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Abstract—Vehicular Ad-hoc Networks (VANETs) play an es-
sential role in traffic safety and travel efficiency. However, due
to the variable network topology of VANETs, malicious vehicles
can easily invade the network to disrupt the network integrity.
Moreover, compromised Roadside Units (RSUs) may pose a
tremendous threat to network. Thus, we propose a distributed
trust model to resist malicious vehicles and compromised RSUs
by a mutual supervision mechanism between vehicles and RSUs.
Three stages of this model ensure the trustworthiness of partici-
pants, including trust evaluation, adjudication, and vehicle appeal
mechanism. In the trust evaluation stage, message receivers
calculate three types of trust values (i.e., direct, indirect, and
combined trust values) and upload them to RSUs. Then, RSUs
dynamically update the trust threshold by aggregating vehicular
trust values. In the adjudication stage, RSUs punish/reward
vehicles by comparing the trust threshold to aggregated trust
values. In the vehicle appeal stage, vehicles appeal to other RSUs
if they have received the undesired punishment by an RSU. Then,
multiple RSUs jointly judge whether a vehicle is successfully
appealed, and the misjudging RSU will be punished Extensive
simulations show that the proposed model effectively identifies
malicious vehicles with the presence of compromised RSUs.

Index Terms—Vehicular ad-hoc networks, Internet of vehicles,
Trust management, Dynamic trust threshold, Appeal mechanism

I. INTRODUCTION

With the development of communication technologies, Ve-
hicular Ad-hoc Networks (VANETs) have been widely em-
ployed in Intelligent Transportation Systems (ITS). VANETs
integrate intelligent traffic management with information ser-
vices via the real-time interconnection perception, which can
provide safe, efficient, environmentally friendly, and comfort-
able travel for the transportation industry.

However, due to the inherent characteristic of VANETs,
there is uncertainty in the message transmission process. For
example, attackers may tamper with messages to mislead
driving decisions. Attackers can also generate a large number
of redundant messages, resulting in network congestion that
delays exchange of critical traffic information.

Encryption and authentication algorithms are usually uti-
lized to ensure the confidentiality, integrity, and unforgeability
of data [1], whereas the internal trust problem cannot be
solved. For example, an authenticated attacker with a valid
certificate can pass the authentication and generate false mes-
sages. When attackers send false messages to other vehicles,

it will cause traffic jams and even accidents. To ensure
robustness to malicious attacks and maintain a trustworthy
relationship between vehicles, a reliable trust management
model is the cornerstone to address the above problems [2].

According to the target of trust evaluation, trust management
models are usually classified into entity-centric, data-centric,
and hybrid trust models. Specifically, the entity-centric trust
model aims to evaluate the trust value of entities (such as
vehicles) [3]. Furthermore, the data-centric trust model aims
to evaluate the trust of received messages [4]. The model
determines whether the received data is trustworthy based on
the similarity of received data. Finally, the hybrid trust model
combines the above two models to evaluate the trust of both
vehicles and messages [5], [6].

Nevertheless, trust management models in recent works
still need improvement in terms of accuracy and real-time
reliability. On the one hand, the dynamics of trust threshold
are ignored, leading to a decrease in the precision of malicious
detection. On the other hand, the trustworthiness of RSUs is
ignored which may cause tremendous damage to VANETs,
e.g., revoking the certificate of good vehicles. To solve above
problems, we propose an appeal-based distributed trust man-
agement model in VANETs concerning untrustworthy RSUs.
The main contributions can be summarized as follows:
• Recent works set a constant trust threshold that cannot be

adapted to dynamic network status. To improve the real-
time nature of trust model, we propose an adaptive trust
threshold update mechanism, which dynamically updates
the trust threshold with vehicular trust values.

• In addition, vehicles may suffer from unreasonable pun-
ishment of compromised RSUs, resulting in a reduction
in the proportion of benign vehicles, thereby wasting
network communication resources. We present a vehicle
appeal mechanism to protect the legitimate interests of
benign vehicles. Such mechanism provides vehicles with
a channel to appeal to other RSUs while being wrongly
punished by a compromised RSU.

