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We construct Grassmannian categories of infinite rank, providing an infinite analogue

of the Grassmannian cluster categories introduced by Jensen, King, and Su. Each Grass-

mannian category of infinite rank is given as the category of graded maximal Cohen–

Macaulay modules over a certain hypersurface singularity. We show that generically

free modules of rank 1 in a Grassmannian category of infinite rank are in bijection with

the Plücker coordinates in an appropriate Grassmannian cluster algebra of infinite rank.

Moreover, this bijection is structure preserving, as it relates rigidity in the category to

compatibility of Plücker coordinates. Along the way, we develop a combinatorial formula

to compute the dimension of the Ext1-spaces between any two generically free modules

of rank 1 in the Grassmannian category of infinite rank.

1 Introduction

Grassmannians are objects of great combinatorial and geometric beauty, which arise

in myriad contexts. Their coordinate rings serve as a classical example in the theory

of cluster algebras, whose genesis by Fomin and Zelevinsky [9] was initially motivated
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Grassmannian Categories of Infinite Rank 1167

by total positivity in Lie theory as propagated by Lusztig; see for example [19]. The

combinatorial structures of Grassmannians, in relation to total positivity, were first

studied by Postnikov [22]. Employing these combinatorial tools, Scott [23] showed that

coordinate rings of Grassmannians indeed carry a natural cluster algebra structure,

which led to these objects becoming a staple in the study of cluster algebras.

Jensen et al. [18] introduce an additive categorification of the Grassmannian

cluster algebra C[Gr(k, n)] of finite rank via G-equivariant maximal Cohen–Macaulay

modules over the plane curve singularities R(k,n) = C[x, y]/(xk − yn−k), where G is the

cyclic group of order n acting on R(k,n) in a natural way (cf. Section 2.3). They show

that rank 1 modules in MCMGR(k,n) are in one-to-one correspondence with Plücker

coordinates in C[Gr(k, n)] and that this bijection preserves structure: rigidity of subcat-

egories of rank 1 modules is translated to compatibility of the corresponding Plücker

coordinates (i.e., pairwise noncrossing of k-subsets; cf. Section 2.1.1). An interesting

aspect of this relation is that it affords a formal connection between two famous

examples of a priori unrelated ADE classifications, providing a bridge between skew-

symmetric cluster algebras of finite type and simple plane curve singularities. More

precisely, it relates Grassmannian cluster algebras C[Gr(k, n)] of finite type to the simple

plane curve singularities xk = yn−k, which occur precisely in the cases k = 2 or n−2 and

n ≥ 4 (type An−3), k = 3 or n − 3 and n = 6 (type D4), k = 3 or n − 3 and n = 7 (type E6),

and k = 3 or n − 3 and n = 8 (type E8). Here, the type indicates both cluster algebra type

and singularity type, respectively.

We extend the theory to the infinite rank setting, that is, we let n go to infinity.

For a fixed k ≥ 2, a natural object to consider on the cluster algebra side is the ring

Ak = C[pI | I ⊆ Z, |I| = k]

〈Plücker relations〉 ;

cf. Section 2.1.2 for details. This is a cluster algebra of infinite rank in the sense of

[11] and can be viewed as a colimit of Grassmannian cluster algebras C[Gr(k, n)] in the

category of rooted cluster algebras (introduced by Assem et al. [1]), as discussed in depth

in [13]. In fact, the ring Ak can be interpreted as the homogeneous coordinate ring of an

infinite version of the Grassmannian under a generalised Plücker embedding. In the case

k = 2, this is the space of 2D subspaces of a profinite-dimensional (topological) vector

space under the Plücker embedding constructed by Groechenig in the appendix to [11].

This point of view naturally extends to k ≥ 3.

We construct an analogue of the Jensen, King, and Su Grassmannian cluster

categories in this infinite setting: for a fixed k ≥ 2, the Grassmannian category of
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1168 J. August et al.

infinite rank is defined to be the category of finitely generated Z-graded maximal Cohen–

Macaulay modules over the ring Rk = C[x, y]/(xk), where x is in degree 1 and y is in

degree −1. From the point of view of the singularities, this is the natural category to

consider—the singularity xk = 0 is the limit of the singularities xk = yn−k as n goes to

infinity, and the cyclic group actions yield a circle action in the limit, giving rise to the

Z-grading.

We find that this gives categorical companions embodying the combinatorics of

the infinite Grassmannians. For instance, we naturally rediscover the combinatorial

description of Plücker coordinates through certain indecomposable objects of the Grass-

mannian category.

Theorem A. (Theorem 3.9) There is a one-to-one correspondence between Plücker coor-

dinates in Ak and generically free modules of rank 1 in MCM
Z

Rk.

In order to prove this, we show that every generically free module of rank 1

in MCM
Z

Rk arises as a syzygy of a finite dimensional module in grRk. This allows

us to reduce to the problem of classifying cofinite homogeneous ideals; we solve

this problem explicitly by naturally constructing a Plücker coordinate from any such

ideal.

Crucially, the correspondence from Theorem A is structure preserving, in the

sense that it connects the concept of rigidity in MCMZRk with the concept of compati-

bility of Plücker coordinates and that of noncrossing of k-subsets.

Theorem B. (Theorem 4.1) Let I and J be generically free modules of rank 1 in

C = MCMZRk corresponding, under the bijection from Theorem A, to Plücker coordinates

pI and pJ , respectively. Then Ext1
C(I, J) = 0 if and only if pI and pJ are compatible.

Theorem B is a direct consequence of a general formula for the dimension of the

Ext1-space between any two given generically free modules of rank 1 that we provide in

this paper. To prove this formula, we employ the combinatorial tool of staircase paths in

a (k×k)-grid to extract the dimension of the Ext1-space between two such modules from

the crossing pattern of the associated k-subsets � and m of the corresponding Plücker

coordinates; cf. Section 4.1. A pair of staircase paths uniquely represents the crossing

patterns of � and m and yields two significant numbers: the number α(�, m) of diagonals

strictly above one of the paths, and the number β(�, m) of diagonals strictly below the

other; for precise details, see Definition 4.6.
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Grassmannian Categories of Infinite Rank 1169

Theorem C. (Theorem 4.10) Let I and J be two generically free modules of rank 1 in

C = MCM
Z

Rk corresponding, under the bijection from Theorem A, to the Plücker

coordinates pI and pJ , respectively, associated with the k-subsets � and m. Then

dim
C
(Ext1

C(I, J)) = α(�, m) + β(�, m) − k − |� ∩ m|.

It is a direct consequence of this formula that Ext1 on generically free modules of

rank 1 is symmetric in its argument. This is not a coincidence: we provide an argument

to show that the full subcategory of generically free maximal Cohen–Macaulay modules

is stably 2-Calabi–Yau, using a result by Iyama and Takahashi [17]. We are grateful to

Osamu Iyama and Michael Wemyss for suggesting this should be the case.

These connections provide a convincing argument for the study of Grassmannian

categories of infinite rank as the appropriate categorical analogue to Grassmannian

cluster algebras of infinite rank. As a further illustration, let us consider the k = 2

case. In the case of finite rank, the types k = 2 and n ≥ 4 form the simplest

family of Grassmannian cluster categories. In particular, the corresponding singularities

are of finite Cohen–Macaulay type (i.e., these Grassmannian cluster categories have

finitely many indecomposable objects) and exhibit Dynkin type A cluster combina-

torics. In the limit, as n goes to ∞, this mild behaviour survives: the ring R2 =
C[x, y]/(x2) has countable Cohen–Macaulay type, and indecomposable objects in the

category MCMZC[x, y]/(x2) can be classified via two-element subsets of Z ∪ {∞} (or,

to use a geometric Dynkin type A∞ model, by arcs in an ∞-gon with one marked

accumulation point). Furthermore, this particular Grassmannian category of infinite

rank has cluster tilting subcategories, which we classify in work in progress [2],

recovering the classification for the one-accumulation point case by Paquette and

Yıldırım [21] from a different perspective.

The infinite rank k = 2 case has been studied extensively in recent years from

different perspectives, starting with the pioneering work by Holm and Jørgensen [14].

They study the finite derived category Df
dg(C[y]), where C[y] is viewed as a differential

graded algebra with trivial differential, and y in cohomological degree −1, which they

show exhibits cluster combinatorics of type A∞. In fact, the stable category of the

subcategory of MCMZC[x, y]/(x2) generated by generically free modules of rank 1 is

equivalent to Df
dg(C[y]). A different viewpoint on this category is given by a special case

of the combinatorial construction of discrete cluster categories of type A∞ by Igusa

and Todorov [16]. Recent work by Paquette and Yıldırım [21] constructs a completion

of the discrete cluster categories of type A∞. We note that in the one-accumulation point
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1170 J. August et al.

case, this completion coincides with the stable category of our Grassmannian category

of infinite rank MCM
Z
C[x, y]/(x2).

While the story is a satisfyingly conclusive one for the k = 2 case, we note

that the k ≥ 3 case, which we treat in this paper simultaneously, is a different

matter entirely: already in the finite rank setting (bar a handful of exceptions), we

are in wild Cohen–Macaulay type. As we let n go to ∞, this wildness, unsurprisingly,

survives, and a classification of indecomposable objects in the Grassmannian categories

of infinite rank for k ≥ 3 is out of reach. It is striking that it is still possible to

classify all generically free rank 1 Cohen–Macaulay modules via the combinatorially

accessible tools from Theorem A and to draw a natural connection to Grassmannian

combinatorics.

2 Preliminaries

2.1 Grassmannian cluster algebras

Grassmannian cluster categories are an additive categorification of Grassmannian

cluster algebras, of which this section provides an overview.

2.1.1 The finite rank case

Coordinate rings of flag varieties provide an interesting source of cluster algebras. An

important example thereof is the Grassmannian Gr(k, n) of k-subspaces of C
n, viewed

as a projective variety via the Plücker embedding. It was shown by Scott [23] that its

homogeneous coordinate ring C[Gr(k, n)] carries a natural cluster algebra structure,

with Plücker coordinates providing a subset of cluster variables and exchange relations

coming from Plücker relations.

