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A B S T R A C T   

Real-time monitoring in smart grids requires efficient handling of massive amount of data. Fog cloud nodes can be strategically located within the smart grid to: pull 
readings from smart meters, implement local processing and control, and make all data available to the smart grid control center with minimum overall latency. 
Unlike existing studies in literature, we propose a novel Fog node allocation strategy that is tightly coupled with the power grid structure, and hence, accounts for the 
spatial distribution of data traffic sources (e.g., smart meters) within the power grid. Furthermore, the allocation strategy considers the diverse latency requirements 
of fixed scheduling and event driven data services within the power grid. The proposed allocation strategy first implements an unsupervised machine learning 
approach to determine initial number and locations of Fog nodes that can serve the data traffic with minimum overall latency. Then, a reinforcement-based 
mechanism is applied to minimize the required number of Fog nodes, and hence capital cost, through efficient mapping between Fog nodes and smart meters 
while still complying with the latency requirements. Our simulation studies demonstrate that a 50% reduction in required number of Fog nodes can be achieved while 
minimizing overall latency when the proposed allocation strategy is adopted.   

1. Introduction 

1.1. Motivation 

To enable the advanced services offered by future smart grids, there 
is a need to strengthen the interplay between power systems and 
communication networks. Specifically, wider adoption of disruptive 
technologies such as distributed energy generators, distributed storage 
units, electric vehicles, and demand response will be possible thanks to 
state-of-the-art real-time monitoring and notification systems that 
incorporate phasor measurement units and smart meters along with the 
existing supervisory control and data acquisition (SCADA) systems [1]. 
These devices will rely on integrated communication networks to 
transmit various grid-related data including: (i) demand-side related 
data such as energy consumption levels, (ii) operational related data 
such as power quality status and optimal control strategies, and (iii) 

energy market data for peer-to-peer or larger scale market participation. 
For instance, in a field study conducted in Austin, TX with nearly one 
thousand homes equipped with solar panels, electric vehicles, and smart 
meters, one billion daily data is created and handled with cloud service 
[2]. Obtaining high resolution data is particularly critical for electricity 
service providers as this data enables fast detection of grid failures and 
faults as well as an accurate forecast of supply and demand. Inefficient 
handling of such tasks lead to immediate financial losses. Therefore, 
significant amount of data, with tight latency requirements, need to be 
exchanged among different components within the grid in a timely 
manner. 

Traditional power grids adopt a centralized communication infra-
structure in which remote terminal units transmit data to a centralized 
controller. However, as the power system operations become more data- 
centric, there is a need for a more effective networking paradigm for 
efficient data management [3]. In this context, cloud-based infrastruc-
ture offers a scalable, flexible, and dynamic solution to handle high 
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volumes of data traffic with minimum latency, thanks to the concept of 
edge and Fog cloud nodes. The use of fog and edge computing can 
effectively handle tasks such as managing data for large IoT systems. 
One major issue that needs to be addressed in the next generation of 
smart grid IoT systems, which consist of a large number of smart devices, 

is the problem of collecting and analyzing data. Traditional methods for 
gathering data in smart grids can be expensive in terms of computation 
and communication. To overcome these challenges, recent efforts have 
been focused on utilizing fog computing in combination with smart grids 
[4]. As illustrated in Fig. 1, a hierarchical architecture can be adopted in 
the smart grid using Fog cloud nodes for data collection and control 
services [5,6]. In this model, the power grid is divided into regions 
(clusters) and a Fog node is assigned to each region. Data collected from 
smart meters is transmitted to the corresponding Fog node where local 
data processing and control take place. Further, data is forwarded to a 
control center that is typically hosted in the core cloud for global co-
ordination. Such a cloud-based networking solution was shown to result 
in a significant cost reduction, $14 million, compared to traditional 
networking solutions [5]. 

While selecting an appropriate networking technology is imperative 

for successful operation of smart grids, optimal design of such networks 
is equally important. In the context of cloud-based smart grids, careful 
planning of Fog node placement is critical to provide a reliable, high- 
performing, and cost-effective data management. To minimize the 
overall communication latency, which is vital for emergency services 

Nomenclature 

QoS quality of service 
IoT Internet of things 
FN fog node 
FNs fog nodes 
ED event driven 
FS fixed scheduling 
ML Machine learning 
RL Reinforcement learning 
GERoNIMO Generalized EMF Research using Novel Methods 
APs access points  

Fig. 1. Hierarchical cloud architecture in smart grid.  
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within the power grid, an optimal allocation strategy is needed to 
determine the optimal locations of Fog nodes. 

