
Li, Y., Fan, Y., Zhang, L. and Crowcroft, J. (2023) RAFT consensus reliability in 

wireless networks: probabilistic analysis. IEEE Internet of Things Journal, 
10(14), pp. 12839-12853 (doi: 10.1109/JIOT.2023.3257402). 

There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 

https://eprints.gla.ac.uk/294298/ 

Deposited on: 14 March 2023 

Enlighten – Research publications by members of the University of Glasgow 
https://eprints.gla.ac.uk 

https://eprints.gla.ac.uk/294298/
https://eprints.gla.ac.uk/


1

RAFT Consensus Reliability in Wireless Networks:
Probabilistic Analysis

Yuetai Li, Yixuan Fan, Lei Zhang, Senior Member, IEEE and Jon Crowcroft, Fellow, IEEE

Abstract—The centralized system becomes less efficient, secure,
and resilient as the network size and heterogeneity increase
due to its inherent single point of failure issues. Distributed
consensus mechanisms characterized by decentralization, auton-
omy, parallelism and fault-tolerance can meet the increasing
demands of safety and security in critical interconnected systems.
This paper establishes a Node and Link probabilistic failure
model in the presence of node and communication link failures
for a representative crash fault tolerant distributed consensus
protocol: RAFT. The analytical results in terms of the probability
density function and the mean value of consensus reliability
are derived. Two important reliability performance indicators,
Reliability Gain and Tolerance Gain are proposed to indicate
the linear relationship between the consensus reliability and two
basic parameters, i.e. the joint failure rate and the maximum
number of tolerant faulty nodes, which provide the theoretical
guidance for quickly deploying a RAFT system. The special case
of a distributed consensus network with already a certain number
of failures and its adverse impact are evaluated. The Markov
probabilistic models, definitions of Reliability Gain and Tolerance
Gain, and the analysis methods proposed in this paper can be
extended to other consensus mechanisms.

Index Terms—Internet of Things, Distributed Consensus
Mechanism, RAFT, Reliability, Fault Tolerance

I. INTRODUCTION

Driven by advances in 5G, industry 4.0, cloud/edge comput-
ing and artificial intelligence, etc., the Internet of Things (IoT)
is envisioned to be extensively applied to critical and complex
systems, such as transportation, healthcare, automation, supply
chain and finance sectors [1]. These vital societal and indus-
trial functions are increasingly interconnected for information
exchange through communication networks to complete joint
tasks for achieving a safer, securer and more efficient digital
society. For instance, connected autonomous vehicles may
exchange information and make joint decisions with proximity
in a real-time manner based on the data collected by sensors
equipped locally (e.g., infrared sensor, inductive sensor, etc.).

Centralized architectures have been widely deployed in
interconnected systems in the industry. Under such an archi-
tecture, the central node is highly resource demanding since all
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other nodes can only synchronize the states with the central
one. A failure of the central node leads to a system crash.
Thus, the reliability performance of the network is determined
by the condition of the central node [2]. In addition, such an
architecture limits the topology of network communication to
some extent, putting enormous pressure on important links [3].
On the other hand, the central node has higher privileges than
other nodes. In some privacy-sensitive situations, the central
node may trigger privacy issues because of its dominance over
the system. The issues are worse with the increase of network
size, nodes heterogeneity and security threaten.

Distributed systems, on the other hand, can provide fault-
tolerant, transparent and robust solutions that maintain the
efficiency, security, and scalability of large systems. Research
on distributed systems has led to a large number of applica-
tions such as distributed computing [4], federated learning [5],
blockchain [6], and distributed sensor networks [7]. However,
network delay, time and clock issues are the main challenges
in distributed systems [8]. Distributed consensus algorithms
are designed to ensure that most of the network nodes can
achieve the necessary agreement on states and tolerate certain
types of faults in the progress [9]. As such, they are considered
as a core of the distributed system to provide liveness, safety
and fault-tolerance capability [10].

A. Background: distributed consensus algorithm

Consensus algorithms can be categorised as Byzantine fault
tolerance (BFT) and crash fault tolerant (CFT) protocols. BFT
protocols like Practical Byzantine Fault Tolerance (PBFT) [11]
and Hotstuff [12] are introduced in decentralized networks
against the Byzantine failure, which refers to the malicious
behaviors given by an adversary, including contradictory com-
mands to the progress, communication abort, and lengthy
intentional delay to critical messages. For decentralized sys-
tems with high openness, the byzantine fault-tolerant design
is necessary because the nodes in the network are not trusted.
However, for most critical systems, the nodes can be assumed
trusted by authentications, thus, it is redundant to consider
Byzantine tolerance in the majority of scenarios. Moreover,
the tolerance of Byzantine nodes can significantly increase the
complexity of the algorithm and reduce the system throughput
and scalability, which may result in the loss of suitability for
IoT systems composed of low-cost and low-power devices.

In the trust distributed systems, the CFT protocol with node
crash tolerance feature is sufficient to manage reliable state
duplication and prevent the system breakdown. The first CFT
consensus algorithm, Paxos, was proposed by Lamport in 1998
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[13], while its correctness and efficiency have been proved in
subsequent work. However, the original Paxos algorithm has
two issues [14]. Firstly, it is admittedly too hard to understand
even with several papers emerging to explain Paxos in simpler
terms [15], [16]. Additionally, Lamport’s description focuses
on single Paxos but lacks many details about multi-Paxos,
which is more likely to be applied in the real world. Therefore,
Paxos does not provide a good foundation for building an
actual system [14].

Consensus algorithms Viewstamped Replication (VR) [17],
Zookeeper atomic broadcast protocol (ZAB) [18] and RAFT
[14] were proposed successively as variants of Paxos. Com-
pared with Paxos, they provide detailed protocol details to
facilitate the real-world deployment of distributed systems.
However, VR requires a large number of different message
types to achieve consensus, resulting in a relatively complex
protocol. In addition, some messages need to carry entire log
information, leading to high network transmission costs and
reduces the efficiency of the algorithm. ZAB consensus algo-
rithm is an efficient atomic broadcast protocol adopted by the
Zookeeper system. However, ZAB was not widely deployed
since its complex modules are difficult to be abstracted as a
general library, while the system is communication resource
demanding in the stage of leader selection.

RAFT was proposed in 2014 [14], thanks to its simplicity,
a lot of attention has been drawn from academic community
on validation [19], improvement [20], and application [21].
Additionally, RAFT is rapidly accepted by the industry due
to its convenient modular deployment with independent func-
tions, low communication complexity and high throughput.
It is worth noting that the property of RAFT significantly
matches the scenarios of IoT systems, in which the devices
are typically low-cost and low-power.

B. Motivations and State of the Art
The tolerance to fault nodes is the most important feature of

the CFT algorithm. For most of the CFT consensus algorithms,
more than half of the nodes need to survive to ensure a
consensus [14], [15], [18]. However, due to inevitable natural
damage, subsystem malfunction, limited lifespan, inadequate
energy supplement and jammer attacks [22]–[24], the con-
nected nodes are easy to crash. If more than half of the nodes
are crashed, the consensus cannot be achieved. Therefore, node
reliability is an important factor for the consensus reliability
of IoT systems.

Additionally, the distributed consensus is originally de-
signed in stable wired communication networks, where the
performance degradation caused by communication failures is
negligible. Nevertheless, to support large-scale systems and al-
low connections among IoT devices and other clients, wireless
communication is mandatory in operations of consensus [25],
[26]. A wireless IoT network may suffer from various levels
of transmission link failure due to channel fading or spectrum
jamming in an open wireless channel [27], [28]. Since a
consensus protocol relies on information exchange, the link
failure may cause consensus transaction failure depending on
the communication link reliability. Additionally, network com-
munication failures could lead to network partitions [29], [30],

insulating part of the cluster to access to the majority. Even
though protocol improvements such as RAFT’s leader election
strategy [31] can effectively maintain consensus, partitioning
a portion of the cluster may still reduce consensus reliability
in wireless networks. This is because the system redundancy
and fault-tolerant ability are reduced due to partition.

Thus, the integrated influence of communication link failure
and node crash to the RAFT consensus algorithms may sig-
nificantly affect the probability of achieving consensus, which
is of importance to any type of mission critical interconnected
distributed system deployed in real-world.