II. RELATED WORK

A. Entity-Centric Model
The entity-centric trust model evaluates vehicular trustwor-

thiness through their behavior. Xiao et al. [7] established



an implicit web of trust. Then the direct trust was calcu-
lated with an algorithm named BayesTrust, and the global
trust was calculated by the VehicleRank algorithm. Xia et
al. [8] proposed a lightweight trust-aware routing protocol,
integrating the Markov prediction algorithm with direct trust
calculation. Furthermore, a feedback mechanism was proposed
to evaluate the recommendation trust. Wang et al. [9] proposed
a context-aware trust model that vehicles were classified as
service providers and requesters. Then, the trust of vehicles
was evaluated by a linear logistic regression model based
on context variables. After that, a recommendation filtering
mechanism was introduced to identify malicious vehicles. In
above works, the main difficulty is to evaluate the trust value
of vehicles in the data sparsity issue (i.e., the problem of
inaccurate evaluation caused by less trust evidence).

B. Data-Centric Model
The data-centric trust model collects messages from various

entities (neighbors and RSUs), and filters out untrustworthy
messages. Huang et al. [10] proposed a distance-based voting
mechanism. The voting weight is proportional to the distance
between a vehicle and the event location. Rawat et al. [11] de-
signed a data-centric model which integrated Received Signal
Strength (RSS) and Vehicle Geographic Location (GPS). Dai
et al. [4] proposed a provenance-based model to evaluate the
data trust. A clustering algorithm was utilized to group data
items that described the same event. This work analyzed four
attributes that affect data trust: data similarity, path similar-
ity, data conflict, and data deduction. However, recent data-
centric models do not establish a trust relationship between
vehicles, so malicious vehicles cannot be accurately identified.
In addition, if there are few interactions between vehicles, the
trustworthiness of messages cannot be accurately evaluated.

C. Hybrid Model
By combining above two trust models, the hybrid trust

model evaluates the trustworthiness of both vehicles and
messages. ART [5] utilized the Dempster Shafer theory to
aggregate trust evidence. An attack-resistant trust management
scheme ensures the feasibility and dependability of ART.
Then, a collaborative filtering algorithm was introduced to
evaluate the trustworthiness of vehicles and messages. F.
Ahmad et al. [12] proposed a trust model to defend against
man-in-the-middle attacks. The trust value of message sender
was evaluated by the height of vehicular antenna and position.
Once the message sender’s trustworthiness was determined,
the message’s authenticity was evaluated by direct and indirect
trust calculations. The combined trust model inherits the
advantages and disadvantages of entity-centric and data-centric
trust models. However, the combined model also suffers from
problems such as data sparsity.

III. SYSTEM MODEL

A. Network Model
As shown in Fig. 1, entities in VANETs are divided into

two categories: (i) vehicles and (ii) RSUs. The detailed intro-
duction of them is illustrated as follows.
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Fig. 1. System model.

1) Vehicles: Each vehicle is equipped with an On-Board
Unit (OBU) to detect traffic events and collect trust evidence.
Furthermore, vehicles have certain data storage and computing
capabilities. Necessary functions of vehicles fundamentally
support the trust calculation and judgment, including (i) traffic-
related message sharing with neighbors, (ii) local trust evi-
dence uploads, and (iii) undesired punishment appeals.

In addition, the trust evidence format is shown as follows:

TEi,j = {IDj , DTi,j , RTj , ITi,j , CTi,j , α, β, t} , (1)

where i and j denote the Message Receiver (MR) and Message
Sender (MS), respectively. IDj denotes the unique identifier
of vehicle j. DTi,j , ITi,j and CTi,j are direct, indirect, and
combined trust values calculated for vehicle j, from the view
of vehicle i, respectively. RTj represents the recommendation
trust values of vehicle j issued by RSUs. α and β denote
the historically benign and malicious message forwarding
behavior of vehicle j, respectively.

2) RSUs: RSUs are fixed infrastructures deployed along
the road. They are responsible for relaying messages to ve-
hicles or other RSUs, to expand the communication range of
VANETs. In addition to the essential functions of vehicles,
RSUs have advanced functions, including (i) collecting trust
evidence and aggregating trust values, (ii) updating the trust
threshold according to aggregated trust values, and (iii) pun-
ishing/rewarding vehicles according to aggregated trust values.

