is an n × l matrix
and the result C is an m × l matrix. The signal of
the network can be denoted as a column vector h =
(h(1), h(2), . . . , h(Nd))T, where superscript (k) denotes the
k-th detector and Nd is the number of detectors in the
network. We can also subtract two waveform models,
and define h1 − h2 = ∆net. The norm of ∆net can be
calculated

‖∆net‖2 = (δhT|δh) =
∑
k

(δh(k)|δh(k))

=
∑
k

(
∆(k)

)2

< 4Nd,
(13)

where F
(k)
+ , F

(k)
× are the antenna response functions of

the k-th detector. In practice, we can weight the ∆ by
the number of detectors:

∆′net =
∆net√

Nd

, (14)

so that the ∆′net will have an upper limit of 2 if the wave-
forms are both accurate enough.

B. Assessment at fixed SNR

The two accuracy standards we proposed, Eq. 11 and
Eq. 14, are related to the SNR, as the length of ∆ is pro-
portional to the amplitude of GWs. It is reasonable that
the higher the SNR is, the easier it is for detectors to
distinguish different waveforms, and the more important
systematic errors will be in data analysis. However, SNR
depends on not only intrinsic parameters, but also extrin-
sic parameters that trivially modulate the amplitude. It
is the phase evolution that is critical to reveal physical
properties of the source, and is the intrinsic characteris-
tic of a GW waveform [62] We therefore normalize the ∆
with SNR to eliminate the impacts from amplitudes. The
optimal SNR is defined as ρ =

√
(h|h) [57], which is also

proportional to the amplitude of GWs like ∆. Thus we
have ∆ ∝ ρ. In fact, we have two waveforms to calculate
∆. The normalization factor is chosen as the geometric
mean of SNRs from two waveforms, i.e., ρ0 =

√
ρ1ρ2.

Take Eq. 11 as an example, the normalized ∆ is
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‖∆SNR=1‖2 =
(δh1 − δh2|δh1 − δh2)√

(h1|h1)(h2|h2)

=
(h1 − h2|h1 − h2)√

(h1|h1)(h2|h2)
,

(15)

and we simply have

‖∆SNR=ρ0‖ = ρ0‖∆SNR=1‖. (16)

Eq. 16 can be used to evaluate waveform accuracy at a
fixed SNR. Note the threshold of ‖∆SNR=ρ0‖ is always 2.

The normalized ‖∆‖ can be related to the current
waveform evaluation variable, overlap O, which is defined
as

O(h1, h2) = < (h1|h2)√
(h1|h1)(h2|h2)

, (17)

where < means the real part. O is between 0 and 1, the
higher value represents higher similarities between wave-
forms h1 and h2. One can define mismatch M = 1−O.
Overlap (or the equivalent mismatch) is widely used to
assess the correctness of GW waveforms. The state-of-
art models of IMRPhenom and SEOBNR families can achieve
mismatches between 10−5 and 10−1 compared with NR
simulations [31, 37], with precession effects and higher
modes being taken into consideration. Overlap between
two waveform modelsO(h1, h2) and the length of normal-
ized waveform difference ‖∆‖ have the following relation:

‖∆SNR=1‖2 =
ρ1

ρ2
+
ρ2

ρ1
− 2O(h1, h2) ≈ 2(1−O), (18)

where ρi =
√

(hi|hi), i = 1, 2. ‖∆SNR=1‖ will decrease
with the increase of overlap, and a pair of identical wave-
forms give O = 1 and ‖∆‖ = 0.

We should mention that the inner product in the calcu-
lation of waveform difference ∆ (as well as overlap [49]),
should be minimized (or, for overlap, maximized) over an
arbitrary phase φ0 and time shift t0, in order to eliminate
the kinematical difference between models [59]. Consid-
ering the sensitive frequency band of current GW de-
tectors, the inner product is integrated from 20 Hz to
2048 Hz throughout this paper.

III. APPLICATIONS

In this section we will apply the accuracy standard
Eq. 14 and Eq. 16 to GW waveforms from 3 types of
compact binary coalescence: BBH, NSBH, and BNS. We
employ the assessment on the GWTC parameter estima-
tion samples and parameter grids we generate; the former
aims to investigate whether faulty waveforms were used
in GW data analysis and possible systematic error caused
by waveform errors, while the latter explores waveforms’
performances in different regions of the parameter space.

Throughout this paper, we ignore the calibration error,
which can cause our waveforms to be slightly different
from those used in GWTC-3 and GWTC-2.1 parameter
estimation. The calibration error is typically < 4 degrees
in phase and < 7% in amplitude [63], and it acts on both
waveform models, so ignoring it will not have large im-
pacts on our results.

A. BBH waveforms

BBH mergers are the most frequent GW events at this
stage: Among all 91 GW candidates (36 in GWTC-3 [3],
44 in GWTC-2.1 [4] and 11 in GWTC-1 [1]), over 80
of them are confirmed to be BBH events. In the latest
data release from LIGO-Virgo-KAGRA (LVK) collabora-
tion, waveform models IMRPhenomXPHM and SEOBNRv4PHM
are used for analysis of all the BBH events, including
re-analysis of GWTC-1 events published in GWTC-2.1.
Due to the low SNR of current NSBH events, the reso-
lution of tidal deformability is poor and no strong sign
of matter effects is revealed in data analysis. Besides,
higher modes and spin precession effects are more im-
portant than matter effects for waveform modeling of NS-
BHs [64], so IMRPhenomXPHM and SEOBNRv4PHM are also
employed on NSBH events to extract physical informa-
tion.

For all the 89 BBH and NSBH events, we use the cos-
mologically reweighted parameter estimation posterior
samples from GWTC-3 and GWTC-2.1 data release and
calculate ‖∆′net‖ (Eq. 14 ) of the waveform models men-
tioned above. We use the mixture of IMRPhenomXPHM
and SEOBNRv4PHM samples in most events, but in some
events SEOBNRv4PHM samples are not provided [4], so we
use IMRPhenomXPHM samples to calculate ‖∆′net‖ between
IMRPhenomXPHM and SEOBNRv4PHM. Samples we use are
the same as GWTC-3 [3] and GWTC-2.1 [4]. For each
sample, we generate the waveform (including the detec-
tor response) for both models, then apply a time and
phase shift on one of them to minimize Eq. 14. The min-
imized ‖∆′net‖ is the waveform difference we refer to in
the following discussion.