Consider the Grassmannian Gr(k, n) of k-dimensional subspaces in C
n as a

projective variety via the Plücker embedding. Its homogeneous coordinate ring is the

ring

A(k,n) = C[xI | I ⊆ {1, . . . , n}, |I| = k]
/
IP

where IP is the ideal generated by the Plücker relations, which are described as follows:

for any two subsets J, J ′ ⊆ {1, . . . , n} with |J| = k + 1 and |J ′| = k − 1, with J = {j0, . . . , jk}
and j0 < . . . < jk, we get a Plücker relation

k∑
l=0

(−1)lxJ ′∪{jl}xJ\{jl}. (2.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/2/1166/7034034 by guest on 28 February 2024



Grassmannian Categories of Infinite Rank 1171

We call a subset I ⊆ {1, . . . , n}, with |I| = k a k-subset. The variables xI labelled by k-

subsets are called Plücker coordinates.

Given two k-subsets I, J, we say that I and J cross, if there exist i1, i2 ∈ I \ J and

j1, j2 ∈ J \ I with

i1 < j1 < i2 < j2 or j1 < i1 < j2 < i2,

and I and J are noncrossing if they do not cross. Two Plücker coordinates xI and xJ are

compatible, if the k-subsets I and J are noncrossing.

Scott [23] has shown that A(k,n) has the structure of a cluster algebra, where the

Plücker coordinates form a subset of the cluster variables and where maximal sets of

mutually compatible Plücker coordinates provide examples of clusters in A(k,n).

2.1.2 Colimits

A natural way of extending the cluster combinatorics of A(k,n) to an infinite setting is by

considering the ring

Ak = C[xI | I ⊆ Z, |I| = k]
/
IP,

where IP is the ideal generated by relations of the form (2.1). Note that here, the labelling

k-subsets are subsets of Z of size k.

Indeed, the ring Ak can be endowed with the structure of an infinite rank cluster

algebra in the sense of [11] in uncountably infinitely many ways—it requires us to

choose some initial cluster, given, for example, by a maximal set of compatible Plücker

coordinates. It was shown in [13] that these cluster algebras of infinite rank can be

interpreted as colimits of cluster algebras of finite rank in the category of rooted cluster

algebras. Indeed, for a fixed k, we can write it as a colimit of the cluster algebras A(k,n)

with appropriate fixed initial seeds, as illustrated in [12].

For k = 2, it was shown in the appendix to [11] that the ring Ak can be interpreted

as the homogeneous coordinate ring of an infinite version of the Grassmannian under a

generalisation of the Plücker embedding—this infinite version can be described as the

space of 2D subspaces of a profinite-dimensional (topological) vector space (equivalently,

2D quotients of a countably infinite-dimensional vector space). This construction natu-

rally extends to k ≥ 3.

2.2 Maximal Cohen–Macaulay modules

Let R be a commutative ring. A finitely generated module M is maximal Cohen–Macaulay

(=MCM) over R if depth(Mp) = dim(Rp) in Rp for all p ∈ Spec(R). Note that if R is local,
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1172 J. August et al.

then this property can simply be stated as depth(M) = dim(R). If R is a Gorenstein

commutative ring (e.g., a hypersurface), a module M is maximal Cohen–Macaulay if and

only if Exti
R(M, R) = 0 for i �= 0; see [5]. Note that MCM-modules are precisely the

Gorenstein projectives in case R is Gorenstein.

2.3 Grassmannian cluster categories of finite rank

Jensen et al. [18] introduce an additive categorification of the natural cluster algebra

structure on A(k,n). In particular, their Grassmannian cluster categories are Frobenius

categories, with projective-injectives corresponding to the consecutive Plücker coordi-

nates, that is, the Plücker coordinates labelled by k-subsets of the form {i, i + 1, . . . ,

i + k − 1}, where we calculate modulo n. This extends the cluster structure of classical

cluster categories with Grassmannian combinatorics to include the coefficients of the

cluster algebra A(k,n). We briefly recall their construction here. The combinatorics of

these categories has been extensively studied by Baur et al. [3].

Let k ∈ Z≥2 and n ≥ k + 2. Consider the ring S = C[x, y]. The group of n-th roots

of unity

μn = {ζ ∈ C | ζn = 1}

acts on S via

x → ζx; y → ζ−1y.

Taking the quotient by the μn semi-invariant function xk − yn−k yields the ring

R(k,n) = S/(xk − yn−k).

The Grassmannian cluster category is the category

MCMμn
R(k,n)

of μn-equivariant maximal Cohen–Macaulay R(k,n)-modules. Its rank 1 modules are in

one-to-one correspondence with the Plücker coordinates of A(k,n) and under this corre-

spondence, vanishing Ext1 between two rank 1 modules corresponds to the correspond-

ing Plücker coordinates being compatible; cf. [18, Section 5]. In fact, the Grassmannian

cluster category MCMμn
R(k,n) is stably equivalent to the category SubQk studied by

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/2/1166/7034034 by guest on 28 February 2024



Grassmannian Categories of Infinite Rank 1173

Geiß et al. [10]. Therefore, it has cluster tilting subcategories, and, under the above

correspondence, maximal sets of compatible Plücker coordinates provide cluster tilting

subcategories.

3 Grassmannian Categories of Infinite Rank

In this section, we introduce the construction of infinite rank versions of Grassmannian

cluster categories.

3.1 Construction

We fix k ∈ Z≥2. We generalise the construction of Grassmannian cluster categories to the

infinite case, by letting n go to infinity. Consider the action of the multiplicative group

Gm (playing the role taken by μn in the finite case) on S = C[x, y] via

x → ζx; y → ζ−1y.

Now, as a semi-invariant function, we take xk. We may think of this as the infinite version

of the function xk − yn−k as n goes to infinity; topologically, the neighbourhood (yn−k)

tends to 0 as n goes to infinity. This yields the Gorenstein ring

Rk := S/(xk),

which, when we have fixed a choice of k, we will often simply denote by R. The category

we are interested in is the category

MCM
Gm

Rk

of Gm-equivariant maximal Cohen–Macaulay Rk-modules. The character group of Gm is

the group of integers Z. This yields an equivalence of categories

modGm
Rk

∼= grRk

between the category mod
Gm

Rk of finitely generated Gm-equivariant Rk-modules and

the category of finitely generated Z-graded Rk-modules grRk, where Rk is viewed as a

Z-graded ring with x in degree 1, and y in degree −1. This induces an equivalence of
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1174 J. August et al.

categories

MCM
Gm

Rk
∼= MCM

Z
Rk,

where MCM
Z

Rk is the category of graded Cohen–Macaulay Rk-modules, with the grading

given above. Note that the objects in our category are graded MCM-modules over Rk and

the morphisms are graded morphisms of degree 0. This means that for any morphism f :

M −→ N of modules in MCMZ Rk, one has f (Mi) ⊆ Ni, where Mi is the i-th graded piece of

M. We call MCM
Z

Rk the Grassmannian category of type (k, ∞), or just a Grassmannian

category of infinite rank, if k is clear from context.

3.2 Generically free modules of rank 1

Fix k ≥ 2, and set R = C[x, y]/(xk) as above. Define F to be the graded total ring of

fractions of R, that is, the ring R localised at all homogeneous nonzero divisors:

F = Ry = C[x, y±]/(xk).

We consider F as a graded ring, with the grading induced by the grading of R.

Definition 3.1. A module M ∈ grR is generically free of rank n if M ⊗R F is a graded

free F-module of rank n.

Note that F ∼= R(x), where (x) is the graded minimal prime ideal of R.

Lemma 3.2. Every generically free module M of rank n in grR has a maximal free

submodule P of rank n such that M/P is finite dimensional.

Proof. Take P to be a maximal free submodule of M. This exists, since R is Noetherian,

and M is finitely generated. First, we see that M/P is also generically free, by tensoring

the short exact sequence

0 → P → M → M/P → 0

with F , which yields the short exact sequence

0 → Fm → Fn → M/P ⊗ F ∼= (M/P)y → 0,
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Grassmannian Categories of Infinite Rank 1175

for some m, n ≥ 0. This sequence splits, since F is graded self-injective, which can be

seen using Baer’s criterion. Therefore, (M/P)y is graded free. Next, we show that in fact

M/P⊗F ∼=(M/P)y =0, which implies that M/P is finite dimensional and P is ofrank m=n.

Indeed, if we have (M/P)y = 0, then M/P is annihilated by some power of y and hence

is isomorphic to some quotient of some power of R, say (R/(yl))m = (C[x, y]/(xk, yl))m,

which is finite dimensional.

To show (M/P)y = 0, assume as a contradiction that we have (M/P)y �= 0. Then

there exists a free submodule of M/P: pick a nonzero divisor 0 �= z
yl ∈ (M/P)y. Since

(M/P)y is free, we have that xi z
yl �= 0 for 0 ≤ i < k. It follows that xiz �= 0 for all 0 ≤ i < k,

so the annihilator of z ∈ M/P vanishes and z generates a rank 1 free submodule P′ of

M/P. We get a diagram

where the right-hand square is a pull-back. The top sequence splits, and we get that

Q ∼= P ⊕ P′ is a free submodule of M, contradicting the maximality of P. �

In the following, we denote the graded Hom by grHom, and graded Ext1 by grExt.

Throughout, M(j) denotes the graded shift of M, that is, M(j)i = Mi+j.

Lemma 3.3. If M is a generically free module of rank n in MCMZR, its dual

M∗ = grHomR(M, R) is also a generically free module of rank n in MCM
Z

R.

Proof. By [5, Lemma 4.2.2 (iii)], the dual M∗ of the MCM M is again MCM. Furthermore,

we have

M∗ ⊗ F = grHomR(M, R) ⊗ F ∼= grHomF (M ⊗ F ,F) ∼= grHomF (Fn,F) ∼= Fn,

where the 1st equivalence follows from [20, Thm. 7.11].