B. Adversary Model

This study implements three adversary models: Simple At-
tack (SA), Bad Mouth Attack (BMA), and RSU Attack (RA).
SA and BMA attacks are conducted by authenticated vehicles,
and RA attack is conducted by RSUs. A compromised RSU
has the potential to revoke the certificates of benign vehicles, to
decrease the transmission efficiency of messages. In addition,
a compromised RSU may send the false trust threshold with
vehicles, resulting in the vehicle being unable to select a
trustworthy neighbor for message transmission. The details of
three attack models are illustrated as follows:
• Simple Attack (SA): Attackers tamper with the received

messages, i.e., modifying the contents of messages.



• Bad Mouth Attack (BMA): Attackers tamper with mes-
sages similar to attackers in SA. When a vehicle requests
recommendations from a BMA attacker, the attacker will
send false recommendations, resulting in the inaccuracy
of trust evaluation and misjudged decision.

• RSU Attack (RA): Compromised RSUs will carry out
RA, they provide false trust threshold and false aggre-
gated trust values to vehicles. Moreover, they can also
revoke the certificate of benign vehicles arbitrarily.

TABLE I
LIST OF NOMENCLATURES

Notations Explanation

i The vehicle that receives messages

j The vehicle that sends messages

k The vehicle that provides recommendations

α The number of benign forwarding behaviors

β The number of malicious forwarding behaviors

α′, β′ The updated values of α and β

xi,j The current benign forwarding behaviors of j observed by i

yi,j The number of total forwarding behaviors of j observed by i currently

V The set of all vehicles in network

Vi The set of vehicles that have interacted with vehicles i

DTi,j The direct trust value evaluated by i on j

ITi,j The indirect trust value evaluated by i on j

CTi,j The combined trust value evaluated by i on j

ATi The aggregated trust value of vehicle i

AT The average trust value of all vehicles in the network

T The old trust threshold

T ′ The updated trust threshold

λ The actual number of interactions between vehicles

Θ The minimum number of interactions to evaluate trust accurately

P The precision of detection

R The recall of detection

IV. DESIGN OF THE PROPOSED TRUST MODEL
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Fig. 2. Architecture of the proposed model.

Fig. 2 depicts the overall architecture of proposed model.
In the trust evaluation stage, the message receiving vehicle

calculates the direct, indirect and combined trust values. Then,
the vehicle uploads trust values to RSUs, at which point it
enters the threshold updating and adjudication stage. Here,
RSUs will aggregate the received trust values to update the
trust threshold, and punish/reward vehicles according to the
trust threshold. When a vehicle receives a reward or punish-
ment from RSUs, it enters the vehicle appeal stage. If the
vehicle believes that an RSU’s punishment is unreasonable, it
will appeal to other RSUs to avoid a misjudgment. In general,
vehicles are responsible for trust evaluating, uploading, and
appealing. RSUs are responsible for trust aggregation, trust
threshold updating, and reward/punish vehicles.

A. Trust Evaluation

Vehicle i maintains local trust evidence TEi =
{TEi,1, TEi,2, ..., TEi,x}. When vehicle i receives the mes-
sage from vehicle j, it first queries whether there is trust
evidence locally (TEi,j). If TEi,j does not exist, vehicle i
initializes the trust evidence according to Eq. (1). Then, vehicle
i calculates the direct trust value of vehicle j by the Bayesian
method [7]. The direct trust value DTi,j is depicted as follows:

DTi,j =
α+ xi,j

α+ β + yi,j
, (2)

where α and β represent the historical benign message for-
warding behavior and malicious message forwarding behavior
of vehicle j, respectively. xi,j and yi,j are benign and mali-
cious message forwarding behaviors vehicle j in the current
interaction, respectively.

The message forwarding behavior is judged by the integrity
of message. Specifically, when vehicle i receives the message,
vehicle i can determine whether the received message has
been tampered with through verification or authentication (if
the message is tampered with, the forwarding behavior is
considered malicious). Furthermore, α and β are updated and
the equations are shown as follows:{

α′ = α+ xi,j ,
β′ = β + yi,j − xi,j ,

(3)

where α′ and β′ are the values after the iterations and their
initial value is set to 1.