1.2. Related work and limitations 

Cloud-based smart grid services have been the subject of several 
studies [3,5–11]. In [3], a hierarchical cloud-based architecture is pro-
posed and its application for direct load control in smart grid is dis-
cussed. In [5], cloud computing is adopted to offer security-as-a-service 
for advanced metering infrastructure (AMI). In [6], an open-source 
platform is proposed for data management and sharing within the 
power grid based on cloud computing. In [7], a cloud-based demand 
response architecture and a set of distributed algorithms are presented 
to enable secure, scalable, and reliable demand response programs. In 
[8], a cloud-based load forecasting framework is proposed to minimize 
energy consumption and carbon emissions in micro-grids by reducing 
both message overhead and energy consumption. In [9], a cloud-based 
electric vehicle demand management is proposed for public charging 
stations. In [10], a decentralized Fog cloud architecture is proposed for 
energy management of electric vehicles. In [12], the authors proposed a 
resource allocation based strategy to study the impact of pricing on 
service delay. In [13], the authors propose a low complex heuristic so-
lution to optimize the delay in Fog enabled cloud based systems. In [11], 
a cloud computing based hierarchical electric vehicle charging man-
agement model is proposed. Two levels of cloud nodes are considered to 
satisfy different delay requirements of customers seeking to receive 
service in highway exits and parking lots. Similarly in [14] and using a 
multi-level could computing mechanism, a cost efficient charging sys-
tem is proposed for electric vehicles. 

Allocation of measurement and communication devices in smart 
grids has been studied in a handful of studies [1,15–17]. In [1], place-
ment of data aggregation units in a smart grid network is formulated as a 
mixed integer linear programming problem that minimizes network 
congestion. In [15], an allocation problem is formulated as basic cost 
minimization that aims to find the location and number of data aggre-
gation units needed to provide connectivity between customers and grid 
operators. In [16], an allocation problem of data aggregation units with 
wired connectivity is formulated and solved by linear programming 
relaxation. This model is further expanded in [17] to include wireless 
connectivity. In [18], the software defined networking approach is 
introduced to reduce the cost of aggregation points in large smart grid 
systems. In [19], a neural network is embedded at the edge of the smart 
grid network to increase the utilization of the resources as well as the 
throughput of the system. A brief comparison of some of the recent 
literature is also provided in Table 1. 

Overall, existing studies on allocation of aggregators/Fog nodes do 
not accurately account for the topological features of the power grid. 
The existing allocation strategies do not take into consideration the 
power grid structure and spatial distribution of smart meters within the 
power grid while specifying the optimal Fog node locations. Since the 
smart meters located in the power grid are the main sources of data 
traffic, it is critical to account for their spatial distribution while 
formulating the Fog node allocation problem, which helps in minimizing 
the latency of both link access and end-to-end connection. Further, it is 
important to note that the density of the data sources (e.g., smart meters, 
etc.) does not follow an even distribution among different regions as 

highlighted in [23]. Hence, the generated data traffic at different clus-
ters represents inhomogeneous spatial distribution, which further im-
pacts the optimal number and locations of Fog nodes. 

1.3. Our contributions 

The objective of this work is to address the limitations of existing 
research by proposing an optimal allocation strategy of Fog nodes that is 
tightly coupled with the power grid structure and spatial distribution of 
smart meters. The detailed contributions of this work can be summa-
rized as follows:  

• We propose a two-step optimal allocation strategy of Fog nodes that 
is well integrated with the power grid topology and the spatial dis-
tribution of data traffic within the grid. The proposed strategy aims 
to minimize the end-to-end latency within the network using the 
minimum number of Fog nodes in order to reduce the associated 
capital investment costs.  

• We adopt an unsupervised machine learning approach based on K- 
means to specify the candidate number and locations of Fog nodes 
that are needed to serve the data traffic generated from the smart 
meters across the grid.  

• Based on the candidate locations of Fog nodes, we then propose a 
reinforcement learning-based strategy (multi-armed bandit (MAB)) 
in order to optimally map the smart meters and Fog nodes in a way 
that associates the smart meters to the minimum number of Fog 
nodes, and hence, reduce the number of required Fog nodes to serve 
the data traffic while minimizing the end-to-end latency.  

• We evaluate the performance of the proposed allocation strategy 
using Monte Carlo simulations. Our results demonstrate that the 
proposed reinforcement learning-based strategy leads to a reduction 
in the number of Fog nodes by 50% while satisfying the end-to-end 
latency with minimum computational complexity. 

1.4. Organization 

The rest of the paper is organized as follows: In Section II, the details 
of the proposed system model are provided. In Section III, the proposed 
fog node allocation strategy is explained. In Section IV, the performance 
of the proposed methodology is validated using simulation results and 
comparing with benchmark scheme. Finally, we present the conclusion 
in Section V. 