State of the art research considers the consensus in a deter-
minate manner, i.e., the link or node is either faulty or non-
faulty. However, in the real world applications, in particular
in engineering field, it is unrealistic to make such assumption
since all nodes and links connecting them are unreliable, thus
should be modeled as a probability question. On the other
hand, availability of quorum system [31], [32] characterizes
how reliable the service provided by a quorum system is from
the probabilistic perspective. However, they do not consider
the communication reliability in the quorum system, and also
lack reliability analysis for consensus protocols.

Some recent work has studied the applications of wireless
distributed consensus systems [33]–[38]. For instance, [33]
proposed a distributed reputation-based blockchains with con-
sensus mechanism in the mobile-edge computing network for
IoT. Additionally, [39]–[42] proposed RAFT-based blockchain
applications in IoT. But most of the preceding works on
wireless distributed consensus only concentrate on specific
application scenarios including blockchain, edge computation,
dynamic spectrum access, federated learning, etc., and the
relationship between wireless communication and consensus
protocol operations are not clarified. [26] and [25] analyze
the impact of wireless communication on consensus reliability
and latency in detail, but their models are based on specific
distance information and cannot be effectively extended to a
generic case.

Based on the link reliability, RAFT in a wireless communi-
cation network has been investigated to show high reliability
critical decision making with relatively low link reliability
in IoT [3], [43]. Reliability Gain was firstly proposed in
[3], which refers to the linear relationship between consensus
reliability and link reliability. However, the corrected index in
the linear relationship of Reliability Gain in [3] is ambiguous
since it only presents some specific values of the corre-
sponding index to correct the large deviation between their
approximation and theoretical result. Additionally, the analysis
in [3] does not consider the impact of node reliability. [43]
proposed a RAFT-based Internet of Vehicles, and considers
both node reliability and link reliability. But it lacks with
more analytical result to demonstrate the property of consensus
reliability. Moreover, the results of [3], [43] only analyze the
consensus reliability assuming the reliability of all the links
to be the same, but different links might have different quality
of communication channels in practical application scenarios.
More general and explicit mathematical results should be
revealed to calculate the consensus reliability and provide a
generic explanation of the Reliability Gain or other properties
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in RAFT and other consensus protocols.

C. Contributions

This article proposes step forward approaches to calculate
the consensus reliability of RAFT in probability in the pres-
ence of node and communication link failures. It provides
theoretical guidance to deploy the RAFT consensus protocol
in the real-world decentralized critical networks. The main
contributions are listed below.

• We propose a node and link probabilistic failure model
using the Markov property to calculate the probability
density function (p.d.f.) and mean value of the consensus
reliability. The methods of joint failure and power series
are proposed to simplify the calculation. The proposed
approach is generic thus can be applied to other consensus
protocols.

• We derive generic and accurate Reliability Gain and
defined the Tolerance Gain to indicate the linear rela-
tionship between the consensus reliability and two basic
parameters, the joint reliability and the threshold of faulty
nodes.

• We derive analytical relationship to show that the number
of deterministic failure nodes in the network will increase
the order of magnitude of consensus failure rate linearly,
which may cause disastrous results when the joint relia-
bility are not perfect.

The structure of this paper is explained as follows. The sys-
tem model of the RAFT based distributed consensus is given
in Section II. Section III proposes the consensus reliability in
the view of a random variable, while Section IV analyzes the
properties of the mean value of the consensus reliability under
certain assumptions. In Section V, further potential explo-
rations of wireless consensus protocols are briefly discussed.
Simulation and results are demonstrated in Section VI to verify
the analysis of the consensus in probability. Finally, Section
VII makes a conclusion.

II. SYSTEM MODEL

The RAFT network is composed of consensus nodes with
full functions, including synchronizing the state of other nodes
or exchanging the voting messages while acting as a leader or
follower. The roles of leader and followers are exchangeable
during the RAFT leader election [14]. As the primary consen-
sus node, the leader needs to pack the commands in log entries
and replicate these entries to all followers successively through
downlink, which is defined as the communication from the
leader to the followers [26]; the followers need to send back
the confirmation to the leader through uplink, which is defined
as the communications from followers to the leader [26] when
they receive the package from the leader successfully. A suc-
cessful RAFT transaction consensus represents that the leader
receives the confirmations of more than 50% of followers
successfully in one transaction consensus.

As discussed above, both nodes and links may fail in a
wireless connected network at any stage of the uplink or
downlink in the RAFT network. A generic probabilistic failure
model where the node failure and link failure are measured by

probability will be derived to explore the impacts of node and
link reliability on the reliability of RAFT consensus in wireless
environments. The log replication process from the leader to
followers in RAFT is analyzed in detail in this paper since this
is the core of the consensus and the most frequent process of
system operation. Other process such as leader election are not
considered but might be further modeled based on the analysis
in this paper. Such a probabilistic model is critically important
to the real engineering where all entities are not 100% reliable,
limited by cost, size and complexity etc. Additionally, the
leader is assumed to be reliable since RAFT has a robust leader
election mechanism to deal with the crash of the leader.

In this paper, the reliability of each node and the reliability
of each link are assumed as random variables determined
by the actual practical application scenarios to evaluate their
impacts on the final transaction consensus reliability in Section
III. The assumption of random variables is because the quality
of a certain channel or the reliability of a certain node may
vary at different observation time. This provides detailed
analysis of consensus reliability when links have different
quality of communication channel or nodes have different
reliability, thus other analysis with special assumptions are
the subset and simplified form of the analysis in Section. III.
The model could also be linked with the conventional network
reliability theory (NRT) [44], [45], where the overall feasibility
of a network is measured by the reliabilities of nodes and edges
from the statistical angle.

Additionally, the link reliability can also be further modeled
through classic signal to interference plus noise ratio (SINR)
in physical layer, while the node reliability can be modeled as
a specific model such as Weibull distribution [46]. However,
this is not the focus of this article.

Moreover, if the malicious attacks to the IoT network cannot
be ignored in the application scheme, byzantine fault tolerance
consensus like Hotstuff [12] can be implemented with validly
extended derivations.

All the frequently used notations are indicated in Table I.

TABLE I: Frequently used notations

Notation Definition
PC Consensus successful rate in RAFT consensus system
PF Consensus failure rate in RAFT consensus system
PDL Success rate of downlink communication in RAFT consensus

system
PUL Success rate of uplink communication in RAFT consensus

system
PN Node reliability in RAFT consensus system
N Number of total nodes in RAFT consensus system
n Number of followers in RAFT consensus system
f Maximum number of faulty nodes the RAFT consensus

system can tolerate
s Number of already deterministic faulty nodes in RAFT con-

sensus system

III. CONSENSUS RELIABILITY

We will derive the closed-form expression of the RAFT
consensus in probability (probability density function and
mean value) by assuming each node’s reliability and each
communication link’s reliability are random variables. Then,
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the methods of joint failure and power series are proposed to
simplify the analysis.

A. Derivation of consensus reliability in the view of random
variable

Let the number of all the nodes in RAFT system be N ,
and the number of followers be n = N − 1. Since RAFT
can tolerate half of the followers crashed, the threshold of
number of faulty nodes f satisfies f = ⌊n/2⌋. We consider
the phase that the leader send messages to the followers
as one downlink communication and the phase that a fol-
lower responds the leader as one uplink communication. Let
Ω = {N1, N2, N3, . . . , Nn} represent the set of n followers
connected with the leader. Additionally, let the reliability of
node i (i = N1, N2, ...Nn ∈ Ω) is a random variable PN

i ,
the reliability of the downlink between the node i and the
leader is a random variable PDL

i , and the reliability of the
uplink between the node i and the leader is a random variable
PUL
i . In the log replication phase of a consensus transaction,

let S1,x, S2,y, S3,z ⊆ Ω be the set of non-faulty nodes,
the set of followers that successfully receive the message
by the leader through downlink, the set of followers whose
messages are successfully received by the leader in uplink,
with the number of elements in them satisfying |S1,x| =
x, |S2,y| = y, |S3,z| = z, respectively. Let P (S1,x, S2,y, S3,z)
represents the probability that all the followers in set S1,x

are non-faulty, all the followers in set S2,y have successful
downlink communication and all the followers in set S3,z have
successful uplink communication.

