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RESEARCH ARTICLE

Scalable 3D mapping of cities using computer vision and
signals of opportunity

Anahid Basiria,b , Terence Linesb and Miguel Fidel Pereiraa

aSchool of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK; bThe Alan Turing
Institute, London, UK

ABSTRACT
Three-dimensional (3D) maps are used extensively in a variety of
applications, from air and noise pollution modelling to location-
based services such as 3D mapping-aided Global Navigation
Satellite Systems (GNSS), and positioning and navigation for emer-
gency service personnel, unmanned aerial vehicles and autono-
mous vehicles. However, the financial cost associated with
creating and updating 3D maps using the current state-of-the-art
methods such as laser scanning and aerial photogrammetry are
prohibitively expensive. To overcome this, researchers have pro-
posed using GNSS signals to create 3D maps. This paper advances
that family of methods by proposing and implementing a novel
technique that avoids the difficult step of directly classifying
GNSS signals into line-of-sight and non-line-of-sight classes by uti-
lising edge detection techniques adapted from computer vision.
This prevents classification biases and increases the range of envi-
ronments in which GNSS-based 3D mapping methods can be
accurately deployed. Being based on the patterns of blockage
and attenuation of GNSS signals that are freely and globally avail-
able to receive by many mobile phones, makes the proposed
technique a free, scalable and accessible solution. This paper also
identifies some key indicators affecting data collection scalability
and efficiency of the 3D mapping solution.
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1. Introduction

Many applications and location-based services either require three-dimensional (3D)
maps to function or can significantly improve their quality by using 3D maps (Biljecki
et al. 2015) and (Huang et al. 2018). They include urban pollution modelling (Lin et al.
2009), 3D ray-tracing for radio wave propagation modelling (Yun and Iskander 2015),
positioning and navigation for autonomous vehicles (Levinson et al. 2011) and low-alti-
tude unmanned aerial vehicles (Floreano and Wood 2015), 3D mapping-aided Global
Navigation Satellite Systems (GNSS) positioning (Groves et al. 2012) and virtual and
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augmented reality (Santana et al. 2017). Many of these applications only require a
Level Of Detail (LOD) 1 map (Biljecki et al. 2015), also known as a 2.5D map. LOD1
maps represent buildings as flat-roofed blocks extruded from ground level (Kolbe
2009), as shown in Figure 1.

In order to produce LOD1 maps, there are several techniques, including technol-
ogy-based (direct) approaches and inference-based (indirect) approaches. While the
technology-based, such as airborne photogrammetry or laser scanning (Lafarge and
Mallet 2012, Dukai et al. 2019) can provide more consistently accurate and reliable 3D
maps, they are relatively expensive to apply. For example, the cost of modelling a 3D
map for the UK has been estimated at over £19M (Wong 2018). The indirect
approaches, on the other hand, tend to develop models that make use of multiple
sources of data, such as images, laser scans (Musialski et al. 2013), digital surface
model (Musialski et al. 2013) and two-dimensional (2D) building footprints (Dukai et al.
2019, Roy et al. 2022) to estimate height values in urban environments (Roy et al.
2022, Labetski et al. 2023). Although LOD1 map creation using ground-based imagery
or laser scans is possible, aerial imagery and airborne laser scans are best suited to the
problem (Musialski et al. 2013). This raises issues of cost, however, since acquiring that
type of data is financially expensive and can often involve overcoming regulatory con-
straints (Duan and Lafarge 2016). Given the achievable accuracy (Roy et al. 2022) at a
large-scale of cities that are required for some sensitive applications, such as drone
navigation, neither of the approaches yet can provide a solution, and hence we do
not have good coverage of 3D maps at a large scale.

In Yin et al. (2009), a survey of methods that use digitised architectural drawings to
construct highly detailed LOD3 models is presented. But these methods are not fully
automated, requiring human intervention at a scale that makes them unsuitable for
modelling large urban areas (Musialski et al. 2013). Goetz (2013) proposed a fully

Figure 1. A building modelled in different levels of detail (LODs). Source: Institute for Automation
and Applied Computer Science/Karlsruhe Institute of Technology.
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automated framework to generate 3D models using Volunteered Geographic
Information (VGI). Similarly, Biljecki et al. (2017) used the building attribute data to
estimate building height, this time sourcing it from administrative databases using
data-mining techniques. In this method, the final LOD1 maps are created by extruding
the height from the known 2D building footprints. Both methods however are limited
by the availability and accuracy of the input data. Administrative records can often
lack completeness in terms of the building attribute information they hold (Biljecki
et al. 2017), while VGI information also faces issues of completeness and coverage, in
addition to potentially having lower accuracy in terms of the position, shape and
architectural detail of the building footprint (Fan et al. 2014).

Image-based modelling methods that utilise readily available ground-level images
mined from online photo databases can also be used for 3D mapping. These include
structure from motion (SFM) based methods that produce 3D point cloud representa-
tions of varying density, most notably (Pollefeys et al. 2004, Snavely et al. 2008, Xiao
et al. 2009, Fang and Quan 2010, Agarwal et al. 2011, Crandall et al. 2011, Irschara
et al. 2012). These methods form part of the wider computer vision literature on
image-based 3D reconstruction, which continues to be a much-studied problem even
in the era of deep learning (Han et al. 2021). The survey (Musialski et al. 2013) pro-
vides a more detailed treatment of SFM and other multi-input photogrammetry
methods.