2. System model 

In this section, we present the system model that consists of the 
power grid structure along with the location of smart meters, wireless 
communication channel, and queuing process. 

2.1. Power grid structure 

In order to properly design a network that ensures acceptable 
communication coverage within the power grid, geographical locations 
of buses, and hence, smart meters, is required. Unfortunately, this in-
formation is not available using the standard IEEE bus test systems. 
Furthermore, obtaining geographical locations of actual power grids is 
pretty hard and usually comes with strict non-disclosure agreement due 
to national security measures, which limits sharing the results with the 
research community. To overcome this limitation, a generative power 
grid model is proposed in [23] based on stochastic geometry, which 
presents accurate spatial approximations to real power grids. Compari-
son results of the stochastic geometry-based power grid model and 
actual power grids revealed a similarity score of more than 90%. Hence, 
we will adopt the stochastic geometry-based power grid model of [23] to 
establish a power grid structure that reflects a realistic spatial distri-
bution of bus nodes, and hence, smart meters. 

Table 1 
Taxonomy of Recent Literature  

Ref. Algorithm Application Latency consideration 

[14] Heuristic Electric vehicles Yes 
[20] Heuristic Electric vehicles No 
[21] Heuristic Energy systems Yes 
[22] Cooperative scheduling Smart grid Yes 
[15] Machine learning Smart grid Yes  
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For completeness, we present a brief summary to construct the power 
grid model of [23] following the steps below: 

(1) The process starts by generating lines (roads) in a disk of radius R, 
representing a region A , such as a city. For this, the Poisson line space is 
used, where each line ℓl is defined by an angle direction 0 ≤ θl < 2π and 
by length 0 < pl ≤ R. The number of lines intersecting A is 2πλlR, where 
λl is the density of the Poisson line process (PLP) Φl. 

(2) Buses are added on each Poisson line ℓl ∈ Φl following the one- 
dimensional (1D) homogeneous Poisson point process (HPPP), Φp,l, 
with density λp,l. Summing over all the lines in A , the buses constitute an 
HPPP ΦB with density λB =

∑2πλlR
l=1 λB,l. The total number of buses, B, in 

the network is expressed as B =
∑2πλlR

l=1 λB,l|ℓl|, with |ℓl| =

2Rsin(cos− 1(pl /R)). 
(3) Buses are connected together via power lines based on their 

physical paths by selecting one of the potential near-geodesic routes 
[24] and by using the shifted sum of exponential distributions of the 
degree of buses [25]. 

(4)Disconnected buses are linked based on the shortest pathways 
between them to decrease power losses and assure power supply to all 
loads. Finally, load capacities are assigned to buses by matching the real 
values and the developed ones based on their corresponding probabili-
ties [26]. 

2.2. Locations of smart meters 

To define the locations of smart meters, which defines the spatial 
distribution of data sources within the grid, we follow the optimal 
placement strategy presented in [23]. The optimal locations of meters 
are defined to absorb a certain amount of uncertainty in the power grid. 
The continuous and stable operation of power grids depend on efficient 
state estimation, load monitoring, and fault detection. Deployment of 
metering and monitoring devices will extract real-time information 
which to keep the power grid stable. Therefore, the optimal locations of 
meters are defined to absorb a certain amount of uncertainty in the 

power grid. The uncertainty comes from insufficient and inaccurate 
real-time data measurements, as well as the unpredictable time-varying 
loads and renewable energy generation. The amount of uncertainty, usb , 
absorbed by smart meter sb located at bus b, is defined as a fraction of the 
bth bus degree to the degree of all of its children buses2 that are not 
assigned a smart meter within a cluster polygon, P (o,Rc), centered at o 
and with diameter Rc. Thus, 

usb =
deg(b)

∑
i∈{{kP

b }\{B },b}deg(i)
, (1)  

where deg(b) is the degree of bus b, {kP
b } is the set of the nearest 

neighbors to bus b within the cluster polygon P , and B is the set of 
buses with already allocated smart meters. 

Then, the influential buses where smart meters need to be installed 
are identified. To obtain a solution for the optimal locations of smart 
meters, the following steps are taken:  

• Graph trees are constructed from the power grid model according to 
Algorithms 1 and 2 in [23].  