In the RAFT consensus protocol, only the non-faulty nodes
can receive messages from the leader by downlink com-
munication, and only the nodes that receives the leader’s
message can send the response back to the leader by uplink
communication. Therefore, S3,z ⊆ S2,y ⊆ S1,x ⊆ Ω and
z ≤ y ≤ x ≤ n. In addition, for the next state, the last state
contains all the information of previous states for the state
transitions, e.g. the conditional probability P (S3,z|S1,x, S2,y)
is equal to P (S3,z|S2,y). Thus the state in the next stage is only
dependent with the state in the last stage and the consensus
process considering node failures and link failures satisfies
Markov property. Thus P (S1,x, S2,y, S3,z) can be calculated
as

P (S1,x, S2,y, S3,z) = P (S1,x)P (S2,y|S1,x)P (S3,z|S2,y)
(1)

where P (S1,x) represents the joint probability that the nodes
in S1,x are non-faulty while in ∁ΩS1,x are faulty; P (S2,y|S1,x)
represents the joint probability that downlink with nodes
in S2,y are successful while that in ∁S1,xS2,y are faulty;
P (S3,z|S2,y) represents the joint probability that uplink with
nodes in S3,z are successful while that in ∁S2,y

S3,z are faulty.
If the reliability of node, uplink and downlink of differ-

ent followers are not independent (e.g., correlation loss of
wireless communication), chain rule can be used to calculate
P (S1,x)P (S2,y|S1,x) and P (S3,z|S2,y). For example, as for
the uplink communication, P (S3,z|S2,y) is a joint probability
of y events (z events for communication success and y − z
events for communication failure). If all these events are noted

as A1, A2, . . . , Ay , P (S3,z|S2,y) can be expressed according
to the chain rule as:

P (S3,z|S2,y) =Pr (A1)Pr (A2|A1)Pr (A3|A1A2)

. . . P r (Ay|A1A2 . . . Ay−1)
(2)

Consider a simple case, where the nodes N1 and N2 are in
S3,z for a certain Markov chain. Assuming only the uplink
between N1 and N2 are correlated, thus we have,

P (S3,z|S2,y) = Pr (ZN1)Pr (ZN2 |ZN1)∏
u∈S3,z−N1−N2

PUL
u

∏
v∈∁S2,y

S3,z

1− PUL
v

(3)

Therefore, based on similar conditional probabilities, the
correlation between wireless communications can be fully
characterized as long as there is sufficient prior information
about each channel.

To facilitate the derivation, assuming node reliability, uplink
reliability and downlink reliability of different followers are
independent, we have

P (S1,x) =
∏

u∈S1,x

PN
u

∏
v∈∁ΩS1,x

1− PN
v (4)

P (S2,y|S1,x) =
∏

u∈S2,y

PDL
u

∏
v∈∁S1,x

S2,y

1− PDL
v (5)

P (S3,z|S2,y) =
∏

u∈S3,z

PUL
u

∏
v∈∁S2,y

S3,z

1− PUL
v (6)

According to the RAFT protocol, when the number of
messages the leader receives from the followers z is no less
than n−f , where f = ⌊n/2⌋, the cluster will reach consensus.
Therefore, the probability that the cluster successfully reaches
a consensus PC is the sum of probabilities of all the Markov
chain (S1,x, S2,y, S3,z) satisfying n ≥ x ≥ y ≥ z ≥ n − f
and Ω ⊇ S1,x ⊇ S2,y ⊇ S3,z

PC =
∑

n≥x≥y≥z≥n−f

∑
Ω⊇S1,x⊇S2,y⊇S3,z

P (S1,x, S2,y, S3,z)

(7)
Note that the second summation is to traverse over all

combinations of possible node sets for given x, y and z. In fact,
PC is a function of random variables of node reliability and
link reliability. According to Eq. (1)-(7), we can theoretically
analyze the influence of the reliability of each node/link on
the final consensus reliability. It implies that Eq. (1)-(7) can
be universally applied to arbitrary practical situation as long
as the node reliability PN

i , the downlink reliability PDL
i and

the uplink reliability PUL
i of all nodes in Ω are given.

In addition, using the Markov property to analyze consensus
reliability considering node reliability and link reliability can
also be applied to other BFT consensus protocols, such as
PBFT [11] and Hotstuff [12], to carefully examine the impacts
of node reliability and link reliability on each stage of the
consensus protocol. However, it is beyond the scope of this
paper.



5

B. Joint failure method
Through mathematical derivations, we transform Eq. (1), (4)

- (7) as:

PC =
∑

n≥k≥n−f

∑
Ω⊇SJ,k

∏
u∈SJ,k

P J
u

∏
v∈∁ΩSJ,k

1− P J
v (8)

where SJ,k is a running variable of subset of nodes with |SJ,k|
equal to k and P J

i = PN
i PDL

i PUL
i .

The identity between Eq. (8) and Eq. (1), (4) - (7) is proven
in Appendix A.

In fact, Eq. (8) has obvious physical meaning. Eq. (1), (4)
- (7) derived consensus reliability following the consensus
process which reflects the influence of each failure factor
at different stages. However, it is worth noting that the log
replication of RAFT or most of other CFT consensus is so
concise and light since it only involves one uplink and one
downlink communication. Based on this feature, either the
failure happens on the node on its own, or its communication
channel with the leader (the link) will result in the failure
of this node to contribute to the consensus. Consider the
non-faulty nodes which both receive the leader’s message
successfully and send their responses to the leader successfully
as contributors. The random variable, probability of node i
becoming a contributor (also refers to the joint success rate)
P J
i , can be determined as P J

i = PN
i PDL

i PUL
i . Let SJ,k ⊆ Ω

represent the set of contributors. As long as the number of
contributors (i.e. k) is more than n− f , the consensus will be
achieved. Thus we have Eq. (8).

C. Power series of consensus reliability
Although the joint failure view is proposed to simplify the

consensus reliability, Eq. (8) seems still complicated because
it is the summation of

∑n
i=n−f

(
n
i

)
terms (equal to 2n−1 for

odd n and 2n−1 +
(
n
f

)
/2 for even n) with each term being

the product of n random variables. In this section, the nsensus
reliability is further simplified by the method of power series.

Firstly take the view of consensus failure. Let the consensus
failure rate be PF = 1−PC and joint failure rate of the node
i be P JF

i = 1 − P J
i . Since no less than f + 1 nodes not

becoming contributors will cause the consensus failure, PF

can be calculated as:

PF =
∑

n≥k≥f+1

∑
Ω⊇SJF,k

∏
u∈SJF,k

P JF
u

∏
v∈∁ΩSJF,k

1− P JF
v (9)

Note that the term
∏

u∈SJF,k
P JF
u is the product of k joint

failure rates since |SJF,k| = k. Actually, in practical appli-
cation scenarios, the joint failure rate P JF

i is usually small
i.e. closer to 0. Otherwise, a large number of nodes and
links would fail so that the system might not carry out any
consensus transaction. Taking advantage of this characteristic,
we propose a power series expression of the consensus failure
rate PF based on the joint failure rate P JF

i as

PF =

n∑
t=f+1

atQt (10)

where Qt =
∑

Ω⊇SJF,t

∏
u∈SJF,t

P JF
u is the summation of∏

u∈SJF,t
P JF
u , and

∏
u∈SJF,t

P JF
u is the product of t joint

failure rates which can be considered as power of t, and at =
(−1)t−f−1

(
t−1
f

)
is the coefficient of the series expansion.

The proof is given in Appendix B.
Note that the term Qt will become smaller with the in-

crement of t, since larger t leads to both the product of the
joint failure rates

∏
u∈SJF,t

P JF
u smaller and the summation

number
(
n
t

)
, t ≥ f+1 (how many products are summed in Qt)

smaller. Therefore, similar to the Taylor series, the high-order
power terms (Qt with larger t) can be allowed to be omitted
to achieve the purpose of simplifying PF . This provides a
flexible way to simplify PF according to actual approximate
accuracy requirements. For example, after retaining only the
first non-zero term, the reliability consensus can be further
simplified as

PF ≈ Qf+1 =
∑

Ω⊇SJF,f+1

∏
u∈SJF,f+1

P JF
u (11)

Theoretically, an approximation of Eq. (10) with arbitrary
precision for any PJF can be obtained as long as more
power series terms Qt are retained. Thus the power series
expansion form of Eq. (10) could provide great convenience
and flexibility for accurate approximations in engineering.