This paper proposes a novel solution to extract a 3D map from the freely and glo-
bally available GNSS signals. The proposed approach can provide a scalable solution
that can be applied in different environments including ‘urban canyons’ where the
other GNSS-based solutions may not be reliable.

The rest of this paper is structured as follows: Section 2 explains GNSS-based 3D
mapping in the context of computer vision. Section 3 proposes and implements a
novel technique to extract 3D maps using edge-detection techniques. Section 4 intro-
duces metrics for dataset size and measures their relationships to the algorithm, exam-
ining how data collection efficiency varies in space for some common scenarios. And
finally, the results are presented and discussed followed by a conclusion.

2. Edge detection techniques for GNSS-based 3D mapping

3D mapping using GNSS data has been implemented in a small number of pilot stud-
ies demonstrating its potential (Swinford 2005, Kim et al. 2008, Weissman et al. 2013,
Isaacs et al. 2014, Irish et al. 2014a, 2014b, Rodrigues and Aguiar 2019, Lines and Basiri
2021). GNSS signals are an appealing source of input data for 3D mapping, since they
are free to use, highly available globally (Groves, 2011) and cheaper to collect, store
and process in comparison to other forms of input data such as high-resolution photo-
graphs. Moreover, GNSS data can now be passively collected at an even lower cost
using smartphones. All smartphones running version 7 and above of the Android
operating system can access the ‘raw GNSS’ measurements necessary for GNSS-based
3D mapping (Banville and van Diggelen 2016). Consequently, many of the studies
listed above have used Android smartphones for data collection (Irish et al. 2014a,
2014b, Rodrigues and Aguiar 2019, Lines and Basiri 2021), enthused by the potential

1472 A. BASIRI ET AL.



for large-scale crowd sensing models reminiscent of OpenStreetMap (Haklay and
Weber 2008) and volunteered GPS trajectories (Huang et al. 2013).

The advantage of using GNSS to create 3D maps (GNSS-based 3D mapping) is that
it can be implemented on the majority of smartphones, ie an 85% share of sales glo-
bally (European Global Navigation Satellite Systems Agency 2020, International Data
Corporation 2020) so it can use freely receivable, globally available GNSS signals (Basiri
et al. 2017). This can potentially provide a high (potentially global) coverage and low-
cost solution to the challenges of creating 3D maps. It is suitable for a large-scale
crowdsourcing approach as it has been used already in such contexts (Huang et al.
2013). Data collection on recent Android-running smartphones ie phones manufac-
tured since 2016 is straightforward (Banville and van Diggelen 2016). However, 3D
mapping using GNSS data has been implemented only in a small number of pilot
studies (Swinford 2005, Kim et al. 2008, Weissman et al. 2013, Isaacs et al. 2014, Irish
et al. 2014a, 2014b, Rodrigues and Aguiar 2019, Lines and Basiri 2021). The significant
challenges of using GNSS signals for 3D mapping have made these pilots only demon-
strate potential, and wider use of GNSS signals for 3D mapping still requires overcom-
ing such challenges.

The premise of GNSS-based 3D mapping is to use patterns of signal blockages and
attenuation that arise as signals are occluded, attenuated, reflected and diffracted by
the urban environment to make inferences about the presence or absence of any
intervening objects along the direct line-of-sight (LOS) signal path (Lines and Basiri
2021). This is possible assuming that the location of the receiver is well-known via the
normal operation of GNSS positioning, which requires a favourable satellite geometry
not guaranteed within all urban environments, eg urban canyons. Under these condi-
tions, the position, shape and height of the intervening objects can be determined.

In order to convert these patterns into a 3D map, approaches to-date rely on classi-
fying signals as open (ie having a LOS signal) or closed (ie only comprising a non-line-
of-sight (NLOS) signal which has either been reflected or blocked entirely). This classifi-
cation is highly challenging for data collected by smartphones, due to limitations in
smartphone antenna directionality, polarisation sensitivity and gain, which make it
hard to differentiate true NLOS signals from signals merely exhibiting multipath inter-
ference, or which have been reflected or attenuated due to foliage, body masking or
as a consequence of the antenna gain pattern (Groves and Jiang 2013, McGraw et al.
2020). In addition, creating accurate ground truth labels is challenging without also
having accurate receiver positions, which poses a particular challenge to crowed-
sensed data. The existing GNSS-based mapping methods do not adequately reflect
this uncertainty in the signal classifier or receiver position in their reconstruction algo-
rithms. We, therefore, propose a novel solution to directly extract a 3D map from the
GNSS signal’s carrier-to-noise ratio without having to undertake any intermediate
NLOS/LOS classification step. We expect the proposed approach to improve the final
accuracy of the 3D map and to provide a more scalable solution that can be applied
in challenging environments such as ‘urban canyons’ where the accuracy of NLOS/LOS
signal classifiers is particularly unreliable.