Moreover, vehicle i calculates the indirect trust value of
vehicle j according to the recommendation from its neighbors.
The indirect trust value ITi,j is given by:

ITi,j =

∑Vi
k=1DTi,k ×DTk,j

|Vi|
, (4)

where Vi represents the set of neighbors for vehicle i, |Vi|
is the number of Vi. DTi,k represents the direct trust value
evaluated by vehicle i on k. Similarly, DTk,j represents the
direct trust value evaluated by vehicle k on j.

Based on this, vehicle i aggregates the direct and indirect
trust value into a combined trust CTi,j , which is given by:

CTi,j =

{
λ
θDTi,j + (1− λ

θ )ITi,j if λ < θ,

DTi,j if λ ≥ θ,
(5)



where λ denotes the number of interactions between vehicle
i and vehicle j. θ is a preset fixed value, representing the
minimum number of interactions with witch vehicle i can
accurately evaluate the trust value. DTi,j represents the direct
trust value evaluated by vehicle i on j, and ITi,j represents the
indirect trust value evaluated by vehicle i on j. Specifically, the
weight of direct and indirect trust aggregation depends on the
number of interactions between vehicles i and j. When there
are enough interactions, it can be considered that the direct
trust of vehicle i is trustworthy. Therefore, the neighbors’
recommendations required by vehicle i are unnecessary.

B. Trust Threshold Updating and Adjudication
When vehicle i is within the communication range of an

RSU, its local trust evidence is uploaded. Then the RSU
aggregates the trust evidence collected by vehicles to obtain
an aggregated trust value ATi:

ATi =

∑VR
x=1CTx,i
|VR|

, (6)

where VR is the set of vehicles that have communicated with
the RSU, |VR| is the size of set VR, and CTx,i represents
the combined trust value of vehicle x to vehicle i. The RSU
locally stores the aggregated trust value of multiple vehicles,
AT = {AT1, AT2..., ATn}.

Finally, aggregated trust values are shared between RSUs
periodically. The trust threshold is updated according to the
aggregated trust value, which is given by:

T ′ =

T + (AT − T ) ∗ exp
{

1
T −AT −

AT
T

}
if AT > T ,

T − (T −AT ) ∗ exp
{

1
AT−T −

T
AT

}
if AT ≤ T ,

(7)
where T represents the historical trust threshold. AT repre-
sents the average of total aggregated trust values, denoted as:

AT =

∑V
i=1ATi
|V|

, (8)

where V is the set of vehicles. |V| is the total number of
vehicles in the network, and ATi is the aggregated trust value
of vehicle i calculated by RSUs. If the aggregated trust value
is lower than the trust threshold, the RSU will punish the
corresponding vehicle, revoke its network certificates, and
prohibit that vehicle from communicating with others.

C. Vehicle Appeal Mechanism
A compromised RSU has the potential to revoke the

certificates of benign vehicles, to decrease the transmission
efficiency of messages. Furthermore, a compromised RSU
may send the false trust threshold with vehicles, resulting in
the vehicle being unable to select a trustworthy neighbor for
message transmission. Therefore, a vehicle appeal mechanism
is proposed to supervise RSUs and resist the effect of untrust-
worthy participants, i.e., compromised RSUs.

The vehicle appeal mechanism details are shown in Algo-
rithm 1. Two cases can trigger this mechanism: (i) a vehicle is
punished, and (ii) a vehicle receives two trust thresholds with
a significant difference within a short time interval.

Algorithm 1: Vehicle Appeal Algorithm
Input: vehicle’s ID
Output: success or failure

1 vehicle i appeals to TA;
2 if vehicle i is wrongly punished then
3 for other RSUs do
4 global trust calculation, Eq. (6);
5 end
6 if GTi of most RSUs is higher than the threshold

then
7 vehicle i is trustworthy, and restore its

credentials;
8 the misjudging RSU’s ID is recorded, Eq. (9);

Result: success
9 end

Result: failure
10 end
11 if the difference of trust threshold between two RSUs

is out of range then
12 for suspicious RSUs do
13 The TA collects the RSU’s threshold T ′RSU ;
14 if T ′RSU ! = T ′TA then
15 the misjudging RSU’s ID is recorded, Eq.