�

Proposition 3.4. Every generically free module M in MCMZR is a syzygy of a finite

dimensional module in grR. More precisely, we have a short exact sequence of the form

0 → M →
m⊕

i=1

R(−ni) → N → 0,

where m is the rank of M and N is finite dimensional.
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1176 J. August et al.

Proof. Assume M is a generically free module of rank m in MCM
Z

R. Note that m > 0,

since M is MCM. If M is free, we are done. So assume that M is not free. By Lemma 3.3,

the dual M∗ is also generically free, and by Lemma 3.2, it has a maximal free submodule

P of rank m such that M∗/P is finite dimensional. So we have P ∼= ⊕m
i=1 R(ni) and ni ∈ Z.

This yields a short exact sequence

0 →
m⊕

i=1

R(ni) → M∗ → M∗/P → 0

and applying the graded grHom(−, R) yields the short exact sequence

0 → M →
m⊕

i=1

R(−ni) → grExt(M∗/P, R) → 0, (3.1)

since (M∗/P)∗ = grHom(M∗/P, R) = 0 (as M∗/P is finite dimensional and thus annihilated

by a power of y) and grExt(M∗, R) = 0 (as M∗ is MCM). Note that M∗∗ ∼= M, as MCM

modules over a Gorenstein ring are reflexive by [5, Lemma 4.2.2 (iii)]. Again, since M∗/P

is annihilated by some power of y, it is a graded R/(yi)-module for some i ∈ N. By

[24, Corollary 3.3.7], grExt(M∗/P, R) is a graded R/(yi)-module as well. Furthermore,

since both M∗/P and R are finitely generated graded R-modules, so is grExt(M∗/P, R). To

summarise, grExt(M∗/P, R) is a finitely generated graded R-module, which is annihilated

by yi, and hence it is finite dimensional. Thus, (3.1) is the desired sequence. �

Proposition 3.5. A graded module I in MCM
Z

R is generically free of rank 1 if and only

if I is isomorphic to a graded ideal containing a power of y.

Proof. If I is a graded ideal of R containing a power of y, then there is an exact sequence

0 → I → R(n) → M → 0,

where n ∈ Z and M is finite dimensional. Note that tensoring with F is precisely

localisation at y and thus is exact. Thus, we obtain the short exact sequence

0 → I ⊗R F → F(n) → M ⊗R F → 0.

If M ⊗R F ∼= My �= 0, then no power of y acts trivially on M, and we have an

infinite descending chain of ideals M ⊃ yM ⊃ y2M ⊃ . . ., contradicting M being finite
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Grassmannian Categories of Infinite Rank 1177

dimensional. Therefore, the last term in the sequence vanishes and so I is generically

free of rank 1.

Now assume that I is a generically free module of rank 1 in MCMZR. By

Proposition 3.4, we have a short exact sequence

0 → I → R(−i) → N → 0

for some i ∈ Z and finite dimensional N. Therefore, I ∼= J(−i) for some ideal J, and I is

cofinite and hence contains a power of y. �

3.3 Bijection with Plücker coordinates

We can easily describe the graded ideals containing a power of y, thanks to the following.

Lemma 3.6. Every homogeneous ideal I ⊆ R can be generated by monomials.

Proof. Let fm = a0xm+a1xm+1y+· · ·+ak−m−1xk−1yk−1−m be a homogeneous polynomial

contained in I, and notice that we must have m < k since xk = 0. Note also that m may

be negative, in which case we assume that all ap = 0 for p < −m.

Let p the smallest index such that ap �= 0. We will show by induction that

xk−iyk−m−i ∈ I for i = 1, . . . , k − m − p, or in other words, the ideal generated by fm

is the same as the ideal generated by xm+pyp, and thus I is generated by monomials.

For the i = 1 case, multiply fm by xsys where s satisfies m + p + s = k − 1 and

notice that s ≥ 0 by the assumption that ap �= 0. Thus,

xsysfm = apxk−1yk−1−m + xk(. . . ) = apxk−1yk−1−m

belongs to I and hence xk−1yk−1−m ∈ I.

Now, for the inductive step, assume 1 < i ≤ k − m − p and xk−jyk−m−j ∈ I for all

1 ≤ j ≤ i − 1. Multiply fm by xsys where s satisfies m + p + s = k − i, and notice that s ≥ 0

by the assumption i ≤ k − m − p. Thus,

xsysfm = apxk−iyk−i−m + ap+1xk−i+1yk−i−m+1 + · · · + ap+i−1xk−1yk−1−m + xk(. . . )

= apxk−iyk−i−m + ap+1xk−i+1yk−i−m+1 + · · · + ap+i−1xk−1yk−1−m
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1178 J. August et al.

also belongs to I. However, by the inductive hypothesis,

ap+1xk−i+1yk−i−m+1 + · · · + ap+i−1xk−1yk−1−m

belongs to I and therefore so does xk−iyk−i−m as required. �

Combining Proposition 3.5 and Lemma 3.6, we are able to prove the following.

Theorem 3.7. Let I be in MCMZR. Then I is a generically free module of rank 1 if and

only if

I ∼= (xk−1, xk−2yi1 , xk−3yi2 , . . . , xyik−2 , yik−1)(ik)

for some 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik−1 and some ik ∈ Z.

Proof. Recall from Proposition 3.5 that a graded module I in MCMZR is generically free

of rank 1 if and only if I is isomorphic to a graded ideal containing a power of y. The “if”

direction follows immediately. So now suppose that I is a graded module in MCM
Z

R that

is generically free of rank 1. By Proposition 3.5, I is isomorphic to a homogeneous ideal

of R containing a power of y, and by Lemma 3.6, this ideal must be of the form

(xk−1yi0 , xk−2yi1 , xk−3yi2 , . . . , xyik−2 , yik−1)(ik), (3.2)

where 0 ≤ i0 ≤ i1 ≤ · · · ≤ ik−1 and ik ∈ Z. However, notice that since y is a nonzero

divisor, then as graded R-modules, the ideal in (3.2), and hence also I, is isomorphic to

(xk−1, xk−2yi1−i0 , xk−3yi2−i0 , . . . , xyik−2−i0 , yik−1−i0)(ik + i0)

as required. �

We can depict the generically free module of rank 1 in MCMZR from Theorem 3.7

as follows.
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Grassmannian Categories of Infinite Rank 1179

Remark 3.8. Note that Theorem 3.7 includes the case

(xk−1, xk−2y0, xk−3y0, . . . , xy0, y0)(ik) ∼= R(ik) ∼= (yj)(ik − j),

for any j ≥ 0, where the latter isomorphism holds as y is a nonzero divisor.

For an ideal

I = (xk−1, xk−2yi1 , xk−3yi2 , . . . , xyik−2 , yik−1)(ik)

with i1 ≤ i2 < . . . ≤ ik−1, and a homogeneous element f ∈ I, we write degI(f ) = deg(f )−ik.

Associated with the ideal I is the k-subset

�(I) = (
degI(y

ik−1), degI(xyik−2), . . . , degI(x
k−2yi1), degI(x

k−1)
)

= ( − ik − ik−1, −ik − ik−2 + 1, . . . , −ik − i1 + k − 2, −ik + k − 1
)
,

which we will view as a strictly increasing tuple throughout. We now consider again the

cluster algebra of infinite rank

Ak = C[p� | � ⊆ Z, |�| = k]
/
IP,

where we have relabelled the Plücker coordinates by p� and where IP is the ideal

generated by the Plücker relations (2.1). For the next result, we adapt the general setup:

to a k-subset � := (�1, . . . , �k), as always viewed as a tuple that is strictly increasing, we

associate the following graded ideal:

I(�) := (xk−1, xk−2yi1 , xk−3yi2 , . . . , xyik−2 , yik−1)(ik),

where ik = k − 1 − �k and ik−p = �k − �p − (k − p).

Theorem 3.9. The generically free modules of rank 1 in MCM
Z

R are in bijection with

the Plücker coordinates in Ak. This bijection is given by the inverse maps

{generically free modules of rank 1 in MCMZR} → {Plücker coordinates ofAk}
I → p�(I)

I(�) ← � p�.
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Proof. This follows immediately from Theorem 3.7. �

3.4 The subcategory of generically free maximal Cohen–Macaulay modules

We denote by MCM0
Z

R the full subcategory of MCMZR consisting of generically free max-

imal Cohen–Macaulay modules. In particular, it contains the generically free modules of

rank 1 that correspond to the Plücker coordinates of Ak by Theorem 3.9.

Note that generically free modules are closed under extensions and that they

form an admissible subcategory of MCM
Z

R, so MCM0
Z

R is again a Frobenius category

(see, e.g., [7]). Thus, the stable category MCM0
Z

R is a triangulated category and the goal

of this section is to show that this category is 2-Calabi–Yau by applying results from

Iyama and Takahashi [17].

Lemma 3.10. The Gorenstein parameter of R = C[x, y]/(xk), with x in degree 1 and y in

degree −1, is k.

Note that this agrees with the formula for the computation of the Gorenstein

parameter provided in [15, Example 4.8f] or in [4, Examples 3.6.15]. Since our ring is

nontrivial in both negative and positive degrees, we provide a direct computation for

the peace of mind of the reader.

Proof. Let α denote the Gorenstein parameter of R. Since R has Krull-dimension 1,

we have grExt1
R(C, R) ∼= C(−α), where grExtj

R(A, B) = ⊕
i∈Z Extj(A, B(i)) for graded R-

modules A and B.

To compute α, denote as before by F the graded total ring of fractions Ry, and

consider the sequence

R → F → F/R,

where the 1st map is localisation at y. We first verify this is an injective resolution of

R: indeed, since y is a nonzero divisor, the 1st map is injective. Furthermore, by Baer’s

criterion,F is injective overF . SinceF is flat over R, restriction of scalars sends injectives

to injectives. It follows that F is injective over R. Finally, since R has injective dimension

1 as a graded module over itself, the cokernel F/R must be injective as well.