D. p.d.f. of the logarithmic consensus failure rate

Considering the actual application scenario, we generally
pay attention to the order of magnitude of the probability of
transaction failure (e.g., in some safety critical applications,
the reliability requirement could be as high as 1−10−9). We let
H = log(PF ) represent the logarithmic consensus failure rate.
According to Eq. (9), H is a function of the random variables
of the joint failure rate of different followers P JF

i . Thus the
cumulative distribution function (c.d.f.) of H is the integration
of the joint p.d.f. of followers not becoming contributors. Let
fPJF

i

(
pJi

)
represents the p.d.f. of the follower i not becoming

a contributor. Since different nodes are independent, F (H) can
be written as

FH(h) =

∮
A

∏
i∈Ω

fPJF
i

(pJFi )dpJFi (12)

where A is the integration area of H ≤ h, which can be
determined according to Eq. (9):

A :


∑

n≥k≥f+1

∑
Ω⊇SJF,k

∏
u∈SJF,k

pJFu
∏

v∈∁ΩSJF,k

1− pJFv ≤ 10h

0 ≤ pJFi ≤ 1
(13)

and if the approximation of Eq. (11) is used to simplify H ,
the integration area will change into:

Ã :


∑

Ω⊇SJF,f+1

∏
u∈SJF,f+1

pJFu ≤ 10h

0 ≤ pJFi ≤ 1

(14)

Finally, p.d.f. of H is:

fH(h) =
dFH(h)

dh
(15)

Eq. (12)-(15) represent that the p.d.f. of H can be obtained
according to the p.d.f. of fPJF

i

(
pJFi

)
, which is determined
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by the application scenarios. Particularly, we take several
representative p.d.f. of the node reliability and link reliabil-
ity (including uniform, truncated Gaussian and exponential
distribution) as examples and our numerical results of Eq.
(12)-(15) show that the p.d.f. of H is close to Gaussian
distribution, which is described in detail in Section VI. With
the help of p.d.f. of H , the probability that H distributed at
arbitrary interval can be calculated by integrating the p.d.f.
of H on the corresponding interval to evaluate that how
reliable the consensus protocol is for transaction consensus
or critical decision making when links have different quality
of communication channel or nodes have different reliability.

IV. CONSENSUS RELIABILITY MEAN VALUE AND
PROPERTIES

In this section, we analyze the theoretical mean value of
the consensus reliability given the mean value of the node and
link reliability. Similarly, simplification analysis of joint failure
view and power series are also used to explore properties
of the consensus reliability in Sec. IV-A. In particular, in
Sec. IV-B we proposed the concepts of Reliability Gain and
Tolerance Gain and derived the closed-form equations to reveal
the two linear relations of the consensus reliability mean value.
Additionally, the impact of a special case, networks with
already s failures, on the consensus reliability is analyzed in
Section IV-D.

A. Consensus Reliability Mean Value
The mean value of Eq. (8)-(11) can be easily obtained under

the independence condition of reliability of different node and
link. For instance, Eq. (9) can be transformed into:

E(PF ) =
∑

n≥k≥f+1

∑
Ω⊇SJF,k

∏
u∈SJF,k

E(P JF
u )

∏
v∈∁ΩSJF,k

1− E(P JF
v )

(16)

Although the joint failure method (Eq. (8)) and power
series (Eq .(10) and Eq. (11)) are proposed to simplify Eq.
(4) - (7), Eq. (11) might still be sophisticated for quick
deployment because it is the summation of

(
n

f+1

)
terms with

each term being the product of f + 1 variables. In order
to conveniently deploy the wireless RAFT system based on
consensus reliability in engineering, we give a more intuitive
and concise analysis of the mean value of consensus reliability
under certain assumptions in this section.

Assume that the link reliability and node reliability are inde-
pendent, the node reliability PN

i of each node are i.i.d with the
mean value satisfying E(PN

i ) = pN and that the uplink and
downlink reliability of each different link PUL

i , PDL
i are i.i.d

with the mean value satisfying E
(
PUL
i

)
= E

(
PDL
i

)
= pL.

Let the mean value of consensus reliability E(PC) = pC .
Then Eq. (1), (4) - (7) will be degenerated as:

pC =

n∑
x=n−f

(
n

x

)
pxN (1− pN )n−x

x∑
y=n−f

(
x

y

)
pyL(1− pL)

x−y

y∑
z=n−f

(
y

z

)
pzL(1− pL)

y−z

(17)

The authors in [43] considered RAFT-based Internet of Ve-
hicles and also proposed Eq. (17). However, they did not
consider the case that different nodes or links have different
reliability, and there is no further simplification and analytical
results for the consensus reliability in [43].

According to the method of joint failure view proposed in
section III-B, let the mean value of the joint success rate of
each node is E(P J

i ) = pJ = pNp2L, then pC can be calculated
as:

pC =

n∑
x=n−f

(
n

x

)
pxJ(1− pJ)

n−x (18)

Let the mean value of the consensus failure rate be pF =
E(PF ), the mean value of node failure rate is pNF = 1−pN ,
the mean value of link failure rate is pLF = 1 − pL, and the
mean value of joint failure rate is

pJF = 1− pJ = 1− (1− pNF ) (1− pLF )
2 (19)

Similar with the power series analysis in Sec. III-C, since the
joint failure rate pJF is usually small in practical application
scenarios, the mean value of the consensus failure rate pF can
be simplified as

pF =

n∑
t=f+1

bt(pJF )
t (20)

where bt = (−1)t−f−1
(
t−1
f

)(
n
t

)
is the coefficient of the series

expansion. Note that Qt in Eq. (10) is degenerated to become
that

(
n
t

)
(pJF )

t so that the coefficient bt is multiplied with
(
n
t

)
than at. After retaining only the first non-zero term, the mean
value of consensus failure rate can be simplified as

pF ≈
(

n

f + 1

)
pf+1
JF . (21)

B. Reliability Gain and Tolerance Gain

According to simplified Eq. (21) preserving the first non-
zero term in the power series method, it is obvious that
approximated the consensus failure rate and the joint failure
rate are linear in logarithmic form. This linear relationship
is conceptually defined as the Reliability Gain, kp, which is
described in detail as follows:

Theorem 1. The logarithmic consensus failure rate logpF can
be expressed in a linear relation of logpJF with an error term,
i.e.,

logpF = kp · logpJF + hp + ε (22)

where the Reliability Gain kp = f + 1, the intercept hp =

log(
(

n
f+1

)
) and the error term ε ≤ log(

(1−pJF )n−f−pn−f
JF

(1−pJF )−pJF
).

Remark 1. When the joint failure rate pJF is reasonably
small1, the error term in Eq.(22) is approximate to 0.

The proof of Theorem 1 is shown in Appendix C. Theo-
rem 1 shows for a consensus network with a fixed number
of nodes, the logarithmic consensus failure rate logpF will
approximately decrease linearly by increasing the wireless

1Our results show that pJF = 0.1 is small enough to make the conclusion,
while this condition is achieved in most of the application environments.
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communication quality or using higher reliability products
to reduce logpJF . Therefore, Reliability Gain provides an
intuitive indicator for evaluating the consensus reliability of
the system with a deterministic size. For example, if the size
of the consensus network is 13 (i.e., N = 13, n = 12, f = 6),
when pF is required to be less than 10−5, 10−7, 10−9, pJF
should be less than 10−1.15, 10−1.45, 10−1.75, reflecting the
decrease of logpJF by 0.3 makes logpF decrease by 2.

Particularly, according to Eq. (19), if we take further ap-
proximation of pJF as

pJF ≈ 1− (1− pNF )(1− 2pLF ) ≈ pNF + 2pLF (23)

we can see the impact of communication reliability has a larger
weight on the consensus failure. This is because there are
two communication process, i.e. downlink and uplink. Thus
increasing link reliability can obtain larger improvement of
consensus reliability than increasing node reliability. Also the
wireless link reliability can further modeled to characterize
how transmission distance, communication source, noise, etc.,
affect consensus reliability. In addition, if one of node failure
and link failure can be neglected, the joint failure rate will
degenerate to another failure factor, thus logpF will has the
linear relation with logpNF or logpLF .

Note that although the authors in [3] propose the concept of
Reliability Gain for the first time, they do not consider node
reliability, and in spite of only considering the link reliability
pL, there is a huge deviation in their approximation result,
which will be discussed in Section VI.