When ‖∆′net‖ is greater than 2 at a sampling point,
it implies the difference between IMRPhenomXPHM and
SEOBNRv4PHM is so large at this point that they could
not both be accurate enough. Furthermore, the differ-
ence in waveform will induce a difference in likelihood,
and therefore has the potential to affect the results of a
parameter estimation algorithm. This yields a systematic
difference in parameter estimates, and so the results from
different waveform models may not coincide. Therefore,
in addition to ‖∆′net‖, we also calculate Jensen–Shannon
(J-S) divergence between IMRPhenomXPHM samples and
SEOBNRv4PHM samples (if available). The J-S divergence
is a measurement of the similarity between two probabil-
ity distributions and is used in GWTC-2 [2]. The greater
it is, the greater the difference between the two distribu-
tions and there may be potential systematic errors in the



6

data analysis. Since the J-S divergence for samples from
a distribution is easiest to evaluate in one dimension, we
choose the greatest J-S divergence among samples for
the following parameters: mass ratio q, chirp mass M,
effective spin χeff and effective precession spin χp as a
measurement of inconsistency of posterior samples, for
they are the major physical parameters to be studied.
We use gaussian kde in SciPy to estimate probability
density functions. The base of J-S divergence is chosen
to be 2, so that the divergence ranges between 0 and 1.

The full results of the 89 BBH and NSBH events are
showed splitly in Tab. I and Tab. II in App. A for ref-
erence. We list the basic information of each event, in-
cluding some source parameters and network SNR, and
statistics we construct, including mean value of ‖∆′net‖,
normalized ‖∆′net‖ (which equals to ‖∆′net‖/SNR), frac-
tion of ‖∆′net‖ < 2 samples, and the J-S divergence. We
highlight some points in the rest of this subsection.

1. Overall accuracy

We show the relations between the waveform difference
‖∆′net‖ of different events and SNR in Fig. 2, in which
each point represents a GW event. We find every event
has samples that can not meet the ‖∆′net‖ < 2 require-
ment (left panel), but most events have mean ‖∆′net‖
around 2 (right panel). This means some waveform pairs
used in data analysis can pass (and are near the edge of)
our accuracy standard, but violations exist. We could
not identify whether one or both waveform models is
inaccurate. Later in Sec. III A 3 we will show it is the
samples with large spin or small mass ratio or edge-on
inclination that contribute to ‖∆′net‖ < 2 fraction. Over-
all speaking, considering that the violations are generally
not strong, we conclude that the current waveform accu-
racy is around the edge of our assessment standard for
the current detector sensitivity which makes detections
of SNRs ranging from 8 to ∼ 30.

Although the properties of GW sources differ, there
is a tendency that large SNR events are more likely to
have greater waveform difference (as expected by Eq. 16),
and have fewer samples that meet the ‖∆′net‖ < 2 re-
quirement. This emphasizes the importance of waveform
modeling for future GW detections, in which the SNR
can reach hundreds to thousands. We can also make a
rough estimation of waveform accuracy requirements for
future detectors. The mismatchM with the “true” wave-
form is widely-used to assess the waveform accuracy, and
the relation between ‖∆‖ and M can be derived with
Eqs. 16 and 18:

M(h1, h2) ≈ 1

2ρ2
0

‖∆SNR=ρ0(h1, h2)‖2 (19)

Eq. 19 gives the mismatch between two waveform mod-
els, but limited by the triangle inequality, the mismatch
between models M(h1, h2) should be at the same or-
der of magnitude as the mismatch between a model and

the real waveformM(h1, h0), under the assumption that
both models are well-calibrated by high precision wave-
forms like NR simulation. From our previous discussion
we know the ‖∆‖ is around the edge of its upper limit
under the current detector sensitivity. If we assume ‖∆‖
is of the same range for future detectors, and SNR is
roughly 30–100 times higher, we can determine that the
mismatch should decrease 3–4 orders of magnitude. This
is consistent with the results reported in Ref. [48].

2. Impact on parameter estimation

From previous discussions, the waveforms generated by
posterior samples of GWTC-3 and GTWC-2.1 are mostly
within the waveform difference bound, yet there are some
exceptions. Seven GW events have more than 60% pos-
terior samples violating the standard, which means the
difference of two waveform models might be too large to
ensure their accuracies. The difference of waveforms may
result in difference in parameter estimation, indicating
systematic errors [48, 53, 65].

We show the relation between waveform difference and
posterior sample consistency (maximum J-S divergence)
in Fig. 3, where we can see a weak tendency that events
with large waveform difference are more likely to have
large J-S divergence, i.e., difference in waveform models
may lead to inconsistency in parameter estimation. Par-
ticularly, when the fraction of ‖∆′net‖ < 2 samples is be-
low 40%, the maximum J-S divergence would be greater
than the majority of the GW events. This coincides with
our expectation.

However, the inverse statement is not necessarily true.
When most posterior samples meet our accuracy stan-
dard, it is also possible that two waveform models give
inconsistent results. In fact, the waveform error is not the
only factor that causes two sets of posterior samples to
differ. The behavior of samplers or packages (bilby [19]
vs RIFT [18]) and the prior choice (such as high-spin
and low-spin prior for neutron stars [66]) can both in-
fluence the consistency between the two posterior sam-
ples, although the latter one is not involved in our anal-
ysis. Even if we exclude these factors in a full Bayesian
analysis, theoretically, it is the combination of waveform
gradients, covariance matrices and waveform difference
that contributes to systematic errors in parameter esti-
mation [65], not just waveform difference. Besides, we
use the maximum J-S divergence as the measurement
of posterior difference, which might be influenced when
the parameter estimation does not work efficiently on
some specific parameters. The last row in Fig. 3 shows
such cases. This makes the correlation between posterior
sample consistency and waveform difference more statis-
tically dispersed.

In the last three rows of Fig. 3, we give some examples
of inconsistent posterior samples. GW200129 065458 has
the largest J-S divergence among GWTC-3 events, and
GW190412 053044 has the largest J-S divergence among
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FIG. 2. The left panel shows the relation between fraction of samples that meet our accuracy standard (‖∆′net‖ < 2) and
network SNR, and right panel shows mean value of all samples’ ‖∆′net‖ and network SNR. We highlight the events whose
‖∆′net‖ < 2 samples fraction is less than 0.4 and whose maximum J-S divergence is greater than 0.1. These two plots show
waveforms of higher SNR events are more likely to violate our waveform accuracy standard, and given the current detector
sensitivity, we are already observing some events which violate our assessment criterion. Note the normalized ‖∆′net‖ can also
be read out from the right panel: it is the slope of the line that connects the origin and each point. We can compare the
waveform difference of these events when they have the same SNR by comparing the slope. The numerical values are given in
the 7th-10th columns of Tab. I and II.