Now apply grHomR(C, −) to this resolution. Note that the socle of F/R is

generated by y−1xk−1 (up to multiplication by a scalar, this is the only element in F/R

that gets annihilated by both x and y), which lives in degree k. Since C must map into
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the socle of F/R, it follows that grHom(C,F/R) ∼= C(−k). We know that grExt1
R(C, R) is

one dimensional, so we must have

grExt1
R(C, R) ∼= grHomR(C,F/R) ∼= C(−k).

The claim follows. �

Lemma 3.11. Denote by � the suspension in the stable category MCM
Z

R. Then

�2 ∼= (k).

Proof. The well-known equivalence between the stable category of maximal Cohen–

Macaulay modules MCM(R) and the category of reduced matrix factorisations MF(S, xk)

(see [8, 6.1,6.3] or [25, Theorem 7.4]) also holds in the graded case (cf. [6, Remark 1.8]).

Thus, we have an exact equivalence

MCM
Z

R ∼= MFZ(S, xk),

where S = C[x, y] with x in degree 1 and y in degree −1 and MFZ(S, xk) denotes the

homotopy category of graded matrix factorisations of xk over S. Indeed, if (d0, d1) is a

matrix factorisation of xk, that is, d1d0 is multiplication by xk, and thus a degree k map.

Suspension on matrix factorisations is given by the shift, when viewing them as (twisted)

2-periodic objects, so double suspension is just the degree shift by k and so �2 acts as

(k) on objects and morphisms. �

Proposition 3.12. The category MCM0
Z

R of generically free maximal Cohen–Macaulay

modules is stably 2-Calabi–Yau.

Proof. By [17, Cor. 3.5], MCM0
Z

R has Serre functor S = (α) where α denotes the Goren-

stein parameter of R. By Lemma 3.10, we have α = k, and by Lemma 3.11, it follows that

S = (k) ∼= �2. �

4 Compatibility

In this section, we fix k ≥ 2 and continue to write R for the Z-graded ring C[x, y]/(xk) with

x in degree 1 and y in degree −1. We set C := MCMZR, and furthermore, we denote the

Hom and Ext1 bifunctors in C by Hom(−, −) and Ext1(−, −), respectively. We will show

that for two generically free MCM modules I and J of rank 1, we have Ext1(I, J) = 0,

if and only if the Plücker coordinates corresponding to I and J are compatible; cf.

Section 2.1.1.
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The key intermediate result of this section is to compute the dimension of the

Ext1-spaces between generically free modules of rank 1 in MCM
Z

R. A formula for this is

provided in Theorem 4.10, and as a consequence, we deduce our following main result.

Theorem 4.1. Let I, J be two generically free rank 1 modules in MCM
Z

R and p�(I) and

p�(J) the corresponding Plücker coordinates. Then Ext1(I, J) = 0 if and only if p�(I) and

p�(J) are compatible.

To prove Theorem 4.1, we show that the k-subsets � := �(I) and m := �(J) are

noncrossing.

This section is structured as follows. In Subsection 4.1, we develop a combina-

torial tool to record the crossing pattern of � and m. In Section 4.2, we provide a general

formula to calculate the dimension of the Ext1-space between any two generically free

modules of rank 1, using the tool from Section 4.1. Section 4.3 provides a concrete

example in the case k = 3. Finally, in Section 4.4, we prove Theorem 4.1, using reduction

to the setting where � and m are disjoint sets.

4.1 Combinatorial tool

Given two k-subsets � and m, we now introduce a combinatorial tool that will help us

to calculate the dimension of Ext1(I(�), I(m)), as well as determining whether or not the

subsets are crossing.

Definition 4.2. Let A(�, m) (respectively B(�, m)) be a (k × k) grid where the vertex

A(�, m)i,j is filled if �i ≤ mj (respectively B(�, m)i,j is filled if �i < mj) and is empty

otherwise.

Example 4.3. Take k = 4, and consider the subsets � and m with

m1 < �1 < �2 = m2 < m3 < �3 < m4 < �4.

Lemma 4.4. If � and m are disjoint k-subsets, then A(�, m) = B(�, m).

Proof. Clear from Definition 4.2. �
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Grassmannian Categories of Infinite Rank 1183

Lemma 4.5. If A(�, m)i,j is filled, then so is A(�, m)p,q for all p ≤ i, q ≥ j. Further, if

A(�, m)i,j is empty, then so is A(�, m)p,q for all p ≥ i, q ≤ j.

Proof. Suppose A(�, m)i,j is filled, and hence by definition, �i ≤ mj. Since the k-subsets

� and m are strictly increasing, if p ≤ i, then �p ≤ �i and similarly, if q ≥ j, then mj ≤ mq.

Thus, for all pairs (p, q) with p ≤ i, q ≥ j,

�p ≤ �i ≤ mj ≤ mq,

and hence A(�, m)p,q is also filled. The 2nd statement is proved similarly. �

In other words, Lemma 4.5 tells us that there is a staircase path obtained by

separating the shaded and empty regions of A(�, m). In Example 4.3, we obtain the

following path:

Note that there is a completely analogous statement of Lemma 4.5 for B(�, m) and thus

we also get a staircase path separating the shaded and unshaded regions there. We use

these staircase paths to define two nonnegative integers associated with the pair � and

m of k-subsets. For 1 ≤ p ≤ k, we define the sets

D+
p = {(i, j) | j − i = k − p}

to be the upper diagonals of a (k × k)-grid and

D−
p = {(i, j) | i − j = k − p}

to be the lower diagonals of a (k × k)-grid. Note that D+
k = D−

k . Below is a picture of

(4 × 4)-grid with the upper diagonals circled.
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1184 J. August et al.

Definition 4.6. With the above notation, we introduce the following.

1. Let α(�, m) be the number of upper diagonals that lie completely above the

staircase path in A(�, m), that is,

α(�, m) :=
⎧⎨
⎩

max1≤p≤k{p | ∀(i, j) ∈ D+
p , �i ≤ mj} if it exists

0 otherwise.

2. Let β(�, m) be the number of lower diagonals that lie completely below the

staircase path in B(�, m), that is,

β(�, m) :=
⎧⎨
⎩

max1≤p≤k{p | ∀(i, j) ∈ D−
p , �i ≥ mj} if it exists

0 otherwise.

When the choice of � and m is clear, we will often shorten α(�, m) to α and β(�, m)

to simply β.

Example 4.7. Returning to Example 4.3, we see that α(�, m) = 3 and β(�, m) = 4.

Lemma 4.8. If � and m are k-subsets, then α(�, m) = β(m, �).

Proof. By definition, D+
p lies completely above the staircase path in A(�, m) if, for all (i, j)

such that j − i = k − p, we have li ≤ mj. Similarly, D−
p lies completely below the staircase

path in B(m, �) if, for all (j, i) with j − i = k−p we have mj ≥ li. Since these conditions are

the same, the number α(�, m) of upper diagonals that lie completely above the staircase

path in A(�, m) is the same as the number β(m, �) of lower diagonals that lie completely

below the staircase path in B(m, �). �
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Grassmannian Categories of Infinite Rank 1185

Lemma 4.9. If � and m are disjoint k-subsets, then they are noncrossing if and only if

the staircase path consists of a single step, that is, looks like one of the following:

Moreover, this holds if and only if α(�, m) + β(�, m) = k.

Proof. Since � and m are disjoint, A(�, m) = B(�, m) by Lemma 4.4 and so there is only

one staircase path associated with the pair. It is straightforward to check that if the path

is one of the four given, then � and m are noncrossing. On the other hand, if the staircase

path for � and m is not one of the four given, the path must have one of the following

local configurations:

In the former case, since � and m are disjoint, we have mj < li−1 < mj+1 < li and thus �

and m are crossing. The latter case follows similarly.

For the 2nd statement, first assume that the step path in A(�, m) (and hence also

in B(�, m) since � and m are disjoint) is one of the four given cases. In each case, it is easy

to read off α and β:

It is clear that in all cases α + β = k.

Now assume that α + β = k. Since � and m are disjoint, we have A(�, m) = B(�, m)

and so both α and β can be determined by looking solely at A(�, m).

Start by considering the case when β = k and α = 0. Since α = 0, we know

that A(�, m)1,k lies below the staircase, and thus by Lemma 4.5, A(�, m)p,q lies below the
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staircase for all 1 ≤ p, q ≤ k. Then the staircase must be

Similarly, considering the case when α = k and β = 0, this implies A(�, m)k,1 lies above

the staircase otherwise β would be at least one. By Lemma 4.5, this implies further that

A(�, m)p,q lies above the staircase for all 1 ≤ p, q ≤ k, and thus the staircase must be

Now assume that 1 < β < k. Since β is chosen to be maximal, we know that there must

exist a pair (i, j) ∈ D−
β+1 such that A(�, m)i,j is above the staircase (i.e., one of the diamond

vertices in Figure 1 must be above the staircase or β would be at least one larger). Note

that such an (i, j) has the form (i, i−(k−β)+1) = (i, i−α+1) where i ∈ {α, . . . , k}. Similarly,

since 1 < α < k is also chosen to be maximal, there exists a pair (p, β +p−1) ∈ D+
α+1 with

p ∈ {1, . . . , α + 1} such that A(�, m)p,q lies below the staircase (i.e., one of the triangle

vertices in Figure 1).

Suppose A(�, m)i,i−α+1 lies above the staircase for some i ∈ {α + 1, . . . , k − 1} (i.e.,

one of the inner vertices on the diagonal D−
β+1). Then, for all p ∈ {1, . . . , α + 1}, we have

p ≤ i and

i − α + 1 ≤ (k − 1) − α + 1 = k − α = β ≤ β + p − 1,

and hence, by Lemma 4.5, all the points A(�, m)p,β+p−1 with p ∈ {1, . . . , α + 1} (all the

triangle vertices in Figure 1) lie above the staircase. Or equivalently, the entire diagonal

D+
α+1 lies above the staircase, contradicting the maximality of α. Therefore, we must have

either A(�, m)α,1 or A(�, m)k,β+1 lying above the staircase.