If further transformations of the consensus reliability are
carried, Tolerance Gain kf can be obtained, which refers to
logpF is approximately linear to the maximum number of
tolerant faulty nodes f . The following theorem gives a detailed
mathematical expression of the Tolerance Gain.

Theorem 2. When the joint failure rate pJF is reasonably
small2, The logarithmic consensus failure rate logpF can be
expressed in a linear relation of the faulty node threshold f
with an error term

logpF =


kf · f + hf + ε

(when the number of followers n is even)
kf · f + hf + log2pJ + ε

(when the number of followers n is odd),

(24)

where the Tolerance Gain kf = (logpJF + logpJ +
2log2), the intercept hf = log( pJF

pJ
√
π
) + ∆f , in which

∆f = − 1
2 log(f) is the no-linear complementary term to

decrease the approximation error, and the error term ε ≤
log(

(1−pJF )n−f−pn−f
JF

(1−pJF )n−f−pJF (1−pJF )n−f−1 )

Remark 2. When the joint failure rate pJF is reasonably
small3, the error term in Eq. (24) is approximate to 0.

The proof of Theorem 2 is shown in Appendix D.
Fault tolerance in wireless RAFT allowing at most f nodes

failed infers one feature of the distributed consensus system

2Our results show that pJF = 0.1 is small enough to make the conclusion,
while this condition is achieved in most of the application environments.

3Our results show that pJF = 0.1 is small enough to make the conclusion,
while this condition is achieved in most of the application environments.
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Fig. 1: The consensus network size N versus to logpJF for a fixed
logpF

is the resilience. Theorem 2 shows that logpF will decrease
linearly with the increment of f , which intuitively reflects
the impact of the resilience of the wireless RAFT system on
the transaction consensus reliability. Additionally, according
to Eq. (24), pF is 2PJ times larger when the number of
followers n is odd than that when n is even. This is because
there are fewer nodes required to become the contributors
when n is even (i.e. n − f = f ) than that when n is odd
(i.e. n − f = f + 1). Therefore deploying even followers
in a wireless RAFT system is recommended (Note that here
n represents the number of followers). With the analysis of
Tolerance Gain, the probability of reaching consensus can
be adjusted by not only changing pJF but also enlarging
the size of the network to modify f . For instance, if pJF
in consensus network is 10−1.6, when pF is required to be
less than 10−5, 10−7, 10−9, the maximum number of tolerant
faulty nodes f should be more than 3, 5, 7, which reflects the
increase of f by 2 makes logpF decrease by 2.

Reliability Gain and Tolerance Gain are complementary,
which reveals that logpF is linear with two significant pa-
rameters, logpJF and f , in consensus network, respectively.
With the help of Reliability Gain and Tolerance Gain, the
arrangement of the number of total nodes and the joint
reliability can be quickly calculated to satisfy the stringent
reliability requirement in the system, which is shown in Fig.
1. Note that in Fig. 1, if one of these two factors is fixed,
logpF will be linear with another factor. It is suggested that
the conceptions of Reliability Gain and Tolerance Gain can be
applied to quickly check the consensus reliability and be the
design guideline towards the real RAFT consensus mechanism
deployment in the IoT systems.

In spite of the approximations in the derivations of Eq.
(22) and Eq. (24), the consensus reliability results obtained
from Reliability Gain and Tolerance Gain are sufficiently
accurate as of the results without any approximation, which
is shown in simulations in Sec. VI. Additionally, it is worth
noting that besides the significantly light consensus protocol
RAFT, the analysis and conceptions of Reliability Gain and
Tolerance Gain can be similarly applied to other complicated
consensus algorithms or can provide a reference for models in
the network reliability theory.
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Fig. 2: The p.d.f. of the logarithmic consensus failure rate H . (a) the node reliability and link reliability are uniform distribution, and the
corresponding p.d.f. of H is shown in (d); (b) the node reliability and link reliability are truncated Gaussian distribution, and the corresponding
p.d.f. of H is shown in (e); (c) the node reliability and link reliability are exponential distribution, and the corresponding p.d.f. of H is
shown in (f).

C. Dominant Analysis of node failure and link failure

In terms of different application scenarios, node reliability
and link reliability have different impacts on consensus. If the
wireless RAFT system suffers from much more link failures
rather than node failures, it is reasonable to ignore node failure
and vice versa. However, it is difficult to directly assess and
reasonably interpret whether an influencing factor is so minor
to be ignored. Since the reliability of nodes and links are
usually discussed separately according to different application
scenarios [45], we propose a method of dominant analysis
to discuss in what conditions link failure rate, pLF , or node
failure rate, pNF is dominant.

Let the consensus failure rate of neglecting link failure
and that of neglecting node failure be pNLF and pNNF ,
respectively. To theoretically assess in what circumstances
link reliability or node reliability play a dominant role, let
εL = logpF − logpNLF be the error of ignoring link failure
and εN = logpF − logpNNF be the error of ignoring node
failure. Let k = pNF

pLF
.

The threshold of neglecting non-dominant failure can be
obtained as follow. Please see Appendix E for proof.

Remark 3. For given εL and εN , if k > 2

10
εL
f+1 −1

, link failure

can be ignored in Node Link Failure model and the error is
smaller than εN . If k < 2(10

εN
f+1 − 1), node failure can be

ignored in Node Link Failure model and the error is smaller
than εN .

D. Special case: network with deterministic s failures

A specific situation is considered in this section with a prior
condition: there are already s(s ≤ f) deterministic equivalent
failed nodes. Note that the equivalent failed nodes here not
only includes the physical failure of the devices, the links of
one node can be experienced eclipse attack [47] or some nodes
can be partitioned by the network [29], which will make the
leader unable to connect them for a period thus these followers

are considered to be equivalent failed nodes. 4 For example,
in a vehicular network system, vehicles may run to remote
areas without a communication connection to the majority,
or there is no communication authority between some of the
vehicles. Despite the RAFT protocol can theoretically tolerate
half crashes, the lack of some nodes in the cluster may affect
the performance of achieving consensus due to the decreased
redundancy.

Following the definitions and similar derivations in the
section IV-B, the Reliability Gain kp and intercept hp in
Theorem 1 can be obtained as:

kp = f + 1− s, hp = log

(
n− s

f + 1− s

)
(25)

while the Tolerance Gain kf and intercept hf in Theorem 2
can be calculated as:

kf = logpJF + logpJ + 2lg2,

hf = log(
pJF
pJ

√
π
)− (log2 + logpJF )s+∆f

(26)

It is notable that in this case hf in Eq. (26) is linear to s,
which means by putting Eq. (26) into Eq. (24), the following
property can be obtained: .

Remark 4. logpF has an approximation linearship with s
with the coefficient of log2 + logpJF

This implies that the consensus failure rate pF might
increase by orders of magnitude with the additive increment
of s. It can be inferred that the impact of large s may be
disastrous for the consensus system, especially when s = f
although this is theoretically allowed in the wireless consensus
system. In fact, section VI shows that pF is greater than 0.5
when pJF = 0.1, n ≥ 14 and s = f , which infers that most
transactions cannot reach a consensus.

4This is different from the concept of link failure mentioned before, which
is only temporarily invalid in one transaction consensus and may succeed in
the next.
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Fig. 3: Approximation of Reliability Gain when n = 12 of (a) considering both node failure and link failure, (b) no node failure (pNF = 0),
(c) no link failure (pLF = 0), (d) the number of deterministic failures s = 3.
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Fig. 4: Approximation of Tolerance Gain. The threshold of number of faulty nodes f versus to the consensus failure rate pF when (a)
pJF = 0.1, (b) pNF = 0 and pLF = 0.05, (c) pLF = 0 and pNF = 0.1 (d) pJF = 0.1 and s = 3.

Fig. 5: For different link failure rate pLF and node failure rate pNF ,
error of neglecting (a) link failure; (b) node failure.

E. Consensus reliability for multiple instances

We consider consensus reliability of single instance in
above. In this section, assuming different instances are inde-
pendent, we show that the consensus reliability of consecutive
multiple instances can be easily extended based on that of
single instance.