The contribution of this paper is thus two-fold: we propose an approach to GNSS-
based 3D mapping based on edge-detection techniques borrowed from computer
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vision and apply them to GNSS data to create LOD1 maps. Secondly, we identify
measures to meaningfully quantify the size of a GNSS signal dataset and investigate
the effectiveness of different receiver and satellite positions with respect to the accur-
acy of the final estimation. This allows us to draw conclusions on sampling strategies
and the suitability of the method for wide-scale deployment.

2.1. GNSS-based 3D mapping

GNSS-based 3D mapping can be considered a form of multi-view stereography (MVS)
(Furukawa and Hern�andez 2015), ie the identification of common features within a set
of overlapping images and the use of stereographic correspondence to calculate the
distance of the features, thus reconstructing a 3D object. In GNSS-mapping the basic
image is a skyplot, which is an azimuth-elevation plot of the above-horizon satellites
from the point of view of a receiver at a single epoch, as shown in Figure 2.

The commonly used GNSS mapping algorithms are limited due to being relied on a
pre-specified signal strength classifier (Weissman et al. 2013, Isaacs et al. 2014, Irish
et al. 2014a, 2014b, Rodrigues and Aguiar 2019). They also do not reflect the input
uncertainty of the signal classification or positional data in the reconstruction algo-
rithm. The main challenge of GNSS mapping is the extreme sparsity of the observa-
tions at each epoch, which they struggle to deal with.

A GNSS receiver may receive up to around 40 signals in all directions, which is
insufficient to match common features between skyplots. This requires an alternative
approach to MVS, based on inverse ray-tracing (Liu and Cooper 2011) wherein the

Figure 2. Example of a skyplot (azimuth-elevation graph) visualising a set of satellite observations
from a receiver at a single epoch. Reprinted from Lines and Basiri (2021).

1474 A. BASIRI ET AL.



object is given an assumed shape, which is then refined in such a way as to minimise
the inconsistencies between the shape of the object and its corresponding representa-
tion in the given set of 2D images depicting the object.

The act of measuring the consistency between images is a typical component of
MVS techniques (Seitz et al. 2006). In GNSS-based mapping, techniques investigated
to-date have measured consistency by comparing the results of a signal classifier to
the results of using the 3D map as a classifier geometrically, ie all signals which pass
through a building are blocked (NLOS) and LOS otherwise. However, creating accurate
NLOS/LOS classifiers for smartphone GNSS data is a challenging problem. As previ-
ously mentioned, smartphone receivers are linearly polarised meaning they are not
sensitive to the polarisation of the GNSS signal (McGraw et al. 2020). They also tend to
have low gains, but high sensitivity, meaning they can track weak GNSS signals that
often turn out to be NLOS (Wang et al. 2015). This means that the commonly used
approach of classifying signals based on signal strength, ie carrier-to-noise ratio, is
unreliable at best since the specific properties of the antenna result in large overlaps
between the carrier-to-noise ratio distributions of the NLOS and LOS signals (Wang
et al. 2015).

The inverse ray-tracing approach proposed in this paper bypasses this problem.
Instead of the 3D map being used as a geometric classifier, it can be used as the basis
to create a composite image from the many skyplots, by using standard techniques of
epipolar geometry to transform the image viewpoints. This process is illustrated in
Figure 3. The receiver, R, observes a signal pR with azimuth a and elevation �. This
defines a line PR which transforms to the line PV when considering the image from the
viewpoint V (a 2D image with xy coordinates but no z coordinate). If the distance
between the object and the receiver is known, defining point P, the transformed sig-
nal is a point pV in the image.

However, this distance is not known directly from the skyplot. Instead, the 3D map
can provide a distance estimate through intersecting the line PR with the map objects.
Importantly, not all dimensions of the shape need to be fixed to allow this process to
occur. For example, one of the building dimensions can be allowed to extrude without
end. A simple and practical illustration of this idea is to assume the building floor plan
is known while the height is unknown. This is the primary case in practice because we

Figure 3. Generating a composite image from the skyplots using the epipolar geometry.
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assume 2D maps are available. Hence, an image can be generated on the assumption
of an infinite building height, which allows us to directly extract the shape of the
building roof by applying low-level image processing, ie edge detection techniques, to
detect the edges of the building roof.

To clarify the different approaches, GNSS-based 3D mapping may be represented
as a common set of potential pre-processing operations to combine the set of skyplot
images, followed by generating the 3D map using either a consistency-measuring
approach or the proposed edge-detection approach. The pre-processing operations
are as follows:

1. Transformation. A signal classifier is used to transform raw signal features into a
probabilistic or binary classification of open and closed signals. This may help in
subsequent feature detection, depending on the classifier accuracy. However, the
primary reason for this transformation is that corresponding classified signals can
also be generated using a hypothesised 3D map, facilitating a consistency-based
approach.

2. Dimension-reduction. As illustrated in Figure 3, the path of a signal is repre-
sented as a point in the corresponding skyplot, but a line under a change of view-
point. To combine points across a series of skyplots into a common viewpoint, it
is necessary to intersect the signals with a polygon or plane, eg the footprint of a
building. This reduces each line to a point within a 2D image. A further dimension
reduction can also be achieved by binding the 3D map to the LOD1 assumption,
ie assuming that the building can only have a flat roof which means the height as
the only dimension of freedom. Similar to the approaches that are taken in
Swinford (2005), Kim et al. (2008), Weissman et al. (2013) and Lines and Basiri
(2021). This would allow the edge detection approach to directly extract the LOD1
building height by detecting the ‘edge of the building’ as it were.