If A(�, m)k,β+1 lies above the staircase, then, similar to above, all the points

A(�, m)p,β+p−1 with p ∈ {2, . . . , α + 1} lie above the staircase, and thus A(�, m)1,β must

lie below the staircase, so as not to contradict the maximality of α. Thus, we have

A(�, m)k,β+1 above the staircase and A(�, m)1,β below the staircase and so the staircase
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Grassmannian Categories of Infinite Rank 1187

Fig. 1. With k = 5, β = 3, and α = 2, one of the diamond vertices must lie above the staircase

(not drawn), and one of the triangle vertices must lie below. If one of the inner diamond vertices

lies above the staircase, the 2nd picture shows all the triangle vertices must also lie above. The

last picture shows choosing one of the outer diamond vertices leaves one triangle vertex that may

lie below.

must be

If A(�, m)α,1 lies above the staircase, then all the points A(�, m)p,β+p−1 with

p ∈ {1, . . . , α} must lie above the staircase, and thus A(�, m)α+1,k must lie below the

staircase, so as not to contradict the maximality of α. Hence, we have A(�, m)α,1 above

the staircase and A(�, m)α+1,k below the staircase and so the staircase must be

�

4.2 Dimension formula

Now we may use the combinatorial tool developed Section 4.1 to provide a formula for

calculating the dimension of Ext1(I(�), I(m)).
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Theorem 4.10. Given two k-subsets � and m,

dim
C
(Ext1(I(�), I(m))) = α(�, m) + β(�, m) − k − |� ∩ m|.

Remark 4.11. By Proposition 3.12, the subcategory MCM0
Z

R of C consisting of generi-

cally free modules is stably 2-Calabi–Yau, and thus for any two generically free modules

M and N in C, it immediately follows that

dim
C
(Ext1(M, N)) = dim

C
(Ext1(N, M)).

It is easy to see that by combining Lemma 4.8 and Theorem 4.10, our combinatorial tool

allows us to verify this symmetry directly for the generically free modules of rank 1.

To prove Theorem 4.10, we start by fixing the following notation:

• I := I(�) = (xk−1, xk−2yi1 , xk−3yi2 , . . . , xyik−2 , yik−1)(ik) where ik = k−1− �k and

ik−p = �k − �p − (k − p);

• J := I(m) = (xk−1, xk−2yj1 , xk−3yj2 , . . . , xyjk−2 , yjk−1)(jk) where jk = k − 1 − mk

and jk−p = mk − mp − (k − p);

• J := J(degI(x
k−1)) ⊕ J(degI(x

k−2yi1)) ⊕ · · · ⊕ J(degI(y
ik−1)). This means that

an element of J is a vector with m-th component in the ideal J shifted by

degI(x
k−myim−1).

Our 1st observation is that we may assume that ik = 0, or equivalently �k = k−1.

Indeed, if this does not hold, we may shift both I and J by −ik to get to this setting,

which will not affect the Ext calculation as we have only shifted the grading. Moreover,

this corresponds to shifting both � and m by ik and so it does not change A(�, m) or

B(�, m) in any way. For future use, also note that

mp = −jk − jk−p + p − 1 and �p = −ik−p + p − 1, (4.1)

where, for ease of notation, we set i0 = 0 = j0.

4.2.1 Matrix factorisations

In the ring R = C[x, y]/(xk), a matrix factorisation for the ideal

I = (xk−1, xk−2yi1 , xk−3yi2 , . . . , xyik−2 , yik−1),
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Grassmannian Categories of Infinite Rank 1189

where 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik−1 is given as

Rk M−→ Rk N−→ Rk → I → 0,

where M, N are the k × k upper triangular matrices:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk−1 xk−2yi1 xk−3yi2 . . . xyik−2 yik−1

0 xk−1 xk−2yi2−i1 . . . x2yik−2−i1 xyik−1−i1

0 0 xk−1 . . . x3yik−2−i2 x2yik−1−i2

. . .
...

...

xk−1 xk−2yik−1−ik−2

0 xk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x −yi1 0 0

0 x −yi2−i1 0

0 0 x −yi3−i2

. . .
. . .

x −yik−2−ik−3 0

0 x −yik−1−ik−2

0 0 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In particular, a graded projective presentation of I is

R(− degI(x
k−1) − k) ⊕ R(− degI(x

k−2yi1) − k) ⊕ · · · ⊕ R(− degI(y
ik−1) − k)

↓ M

R(− degI(x
k−1) − 1) ⊕ R(− degI(x

k−2yi1) − 1) ⊕ · · · ⊕ R(− degI(y
ik−1) − 1)

↓ N

R(− degI(x
k−1)) ⊕ R(− degI(x

k−2yi1)) ⊕ · · · ⊕ R(− degI(y
ik−1))

↓
I

↓
0
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We remark that the matrix factorisations are not reduced if some of the ijs are

equal.

4.2.2 Strategy

To calculate Ext1(I, J), take the graded projective presentation of I above, and apply the

graded HomZ(−, J) = ⊕
n∈Z Hom(−, J(n)). Since HomZ(R(a), J) ∼= J(−a), this gives

J
NT−→ J(1)

MT−−→ J(k)

and to obtain Ext1(I, J), we calculate (ker(MT)/im(NT))0 or equivalently

ker(MT)0/im(NT)0. In fact, we will only be interested in the dimension of the Ext group

that we can calculate as

dimC(Ext1(I, J)) = dimC(ker(MT)0) − dimC(im(NT)0).

Since the maps are graded and each of the degree zero parts are finite-dimensional

C-vector spaces, we may use the standard rank-nullity theorem to say

dimC(ker(MT)0) = dimC(J(1)0) − dimC(im(MT)0)

and

dim
C
(im(NT)0) = dim

C
(J0) − dim

C
(ker(NT)0).

So our strategy to prove Theorem 4.10 is to determine the complex dimensions of

J0, J(1)0, ker(NT)0 and im(MT)0, and then to combine them to determine dim
C
(Ext1(I, J)).

4.2.3 Calculating dimensions

Lemma 4.12. A degree zero element of J has the following form:

a =

⎛
⎜⎜⎜⎜⎜⎝

a11xk−1y−jk + a12xk−2y−jk−1 + . . . + a1ky−jk+1−k

a21xk−1yi1−jk+1 + a22xk−2yi1−jk + . . . + a2kyi1−jk+2−k

...
...

...
...

...
...

ak1xk−1yik−1−jk+k−1 + ak2xk−2yik−1−jk+k−2 + . . . + akkyik−1−jk

⎞
⎟⎟⎟⎟⎟⎠

where apq is the coefficient of xk−qyp−q+ip−1−jk and apq ∈ C can be nonzero if and only if

�k+1−p ≤ mk+1−q.

Proof. Recall that J(n)0 = Jn, and thus, remembering that J is an ideal shifted by jk,

monomials xayb lie in J(n)0 precisely when a − b = n + jk. In particular, if a = k − q for
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Grassmannian Categories of Infinite Rank 1191

some q = 1, . . . , k, then

b = k − q − n − jk.

Therefore, there is a C-basis for J(n)0 that consists of the subset of

xk−1yk−1−n−jk , xk−2yk−2−n−jk , . . . , xy1−n−jk , y−n−jk ,

which lie in J. In particular, for each p = 1, . . . , k, a degree zero element of

J(deg(xk−pyip−1)) is

k∑
q=1

apqxk−qyp−q+ip−1−jk ,

where apq can be nonzero only if xk−qyp−q+ip−1−jk ∈ J, or equivalently,

p − q + ip−1 − jk ≥ jq−1 ⇐⇒ −jq−1 − jk − q ≥ −ip−1 − p

⇐⇒ −jq−1 − jk + (k + 1 − q) − 1 ≥ −ip−1 + (k + 1 − p) − 1

⇐⇒ mk+1−q ≥ �k+1−p. (using (4.1))

�

Example 4.13. Take k = 3, and consider � = (−2, 0, 2) and m = (−1, 2, 3). These

correspond to ideals

I = (x2, xy, y2) and J = (x2, x, y2)(−1).

In this case, a degree zero element of J = J(2) ⊕ J(0) ⊕ J(−2) is

⎛
⎜⎜⎝

a11x2y + a12x

a21x2y3 + a22xy2

a31x2y5 + a32xy4 + a33y3

⎞
⎟⎟⎠ (4.2)
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where aij ∈ C. Notice that a13 and a23 do not appear since y−1, y /∈ J. Compare this with

A(�, m), and its image after rotating by a half turn:

After rotation, the shape formed by the staircase path is precisely the same as that of the

possibly nonzero coefficients in (4.2). This follows since aij can be nonzero if and only if

�k+1−i ≤ mk+1−j that by definition is if and only if A(�, m)k+1−i,k+1−j is shaded.

Lemma 4.14. With the setup above, dimC(J0) = |{(i, j) | 1 ≤ i, j ≤ k and

A(�, m)i,j is shaded}|.

Proof. It is clear from Lemma 4.12 that

dimC(J0) = |{(i, j) | 1 ≤ i, j ≤ k and aij can be nonzero}|.

Moreover, we know that aij can be nonzero precisely when �k+1−i ≤ mk+1−j that, by

definition, is if and only if A(�, m)k+1−i,k+1−j is shaded. Thus,

dimC(J0) = |{(i, j) | 1 ≤ i, j ≤ k and A(�, m)k+1−i,k+1−j is shaded}|.