(10);
Result: success

16 end
17 end

Result: failure
18 end

1) Case 1: When vehicle i receives an unexpected punish-
ment from an RSU, it appeals to RSUs (other than the one that
implements punishment) for fair judgment. Then, other RSUs
calculate the aggregated trust value ATi on vehicle i. If ATi
is above the trust threshold T ′, the appeal will be successful.
Furthermore, other RSUs restore the certificates for vehicle i
and record the malicious value of the RSU r (denoted as Mr).
The updated malicious value M

′

r is shown as follows:

M
′

r =

{
Mr + 1 if appeal successful,
Mr × e−∆t if appeal failed,

(9)

where Mr represents the historical malicious value of RSU r,
and its initial value is 0. ∆t is the timestamp of the last record.
If an RSU is subjected to multiple successful appeals within
a short time, its malicious value will increase rapidly. When
the malicious value of an RSU rises to a certain threshold, the
RSU is considered a compromised RSU.

2) Case 2: If two RSUs assign two trust thresholds to a
common vehicle but with large difference within short time
interval, the vehicle will appeal to other RSUs (except the
two suspicious RSUs). Then, other RSUs calculate the average
value of the trust threshold T ′ and compare it with the two
suspicious RSUs. Then, the malicious value of the RSU is



updated according to the results of the comparison:

M ′r =

{
Mr + 1 if T ′r 6= T ′,
Mr × e−∆t if T ′r = T ′,

(10)

where T ′r is the trust threshold of RSU r, and T ′ is av-
erage trust threshold. It is observed that the vehicle appeal
mechanism can prevent RSUs from providing the false trust
threshold, which significantly impacts the vehicular selection
of trustworthy neighbors for message transmission.

V. PERFORMANCE EVALUATION

A. Simulation Setup

The Opportunistic Network Environment (ONE) simulator
[13] is utilized to perform experiments and analysis results.
Realistic road from Helsinki city within a 4500 × 3400m2

area serves as the scenario for our simulation experiment, as
shown in Fig. 3. Here, 200 vehicles and 12 RSUs are randomly
generated on the digital map, and vehicles move to a random
destination, following the shortest path obtained by Dijkstra
algorithm. Furthermore, the transmission range, transmission
rate and buffer size is set to 100m, 900kbps, and 10MB.
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Fig. 3. The Helsinki City Scenario.

In addition, we introduce malicious vehicles and compro-
mised RSUs into the network. Three attack methods are
employed in vehicles, including SA, BMA, and RA mentioned
in Section III-B. Then, we set the simulation time of each
round to 3600 seconds, and there will be a warm-up time of
100 seconds before the simulation starts.

In the experiment, the proposed model is named ‘Pro-
posed+’. We measure the performance of proposed model with
the ‘Proposed-’, which is without a vehicle appeal mechanism.
Furthermore, we integrate IWOT-V [7] into the scenario of this
paper. IWOT-V established an implicit web based on Bayes
which identifies benign and malicious vehicles by aggregating
local trust values into global trust values. The above three
models are based on the spray and wait routing protocol [14]
1. Metrics in Table II are evaluated for comparison:

1Specifically, Spray and Wait algorithm is designed to work where paths
may be unknown and may frequently change, for example, wildlife tracking
sensor networks, military networks, inter-planetary networks, etc. In this
context, conventional routing schemes would fail.

TABLE II
COMPARISON METRICS

Metric Calculation Explanation

P The Detected malicious vehicles
Detected as malicious vehicles

The accuracy of
detecting malicious nodes

R The Detected malicious vehicles
Total number of malicious vehicles

The recognition rate
of malicious nodes

MDR Number of authentic messages
Total number of messages

The accuracy of messages
delivered in the network

B. Result Analysis
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Fig. 4. Under SA attack, the impact of malicious vehicles’ proportion.