Firstly, we introduce that link failures and node failures
have different status as for multiple instances. Node failure
can be considered as permanent (compared with the latency of
consensus) while link failure is transient since re-transmission
can be conducted. If the node fails, all the subsequent instances
will be affected, thus node failure is more catastrophic in mul-
tiple instances. To obtain consensus reliability of consecutive
instances, we can firstly calculate the conditional probability
of consensus of multiple instances for a given number of
non-faulty nodes, then use full-partition formula to obtain the
overall consensus reliability. Formally, we can get the mean

of consensus reliability of consecutive M instances pMul
C as

pMul
C =

n∑
x=n−f

(
n

x

)
pxN (1− pN )n−x(p∗C)

M (27)

where p∗C is the conditional probability of single instance
consensus for a given number of non-faulty nodes, satisfying:

p∗C =

x∑
y=n−f

(
x

y

)
(p2L)

y(1− (pL)
2)x−y (28)

Through the simplification methods of joint failure and power
series proposed in section III-B and III-C, we get the approx-
imated form of consensus failure rate pMul

F :

pMul
F ≈ MpF − (M − 1)

(
n

f + 1

)
pf+1
NF

(29)

where pF is the consensus failure rate of single instance, which
has been analyzed in detail before. See Appendix F for proof.

Thus through Eq. (IV-E) the consensus reliability of con-
secutive M instances can be obtained based on that of single
instance. We can approximately evaluate that in how many
instances, at least one consensus instance failure will occur
with probability 1.

V. DISCUSSION AND FUTURE EXPLORATION

In this section, three aspects are discussed, which could be
further explored in the future.
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1). Consensus reliability for other protocols: As for the
log replication process or the process with the same function
in other protocols, RAFT has the similar design with most of
other CFT consensus such as ZAB [18] and Multi-Paxos: the
leader sends messages in the downlink while followers give
responses in the uplink, and the leader considers consensus
achieved with more than 50% followers’ feedback. Thus the
analysis proposed in this paper can also be extended to most of
other CFT protocols when only considering the log replication
process. For BFT consensus protocols with more complex
communication processes, the Markov property (first-order or
high-order) can still be used to model and analyze the impacts
of faulty nodes and links, since the state transition probability
of the cluster due to the node or link failure at different stages
still depends on the previous state. Additionally, the concept
of Reliability Gain and Tolerance Gain might be obtained in
other consensus protocols due to their physical meanings.

2). Latency, throughout and wireless communication
optimization: We do not focus on the models of consensus
performance in terms of time delay and throughput. However,
the results derived in this paper can be served as a foundation
for investigating the relationship between latency or through-
put and consensus reliability. It is worth noting that RAFT
does not allow holes in the log, (i.e., the consensus of the
next instance can only be achieved once that of the previous
one is achieved.) thus consensus failure of one instance might
simultaneously increase the latency of this instance itself and
the subsequent instances. In addition, in practical applications,
different wireless channels may have different channel gains.
In the condition of limited communication resources (band-
width or power), the consensus reliability represented by Eq.
(16) or (9) (or other indicators such as latency and throughput)
can be further optimized through the reasonable allocation of
communication resources.

3). Wireless consensus protocol design and supplement:
Since we consider wireless link failures, the consensus proto-
col is not sufficient for this situation. For example, under the
assumption of a synchronous or weak synchronization network
with link failures, it is possible that the leader receives fewer
than n − f messages from followers thus causing consensus
failure. Therefore, th exact recovery mechanism along with its
impact and the synchronization method specified for followers
who experienced link failures should be carefully considered.

In addition, we did not consider the impact of the follower-
side commit operation. The downlink communication packet
of the next transaction can be designed to contain the leader’s
commit instruction to the previous transaction to carry out the
commit phase in a more effective way. By this way, the nodes
that were not synchronized due to the wireless link failures
in the last transaction can also directly replicate the state and
submit it according to the commit command.

As for the possible influence of wireless scenarios on the
leader, if the consensus process fails once or more times on
one leader, it is very likely that the wireless communication
resources possessed by the leader are scarce, or the wireless
communication environment becomes hazardous due to the
dynamic change of the network. Therefore, when electing
or changing the leader, the wireless link reliability between

the leader and followers and the corresponding consensus
reliability should be considered as the indicators to minimize
the delays and maximize the throughput.

VI. SIMULATION

The consensus reliability are analyzed mathematically in
previous sections. Since the theoretical model is for the log
replication, we demonstrate simulations of log replication
by using the Monte Carlo method in this section, not only
verifying the correctness of the theoretical expressions but also
visualizing the characteristics of the relations and the results.

A. p.d.f. of the logarithmic consensus failure rate

To simplify the calculation process, the p.d.f. of the loga-
rithmic consensus failure rate H , i.e. Eq. (12)-(15), is carried
out assuming that the mean value of the reliability of different
nodes are identical and the mean value of the reliability of dif-
ferent uplink and downlink are identical. Node reliability PN

i

of each node, uplink reliability PUL
i and downlink reliability

PDL
i of each link are assumed to follow particular distributions

to demonstrate their influences on the p.d.f. of H with the
constant number of followers n = 10. The p.d.f. of node
reliability and link reliability in three scenarios are shown in
Fig. 2(a)-(c), which are uniform distribution, truncated Gaus-
sian distribution, exponential distribution, respectively. Their
corresponding H are shown in Fig. 2(d)-(f). The approximated
results of power series for retaining the first term (Eq. (11)) are
sufficiently close to the analytical results. Despite the different
p.d.f. of PN

i , PDL
i and PUL

i , the numerical results of the
p.d.f. of logarithmic consensus failure rate, H , are always
approximate to Gaussian distribution.

B. Reliability Gain and Tolerance Gain

Reliability Gain and Tolerance Gain clearly show the linear
relationship between consensus failure rate and its two factors,
pJF and f . We illustrate the results of consensus from Relia-
bility Gain and Tolerance Gain in Fig. 3 and Fig. 4 respectively
to verify the linearity. n = 12, f = 6 is used as an example in
Fig. 3 while pJF = 0.1 is used as an example in Fig. 4. The
two figures exemplify four scenarios that includes the general
node and link probabilistic failure model, the scenario in which
the node failure rate pNF is 0, the scenario in which the link
failure rate pLF is 0, and scenario in which the number of
already deterministic failures s is 3.

The results from Reliability Gain in Fig. 3 indicates that
the accuracy increases along with the drop of pJF , and the
deviation is almost negligible from pJF is less than 0.1. The
analytical result of Reliability Gain can match the simulation
result, which shows that Reliability Gain is valid and accurate.
Fig. 3(a) reveals that when pJF is 0.1, the consensus failure
rate pF is 0.0001, which means the consensus reliability can
still reach perfect even with imperfect node and link reliability.
Additionally, the approximation results from Reliability Gain
proposed in [3] is indicated as a green line in Fig. 3 (b), which
clearly indicates that the accuracy of Reliability Gain proposed
in this paper is higher than that in [3]. Note that the difference
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Fig. 6: Consensus failure rate pF with already deterministic s failures of (a) n = 10 and pJF = 0.02, (b) different n with s = 0, 1, 2, 3, 4
and pJF = 0.02, (c) different n with s = 0, f and pJF = 0.1

between our approximation and the approximation in [3] is
nearly 7log2, which approaches the difference between our
expression of Reliability Gain and their expression, i.e. (f +
1)log(1− (1− pLF )

2)− (f + 1)log(pLF ) ≈ (f + 1)log2.
Theorem 2 demonstrates the linearity of Tolerance Gain

when n is odd or even. This feature is evident in Fig. 4 as well.
In terms of Tolerance Gain performance in Fig. 4, results from
Tolerance Gain overlap with the original analytical results and
the simulation results.

C. Dominant analysis

The simulation results of dominant analysis when n = 11
are demonstrated in Fig. 5 and matches Remark 3. In Fig. 5(a),
it can be seen that in the area of logk = logpNF − logpLF >
1.21, which is equal to k > 16.39, the error of neglecting
link failures εL is less than 0.3. We can conclude that when
k > 16.39, node failures are considered dominant, and the
link failures can be ignored with εL less than 0.3. Similarly,
in Fig. 5(b), it can be seen that in the area of logk = logpNF−
logpLF < −0.6126, which is equal to k < 0.2440, the error
of neglecting node failures εN is less than 0.3. Thus when
k < 0.2440, node failures can be ignored with εN less than
0.3.