GWTC-2.1 events. The posterior sample inconsisten-
cies of the two events are also reported in GWTC-3 [3]
and GWTC-2.1 [4]. In both events, the result with
IMRPhenomXPHM suggests the possibility of a low mass
ratio binary, while that with SEOBNRv4PHM does not.
GW191219 163120 is the lowest mass ratio detection to-
date. Its estimated mass ratio is out of the calibration
range of waveform models, so potential systematic er-
ror may lie in its data analysis [3]. In our analysis,
GW191219 163120 does have less posterior samples that
pass our assessment than most other events, but it is
not the worst one. Besides, its high SNR (26.8) also
contributes to waveform difference: its waveform differ-
ence becomes small after normalization. This might be
caused by the small spins indicated by parameter estima-
tion. Therefore, we suppose the waveform modelling is
not that problematic in the low mass ratio and small spin
region, but its high SNR reduces model waveform accu-
racy. We show its estimation of effective precession spin
in Fig. 3, in which we see result of IMRPhenomXPHM sup-
ports high precession effects in this binary system, while
result of SEOBNRv4PHM prefers lower precession effects.
GW191109 010717 produces the largest waveform differ-

ence in our analysis. In a later section III A 3 we will
illustrate it might be caused by its special spin effects
and higher modes. We show its estimation of effective
spin in Fig. 3: results from two waveform models show
different multimodality. We also give examples which do
not significantly violate our accuracy standard but have
inconsistent posterior samples: GW190930 133541 and
GW190708 232457. Their results from IMRPhenomXPHM
seem unable to find the most probable mass ratio. There
are six events having this behaviour in GWTC-2.1, as
labeled by red circles in Fig. 3. Further investigation is
needed, but this is beyond the scope of this work.

Since most posterior samples in this analysis satisfy
or just slightly violate our accuracy standard, and sam-
ples from two waveform models, generated by different
samplers and packages, are mixed as the final results to
counterbalance systematic errors, we suppose the wave-
form modelling error will not induce significant system-
atic error in data analysis for current detector sensitivity
at the population level, while some special events still
need further investigation.



8

0.0 0.1 0.2 0.3 0.4
Maximum Jensen Shannon divergence

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 
′ ne

t<
2 

sa
m

pl
es

GW190412_053044
GW190517_055101
GW190519_153544
GW190521_074359
GW190527_092055
GW190706_222641
GW190707_093326
GW190708_232457

GW190720_000836
GW190924_021846
GW190930_133541
GW191109_010717
GW191219_163120
GW200105_162426
GW200129_065458
GW200208_222617

0.2 0.4 0.6 0.8 1.0
q

2

4

6

PD
F

GW200129_065458

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
q

0

5

10

PD
F

GW190412_053044

0.00 0.05 0.10 0.15 0.20 0.25
p

0

5

10

PD
F

GW191219_163120

IMRPhenomXPHM SEOBNRv4PHM Mixed

1.00 0.75 0.50 0.25 0.00 0.25 0.50
eff

0

1

2

PD
F

GW191109_010717

0.2 0.4 0.6 0.8 1.0
q

0

2

4

PD
F

GW190930_133541

0.2 0.4 0.6 0.8 1.0
q

0.0

2.5

5.0

PD
F

GW190708_232457

FIG. 3. First row: We visualize the fraction of samples that meet our accuracy standard and maximum J-S divergence
in {q,M, χeff , χp} of the two samples (10th and 11th columns of Tab. I and II). We highlight the events whose fraction of
‖∆′net‖ < 2 samples is less than 40%, and the events whose maximum J-S divergence is greater than 0.1. Some GWTC-2.1
events have nearly flat IMRPhenomXPHM posteriors for mass ratio (as showed in the undermost row), which caused large J-S
divergence despite the small waveform difference. We use red circles to label these events.
Bottom three rows: We show some examples of inconsistent posterior samples; the parameter name and event name are shown
in the plots.

3. Waveform difference in different parameter regions

In Sec III A, from the angle of data analysis, we dis-
cussed SNR’s impact on waveform accuracy. What is
more physically interesting is how the waveform accuracy
varies with intrinsic properties of the GW source. It is

plausible that model accuracy decreases when the system
includes some complex processes, such as a highly asym-
metric mass ratio, high spin effects, high eccentricity and
so forth. Accuracy may also drop when the contributions
from higher modes increase, which usually happens to
edge-on binaries [67–69].
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We plot posterior samples of selected events and high-
light the samples whose waveform difference is greater
than 2 in Fig. 4. In the nearly equal mass region
and small spin region, IMRPhenomXPHM and SEOBNRv4PHM
agree with each other and have waveform difference less
than 2. However, when mass ratio deviates from 1, or
when spin parameters deviates from 0, the waveform dif-
ference grows and the waveform pair fails to pass the ac-
curacy standard. For extrinsic parameters, we find that
the waveform difference is largest when inclination angle
θJN for precessing systems is close to π/2. We attribute
this to two causes: the contribution of higher modes in-
creases when the source is egde-on, and the amplitude
modulations caused by precession become increasingly
visible, magnifying differences in the way precession is
modelled [67–72]. This is the reason why events like
GW191109 010717 have a small fraction of posterior sam-
ples that pass the accuracy standard: estimations of their
parameters mainly lead to low mass ratio, high spin re-
gions or edge-on regions.

We then perform simulations of BBH events on the de-
sign sensitivity of Advanced LIGO [73]. We set the pri-
mary mass at 30M�, and mass ratio at 1, 0.8, 0.5 and 0.2.
The spin of each component is randomly generated: spin
magnitude is uniformly distributed between 0 and 1, and
spin direction is isotropic. Inclination angle is isotropic
as well. We neglect detector response functions and only
include plus polarization here, which will not change our
qualitative conclusions. For each mass ratio we simulate
6000 BBH events and calculate the waveform difference
between IMRPhenomXPHM and SEOBNRv4PHM. Since wave-
form difference ‖∆‖ is proportional to SNR, we introduce
a SNR threshold above which ‖∆‖ will be greater than
2. In Fig. 5, we plot the distributions of simulation pa-
rameters in the style of corner plot for different mass
ratios, and the corresponding SNR thresholds in colors.
We find the SNR threshold can reach 30 in the low spin
and face-on region, but gradually drops below 10 as the
spin parameters increase or θJN tends to π/2. The change
in mass ratio has the same effect, ‖∆‖ can reach 2 at a
smaller spin if the mass ratio is low. However, we find
the q = 0.2 simulations can achieve high SNR threshold
for low spin face-on sources, while high-spin or edge-on
simulations are more likely to produce low SNR thresh-
olds regardless of the mass ratio. Therefore, for current
waveform modeling, spin effects and higher modes may
need more improvements than low mass ratio cases. This
coincides with our calculation on the asymmetric mass
ratio but small spin event GW191219 163120. The dis-
agreement in high-spin CBC waveforms and its impact
on parameter estimation is also reported in Ref. [53].