1) Impact of SA: In Fig. 4(a), the precision of three models
is improved with the increase of malicious vehicles, and the
precision of ‘Proposed+’ is the best among three models. This
is because when a minority of malicious vehicles exist, the
IWOT-V inevitably misjudges benign vehicles. Due to the
dynamic trust threshold mechanism, the ‘Proposed+’ reduces
the false positive rate when there are few malicious vehicles.
In addition, the misjudged vehicle can be corrected since
the ‘Proposed+’ model utilizes the vehicle appeal mecha-
nism to rejudge that vehicle. Therefore, the accuracy of the
‘Proposed+’ model outperforms others. In Fig. 4(b), with the
increase in the proportion of malicious vehicles, the recall
of IWOT-V decreases (from 98.4% to 48.5%). Specifically,
IWOT-V only identifies roughly half of the attackers when
malicious vehicles account for more than 35%.
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Fig. 5. Under BMA attack, the impact of malicious vehicles’ proportion.

2) Impact of BMA: Fig. 5(a) shows the precision of three
models. Specifically, when the number of attackers is lim-
ited, i.e., 10%, they have a subtle influence on the network.
However, with the increase of attackers (from 10% to 60%),
IWOT-V fails to eliminate the impact of attackers, and its



TABLE III
UNDER RA ATTACK, THE IMPACT OF COMPROMISED RSUS

Number of compromised RSUs 1 2 3 4 5 6
Precision 1 1 1 1 0.8 0.66

precision rate decreases sharply (from 79.9% to 39.8%). On
the contrary, the precision of ‘Proposed+’ is maintained at a
high level (from 80.7% to 93.1%). This is because ‘Proposed+’
considers weights for trust aggregations. When referring to
recommendations from BMA attackers, their weights are too
low to affect the trust evaluation. Fig. 5(b) shows the recall of
three models. We can observe that the precision of proposed
model is better against BMA than others. When the proportion
of malicious vehicles is increased from 10% to 60%, the recall
of three models decreases. This is because with the increase
of attack probability, the probability of false recommendations
from neighbors increases, resulting in the misjudgment of its
final weighted average trust value. The recall of ‘Proposed+’
is always at the highest level because the weight of trust is
considered in the trust aggregation.
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Fig. 6. Impact on message delivery rate.

3) Message delivery rate: Fig. 6(a) and Fig. 6(b) illustrate
the relationship between the MDR and the percentage of
attackers. It is observed that the MDR of ‘Proposed+’ is
higher than that of the other two models. Specifically, with
the increase of attackers, the MDR of three models decreases
rapidly. Unfortunately, when the percentage of attackers is
30%, the maximum MDR is 65.8% that belongs to ‘Pro-
posed+’. The MDR of ‘Proposed-’ and IWOT-V are 62.1%
and 56.5%, respectively. This is directly related to the con-
tributions from vehicle appeal mechanism. Here, ‘Proposed+’
with the vehicle appeal mechanism can revoke the certificates
of malicious vehicles and restore the certificates of misjudged
vehicles, and improve the message transmission efficiency.

4) Impact of RA: Table III shows the detection precision of
compromised RSUs. It is observed that when the number of
compromised RSUs is less than half, almost all compromised
RSUs can be detected (the precision rate is 100% when the
number of compromised RSUs is less than 5, and 80% when
the number of malicious RSUs is 5). This implies that a
vehicle appeal mechanism is able to monitor RSUs’ behavior
to identify malicious RSUs effectively.

VI. CONCLUSION

The paper proposed a distributed trust model to resist
malicious vehicles and compromised RSUs by a mutual super-
vision mechanism between vehicles and RSUs. Three stages of
this model ensure the trustworthiness of participants, including
trust evaluation, adjudication, and vehicle appeal mechanism.
Specifically, the dynamic trust threshold mechanism is pro-
posed to improve the precision and recall rate in detection
of attackers. Moreover, a vehicle appeal mechanism provides
vehicles a channel to appeal to other RSUs while being
wrongly punished by a compromised RSU. The mechanism
effectively solves the problem of compromised RSUs in the
network. Extensive simulation results show that the proposed
model effectively detects malicious vehicles with the presence
of compromised RSUs.
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