The map (i, j) → (k + 1 − i, k + 1 − j) precisely describes the rotation of the (k × k)-grid as

seen in Example 4.13. Since this gives a bijection from {1, . . . , k} × {1, . . . , k} to itself, the

right-hand side is the same as |{(i, j) | 1 ≤ i, j ≤ k and A(�, m)i,j is shaded}| completing

the proof. �

Lemma 4.15. A degree zero element of J(1) has the following form:

b =

⎛
⎜⎜⎜⎜⎜⎝

b11xk−1y−jk−1 + b12xk−2y−jk−2 + . . . + b1kyjk−k

b21xk−1yi1−jk + b22xk−2yi1−jk−1 + . . . + b2kyi1−jk+1−k

...
...

...
...

...
...

bk1xk−1yik−1−jk+k−2 + bk2xk−2yik−1−jk+k−3 + . . . + bkkyik−1−jk−1

⎞
⎟⎟⎟⎟⎟⎠

where bpq is the coefficient of xk−qyp−q+ip−1−jk−1 and bpq ∈ C can be nonzero if and only

if �k+1−p < mk+1−q.
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Grassmannian Categories of Infinite Rank 1193

Proof. This proof is completely analogous to the proof of Lemma 4.12. For each

p = 1, . . . , k, a degree zero element of J(deg(xk−pyip−1) + 1) is

k∑
q=1

bpqxk−qyp−q+ip−1−jk−1

(the y-index drops by one from Lemma 4.12 since we have shifted by one) where bpq can

be nonzero only if xk−qyp−q+ip−1−jk−1 ∈ J, or equivalently,

p − q + ip−1 − jk − 1 ≥ jq−1 ⇐⇒ p − q + ip−1 − jk > jq−1

⇐⇒ −jq−1 − jk − q > −ip−1 − p

⇐⇒ −jq−1 − jk + (k + 1 − q) − 1 > −ip−1 + (k + 1 − p) − 1

⇐⇒ mk+1−q > �k+1−p. (using (4.1))

�

Lemma 4.16. With the setup above, dimC(J(1)0) = |{(i, j) | 1 ≤ i, j ≤ k and

B(�, m)i,j is shaded}|.

Proof. Completely analogous to Lemma 4.14, but now using that, by definition,

mk+1−q > �k+1−p if and only if B(�, m)k+1−i,k+1−j is shaded. �

Corollary 4.17. With the setup above, dim
C
(J0) − dim

C
(J(1)0) = |� ∩ m|.

Proof. Using Lemmas 4.14 and 4.16,

dimC(J0) − dimC(J(1)0) = |{(i, j) | 1 ≤ i, j ≤ k and A(�, m)i,j is shaded}|
− |{(i, j) | 1 ≤ i, j ≤ k and B(�, m)i,j is shaded}|.

Since �i < mj implies �i ≤ mj, it is clear that if B(�, m)i,j is shaded, then so is A(�, m)i,j,

and hence the right-hand side is simply

|{(i, j) | 1 ≤ i, j ≤ k and A(�, m)i,j is shaded and B(�, m)i,j is empty}|
= |{(i, j) | 1 ≤ i, j ≤ k and �i ≤ mj and �i ≥ mj}|

= |{(i, j) | 1 ≤ i, j ≤ k and �i = mj}|.
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For each such pair (i, j), it is clear there is a corresponding element of � ∩ m and since �

and m are strictly increasing sequences, each element of � ∩ m corresponds to a unique

such pair (i, j). Thus,

|{(i, j) | 1 ≤ i, j ≤ k and �i = mj}| = |� ∩ m|

and so dim
C
(J0) − dim

C
(J(1)0) = |� ∩ m| as required. �

Lemma 4.18. With the setup above, dimC(ker(NT)0) = α(�, m).

A calculation for dimC(ker(NT)0) when k = 3 is given in Example 4.21.

Proof. By Lemma 4.12, we know the form of a generic element a of J and applying NT

gives a vector NT(a) with 1st term

k−1∑
q=1

a1q+1xk−qy−jk−q,

and for 2 ≤ p ≤ k, its p-th term is

⎛
⎝k−1∑

q=1

(apq+1 − ap−1q)xk−qy−jk+ip−1+p−q

⎞
⎠ − ap−1ky−jk+ip−1+p−q.

In particular, a ∈ ker(NT) if and only if the coefficient of each monomial in each of these

expressions is zero, that is,

1. a1q = 0 for all q = 2, . . . , k;

2. apk = 0 for all p = 1, . . . , k − 1;

3. apq+1 = ap−1q for all p = 2, . . . , k, q = 1, . . . , k−1 or equivalently, ap+1q+1 = apq

for all 1 ≤ p, q ≤ k − 1.

Note that (3) holds if and only if, in the matrix of coefficients

a11 a12 . . . a1k−1 a1k
a21 a22 . . . a2k−1 a2k
...

...
...

...
...

ak−11 ak−12 . . . ak−1k−1 ak−1k
ak1 ak2 . . . akk−1 akk (4.3)
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Grassmannian Categories of Infinite Rank 1195

the value along each of the diagonals is constant. If we further impose conditions (1) and

(2), this shows that each of the diagonals above the main diagonal must be zero. Thus,

a ∈ ker(NT) if and only if the aij above the main diagonal are zero, and the aij on each

lower diagonal are constant. Hence, we see that for an element of ker(NT)0, there are at

most k-free choices—one for each of the lower diagonals. However, for a given diagonal

D−
p (where here, we are abusing notation by using D±

p to denote diagonals in matrices, as

well as in (k × k) grids), we may only choose something nonzero if all the aij along D−
p

may be nonzero. Thus, dimC(ker(NT)0) is precisely the number of lower diagonals in the

matrix (4.3) along which all aij may be nonzero.

Recall from Lemma 4.12 that aij can be nonzero if and only if �k+1−i ≤ mk+1−j

if and only if the entry A(�, m)k+1−i,k+1−j is shaded. Thus, a lower diagonal in the

matrix (4.3), say D−
p , can be all nonzero if and only if the upper diagonal D+

p in A(�, m)

is completely shaded. Hence, the number of lower diagonals in (4.3) along which all

entries may be nonzero is the same as the number of upper diagonals in A(�, m) that

are completely above the staircase path that, by definition, is α(�, m). �

Lemma 4.19. With the setup above, dim
C
(im(MT)0) = k − β(�, m).

Another computation for dimC(im(MT)0) in the k = 3 case will be shown in

Example 4.22.

Proof. Recall that (MT)p,q = 0 if p < q and (MT)p,q = xk−1−p+qyip−1−iq−1 if p ≥ q.

Applying MT to a generic element b of J(1)0 (cf. Lemma 4.15) is therefore

(MT(b))p =
k∑

q=1

(MT)p,q(b)q

=
k∑

q=1

(MT)p,q

⎛
⎝ k∑

r=1

bqrxk−ryiq−1−jk−1+q−r

⎞
⎠

=
p∑

q=1

xk−1−p+qyip−1−iq−1

⎛
⎝ k∑

r=1

bqrxk−ryiq−1−jk−1+q−r

⎞
⎠

=
p∑

q=1

k∑
r=1

bqrx2k−1−p+q−ryip−1−jk−1+q−r.

Recall that xk = 0 and so for a term x2k−1−p+q−r to be nonzero, it must be that

2k − 1 − p + q − r ≤ k − 1 ⇐⇒ r ≥ k − p + q.
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1196 J. August et al.

Thus, we may write

(MT(b))p =
p∑

q=1

k∑
r=k−p+q

bqrx2k−1−p+q−ryip−1−jk−1+q−r. (4.4)

Now set s = k + q − r. Then, since r ≤ k, we have s = k + q − r ≥ k + q − k = q. Moreover,

since r ≥ k − p + q, we have s = k + q − r ≤ k + q − (k − p + q) = p. Thus, we may reindex

(4.4) to get

(MT(b))p =
p∑

q=1

p∑
s=q

bqk+q−sx
k−1−p+syip−1−jk−1−k+s

=
p∑

s=1

s∑
q=1

bqk+q−sx
k−1−p+syip−1−jk−1−k+s

=
p∑

s=1

xk−1−p+syip−1−jk−1−k+s

⎛
⎝ s∑

q=1

bqk+q−s

⎞
⎠ .

Notice that for each 1 ≤ s ≤ k, the complex number γs := ∑s
q=1 bq,k+q−s appears as

a coefficient in the terms (MT(b))p for p = s, . . . , k, and the γs are mutually independent,

as none of the bij appear as a summand in more than one γs. In particular, we may write

MT(b) as

γ1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk−1y−jk−k

xk−2yi1−jk−k

...

xyik−2−jk−k

yik−1−jk−k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ γ2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

xk−1yi1−jk−(k−1)

...

x2yik−2−jk−(k−1)

xyik−1−jk−(k−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ · · · + γk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

xk−1yik−1−jk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and thus the dimension of im(MT)0 is the number of these vectors whose corresponding

coefficient γs may be nonzero. But γs may be nonzero if and only if at least one of the

bqk+q−s for q = 1, . . . , s may be nonzero and so the dimension of im(MT)0 is the number

of upper diagonals in the coefficient matrix

b11 b12 . . . b1k−1 b1k
b21 b22 . . . b2k−1 b2k
...

...
...

...
...

bk−11 bk−12 . . . bk−1k−1 bk−1k
bk1 bk2 . . . bkk−1 bkk (4.5)
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Grassmannian Categories of Infinite Rank 1197

where at least one coefficient along that diagonal can be nonzero. Equivalently, the

dimension dim
C
(im(MT)0) is precisely k minus the number of upper diagonals where all

the coefficients must be zero. Recall that bij can be nonzero if and only if �k+1−i < mk+1−j

if and only if B(�, m)k+1−i,k+1−j is shaded. Thus, the upper diagonal D+
p in the matrix (4.5)

has to be all zero if and only if the lower diagonal D−
p in B(�, m)i,j is completely unshaded.

Hence, the number of upper diagonals in (4.5) along which all entries have to be zero

is the same as the number of lower diagonals in B(�, m) that are completely below the

staircase path that, by definition, is β(�, m). �

We are now ready to prove Theorem 4.10.