Our simulation is consistent with the calculation for
real events. Given GW events with SNRs ranging from
8 to 30 (for current detector sensitivity), those gen-
erated by nearly equal mass systems or low spin sys-
tems would have more ‖∆′net‖ < 2 samples, while the
other events’ posterior samples mostly fail our test,
like GW191109 010717. Using the same method in

Sec. III A 1 and comparing current SNR threshold with
expected SNR of 3rd generation GW detectors, we can
also conclude that, in general, the waveform accuracy
should be improved for 3 to 4 orders of magnitude.
However, for high spin and low mass ratio regions, as
well as higher modes, the current waveform models may
need more improvements. To calibrate waveform models,
these regions might be where NR simulations are most
needed for future waveform modelling.

B. NSBH and BNS waveforms

NSBH and BNS events are much less frequent than
BBH events so far - only three events are generally
considered as NSBH candidates: GW191219 163120,
GW200105 162426, and GW200115 042309, and two
are considered as BNS events: GW170817 and
GW190425 081805. Due to the complexity of these
systems (e.g., highly asymmetric mass ratio, eccentric-
ity for NSBH binaries, and matter effects for both
types), some physical effects are yet to be included in
their waveform models. Current NSBH waveform mod-
els of IMRPhenom and SEOBNR familes, IMRPhenomNSBH
and SEOBNRv4 ROM NRTidalv2 NSBH [74], are calibrated
by non-spinning neutron star simulations and only
allow aligned spins. For current BNS models,
IMRPhenomPv2 NRTidalv2 supports precessing spins
while SEOBNRv4T surrogate only supports aligned spins.
Recent works have made TEOBResumS able to gener-
ate waveforms for precessing BNS systems with higher
modes [75] , as well as waveforms for eccentric BNS sys-
tems [76], but they have not been applied to the GWTC-
2.1 and -3.

For the three NSBH events, we calculate the ‖∆′net‖
of their posterior samples generated by IMRPhenomNSBH
and SEOBNRv4 ROM NRTidalv2 NSBH. The fraction
of ‖∆′net‖ < 2 samples are 99.4%, 99.6% and 100%
for GW191219 163120, GW200105 162426, and
GW200115 042309, respectively. Low SNR of these
three events may contribute to the small waveform
differences, but compared with the BBH events, lacking
of precession effects and higher modes should be the
decisive factors that make the waveform pair coincide,
and it does not necessarily mean these models can
describe general NSBH systems with high accuracy.
As for BNS events, IMRPhenomPv2 NRTidalv2 is the
only model used in GWTC-2.1 and -3 that includes
precession effects, it is not feasible to compare waveform
difference of its posterior samples with others. Hence
we do not include calculation of BNS waveforms for real
events in this work.

We perform simulations for NSBH and BNS systems
respectively. For NSBH waveform models, we assume
zero spin and secondary mass of 1.4 M�. We change
mass ratio between 0.02 and 0.25, and tidal deformability
parameter between 0 and 2000. For BNS, we assume
the two neutron stars are exactly the same: same mass
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with ‖∆′net‖ < 2. We show three representative events with in two-dimension parameter plane (M, q), (χp, χeff) and (χp, θJN),
respectively. It shows the inaccuracies mainly come from high spin region, low mass ratio region, and edge-on region.

1.4 M�, same tidal deformability parameter and spin.
Then we change spin magnitude between −0.2 and 0.2,
and tidal deformability parameter between 0 and 2000.
We assume zero inclination for both systems. The results
are shown in Fig. 6.

We find the main disagreement for NSBH waveform
models lies in mass ratio, as Fig. 6 shows the waveform
difference drops with q but is insensitive to the tidal de-
formability parameter Λ2 of the neutron star. The lat-
ter is because both approximants use the NRTidalv2 [77]
phase description to model the matter effects. SNR
threshold can drop below 5 when q is small, but all the
three NSBH candidates have SNRs lower than the thresh-
olds indicated in the corresponding regions in Fig. 6.
Note we assume zero spin in this simulation, but non-
zero spin samples exist in the three NSBH candidates and
would make extra contributions to waveform difference.
Therefore, they still have a small fraction of ‖∆′net‖ > 2
samples. Given the SNR threshold in this simulation,
NSBH waveform model accuracies (in terms of the mis-
match from real waveform) also need an improvement
of 3–4 orders of magnitude for future detection, leaving
aside the unincluded physical effects.

As for BNS waveforms IMRPhenomPv2 NRTidalv2 and
SEOBNRv4T surrogate, we change values of Λ and spin
magnitude. We assume both components have the same
aligned spin and mass, so the individual spin magnitude
is equal to the effective spin. We find two waveform
models agree with each other quite well in the Λ < 500,
χeff < 0.05 region, with SNR thresholds up to 100. This
is the region that coincides with our current understand-
ing of neutron stars. However, when spin increases, the
SNR threshold can drop below 20. This also implies ac-
curacy of future waveform models should be improved by
several orders of magnitude.

We do not discuss further about NSBH and BNS wave-
form models, for we suppose the number of real events
is not enough for us to perform analysis on the popula-
tion level, and further work on precession, higher modes,
and even eccentricity should be done for more NSBH and

BNS waveform models.

IV. CONCLUSIONS

In this work, we developed a diagnostic test for the
presence of waveform mismodelling. This extends the
work of Ref. [20] to realistic analyses. While Ref. [20]
suggests a waveform model should have error (as a vec-
tor) shorter than 1 to be accurate enough, we introduce
two waveform models and find their difference should be
shorter than 2 if they are both accurate enough. This
method frees accuracy evaluation from the unknown true
waveform, and it enables the evaluation to be performed
in larger, continuous regions in the parameter space: the
regions where waveform models can work, rather than
where NR simulations are done. We should note that our
method can only tell the existence of inaccurate waveform
models. It can not tell which one (or both) is (are) inac-
curate if the pair fail, or guarantee any accuracy when the
pair do not fail. The key idea is: If two models have sig-
nificant difference, they can not be both accurate enough,
but when the difference is small, we can not rule out the
possibility that two models are making similar mistakes.