D. Consensus with already deterministic s failures

The simulation processes the RAFT protocol with a certain
number of fault nodes to verify the linear relationship between
logpF and s,. In Fig. 6(a) and (b), when pJF = 0.02, the linear
relationship is indicated between logpF and s. Note that pF
increases by 1.4 orders of magnitude with the increase of s in
Fig. 6 (a) and (b), which obviously matches analysis in Sec.
IV-D. Due to the large impact of a number of unavailable
nodes on the consensus reliability, we explore the scenario
with a large s. We demonstrate two extreme cases of s, one
is s = 0, the other is s = f when pJF = 0.1 in Fig. 6

(c). Fig. 6 shows that excessive unavailable nodes can be
devastating to system performance. Therefore, even though
the distributed consensus can theoretically tolerate f failures,
pC with f nodes unavailable is much lower than that with
zero unavailable nodes according to the results in Fig. 6 (c).
Particularly, pF is greater than 0.5 when n ≥ 14 and s = f ,
which infers that most transactions cannot reach a consensus
and it is disastrous to the system.

VII. CONCLUSION

To evaluate the consensus of the RAFT system, a Node
and Link probabilistic failure model is built, and the methods
of joint failure and power series are presented to simplify
the calculation process. The p.d.f. of the consensus reliability
of the RAFT system is derived. Additionally, two reliability
indicators, Reliability Gain and Tolerance Gain are defined
and presented with general and accurate analytical expressions,
which clearly indicate the linearity of the joint reliability and
threshold of faulty nodes with the mean value of consensus
reliability. Finally, the special case of a network with already
s failure and its adverse impact are evaluated. Simulations
are provided based on the model to validate the theoretical
analysis. Simulations show that despite the different p.d.f. of
node reliability and link reliability, the p.d.f. of logarithmic
consensus failure rate is always approximate to Gaussian dis-
tribution. The linear relations of Reliability Gain and Tolerance
Gain are effectively validated, which both provide benchmark
guidelines for designing or evaluating distributed consensus
IoT systems that meet specified consensus reliability. Similar
approaches can be used to analyze IoT systems with other
consensus mechanisms for future research.
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APPENDIX A
IDENTITY BETWEEN EQ. (8) AND EQ. (1), (4) - (7)

Change the summation area of Eq. (7), we have:

PC =
∑

n≥z≥n−f,Ω⊇S3,z

∑
n≥y≥z,Ω⊇S2,y⊇S3,z

∑
n≥x≥y,Ω⊇S1,x⊇S2,y

P (S1,x, S2,y, S3,z) (30)

Substitute Eq. (1) and (4) into Eq. (30), we can get:

PC =
∑

n≥z≥n−f,Ω⊇S3,z

∑
n≥y≥z,Ω⊇S2,y⊇S3,z

P (S3,z|S2,y)
∑

n≥x≥y,Ω⊇S1,x⊇S2,y

P (S1,x)P (S2,y|, S1,x)

=
∑

n≥z≥n−f,Ω⊇S3,z

∑
n≥y≥z,Ω⊇S2,y⊇S3,z

P (S3,z|S2,y)
∑

n≥x≥y,Ω⊇S1,x⊇S2,y

∏
u∈S1,x

PN
u

∏
v∈∁ΩS1,x

(1− PN
v )

∏
s∈S2,y

PDL
s

∏
t∈∁S1,x

S2,y

(1− PDL
t )

(31)

Now consider the last summation, since S1,x = S2,y ∪ ∁S1,xS2,y and S2,y ∩ ∁S1,xS2,y = ∅, Eq. (31) can be transformed as:∑
n≥x≥y,Ω⊇S1,x⊇S2,y

∏
u∈S1,x

PN
u

∏
v∈∁ΩS1,x

(1− PN
v )

∏
s∈S2,y

PDL
s

∏
t∈∁S1,x

S2,y

(1− PDL
t )

=
∑

n≥x≥y,Ω⊇S1,x⊇S2,y

∏
v∈∁ΩS1,x

(1− PN
v )

∏
s∈S2,y

PN
s PDL

s

∏
t∈∁S1,x

S2,y

PN
t (1− PDL

t )

=
∏

s∈S2,y

PN
s PDL

s (
∑

n≥x≥y,Ω⊇S1,x⊇S2,y

∏
v∈∁ΩS1,x

(1− PN
v )

∏
t∈∁S1,x

S2,y

PN
t (1− PDL

t ))

(32)

Since ∁ΩS2,y = ∁ΩS1,x ∪ ∁S1,x
S2,y, ∁ΩS1,x ∩ ∁S1,x

S2,y = ∅ and the summation traversed all sets from Ω to S2,y , so∏
s∈S2,y

PN
s PDL

s (
∑

n≥x≥y,Ω⊇S1,x⊇S2,y

∏
v∈∁ΩS1,x

(1− PN
v )

∏
t∈∁S1,x

S2,y

PN
t (1− PDL

t ))

=
∏

s∈S2,y

PN
s PDL

s

∏
t∈∁ΩS2,y

(1− PN
t ) + PN

t (1− PDL
t ) =

∏
s∈S2,y

PN
s PDL

s

∏
t∈∁ΩS2,y

(1−PN
t PDL

t )
(33)

Similar with Eq. (32)-(33), PC can be further transformed as:

PC =
∑

n≥z≥n−f, Ω⊇S3,z

∑
n≥y≥z, Ω⊇S2,y⊇S3,z

∏
u∈S3,z

PUL
u

∏
v∈∁S2,y

S3,z

(
1− PUL

v

) ∏
s∈S2,y

PN
s PDL

s

∏
t∈∁ΩS2,y

(
1−PN

t PDL
t

)
=

∑
n≥z≥n−f, Ω⊇S3,z

∑
n≥y≥z, Ω⊇S2,y⊇S3,z

∏
u∈S3,z

PN
u PDL

u P
UL

u

∏
v∈∁S2,y

S3,z

PN
v PDL

v

(
1− PUL

v

) ∏
t∈∁ΩS2,y

(
1−PN

t PDL
t

)
=

∑
n≥z≥n−f, Ω⊇S3,z

∏
u∈S3,z

PN
u PDL

u P
UL

u (
∑

n≥y≥z, Ω⊇S2,y⊇S3,z

∏
v∈∁S2,y

S3,z

PN
v PDL

v

(
1− PUL

v

) ∏
t∈∁ΩS2,y

(
1−PN

t PDL
t

)
)

=
∑

n≥z≥n−f, Ω⊇S3,z

∏
u∈S3,z

PN
u PDL

u P
UL

u

∏
v∈∁ΩS3,z

PN
v PDL

v

(
1− PUL

v

)
+
(
1−PN

v PDL
v

)
=

∑
n≥z≥n−f, Ω⊇S3,z

∏
u∈S3,z

PN
u PDL

u PUL
u

∏
v∈∁ΩS3,z

1− PN
v PDL

v PUL
v (34)

Consider PN
u PDL

u PUL
u as the joint success rate P J

u , Eq. (8) is identical to Eq. (1), (4) - (7).

APPENDIX B
DERIVATION OF POWER SERIES OF EQ. (10)

By observation of Eq. (9), each term after its full expansion
is always the product of joint failure rate P JF

i . In fact, we
only care about how many joint failure rates are multiplied
for each term of the expansion of Eq. (9), and the higher
product is the higher power, while the lower product is the
lower power. From this perspective, we might as well consider
that the joint failure rate P JF

i of each node is the same and

denoted as pJF , and the product of t joint failure rate P JF
i at

this time corresponds to (pJF )
t. For Eq. (9),

∏
u∈SJ,k

P J
u will

be transformed into (1 − pJF )
k,
∏

v∈∁ΩSJ,k
1− P J

v becomes
(pJF )

n−k, thus Eq. (9) can be transformed as:

PF =

n∑
x=f+1

(
n

x

)
(1− pJF )

n−xpxJF (35)
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By expanding (1− pJF )
n−x, we have

PF =

n∑
x=f+1

n−x∑
k=0

(
n

x

)(
n− x

k

)
(−1)kpx+k

JF (36)

Substituting x+ k as t, we have

PF =

n∑
x=f+1

n∑
t=x

(
n

x

)(
n− x

t− x

)
(−1)t−xptJF (37)

After changing the summation order,

PF =

n∑
t=f+1

t∑
x=f+1

(
n

x

)(
n− x

t− x

)
(−1)t−xptJF (38)

Replacing
(
n
x

)(
n−x
t−x

)
as

(
n
t

)(
t
x

)
, PF can be calculated as

PF =

n∑
t=f+1

(
n

t

)
ptJF (

t∑
x=f+1

(
t

x

)
(−1)t−x) (39)