3. Pixelation. Converting the signals into a pixel (or voxel) grid with one value per
pixel. Each pixel contains many signals, which may mitigate the effects of meas-
urement noise. A coarse resolution (eg 1–4 m cubed) has been used in implemen-
tations (Irish et al. 2014b, Rodrigues and Aguiar 2019), on the basis that it is
appropriate for the underlying position uncertainty and size of collected data sets.
For example, Irish et al. (2014b) used a probabilistic classifier on each signal and
then combined using the Bayes rule, and Rodrigues and Aguiar (2019) directly
classified pixels based on features of the set of intersecting signals. The advan-
tages of pixelation are that it can combine signals without requiring dimension
reduction and the pixel grid can be used directly as a 3D map or as the input
into further steps, at the expense of discarding a great deal of information.

Having processed the images into a combined set, a number of consistency metrics
between the map and image-set can be implemented to generate the 3D map
through minimising inconsistency. They include the number of misclassified LOS sig-
nals (Swinford 2005), the ratio of misclassified NLOS signals (Kim et al. 2008) and
hinge-loss function (Weissman et al. 2013). While consistency-based measures cannot
be regarded as reliable as they are highly susceptible to bias in the underlying signal
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classifier (Lines and Basiri 2021), an edge detection approach does not require any sig-
nal classification to take place. Therefore, the building shape can be extracted from a
composite image using edge detection methods, a form of low-level image feature
extraction, as described in Cyganek and Siebert (2009).

2.2. Edge detection for 3D mapping

Edge detection relies on identifying the portion of the image where the signal under-
goes significant change. This can be achieved by considering the signal gradient vec-
tor:

rI ¼ oI
ox

,
oI
oy

� �T

(1)

The norm of the vector, jjrIjj, is maximised in areas of rapid change, such as
edges. An equivalent approach is to consider zeros of the Laplacian:

DI ¼ o2I
ox2

þ o2I
oy2

 !
(2)

which equates to local maxima of the gradient vector norm.
Prior to applying these methods to edge detection, it is necessary to remove noise

from the image. Two common approaches include (A) applying a smoothing filter (eg
Gaussian) to the image, prior to applying a differentiating operator (Cyganek and
Siebert 2009) or (B) using Savitsky-Golay filters (Press and Teukolsky 1990), which fit a
polynomial to a window around each sample-point. As images are naturally pixelated,
a number of different operators exist to best approximate the continuous functions
and their derivatives from the discrete measurements. However, as the intent is to
reconstruct an underlying continuous function, we can apply the same principles to
non-pixelated signal data.

A similar method named the bootstrapped four-parameter logistic regression (4PL-
B) was introduced in Lines and Basiri (2021). On the basis of class-conditional inde-
pendency between the height and the signal strength, the approach used a four-par-
ameter logistic curve fit to classified signal data. A four-parameter logistic curve is a
generalised logistic curve where the asymptotes can vary from 0 and 1, respectively.
The varying asymptotes allowed for inaccuracy in classifying the signal data. Once a
3D map was generated it was used to train the signal classifier and the process was
repeated, hence the bootstrapping part of the algorithm. Similar to edge-detection
methods, the height was considered as a function of the maximum gradient of the
curve with some allowances for asymmetric diffraction effects. Key differences to the
techniques proposed here are that it was fit to the classified signals as opposed to the
untransformed data, and that more generalised smoothing functions were not consid-
ered. The four-parameter logistic curve has some differences to other smoothing func-
tions that may be useful for edge detection. Firstly, it is fit using the entire data set,
unlike typical edge detection methods which utilise local data to generate a smoothed
function. Secondly, it imposes a bell-curve shape to the gradient. Together, these
points are equivalent to the restriction that there is only one edge in the image and
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no other variations in the intensity. This inflexibility may avoid false-positives in detect-
ing edges, although this needs to be tested in practice.

3. Experiment and results

To examine the performance of different smoothing curves with regard to their edge
detection properties, we apply them to a dataset of GNSS measurements collected in
several areas with different urban structures and features, including urban canyons,
open sky and residential neighbourhoods. The proposed approach has been imple-
mented and tested using data collected in several locations, however, for the sake of
comparability with previous work, the common three representative environments of
open sky, residential and urban canyon are discussed here. We select the three sites in
Greater London which are the same sites where the dataset was collected and made
accessible for Lines and Basiri (2021), allowing direct comparison with their method,
which has already been benchmarked against other GNSS-based mapping approaches.