For BBH waveform models, we choose the statr-
of-art models from IMRPhenom and SEOBNR family,
IMRPhenomXPHM and SEOBNRv4PHM for illustration. We
have applied our test to existing parameter estimates
from the GWTC-3 and GWTC-2.1 (which used the wave-
form models mentioned above), and found differences in
the results of data analysis from different waveform mod-
els. The samples that fail our test are mostly located in
the low mass ratio, high spin or egde-on regions in the
parameter space, which means waveform models become
less reliable in these regions. Our simulations agree with
this: the waveform difference between IMRPhenomXPHM
and SEOBNRv4PHM can reach the threshold 2 when SNR
is less than 10 in high spin regions and edge-on regions;
waveform difference increases in low mass ratio region
the as well. We also note that spin effects and inclina-
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FIG. 5. Simulations of random spin and inclination BBHs under LIGO design sensitivity. The primary mass is fixed at 30M�
and mass ratio varies from 1 to 0.2, as showed in the top right corner of each figure. We calculate waveform difference ‖∆‖
between IMRPhenomXPHM and SEOBNRv4PHM for each simulation and the SNR when ‖∆‖ reaches 2. The SNR threshold is shown
in different colors. Face-on events with smaller spins and equal masses tend to have a higher SNR threshold.

tions (higher modes) are more problematic for waveform
modelling than mass ratio. This points out where NR
simulations are needed most for future waveform calibra-
tion.

We have investigated the correlation between wave-
form difference and inconsistency of parameter estima-
tion samples given by different waveform models. The
latter is measured by the J-S divergence. For the GWTC-
3 and GWTC-2.1 posterior samples, we find when the

fraction of ∆ < 2 samples is less than 40%, it is more
likely to obtain a J-S divergence larger than most other
events, which is a sign of underlying systematic errors
caused by waveform error. We also note that the inverse
is not necessarily true, as the waveform model is not the
only factor that can influence the generation of posterior
samples, but nonetheless it is always helpful to have one
of the factors checked. Since multi-waveform analysis is
becoming a standard way of reducing systematic errors
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IMRPhenomPv2 NRTidalv2 and SEOBNRv4T surrogate.

in parameter estimation of GW sources, we suggest that
waveform difference analysis can be used as a real-time
quantitative check in the parameter estimation workflow.

For NSBH waveforms, we select IMRPhenomNSBH and
SEOBNRv4 ROM NRTidalv2 NSBH, the two models used in
GWTC-3 and GWTC-2.1 parameter estimation. The
posterior samples of the 3 NSBH candidates have small
NSBH waveform difference compared to BBH waveforms.
We credit this to the fact that these waveform models do
not include non-aligned spins or higher modes as BBH
waveforms. As expected, we find waveform difference in-
crease when mass ratio decreases in our simulation. The
SNR threshold drops below 10 when mass ratio is less
than 0.05, indicating that more calibrations are needed
for this region, leaving aside the lack of some other phys-
ical effects.

For BNS waveforms, we have not applied our test on
real events samples, for only IMRPhenomPv2 NRTidalv2
is used in GWTC-2.1 and -3 data analysis, and
we could not find another comparable model to be
paired with it. We simulate aligned spin BNSs for
IMRPhenomPv2 NRTidalv2 and SEOBNRv4T surrogate
instead. We find the systematic differences between the
approximants we examined are small in the region where
Λ < 500, and |χeff | < 0.05, which should be the case for
our current understanding of neutron stars. However,
there are some differences when Λ < 50 where the wave-

forms appear to diverge again. In the high spin regions,
the SNR threshold drops below 20, which can not meet
future high SNR detections.

The waveform difference is related to the widely used
overlap (or mismatch) through Eqs. 18 and 19. If we
assume two models are well calibrated and have compa-
rable errors, we can give a rough estimate of future wave-
form accuracy requirement. This complements previous
works on waveform accuracy [48]. Looking at the SNR
thresholds for the three types of waveforms, we know the
current waveform accuracy is not enough for future high
SNR detections where SNR can reaches up to 1000. The
mismatch from the real waveform needed to be reduced
by at least 3 orders of magnitude. This is consistent with
previous work.

Finally, this method can be extended to more complex
GW waveform models for future GW detection, such as
waveforms including eccentricity. We can perform this
analysis as long as there are at least two waveform models
with the similar accuracy and which include the same
physical parameters. Our method can work beyond the
NR calibration range, thus it can be efficient way to study
the waveform models’ extrapolation performance. This
may also be a guide of where NR simulations are most
needed in the parameter space.
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Appendix A: Full results of BBH waveform in
GWTC-3 and GWTC-2.1
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Event name m1 m2 χeff χp θJN SNR Mean MeanNorm Fraction Max J-S Div.