Consider
t∑

x=f+1

(
t
x

)
(−1)t−x, let m = t− x, we have

t∑
x=f+1

(
t

x

)
(−1)t−x

=

t−f−1∑
m=0

(
t

t−m

)
(−1)m =

t−f−1∑
m=0

(
t

m

)
(−1)m

(40)

Through
(
t
m

)
=

(
t−1
m

)
+
(
t−1
m−1

)
, it can be further transformed

as:
t−f−1∑
m=0

(
t

m

)
(−1)m =

t−f−1∑
m=0

(

(
t− 1

m

)
+

(
t− 1

m− 1

)
)(−1)m

=

(
t

0

)
(−1)0 +

t−f−1∑
m=1

(

(
t− 1

m

)
+

(
t− 1

m− 1

)
)(−1)m

=

t−f−1∑
m=0

(
t− 1

m

)
(−1)m +

t−f−2∑
r=0

(
t− 1

r

)
(−1)r+1

=

(
t− 1

t− f − 1

)
(−1)t−f−1 =

(
t− 1

f

)
(−1)t−f+1

(41)

Thus PF with respect to pJF can be written as:

PF =

n∑
t=f+1

(−1)t−f+1

(
t− 1

f

)(
n

t

)
ptJF (42)

Note here ptJF corresponds to some t products of joint fail-
ure rate P JF

i . In fact, since the summation in Eq. (9) is rota-
tionally symmetric to the nodes, every possible combination of
t products of P JF

i will appear and with the same coefficients,
so

(
n
t

)
ptJF can be converted to

∑
Ω⊇SJF,t

∏
u∈SJF,t

P JF
u , so

we get:

PF =

n∑
t=f+1

(−1)t−f+1

(
t− 1

f

) ∑
Ω⊇SJF,t

∏
u∈SJF,t

P JF
u (43)

APPENDIX C
PROOF OF THEOREM 1

According to Eq. (18), the consensus failure rate can be
expressed as:

pF =

n∑
x=f+1

(
n

x

)
pxJF (1− pJF )

n−x (44)

Thus the error term could be obtained as:

ε = log(

n∑
x=f+1

(
n
x

)
pxJF (1− pJF )

n−x

(
n

f+1

)
pf+1
JF

)

= log(

(1− pJF )
n−f−1

n∑
x=f+1

(
n
x

)
pxJF (1− pJF )

n−x

(
n

f+1

)
pf+1
JF (1− pJF )n−f−1

)

≤ log(

(1− pJF )
n−f−1

(
n

f+1

) n∑
x=f+1

pxJF (1− pJF )
n−x

(
n

f+1

)
pf+1
JF (1− pJF )n−f−1

)

= log((1− pJF )
n−f−1(1 +

pJF
1− pJF

+ ...+ (
pJF

1− pJF
)n−f−1))

= log(
(1− pJF )

n−f − pn−f
JF

(1− pJF )− pJF
)

(45)

Here
(
n
x

)
≤

(
n

f+1

)
when x ≥ f +1 is used to obtain the upper

bound of ε. Thus Theorem 1 has been proved.

APPENDIX D
PROOF OF THEOREM 2

With the assumptions in Section IV, the degeneration form
of Eq. (9) can be written as:

pF =

n∑
x=f+1

(
n

x

)
pxJF (1− pJF )

n−x

≈
(

n

f + 1

)
pf+1
JF (1− pJF )

n−f−1

(46)

Similar wiht Eq. (45) the approximation error term could be
obtained as:

ε = log(

n∑
x=f+1

(
n
x

)
pxJF (1− pJF )

n−x

(
n

f+1

)
pf+1
JF (1− pJF )n−f−1

)

≤ log(
1

(1− pJF )n−f−1

(1− pJF )
n−f − pn−f

JF

(1− pJF )− pJF
)

= log(
(1− pJF )

n−f − pn−f
JF

(1− pJF )n−f − pJF (1− pJF )n−f−1
)

(47)

If the number of followers is even, i.e. n = 2f ,

logpF =logpJF · (f + 1) + log(1− pJF ) · (f − 1)

+ log(
(2f)!

(f + 1)!(f − 1)!
)

(48)
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According to the Stirling formula, n! ≈
√
2πn(ne )

n, Eq. (48)
can be transformed into

logpF ≈ (f + 1)(logpJF ) + (f − 1)log(1− pJF ) + log(
1√
2π

)

+ log(

√
2f

f2 − 1
) + log(

(2f)2f

(f + 1)f+1(f − 1)f−1
)

(49)

The fifth term in logarithm form can be simplified as

log(
(2f)2f

(f + 1)f+1(f − 1)f−1
) = (f + 1)log(

2f

f + 1
)

+ (f − 1)log(
2f

f − 1
) ≈ 2f log(2)

(50)

By using Eq. (50) and arranging Eq. (49), we get an equation
consisting of linear and nonlinear parts as

logpF ≈ (2log2 + logpJF + logpJ) · f

+ log(
pJF

(pJ)
√

(π)
)− 1

2
logf

(51)

It is obvious that (2log2+logpJF+logpJ)·f+log( pJF

(pJ )
√

(π)
) is

the linear part of Eq. (50) while − 1
2 logf is the non-linear part.

The derivative of logpF with respect to f can be calculated
as: 2log2+ logpJF +logpJ − 1

2f . Since pJF is close to 0, the
impact of − 1

2f on the linearity is minor. Thus the tolerance
gain when n is even is 2log2+logpJF+logpJ and the linearity
will be more obvious when pJF is smaller and f is larger. The
non-linear part − 1

2 logf is considered as the complement term
to increase the approximation accuracy when f is relatively
large.

If n = 2f + 1, we have similar proof process. After
transformation and Stirling approximation,

logpF ≈ (logpJF ) · (f + 1) + (log(1− pJF )) · f + log(
1√
2π

)

+ log(

√
2f + 1

f(f + 1)
) + log(

(2f + 1)2f+1

(f + 1)f+1(f)f
)

≈ (2log2 + logpJF + logpJ)f + log(
pJF
pJ

√
π
)

+ log2pJ − 1

2
logf

(52)

Thus, when n is odd, the linear relation can be obtained as
equation (24).

APPENDIX E
PROOF OF REMARK 3

According to the definitions of εL and εN in section IV-C,
they can be calculated as:

εL = log
pF

pNLF
≈ (f + 1)log(

1− (1− pNF )(1− pLF )
2

pNF
)

≈ (f + 1)log(
pNF + 2pLF

pNF
) = (f + 1)log(1 +

2

k
)

(53)

εN = log
pF

pNNF
≈ (f + 1)log(

1− (1− pNF )(1− pLF )
2

1− (1− pLF )2
)

≈ (f + 1)log(
pNF + 2pLF

2pLF
) = (f + 1)log(1 +

k

2
)

(54)

According to Eq. (53), k can be represented as k = 2

10
εL
f+1 −1

.

Since Eq. (53) is a decreasing function about k, for a given
εL, if k is more than 2

10
εL
f+1 −1

, the neglecting error will be

less than εL. The situation of neglecting node failure is the
same with that of neglecting link failure.

APPENDIX F
PROOF OF EQ. (IV-E)

Since 1− p∗C is close to 0, we have:

(p∗C)
M = (1− (1− p∗C))

M ≈ Mp∗C − (M − 1) (55)

According to Eq. (55), (28) and the simplification method
of joint failure, Eq. (28) can be further transformed as

pMul
C ≈ M

n∑
x=n−f

(
n

x

)
pxN (1− pN )n−xp∗C

− (M − 1)

n∑
x=n−f

(
n

x

)
pxN (1− pN )n−x

= MpC − (M − 1)

n∑
x=n−f

(
n

x

)
pxN (1− pN )n−x

(56)

where pC is the consensus reliability of a single instance. Thus
pMul
F = 1 − pMul

C can be further transformed based on the
method of power series proposed in section III-C as:

pMul
F ≈ 1−MpC + (M − 1)

n∑
x=n−f

(
n

x

)
(pxN (1− pN )n−x

= M(1− pC)− (M − 1)(1−
n∑

x=n−f

(
n

x

)
(pxN (1− pN )n−x)

≈ MpF − (M − 1)

(
n

f + 1

)
pf+1
NF

(57)

Thus we get Eq. (IV-E).
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