3.1. Implementation

The GNSS dataset was collected in three representative locations with diverse building
heights, materials and surrounding environments: the main quadrangle of University
College London (UCL), a block of flats in an urban canyon (Goodchild Road) and a
Victorian-era terrace of residential housing (Hermitage Road). Data presented in this
paper were collected using a Samsung Galaxy 10 smartphone running Android 10.0.
Four different smartphones were also used as GNSS receivers to compare and control
the receivers’ sensitivity. Those devices were: a Huawei P30 running Android 9.0,
Google Pixel 3 and 4 running Android 9.0 and 10.0, respectively, and another
Samsung Galaxy 10 running Android 10.0. All phones are embedded with multi-con-
stellation GNSS receivers that are able to receive all four major GNSS constellations:
GPS, GLObal NAvigation Satellite System (GLONASS), Beidou and Galileo. To collect the
GNSS signal data, we developed our own data collection application based on
Google’s GNSS Logger (Banville and van Diggelen 2016), that allowed for the manual
input of location along with access to the ‘raw GNSS’ data: GNSS position solutions
and satellite identifiers which are used to determine the direct signal path and the car-
rier-to-noise ratios. Locations were manually recorded using visual map matching,
since inaccuracies in the position estimate can result in consequential building height
estimation errors for the recorded locations that can come from map matching. The
errors in position solutions are minimised as they can lead to consequential errors in
calculated intersection heights.

The measurement protocol was to place the receiver in a static location at each site
and record at 1 Hz frequency for around 30min. This was repeated at different loca-
tions and times of day to allow the satellite geometries to change. Movement during
recording varied: six sets were in a static location and eight sets were walking loops
with up to 50 different predetermined positions where the observer paused for a brief
period of around 20 s. For these locations, we manually inputted the observer location
based on a visual determination against a small-scale map, with an estimated location
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error of below 5 m. Between 90,000 and 150,000 signals that intersected with the
building floor plan were recorded at each site. Figure 4 shows the spatial patterns of
the intersections, illustrating typical paths generated by the orbiting satellites and a
static receiver.

Due to the relative sparsity of the dataset, we made the further dimensionality
reducing assumption introduced in Section 2, of assuming the building to be LOD1, ie
flat-roofed. Because of this, and because the effects of occlusion are not being consid-
ered, we are therefore able to work directly with the intersection heights as a proxy
for the height of the building, rather than imposing a viewpoint from a particular dir-
ection. This reduces the interpolation to fitting univariate smoothing functions to a
dataset of signal strength versus intersection heights, independent of other signal
path variables.

Signals that were blocked entirely, but are known to have been above the horizon
from orbit records, were recorded with a ‘not available’ (NA) signal strength. These
missing values were imputed as 10dBHz. This appears to be the minimum value for
which the receiver registers a signal based on the truncated distribution of observed
values and assumes the NLOS signal distribution follows a typical Rayleigh distribution
(Molisch 2011).

Four different smoothing methods were tested:

� four-parameter logistic curve, as described above.
� smoothing spline
� regression spline
� LOWESS (locally weighted scatterplot smoothing) curve

Figure 4. Recorded patterns of observed signals intersecting with building footprints.
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with cubic polynomials used in the splines and LOWESS curve to ensure continuity of
the second derivative (Hastie et al. 2009).

3.2. Results and discussion

The smoothing parameter for the smoothing spline, knots for the regression spline
and span of the LOWESS curve were determined by manual inspection of the results.
The four-parameter logistic curve does not require parameterisation. All curves were
fit to the observations using least-squares.

The smoothing spline was rejected at this stage because it seemed to be too sensi-
tive to the smoothing parameter used and tended to either collapse into a cubic func-
tion or be insufficiently smoothed. The knots for the regression spline were spaced on
the X-axis at the greater of 5 m and 10% of the data between knots. This mitigated
the uneven distribution of observations at different heights and generated around
three to four knots in the spline. The LOWESS curve was fit with a span of 70% of the
dataset and used a tri-cube weight function.

Both the LOWESS curve and regression spline take into account a relatively large
proportion of the data, compared to typical edge detection, which tend to fit to local-
ised data. This is primarily due to the high levels of noise in the data, but also because
ideally only one edge should be detected, and hence a high amount of smoothing
must occur.

The results of the smoothing process applied to the dataset are shown in Figure 5.
The experiment was repeated using the GNSS-position solutions to calculate intersec-
tion heights, with results shown in Figure 6. The errors in the height estimates pro-
duced by each curve are shown in Table 1, alongside the benchmark error estimates
achieved in Lines and Basiri (2021). The uncertainty of the estimated height reported
by LOWESS can be found in Table 2. The results show an improvement on the existing
methods.

Overall, the results show that building edges can be successfully detected directly
from signal strength without the need to transform the signal through classification,
by generating interpolations of the signal strength intensity and identifying gradient
maxima representing the building edge. This means that by using building footprints,
which are relatively widely available through proprietary and open source VGI data-
bases, one can apply the edge detection method to produce LOD1 maps since the
detected edges represent the LOD1 building height. An example of this is shown in
Figure 7, where the darker coloured/purple building represents the UCL building
whose height has been estimated using the edge detection method.

Edge detection seems to work with a similar magnitude of accuracy to the 4PL-B
algorithm. The GNSS readings, shown in Figure 4 for each site created composite
images, having made the images blurred horizontally, it is possible to use the edge
detection algorithm. As shown in Figure 8, the most distinct edges correspond well to
the actual height. The actual height for Hermitage Road, Goodchild Road and UCL
buildings are, respectively, 34m, 47m and 46m. These are estimated using the pro-
posed approach, ie horizontal blurring the GNSS readings and applying the edge
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Figure 5. Interpolations and gradients for the datasets with manually-input locations with respect
to the height (m).