GW150914 095045 37.99+5.11
−2.89 32.96+3.18

−5.03 −0.04+0.12
−0.14 0.51+0.35

−0.38 2.70+0.32
−0.71 24.4 2.0 0.08 0.59 0.069

GW151012 095443 29.62+17.08
−6.87 16.30+5.73

−6.02 0.12+0.28
−0.21 0.36+0.43

−0.27 1.70+1.13
−1.40 10 1.33 0.13 0.81 0.023

GW151226 033853 15.50+12.19
−4.00 8.18+2.62

−3.02 0.20+0.23
−0.08 0.52+0.36

−0.35 0.88+2.00
−0.66 13.1 2.39 0.18 0.54 N/A

GW170104 101158 34.78+7.73
−4.85 25.25+4.43

−5.60 −0.04+0.15
−0.19 0.40+0.40

−0.31 1.10+1.79
−0.86 13 1.28 0.1 0.88 0.01

GW170608 020116 11.41+4.36
−1.49 8.38+1.21

−2.06 0.05+0.13
−0.05 0.32+0.41

−0.24 2.37+0.58
−2.06 14.9 1.43 0.1 0.86 0.051

GW170729 185629 77.88+17.89
−14.48 44.13+18.11

−17.46 0.29+0.25
−0.33 0.39+0.40

−0.29 1.35+1.44
−1.03 10.8 2.08 0.19 0.54 0.037

GW170809 082821 41.19+9.63
−6.27 29.25+5.63

−6.46 0.07+0.17
−0.17 0.39+0.44

−0.30 2.61+0.39
−0.59 12.4 1.14 0.09 0.91 0.037

GW170814 103043 34.70+6.01
−3.52 28.03+3.22

−4.59 0.08+0.13
−0.12 0.48+0.38

−0.37 0.69+1.92
−0.48 15.9 1.31 0.08 0.88 0.062

GW170818 022509 42.14+7.99
−5.04 33.42+5.07

−6.14 −0.06+0.19
−0.22 0.56+0.34

−0.41 2.46+0.47
−0.50 11.3 1.06 0.09 0.96 0.015

GW170823 131358 51.67+11.92
−7.85 39.42+8.11

−11.03 0.05+0.21
−0.22 0.47+0.41

−0.35 1.73+1.16
−1.48 11.5 1.83 0.16 0.64 0.019

GW190408 181802 31.70+6.96
−3.88 23.83+3.56

−5.01 −0.03+0.13
−0.17 0.37+0.41

−0.29 1.01+1.85
−0.79 14.4 1.05 0.07 0.94 0.006

GW190412 053044 31.76+6.81
−6.60 10.34+2.19

−1.55 0.21+0.12
−0.13 0.19+0.22

−0.12 0.92+1.69
−0.40 18.2 2.86 0.16 0.25 0.45

GW190413 052954 52.79+15.00
−10.02 37.90+9.95

−11.57 −0.04+0.27
−0.32 0.44+0.42

−0.33 0.79+2.01
−0.58 8.5 1.13 0.13 0.88 N/A

GW190413 134308 83.12+19.30
−15.64 50.15+19.47

−23.80 −0.01+0.28
−0.38 0.55+0.36

−0.41 1.85+1.01
−1.52 10.3 1.57 0.15 0.71 N/A

GW190421 213856 60.79+13.06
−8.71 46.94+9.04

−14.55 −0.10+0.21
−0.27 0.45+0.41

−0.34 2.03+0.85
−1.70 9.7 1.59 0.16 0.73 N/A

GW190503 185404 53.32+12.17
−10.28 36.45+10.17

−12.62 −0.05+0.23
−0.30 0.43+0.40

−0.33 2.50+0.46
−0.62 12.2 1.55 0.13 0.74 0.013

GW190512 180714 29.34+6.90
−6.72 15.83+4.64

−2.97 0.02+0.13
−0.14 0.26+0.41

−0.20 1.79+1.07
−1.50 12.2 1.3 0.11 0.85 0.036

GW190513 205428 49.99+14.75
−12.78 25.60+10.88

−6.98 0.16+0.29
−0.22 0.35+0.43

−0.26 0.79+2.01
−0.58 12.3 1.64 0.13 0.7 0.048

GW190514 065416 66.96+21.39
−12.57 47.33+12.11

−18.23 −0.08+0.29
−0.35 0.45+0.42

−0.33 1.47+1.38
−1.20 8.3 1.44 0.17 0.78 0.013

GW190517 055101 52.92+14.76
−9.99 32.75+9.55

−12.25 0.49+0.21
−0.28 0.55+0.31

−0.32 2.12+0.70
−1.18 10.8 2.04 0.19 0.61 0.141

GW190519 153544 94.80+15.84
−12.40 59.88+16.88

−18.85 0.33+0.20
−0.24 0.45+0.36

−0.28 1.61+0.95
−1.02 12.4 2.81 0.23 0.24 0.066

GW190521 030229 152.36+31.65
−17.62 89.65+48.96

−52.17 −0.14+0.50
−0.45 0.49+0.33

−0.35 1.38+1.40
−1.07 13.3 3.24 0.24 0.35 N/A

GW190521 074359 52.19+7.65
−5.39 40.36+5.87

−7.16 0.10+0.13
−0.13 0.39+0.37

−0.30 1.48+1.27
−1.10 24.4 3.6 0.15 0.13 0.153

GW190527 092055 51.05+29.88
−9.27 32.36+11.95

−13.36 0.10+0.22
−0.22 0.36+0.47

−0.28 1.15+1.65
−0.87 8.7 1.29 0.15 0.85 0.161

GW190602 175927 106.81+24.90
−17.99 67.63+23.03

−31.56 0.12+0.25
−0.28 0.45+0.43

−0.34 2.13+0.79
−1.87 12.3 1.95 0.16 0.6 N/A

GW190620 030421 87.13+23.93
−17.28 53.35+17.64

−24.30 0.34+0.22
−0.29 0.48+0.38

−0.32 2.07+0.82
−1.74 10.9 2.1 0.19 0.52 0.049

GW190630 185205 41.40+8.12
−6.50 28.24+5.79

−5.63 0.10+0.14
−0.13 0.33+0.36