Proof of Theorem 4.10. As explained in Section 4.2.2, dim
C
(Ext1(I(�), I(m))) is calcu-

lated as

dim
C
(ker(MT)0) − dim

C
(im(NT)0),

which by rank-nullity is equal to

(dimC(J(1)0) − dimC((MT)0)) − (dimC(J0) − dimC(ker(NT)0)).

Lemma 4.17 shows

dim
C
(J(1)0) − dim

C
(J0) = −|� ∩ m|,

and Lemmas 4.18 and Lemma 4.19 respectively show that

dimC(ker(NT)0) = α(�, m) and dimC(im(MT)0) = k − β(�, m),

so combining all of these gives

dim
C
(Ext1(I(�), I(m))) = β(�, m) + α(�, m) − k − |� ∩ m|.

�

This gives all we need to prove our main result in the special case when � and m

are disjoint.

Corollary 4.20. Given two disjoint k-subsets � and m, dimC(Ext1(I(�), I(m))) = 0 if and

only if � and m are noncrossing.

Proof. Since � and m are disjoint, |� ∩ m| = 0 and so by Theorem 4.10

dimC(Ext1(I(�), I(m))) = β(�, m) + α(�, m) − k.
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1198 J. August et al.

Thus, Ext1(I(�), I(m)) = 0 if and only if β(�, m) + α(�, m) = k which holds if and only if �

and m are noncrossing by Lemma 4.9. �

4.3 The k = 3 case

In this subsection, we will illustrate the calculations in Lemma 4.18 and Lemma 4.19 in

the k = 3 case.

The following example will demonstrate Lemma 4.18, showing that

dimC(ker(NT)0) = α(�, m).

Example 4.21 (k = 3 example). Applying NT to a generic element a of J = J(2) ⊕ J(1 −
i1) ⊕ J(−i2) gives

NT(a) =

⎛
⎜⎜⎝

a12x2y−j3−1 + a13xy−j3−2

(a22 − a11)x2yi1−j3 + (a23 − a12)xyi1−j3−1 − a13yi1−j3−2

(a32 − a21)x2yi2−j3+1 + (a33 − a22)xyi2−j3 − a23yi2−j3−1

⎞
⎟⎟⎠ .

In particular, a lies in ker(NT)0 if and only if

a11 = a22 = a33, a32 = a21, and a12 = a13 = a23 = 0.

Equivalently, in the matrix of coefficients

a11 a12 a13
a21 a22 a23
a31 a32 a33

all the entries above the main diagonal must be zero, and those connected by a line must

all be equal. Thus, the dimension of ker(NT)0 is at most three, with possible basis vectors

corresponding to each of these lines:

⎛
⎜⎜⎝

x2y−j3

xyi1−j3

yi2−j3

⎞
⎟⎟⎠ ∈ ker(NT)0 ⇐⇒ a11, a22, a33 can all be nonzero

⇐⇒ �1 ≤ m1, �2 ≤ m2, �3 ≤ m3,
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Grassmannian Categories of Infinite Rank 1199

which by definition is if and only if, in A(�, m), all those vertices in diagonal D+
3 , circled

below,

are shaded, or equivalently, this diagonal lies completely above the corresponding

staircase path. Similarly,

⎛
⎜⎜⎝

0

x2yi1−j3+1

xyi2−j3+1

⎞
⎟⎟⎠ ∈ ker(NT)0 ⇐⇒ a21, a32 can both be nonzero

⇐⇒ �2 ≤ m3, �1 ≤ m2,

which by definition is if and only if, in A(�, m), all those vertices in diagonal D+
2 , circled

below,

are shaded, or equivalently, this diagonal lies completely above the corresponding

staircase path. And finally,

⎛
⎜⎜⎝

0

0

x2yi2−j3+2

⎞
⎟⎟⎠ ∈ ker(NT)0 ⇐⇒ a31 can be nonzero

⇐⇒ �1 ≤ m3,

which by definition is if and only if, in A(�, m), all those vertices in the circled

diagonal D+
1
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are shaded, or equivalently, this diagonal lies completely above the corresponding

staircase path. In other words, the dimension of ker(NT)0 is precisely the number of

upper diagonals

which lie completely above the staircase path in A(�, m), which by definition is α(�, m).

This example will show the statement dimC(im(MT)0) = k − β(�, m) in

Lemma 4.19 in the k = 3 case.

Example 4.22 (k = 3 example). Applying MT to a generic element b of J(1) = J(3) ⊕
J(2 − i1) ⊕ J(1 − i2) gives

MT(b) =

⎛
⎜⎜⎝

b13x2y−j3−3

(b12 + b23)x2yi1−j3−2 + b13xyi1−j3−3

(b11 + b22 + b33)x2yi2−j3−1 + (b12 + b23)xyi2−j3−2 − b13yi2−j3−3

⎞
⎟⎟⎠

= b13

⎛
⎜⎜⎝

x2y−j3−3

xyi1−j3−3

yi2−j3−3

⎞
⎟⎟⎠ + (b12 + b23)

⎛
⎜⎜⎝

0

x2yi1−j3−2

xyi2−j3−2

⎞
⎟⎟⎠ + (b11 + b22 + b33)

⎛
⎜⎜⎝

0

0

x2yi2−j3−1

⎞
⎟⎟⎠ .

From this, we see that the dimension of im(MT)0 is at most three, with possible basis

vectors: ⎛
⎜⎜⎝

x2y−j3−3

xyi1−j3−3

yi2−j3−3

⎞
⎟⎟⎠ ∈ im(MT)0 ⇐⇒ b13 can be nonzero

⇐⇒ �3 < m1,

which by definition is if and only if, in B(�, m), at least one of the vertices in the diagonal

D−
1 , circled below,
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Grassmannian Categories of Infinite Rank 1201

lies above the corresponding staircase path. Similarly,⎛
⎜⎜⎝

0

x2yi1−j3−2

xyi2−j3−2

⎞
⎟⎟⎠ ∈ im(MT)0 ⇐⇒ at least one of b12, b23 can be nonzero

⇐⇒ �3 < m2 or �2 < m1,

which by definition is if and only if, in B(�, m), at least one of the vertices in the diagonal

D−
2 , circled below,

lies above the corresponding staircase path. And finally,⎛
⎜⎜⎝

0

0

x2yi2−j3−1

⎞
⎟⎟⎠ ∈ im(MT)0 ⇐⇒ at least one of b11, b22, b33 can be nonzero

⇐⇒ �3 < m3 or �2 < m2 or �1 < m1,

which by definition is if and only if, in B(�, m), at least one of the vertices in the diagonal

D−
3 , circled below,

lies above the corresponding staircase path. In other words, the dimension of im(MT)0

is the number of the circled diagonals in

which lie partially above the staircase path in B(�, m). Or equivalently, the dimension

of im(MT)0 is 3 minus the number of lower diagonals that lie completely below the
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staircase path in B(�, m), which by definition is β(�, m). Hence, dimC(im(MT)0) = 3 −
β(�, m).

Example 4.23. Returning to Example 4.13, we compute dimC(Ext1(I, J)) for the graded

ideals I = (x2, xy, y2) and J = (x2, x, y2)(−1) of R = C[x, y]/(x3). Recall that these ideals

correspond to the 3-subsets � = (−2, 0, 2) and m = (−1, 2, 3), and we may compute that

α(�, m) = 3, β(�, m) = 2 and |� ∩ m| = 1. Using Theorem 4.10, this shows that

dimC(Ext1(I, J)) = 3 + 2 − 3 − 1 = 1.

We see here that dimC(Ext1(I, J)) �= 0 that coincides with the fact that there is a crossing

�1 < m1 < �2 < m3.

4.4 Reduction to disjoint case

Return now to the general setting of k ≥ 2. The dimension formula for Ext1 given in

Theorem 4.10 allowed us to directly prove Theorem 4.1 in the case where � and m are

disjoint. In this final section, we complete the proof of Theorem 4.1 by showing that

when � and m are not disjoint, we may reduce the problem to a setting where they are.

Suppose that � and m are k-subsets such that � ∩ m is non-empty. In particular,

suppose that we have a pair (i, j) such that �i = mj. Note that this corresponds to a

difference between A(�, m) and B(�, m); A(�, m)i,j will be shaded but B(�, m)i,j will not

be. We may form two new (k − 1)-subsets �̃ and m̃ by deleting �i = mj from � and m,

respectively:

�̃p =
⎧⎨
⎩

�p if 1 < p < i

�p+1 if i ≤ p ≤ k − 1
and m̃q =

⎧⎨
⎩

mq if 1 < q < j

mq+1 if j ≤ q ≤ k − 1.

Example 4.24. (k = 5) Taking � and m with

�1 < m1 < �2 = m2 < �3 < m3 < m4 < �4 < m5 < �5

and removing �2 = m2 gives �̃ and m̃ satisfying

�̃1 < m̃1 < �̃2 < m̃2 < m̃3 < �̃3 < m̃4 < �̃4,
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Grassmannian Categories of Infinite Rank 1203

which have A(�, m) and A(̃�, m̃) as follows:

Lemma 4.25. Given k-subsets � and m as above, A(̃�, m̃) is obtained from A(�, m) be

deleting row i and column j. Analogously, B(̃�, m̃) is obtained from B(�, m) be deleting

row i and column j.

Proof. By deleting row i and column j in A(�, m), we split A(�, m) into (up to) four

regions:

• A(�, m)p,q where 1 ≤ p < i and 1 ≤ q < j;

• A(�, m)p,q where 1 ≤ p < i and j < q ≤ k;

• A(�, m)p,q where i < p ≤ k and 1 ≤ q < j;

• A(�, m)p,q where i < p ≤ k and j < q ≤ k.