Figure 6. Interpolations and gradients for the datasets with GNSS location solutions with respect
to the height (m).
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Table 1. Absolute error of height estimates for the buildings at three different locations.
Location

Algorithm Goodchild Road Hermitage Road UCL

4PL 14.1m 0.8m 5.1m
Reg. spline 1.1m 0.2m [4.7m, 35.2m]a

LOWESS 0.4m 0.6m 4.7m
4PL-Bb 6.3m 1.3m 1.5m
Hinge-Loss 5.6m 10.1m 9.9m
Bayes 7.6m 29.9m 31.6m

Repeated using GNSS-based position estimates
4PL 12.9m n/a 5.7m
Reg. spline 13.0m n/a 5.7m
LOWESS [5.6m, 12.4m]a [0.0m, 6.1m]a 4.9m
4PL-Bb 12.2m 0.8m 1.1m
Hinge-Loss 5.6m 10.1m 9.9m
Bayes 7.6m 29.9m 31.6m
aMultiple identified peaks.
bClassification based technique introduced in Lines and Basiri (2021).

Table 2. Uncertainty reported by LOWESS algorithm.
UCL Goodchild Road Hermitage Road

Manually input locations

Min-max heights 42.4m–48.3m 45.4m–45.8m 33.6m–35.2m
uncertainty range 4.7m 0.4m 0.6m
GNSS position solutions

Min-max heights 40.7m–49.8m 41.4m–48.3m 32.7m–36.8m
uncertainty range 7.1m 3.8m 4.9m
Google Earth

Min-max heights 44.0m–47.0m 47.0m 33.0–35.0m
uncertainty range 3.0m 0.0m 2.0m

Notes: Google Earth uncertainty for UCL height is that of the Library entrance hall. The entire building has a height
which ranges between 26.0m and 58.0m OSMastermap.

Figure 7. Extruded building footprints using the estimated height. The darker coloured/purple
building indicates the UCL building using v9.7.1 of the Mapbox Maps SDK.
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detection, 37.2m, 47.6m and 46.4m, respectively. The RMSE of 3D mapping algorithm
for a larger sample size is presented in Table 1.

The LOWESS curve and regression spline generated similar interpolations, with the
four-parameter logistic curve producing a different result. The differences appear due
to the four-parameter logistic curve’s (A) imposed asymptotically-zero gradient at
boundaries and (B) restriction to one maxima. These differences lead to some advan-
tages and disadvantages. An advantage was that the other curves tended to overfit to
the sparse data at high intersection heights, and at both boundaries the other curves
often showed large gradients, leading to ambiguity as to whether an edge may be
present at the boundary of the data. A disadvantage of the maxima restriction is
when there are false patterns of changing signal strength intensity, as this can lead to
the incorrect maxima being chosen. This is particularly problematic due to the least-
squares fitting of the four-parameter logistic function which will tend to generate a
curve where there is more data, even if there is a strong change of intensity
elsewhere.

An incorrectly chosen maxima can be seen in the results for Goodchild Road in
Figure 5, where there is a pattern of increasing signal strength at low heights. We
believe this may be due to signals reflecting on nearby buildings. For urban canyons,
such as the Goodchild Road environment, the false patterns may be prone to being

Figure 8. GNSS readings for each site as a composite image and the height estimation from the
most distinct edges.
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identified because the spatial distribution of data collection may potentially lead to a
number of recorded signals intersecting the building at a low height.

The shapes of the interpolations are similar when the dataset is used with the
GNSS-position solutions (Figure 6). However, the additional noise causes the peaks in
the gradient to be less well-defined. This may lead to decreased success in identifying
building height, with peaks being missed or false peaks identified. In these cases, the
flexibility of the LOWESS curve and regression spline appear to have an advantage as
the changes of intensity identifying an edge are still present around the true heights,
albeit other false peaks are generated. Table 1 compares the accuracy of the investi-
gated edge-detection techniques against a benchmark classification-based technique:
the bootstrapped four-parameter logistic (‘4PL-B’) technique (Lines and Basiri 2021),
which was shown to perform better than others. This fits the four-parameter logistic
curve to classified signals and uses the results to iteratively train the signal classifier.
Results are mixed: the regression spline and LOWESS curves outperform the bench-
marks in Goodchild Road, which is the most challenging environment, however, the
4PL-B approach is better at estimating the height of buildings in non-urban canyon
environments, such as at the UCL site.

It is unclear why the 4PL-B technique is better at estimating the height of the UCL
building. However, one possible reason is the asymmetric effect of diffraction on signal
intensity: signals diffracted by a building edge can still be received at up to. Five
degrees of diffraction (Bradbury 2007). The 4PL-B technique accounts for this by esti-
mating height at around half-way down the upper slope of the gradient peak, as
opposed to the top. A similar amendment to the edge detection techniques would
improve the UCL height estimate but worsen the estimates for other locations.
Overall, the results show there are advantages, especially in more challenging environ-
ments, to using the more flexible interpolation methods over the 4PL, which can be
too restrictive. It also suggests that a better interpolation function may be possible by
combining elements from both types, ie a flexible function which is restricted by
ensuring gradients tends to zero at boundaries. As the transformed 4PL method out-
performs the 4PL method in some instances, improvements may be possible by trans-
forming the data before applying the LOWESS curve and regression spline.