−0.24 1.41+1.43
−1.16 15.2 1.55 0.1 0.76 0.032

GW190701 203306 74.56+15.98
−10.85 56.08+12.08

−17.93 −0.08+0.23
−0.31 0.44+0.41

−0.33 0.58+0.55
−0.42 11.7 0.95 0.08 0.95 0.007

GW190706 222641 117.53+22.57
−18.55 63.74+27.20

−27.42 0.28+0.25
−0.31 0.47+0.38

−0.33 1.86+0.96
−1.50 12.5 3.06 0.24 0.26 0.093

GW190707 093326 14.07+3.01
−2.33 9.28+1.69

−1.48 −0.04+0.10
−0.09 0.28+0.39

−0.22 2.12+0.81
−1.89 13.2 1.23 0.09 0.93 0.219

GW190708 232457 23.41+4.97
−5.07 13.70+3.57

−2.17 0.05+0.10
−0.10 0.26+0.44

−0.20 1.39+1.54
−1.18 13.1 1.14 0.09 0.94 0.424

GW190719 215514 58.83+75.12
−16.34 32.78+14.38

−16.38 0.25+0.33
−0.32 0.45+0.39

−0.32 1.61+1.26
−1.33 8 1.41 0.18 0.79 N/A

GW190720 000836 16.57+6.36
−3.94 8.76+2.44

−2.10 0.19+0.14
−0.11 0.29+0.39

−0.20 2.59+0.41
−1.99 11.5 0.86 0.08 0.97 0.14

GW190727 060333 58.87+13.07
−8.01 46.18+8.22

−13.24 0.09+0.25
−0.27 0.50+0.38

−0.37 1.54+1.35
−1.27 12.1 1.37 0.11 0.82 0.017

GW190728 064510 14.56+8.19
−2.60 9.39+1.92

−2.91 0.13+0.19
−0.07 0.29+0.39

−0.20 1.11+1.77
−0.90 13.4 1.16 0.09 0.89 0.048

GW190731 140936 64.91+15.63
−10.80 46.27+12.67

−17.54 0.07+0.28
−0.25 0.41+0.43

−0.32 1.23+1.63
−0.98 8.5 1.13 0.13 0.89 0.031

GW190803 022701 57.71+13.23
−8.92 42.96+9.20

−13.81 −0.01+0.23
−0.28 0.44+0.42

−0.34 0.91+1.93
−0.70 9.1 0.87 0.1 0.96 N/A

GW190814 211039 24.48+1.55
−1.43 2.72+0.11

−0.11 0.00+0.07
−0.07 0.04+0.04

−0.03 0.90+1.40
−0.24 22.2 2.54 0.11 0.49 N/A

GW190828 063405 43.27+7.36
−4.65 35.40+4.69

−6.98 0.15+0.15
−0.16 0.43+0.41

−0.32 2.38+0.57
−2.02 16.3 1.31 0.08 0.86 N/A

GW190828 065509 30.42+8.31
−8.29 13.44+4.82

−2.71 0.05+0.16
−0.17 0.26+0.42

−0.20 1.86+0.96
−1.52 11.1 1.69 0.15 0.68 N/A

GW190910 112807 56.54+8.69
−6.47 44.50+7.47

−9.24 −0.00+0.17
−0.20 0.38+0.43

−0.30 1.62+1.16
−1.25 13.4 2.25 0.17 0.47 0.011

GW190915 235702 43.05+11.11
−6.00 32.50+5.62

−7.95 −0.03+0.19
−0.24 0.56+0.34

−0.40 1.84+0.99
−1.48 13 1.63 0.13 0.69 0.01

GW190924 021846 9.78+4.83
−2.00 5.67+1.35

−1.61 0.03+0.20
−0.08 0.25+0.41

−0.19 0.84+1.95
−0.64 13 1.13 0.09 0.92 0.152

GW190929 012149 101.70+25.99
−18.32 41.64+25.15

−18.10 −0.03+0.23
−0.28 0.31+0.51

−0.25 1.45+1.18
−0.97 10.1 2.22 0.22 0.47 N/A

GW190930 133541 16.36+9.27
−4.57 7.98+2.78

−2.34 0.19+0.22
−0.16 0.30+0.42

−0.21 0.72+2.06
−0.55 10.1 1.2 0.12 0.87 0.377

TABLE I. The first half of our BBH analysis results, including 10 GWTC-1 events and 35 GWTC2.1 events that are included
in GWTC-2. First seven columns are basic information of the events: event names in YYMMDD HHMMSS form, component
masses m1,2 in detector frame (which have a difference of factor 1 + z from Ref. [3, 4], z is the cosmological redshift), effective
spin χeff , effective precession spin χp, inclination angle θJN and network SNR. The parameters are showed by 50% percentile
and 90% confidence error bar, but note θJN usually has a bimodal distribution, the 50% percentile might be misleading. Last
four columns are statistics we construct: mean value and normalized mean value of ‖∆′net‖ among all the samples (latter one
is simply mean value divided by network SNR), fraction of ‖∆′net‖ < 2 samples, and the maximum J-S divergence between
samples of q, M, χeff and χp . It is labeled as “N/A” if result from one of the waveforms is not available in GWTC-2.1 data
release.



15

Event name m1 m2 χeff χp θJN SNR Mean MeanNorm Fraction Max J-S Div.