In the 1st case, we wish to identify A(�, m)p,q with A(̃�, m̃)p,q. In this region, we

have �p = �̃p and mq = m̃q and hence

�p ≤ mq ⇐⇒ �̃p ≤ m̃q

or in other words, A(�, m)p,q is filled if and only if A(̃�, m̃)p,q is filled, as required. In the

2nd region, we wish to identify A(�, m)p,q with A(̃�, m̃)p,q−1. In this region, we have we

have �p = �̃p but since q − 1 ≥ j, we also have mq = m̃q−1. Thus,

�p ≤ mq ⇐⇒ �̃p ≤ m̃q−1,

or in other words, A(�, m)p,q is filled if and only if A(̃�, m̃)p,q−1 is filled, as required. In

the 3rd region, we wish to identify A(�, m)p,q with A(̃�, m̃)p−1,q. In this region, we have

we have mq = m̃q but since p − 1 ≥ i, we also have �p = �̃p−1. Thus,

�p ≤ mq ⇐⇒ �̃p−1 ≤ m̃q,
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or in other words, A(�, m)p,q is filled if and only if A(̃�, m̃)p−1,q is filled, as required. In the

final region, we wish to identify A(�, m)p,q with A(̃�, m̃)p−1,q−1. In this region, we have we

have �p = �̃p−1 and mq = m̃q−1. Thus,

�p ≤ mq ⇐⇒ �̃p−1 ≤ m̃q−1

or in other words, A(�, m)p,q is filled if and only if A(̃�, m̃)p−1,q−1 is filled, as required.

The proof for B(�, m) is exactly the same with all the inequalities changed to strict

inequalities. �

Lemma 4.26. Suppose � and m are k-subsets with �i = mj. Then j − i ≤ k − α(�, m) and

i − j ≤ k − β(�, m).

Proof. Suppose for a contradiction that j− i > k−α(�, m). Since α(�, m) ≤ k, this implies

j − i > 0, and hence we have j > 1. Then,

j − i > k − α(�, m) ⇐⇒ (j − i) − 1 > (k − α(�, m)) − 1

⇐⇒ (j − 1) − i ≥ k − α(�, m).

This shows (i, j − 1) lies on the diagonal D+
p for some p ≤ α(�, m), and so, by definition of

α(�, m), the final line implies A(�, m)i,j−1 is shaded. This implies �i ≤ mj−1 that further

implies mj = �i ≤ mj−1, which is a contradiction. The proof for i − j ≤ k − β(�, m) is

similar. �

Lemma 4.27. With the setup above α(̃�, m̃) ≥ α(�, m) − 1.

Proof. First, note that since �i = mj, there is at least one vertex above the staircase path

in A(�, m) and hence α(�, m) > 0. Also, by the definition of α(�, m), we know that for all

s ≤ α(�, m) the diagonal D+
s is completely shaded, or equivalently,

for all pairs (p, q) with 1 ≤ p, q ≤ k and q − p ≥ k − α(�, m), we have �p ≤ mq. (4.6)

We will prove that in A(̃�, m̃), the diagonal D+
α(�,m)−1 lies completely above the staircase

path from which the result follows. Take a pair (p, q) on this diagonal, that is, with 1 ≤
p, q ≤ k − 1 and q − p = k − α(�, m) = (k − 1) − (α(�, m) − 1). Using (4.6), we see that

�p ≤ mq and �p+1 ≤ mq+1, (4.7)
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where the latter holds since 1 ≤ p + 1, q + 1 ≤ k and (q + 1)− (p + 1) = q − p ≥ k −α(�, m).

Now, the pair (p, q) must lie in one of four regions:

1. 1 ≤ p < i and 1 ≤ q < j;

2. i ≤ p ≤ k − 1 and 1 ≤ q < j;

3. 1 ≤ p < i and j ≤ q ≤ k − 1;

4. i ≤ p ≤ k − 1 and j ≤ q ≤ k − 1.

If (p, q) lies in the 1st region, then �p = �̃p and mq = m̃q. Then, using (4.7),

�̃p = �p ≤ mq = m̃q.

If (p, q) lies in the 2nd region, then, using Lemma 4.26,

q − p < j − i ≤ k − α(�, m),

and thus no such (p, q) lies on the diagonal Dα(�,m)−1 in A(̃�, m̃). If (p, q) lies in the 3rd

region, then �p = �̃p and mq+1 = m̃q. Then, using (4.7) and that mq < mq+1 shows that

�̃p = �p ≤ mq < mq+1 = m̃q.

If (p, q) lies in the 4th region, then �p+1 = �̃p and mq+1 = m̃q. Then, using (4.7),

�̃p = �p+1 ≤ mq+1 = m̃q.

Thus, we have shown that in A(̃�, m̃), all (p, q) on the diagonal D+
α(�,m)−1 lie above the

staircase path as required. �

Lemma 4.28. With the setup above α(̃�, m̃) ≤ α(�, m) − 1.

Proof. Suppose that α(�, m) = k. Since �̃ and m̃ are (k − 1)-subsets, by definition,

α(̃�, m̃) ≤ k − 1 and hence α(̃�, m̃) ≤ α(�, m) − 1 is trivial in this case. Now suppose

α(�, m) < k. Since α(�, m) is maximal, there exists (p, q) ∈ D+
α(�,m)+1 (i.e., 1 ≤ p, q ≤ k and

q − p = k − α(�, m) − 1) such that A(�, m)p,q lies below the staircase path or equivalently,

such that �p > mq. Since A(�, m)i,j lies above the staircase (as �i = mj), Lemma 4.5 shows

that A(�, m)s,t lies above the path whenever we have both s ≤ i and t ≥ j. Thus, we must
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have p > i or q < j. Suppose p > i, or equivalently p ≥ i + 1. Then,

q = p + k − α(�, m) − 1

≥ (i + 1) + (k − α(�, m)) − 1 (since p ≥ i + 1)

≥ (i + 1) + (j − i) − 1 (by Lemma 4.26)

= j.

So we have p − 1 ≥ i and q ≥ j. Thus, �̃p−1 = �p and either

• q = j, and then q − 1 < j and so m̃q−1 = mq−1 ≤ mq;

• q > j, and then m̃q−1 = mq.

Hence, we have �̃p−1 = �p and m̃q−1 ≤ mq, and so,

�̃p−1 = �p > mq ≥ m̃q−1,

where the strict inequality holds as A(�, m)p,q lies below the staircase path. In particular,

the pair (p − 1, q − 1) satisfies (q − 1)− (p − 1) = q − p = k −α(�, m)− 1 and A(̃�, m̃)p−1,q−1

lies below the staircase. If q < j, or equivalently q ≤ j − 1, then,

p = q − k + α(�, m) + 1

≤ (j − 1) − (k − α(�, m)) + 1 (since q ≤ j − 1)

≤ (j − 1) − (j − i) + 1 (by Lemma 4.26)

= i.

So we have q < j and p ≤ i. Thus, m̃q = mq and either

• p = i, and then �̃p = �p+1 > �p;

• p < i, and then �̃p = �p.

Hence, we have �̃p ≥ �p and m̃q = mq, and so,

�̃p ≥ �p > mq = m̃q,

where the strict inequality holds as A(�, m)p,q lies below the staircase path. In particular,

the pair (p, q) satisfy q − p = k − α(�, m) − 1 and A(̃�, m̃)p,q lies below the staircase.
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Moreover, if p = k, then since we know q < j ≤ k, we have k − α(�, m) − 1 = q − p < 0

contradicting α(�, m) < k. Thus, we must have 1 ≤ p, q ≤ k − 1.

Thus, we have shown that there exists 1 ≤ p, q ≤ k − 1 such that q − p = (k − 1) −
α(�, m) and A(̃�, m̃)p,q lies below the staircase. Equivalently, we have shown that in

A(̃�, m̃), the diagonal D+
α(�,m) does not lie completely above the staircase path and thus

α(̃�, m̃) ≤ α(�, m) − 1. �

Corollary 4.29. With the setup above α(̃�, m̃) = α(�, m) − 1.

Proof. Combine Lemmas 4.27 and Lemma 4.28. �

Corollary 4.30. With the setup above β(̃�, m̃) = β(�, m) − 1.

Proof. Combine Corollary 4.29 and Lemma 4.8. �

Example 4.31. Continuing Example 4.24, we see that α(�, m) = 4 and α(̃�, m̃) = 3:

Corollary 4.32. A pair of k-subsets � and m are noncrossing if and only if

α(�, m) + β(�, m) − |� ∩ m| = k.

Proof. Suppose that � and m are disjoint. Then the result is precisely Lemma 4.9 and

we are done.

If � and m are not disjoint, suppose that �i = mj. Then, consider the k−1-subsets

�̃ := � \ {�i} and m̃ := m \ {mj}. Then,

• �̃ and m̃ are noncrossing if and only if � and m are noncrossing;

• |̃� ∩ m̃| = |� ∩ m| − 1;

• α(̃�, m̃) = α(�, m) − 1 using Corollary 4.29;

• β(̃�, m̃) = β(�, m) − 1 using Corollary 4.30;
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If t := |�∩m| = 1, then �̃ and m̃ are disjoint. If not, repeat the process by removing

another equality, and continue until you end up with disjoint (k−t)-subsets �̃ and m̃ such

that

• �̃ and m̃ are noncrossing if and only if � and m are noncrossing;

• α(̃�, m̃) = α(�, m) − t;

• β(̃�, m̃) = β(�, m) − t;

Then,

α(�, m) + β(�, m) − |� ∩ m| = k ⇐⇒ α(�, m) + β(�, m) − t = k

⇐⇒ (α(�, m) − t) + (β(�, m) − t) = k − t (rearrange)

⇐⇒ α(̃�, m̃) + β(̃�, m̃) = k − t

⇐⇒ �̃ and m̃ are noncrossing (by Lemma 4.9)

⇐⇒ � and m are noncrossing.

�

We are now ready to prove Theorem 4.1, keeping the notation from the beginning

of Section 4.1, where � = �(I) and m = �(J).

Proof of Theorem 4.1 Recall that we wish to show dimC(Ext1(I, J)) = 0 if and

only if � and m are noncrossing. But this follows directly from Theorem 4.10 and

Corollary 4.32. �
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