A limitation of the approach is that it requires accurate 2D maps, in the form of
buildings floor plans, to initialise the approach. It is still of valuable application in the
many areas where such maps are readily available, however, future work would con-
sider extending the approach to scenarios where the footprint is not accurately
known.

4. Sampling effectiveness

Some of the existing GNSS-based mapping methods have chosen to collect data using
a crowd-sensing model, relying on GNSS data collected voluntarily via android applica-
tion as in Rodrigues and Aguiar (2019). To justify large-scale data collection, however,
it is important to understand the relationship between the quantity of data collected
and the resulting 3D maps. To do this, the following section introduces metrics to
meaningfully quantify the amount of data collected and thereafter, we investigate the
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relationship between data size and data collection strategy and the quality of the
resulting dataset and building height estimates.

4.1. Data size metrics

The proposed edge detection approach heavily relies on GNSS data, particularly the
observations that pass close to a building’s edge. This implies that the value of a
GNSS-mapping data set is defined specific to an individual building and varies
between buildings. Of course, the definition can then be extended across multiple
buildings by combining those specific values. Two natural metrics can be considered:

� an Intersection metric, which measures the number of observations in a data set
that pass within a certain distance of the building edges; and

� a Window metric, which measures the distance from the building edges needed
in order to include a certain number of observations.

Given a set of observations D and building B, these metrics can be formally stated
as:

IdðD, BÞ ¼ jvdistancefromB<¼dðDÞj (3)

WnðD, BÞ ¼ mina 2 R
þ such that IaðD, BÞ >¼ n (4)

where v is the indicator function.
For a given D and B, Id and Wn are monotonic functions in d and m, respectively, ie

Im > In () m > n, and Wm > Wn () m > n: Furthermore, I1 is the size of D.

4.2. Sampling

The proposed 3D mapping technique takes the building footprint from existing 2D
maps and uses GNSS signals to determine building height. Here the datasets are fil-
tered to only include signals that intersect the footprint of the chosen buildings. After
filtering, the total number of observations in each dataset ranges from 109,467 at
Goodchild Road to 245,619 at UCL. To create datasets of varying sizes, each location’s
dataset was repeatedly sampled; 350,000 different datasets were created with a size
distribution shown in Figure 9.

To estimate the building heights, a four-parameter logistic curve was applied to sig-
nal strengths. A four-parameter logistic curve is a generalised logistic curve where the
asymptotes can vary from 0 and 1 (Healy 1972). Its equation is as follows:

y ¼ d þ a� d
1þ exp ð�bðx � cÞÞ (5)

where a and d are the upper and lower asymptotes, respectively, and b and c are the
standard linear coefficients in x. This algorithm directly identifies building edges. It
works by taking a dataset of (signal strength, intersection height) pairs and generating
signal strength as a smooth function of height by fitting a four-parameter logistic
curve using ordinary least-squares. The height is predicted as c� 1:5=b, (the curve’s
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inflection point plus circa half the curve’s width), to correct for diffraction effects
(Lines and Basiri 2021).

4.3. Results

Six different intersection metrics (I1,I2,I4,I8,I16 and I1, with the distance measured in
metres) and four different window metrics (W1,W10,W100,W1000) were calculated for
each sample. The intersection metric and the window metric have an inverse relation-
ship ie there is a linear relationship between Id and 1=Wn, as shown in Figure 10.

A pairwise Pearson’s correlation matrix is generated to quantify the relationship
between the intersection metrics and the inverse of the window metrics, as shown in
Figure 11. All the intersection metrics are strongly positively correlated, with the cor-
relation increasing steadily as the distance parameters of the metrics become closer.
The W1 metric is an outlier, showing little correlation to either the other window met-
rics or the intersection metrics. The other window metrics are almost perfectly

Figure 9. Histogram of generated sample sizes (I1).

Figure 10. Relationship between a typical intersection metric (horizontal axis) and inverse of a win-
dow metric (vertical axis).
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correlated with each other and highly correlated to the intersection metrics with a
small distance parameter eg I1.

On this basis, the intersection metrics I2, I8 and I1 were chosen as typical sample size
metrics to categorise a dataset. For each location and measured sample size, the root
mean square error (RMSE) of the height estimates was calculated and a smooth trend line
was produced using a LOWESS function, as shown in Figure 12. The trend lines show that
the error of the height estimate decreases exponentially with dataset size, but rapidly
reaches a stable error beyond which additional data does not improve the algorithm’s
estimate. This is achieved at a relatively small sample size, ie between 10 and 100 samples
consistently, ie in any of the metrics. For the collected samples, the high correlation
between metrics makes it difficult to determine whether a particular metric is more
closely related to algorithm performance or not. The correlation seems to be partly due
to the closeness of the observer to the building. Closer the location of the receiver to the
building can result in a larger proportion of observations become at low heights as most
of the satellites are at a low altitude. If observations further from the building were used,
it is possible the I1 metric in particular would decorrelate. The relationship between dis-
tance and usefulness of observation is examined in the next section.