GW190403 051519 185.98+37.48
−58.13 44.64+61.34

−24.08 0.68+0.16
−0.43 0.32+0.38

−0.22 1.84+1.12
−1.66 8 1.62 0.2 0.72 0.052

GW190426 190642 178.48+87.83
−31.54 132.65+32.32

−63.94 0.23+0.42
−0.41 0.51+0.37

−0.36 2.08+0.80
−1.72 9.6 1.55 0.16 0.74 N/A

GW190725 174728 14.23+12.21
−3.62 7.59+2.40

−3.00 −0.04+0.36
−0.16 0.37+0.46

−0.28 1.00+1.79
−0.74 9.1 1.04 0.11 0.92 N/A

GW190805 211137 87.19+24.88
−15.28 59.60+16.40

−23.31 0.37+0.29
−0.39 0.50+0.34

−0.32 1.00+1.75
−0.74 8.3 1.3 0.16 0.84 0.014

GW190916 200658 78.32+32.30
−21.54 42.37+24.07

−21.18 0.20+0.33
−0.31 0.37+0.43

−0.28 1.61+1.27
−1.35 8.2 1.14 0.14 0.89 0.004

GW190917 114630 11.15+3.72
−4.48 2.35+1.21

−0.48 −0.08+0.21
−0.43 0.17+0.42

−0.13 1.35+1.60
−1.16 9.5 1.06 0.11 0.93 N/A

GW190925 232845 24.69+7.70
−3.17 18.46+2.68

−4.16 0.09+0.16
−0.15 0.39+0.43

−0.30 0.77+2.07
−0.58 9.9 1.09 0.11 0.91 0.008

GW190926 050336 63.55+31.78
−14.11 31.96+21.57

−14.17 −0.02+0.25
−0.33 0.37+0.48

−0.29 1.67+1.03
−1.19 9 1.49 0.17 0.74 N/A

GW191103 012549 14.03+7.42
−2.34 9.42+1.79

−2.85 0.21+0.16
−0.10 0.40+0.41

−0.26 1.38+1.52
−1.14 8.9 1.01 0.11 0.92 0.012

GW191105 143521 13.00+4.54
−1.78 9.36+1.45

−2.19 −0.02+0.13
−0.09 0.30+0.45

−0.24 1.07+1.82
−0.85 9.7 0.77 0.08 0.99 0.02

GW191109 010717 81.16+12.89
−8.89 59.72+15.58

−17.43 −0.29+0.42
−0.31 0.63+0.29

−0.37 1.91+0.87
−1.18 17.3 5.8 0.34 0.1 0.086

GW191113 071753 36.10+14.71
−16.18 7.31+6.49

−1.57 0.00+0.37
−0.29 0.20+0.54

−0.16 1.70+1.08
−1.32 7.9 1.68 0.21 0.67 0.048

GW191126 115259 15.71+7.24
−2.51 10.75+1.94

−2.98 0.21+0.15
−0.11 0.39+0.40

−0.26 1.71+1.20
−1.48 8.3 1.14 0.14 0.89 0.01

GW191127 050227 86.41+60.12
−37.31 38.45+31.09

−25.26 0.18+0.34
−0.36 0.52+0.41

−0.41 1.46+1.40
−1.16 9.2 1.9 0.21 0.6 0.089

GW191129 134029 12.29+4.87
−2.26 7.80+1.67

−1.94 0.06+0.16
−0.08 0.26+0.36

−0.19 1.73+1.16
−1.46 13.1 1.34 0.1 0.87 0.033

GW191204 110529 36.20+15.49
−5.66 26.21+5.17

−7.54 0.05+0.26
−0.27 0.52+0.38

−0.39 1.57+1.24
−1.24 8.8 1.59 0.18 0.72 0.027

GW191204 171526 13.44+3.77
−1.98 9.29+1.54

−1.84 0.16+0.08
−0.05 0.39+0.35

−0.26 2.26+0.66
−2.00 17.5 1.67 0.1 0.73 0.045

GW191215 223052 33.48+9.29
−4.68 24.46+4.07

−5.17 −0.04+0.17
−0.21 0.50+0.37

−0.38 1.20+1.50
−0.85 11.2 1.06 0.09 0.95 0.01

GW191216 213338 12.95+4.92
−2.38 8.23+1.73

−1.99 0.11+0.13
−0.06 0.23+0.35

−0.16 2.50+0.44
−0.81 18.6 1.93 0.1 0.62 0.06

GW191219 163120 34.73+2.27
−2.68 1.30+0.08

−0.05 −0.00+0.07
−0.09 0.09+0.07

−0.07 1.76+1.13
−1.49 9.1 2.51 0.28 0.34 0.13

GW191222 033537 67.15+14.73
−9.54 52.41+10.67

−15.40 −0.04+0.20
−0.25 0.41+0.41

−0.32 1.62+1.24
−1.33 12.5 2.02 0.16 0.57 0.017

GW191230 180458 82.70+19.46
−13.10 62.85+13.88

−21.42 −0.05+0.26
−0.31 0.52+0.38

−0.39 2.03+0.85
−1.67 10.4 1.17 0.11 0.88 0.011

GW200105 162426 9.57+1.85
−1.82 2.02+0.35

−0.25 0.00+0.13
−0.18 0.09+0.17

−0.07 1.54+1.28
−1.22 13.7 1.47 0.11 0.79 0.162

GW200112 155838 44.01+8.22
−5.16 35.18+5.11

−7.42 0.06+0.15
−0.15 0.39+0.39

−0.30 0.88+2.04
−0.68 19.8 1.63 0.08 0.73 0.061

GW200115 042309 6.30+2.15
−2.69 1.53+0.91

−0.30 −0.15+0.24
−0.42 0.20+0.34

−0.16 0.62+1.94
−0.43 11.3 1.35 0.12 0.81 0.096

GW200128 022011 65.05+15.99
−9.41 51.16+10.32

−13.35 0.12+0.24
−0.25 0.57+0.34

−0.40 1.38+1.46
−1.06 10.6 2.12 0.2 0.55 0.09

GW200129 065458 40.25+12.23
−3.33 34.06+3.32

−10.82 0.11+0.11
−0.16 0.52+0.42

−0.37 0.66+0.59
−0.41 26.8 2.33 0.09 0.47 0.425

GW200202 154313 11.02+3.83
−1.51 7.99+1.21

−1.85 0.04+0.13
−0.06 0.28+0.40

−0.22 2.57+0.42
−0.59 10.8 0.74 0.07 0.99 0.025

GW200208 130117 52.95+12.23
−8.40 38.51+8.64

−11.18 −0.07+0.22
−0.27 0.38+0.41

−0.29 2.53+0.44
−0.58 10.8 1.19 0.11 0.87 0.017

GW200208 222617 83.38+171.77
−48.68 21.91+13.04

−11.81 0.45+0.43
−0.44 0.41+0.37

−0.30 1.54+1.30
−1.22 7.4 1.91 0.26 0.6 0.171

GW200209 085452 55.70+14.96
−9.88 42.95+11.00

−13.60 −0.12+0.24
−0.30 0.51+0.39

−0.37 1.74+1.12
−1.44 9.6 1.29 0.13 0.83 0.014

GW200210 092254 28.68+8.45
−5.24 3.38+0.52

−0.52 0.02+0.22
−0.21 0.15+0.22

−0.12 2.31+0.60
−1.97 8.4 1.2 0.14 0.88 0.06

GW200216 220804 84.36+28.39
−21.07 50.74+22.50

−30.85 0.10+0.34
−0.36 0.45+0.42

−0.35 0.89+1.87
−0.69 8.1 1.32 0.16 0.82 0.006

GW200219 094415 58.57+13.46
−8.95 44.41+9.26

−14.14 −0.08+0.23
−0.29 0.48+0.40

−0.35 1.19+1.59
−0.92 10.7 1.61 0.15 0.71 0.017

GW200220 061928 165.56+62.24
−27.93 120.51+29.47

−55.27 0.06+0.40
−0.38 0.50+0.37

−0.37 1.24+1.55
−0.96 7.2 1.2 0.17 0.87 0.022

GW200220 124850 64.13+16.51
−10.34 46.89+11.54

−16.61 −0.07+0.27
−0.33 0.49+0.39

−0.37 1.66+1.17
−1.34 8.5 1.72 0.2 0.68 0.007

GW200224 222234 52.30+9.08
−5.37 42.82+5.83

−9.89 0.10+0.15
−0.15 0.49+0.37

−0.36 0.62+0.55
−0.45 20 2.26 0.11 0.52 0.022

GW200225 060421 23.58+5.65
−3.25 17.20+3.05

−4.55 −0.12+0.17
−0.28 0.53+0.34

−0.38 1.31+1.47
−1.00 12.5 1.43 0.11 0.8 0.015

GW200302 015811 48.45+10.33
−9.58 25.50+12.02

−7.63 0.01+0.25
−0.26 0.37+0.45

−0.28 1.34+1.43
−1.01 10.8 2.13 0.2 0.51 0.054

GW200306 093714 39.52+21.47
−10.80 20.98+8.86

−9.91 0.32+0.28
−0.46 0.43+0.39

−0.31 1.12+1.74
−0.87 7.8 1.33 0.17 0.82 0.013

GW200308 173609 143.98+299.28
−85.60 52.82+83.32

−33.18 0.16+0.58
−0.49 0.41+0.42

−0.30 1.55+1.19
−1.27 7.1 1.1 0.15 0.89 0.054

GW200311 115853 41.83+8.21
−4.59 34.00+4.68

−7.26 −0.02+0.16
−0.20 0.45+0.40

−0.35 0.55+0.52
−0.40 17.8 1.27 0.07 0.87 0.026

GW200316 215756 15.98+12.23
−3.33 9.52+2.32

−3.49 0.13+0.27
−0.10 0.29+0.38

−0.20 2.32+0.58
−1.85 10.3 1.08 0.1 0.9 0.082

GW200322 091133 105.87+392.13
−84.00 26.23+58.87

−18.59 0.08+0.51
−0.47 0.50+0.36

−0.41 1.66+1.04
−1.12 6 0.87 0.14 0.94 0.059

TABLE II. The second half of our BBH analysis results, including 8 new events in GWTC-2.1 (compared to GWTC-2) and 36
events in GWTC-3. Columns have the same meaning as Tab. I.
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