4.4. Spatiotemporal location and collection efficiency

A GNSS observation, taken at a location and time, will contribute to the accuracy of a
GNSS-based 3D-mapping algorithm if the rays to the GNSS satellites pass close to the
edge of a building, increasing the sample size as measured by the sample size metrics
defined in section 4.1. Because GNSS satellites orbit the earth in predetermined patterns,
the usefulness of a location and time combination for GNSS-based 3D-mapping is prede-
termined by the building’s shape. As the building shape is not known in advance, this
does not give precise guidance on when and where an observation should be taken,
however, key determinants of observation efficiency can still be determined.

A simulation was implemented as follows. First, a square building with sides of 10
m and height of 10 m was generated on an otherwise uniform plane with a

Figure 11. Pearson’s pairwise correlation matrix for different sample size metrics.
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hypothetical location of British National Grid 528000 Northing, 183000 Easting, which
is in central London. The location only affects the relative position of satellite orbits.
Next, a uniformly random process in space and time was used to generate over 10
million observer locations within a 100-m square bounding box centred at the build-
ing in the 24-h period of 1 January 2021. The date and location have no significance.
Lastly, GNSS orbit data was used to reconstruct the satellite positions at each moment
for each of the main four GNSS constellations of GPS, GLONASS, Beidou and Galileo,
allowing the satellite signal paths to be calculated.

Only 7% of observations are useful with regard to the coarsest metric I1, and the
number of useful observations decreases as the metric parameter decreases, as shown
in Table 3. As a reminder, this is a slight abuse of notation as we are only considering
vertical distance, and requiring all signals to intersect the given building floor plan.

Figure 12. RMSE of height estimates using a LOWESS function (vertical axis) with varying sample
size in metre (horizontal axis).

Table 3. Simulation sample size by metric.
Metric Size Percentage of total

Entire dataset 11.74 million 100%
I1 0.82 million 7.0%
I8 0.44 million 3.8%
I1 0.05 million 0.4%
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We first consider sample size under the I1 metric as this is independent of the
building height. There is a strong connection between distance and the probability of
an observation contributing to the I1 metric. A logistic regression on the simulated
data, shows the probability of an observation contributing is related to the distance of
the observation is as follows:

LogOdds ¼ 0:1288 ð0:120� 0:138Þ � 0:846 ð0:843� 0:849Þ log ð1þ distanceÞ (6)

where the bracketed figures are the 95% confidence intervals, and 1 is added to dis-
tance to avoid taking the logarithm of 0.

The logistic model seems to represent a strong explanatory power. This is illus-
trated in Figure 13. As it is illustrated in Figure 14 there are explainable spatial correla-
tions to the residuals. The intuitive interpretation of the spatial distribution of
residuals can confirm the result shown in Figure 14. An observer standing near the
corner of a building is less likely to have rays that intersect it versus standing along a
wall. Other patterns reflect the relative orbit positions of satellites (to the South-East
and South-West) with respect to the hypothetical Northern hemisphere location. These
results relate to the simulated 10m square building, and thus should be scaled pro-
portionately with building size.

The I1 metric does not take into account the height at which a ray intersects a build-
ing, however, other metrics do. The majority of observations have a low elevation, causing
the intersection height to be a small fraction of their distance from the building, as shown
in Figure 15. Hence for a taller building, as the distance from a building increases the
more likely it is that an intersection is close to the building edge. This effect combines
with the opposite effect of decreasing the likelihood of intersection at any height with
distance, leading to lower probabilities of useful observations at either extreme of dis-
tance, with a maximum likelihood obtained somewhere in the middle. The relationship
depends on the height of the building, as shown in Figure 16.

For taller buildings, the best distance for observations is further away, and the max-
imum likelihood obtained is lower, as it is always bounded above by the monotonic-
ally decreasing I1 metric. Excluding the I1 metric as a special case, different

Figure 13. Logistic regression and binned empirical proportions for the probability of an observa-
tion contributing to I1 metric against distance from the building.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 1489



intersection metrics vary with distance in a practically identical way, but with a propor-
tionately lower probability as the metric parameter decreases.

5. Conclusion

GNSS-based 3D mapping could be a low-cost alternative for producing large-scale 3D
maps. This would be of particular benefit in areas unable to produce 3D maps due to the
prohibitive cost of existing technologies. These maps are a key requirement for improved
location-based services, in particular navigation and positioning. Existing methods to cre-
ate GNSS-based 3D maps have been limited by their reliance on signal classification tech-
niques. This paper demonstrates the ability to generate 3D maps directly from GNSS
signals by creating composite images and extracting low-level features, without requiring

Figure 14. Residual probability of observations contributing to I1 metric after applying a regres-
sion model for observer distance(m) from a 10m square building.

Figure 15. Distribution of observation elevations.
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classification. The methods introduced in this paper appear to be more robust than exist-
ing approaches to identifying building heights in challenging environments and with typ-
ical position uncertainty. The paper also demonstrates that the amount of data required
by the edge detection method is low, provided the data are strategically collected. The
insight from sampling effectiveness can be used for crowdsourcing mobile app design
and incentivising volunteers to collect data where it is most advantageous, for example,
for taller buildings the best distance for making observations is further away.
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