• Identifying central nodes in a network is critical to designing a 
network that is resilient against faults or attacks. However, identi-
fying which nodes are vital in a network is a nontrivial task. In 
literature, a number of different centrality metrics exist (e.g. Eigen-
vector, Diffusion, Authority and Hub) for different networks (e.g. 
communications, transportation, power) [27]. In this article, Katz 
Centrality is adopted to improve the grid’s state estimation. Katz 
Centrality uses a new status measure by considering the number of 
direct connections to a node and the statuses of nodes connected to 
the node. Therefore, it is well-suited for power networks as this 
centrality metric identifies buses with the highest number of con-
nections with other buses. The reason of selecting this metric is that 
the closer a nonabsorbable bus (i.e., without a smart meter) is to an 
observable bus, the better the grid status can be inferred. 

• The amount of uncertainty absorbed by buses is then calculated ac-
cording to (1).  

• Finally, with a predetermined budget to be spent for smart metering 
deployment, optimal locations of smart meters can be determined to 
achieve a 90% uncertainty absorption using a constrained finite- 
horizon Markov decision process (MDP) algorithm [23]. 

Fig. 2 shows a sample realization of the stochastic geometry-based 
power grid model with 84 buses, 31 of which act as generators while 
the rest act as loads. The optimal locations of metering equipment that 
achieve 90% uncertainty absorption are highlighted with a star symbol. 
In total, 38 smart meters are allocated to achieve the target observ-
ability. As shown in Fig. 2, the X-Y coordinates of buses and smart meters 
are indicated, which is necessary for optimal allocation of Fog nodes to 
ensure communication coverage. For simplicity of notation, from now 
on, smart meters will be referred to as s instead of sb, s ∈ S = {1,2,⋯,

S}. 

2.3. Communication channel model 

Each smart meter s uploads its data to the assigned Fog node using a 
4G LTE wireless link [28,29]. The network bandwidth W is divided into 
K sub-carriers. Orthogonal frequency division multiplexing (OFDM) is 
adopted, where smart meter s is allocated sub-carrier k at time slot t. The 
allocated sub-carrier to one smart meter cannot be shared by another 
smart meter. On the other hand, the Fog nodes are directly connected to 
the core cloud (control center), using a high speed wired optical link as 

Fig. 2. An example of a realization of the stochastic geometry-based power grid 
model for a transmission system with 84 buses, 31 of which are generators. 
Solid lines represent power lines and light lines represent roads. The optimal 
locations of meters are marked with a star symbol according to [23]. 

2 Each bus is considered to be a parent bus, to which all physical connections 
with immediate and non-immediate neighboring buses are identified. These 
neighbors are referred to as children buses. 
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shown in Fig. 1. 
The transmitted signal from smart meter s to Fog node g, at distance 

dsg, suffers from a path loss that is given by [30] 

PL
(
dsg

)
= α

(
dsg

)
× PLLoS

(
dsg

)
+
(
1 − α

(
dsg

))
× PLNLoS

(
dsg

)
, (2)  

where α(dsg), PLLoS(dsg), and PLNLoS(dsg) denote the line-of-sight (LoS) 
probability, LoS path loss, and non-LoS (NLoS) path loss, respectively. 
The LoS probability is given by 

α
(
dsg

)
= max

{

1, exp
(− dsg+10)

200

}

, (3)  

and the LoS and NLoS path losses are given by 

PLLoS
(
dsg

)
= 24.8 + 20log10(F) + 24.2log10

(
dsg

)
, (4)  

PLNLoS
(
dsg

)
= 20log10(F) + 42.8log10

(
dsg

)
− 3.3, (5)  

where F denotes the carrier frequency. 
In addition to the path loss, the transmitted signal is affected by small 

scale fading, which follows a Nakagami-m distribution. Hence, the signal 
amplitude fading ξ follows the probability density function (PDF) given 
by 

fΞ(ξ) =
2mmξ2m− 1

Γ(m)Ωm exp
−

(
m
Ω

)
ξ2

, (6)  

where Ω = E[ξ2] > 0 with E[⋅] denotes the expectation operator, the 
Nakagami parameter m = (E2[ξ2])/(x2 − E[ξ2])

2
≥ 0.5, and Γ(⋅) is the 

gamma function. 
The power grid within region A is covered by a single wireless 

macro-cell that adopts the OFDM technology, and hence there is no 
interference among the transmitted signals of different smart meters. 
Thus, the signal-to-noise-ratio (SNR) for smart meter s communicating 
with Fog node g over sub-carrier k, γsgk, is given by 

γsgk =
Psgk × hsgk

σ2 , (7)  

where Psgk, hsgk, and σ2 respectively denote the transmitted signal power, 
channel gain, and noise power. For planning purposes, Monte Carlo 
simulation is adopted where hsgk channels are sampled using the PDF of 
Nakagami-m fading fΞ(ξ) in (6) for K sub-carriers allocated to S smart 
meters over T iterations. The path loss impact is also considered ac-
cording to (2) based on the distance dsg for each smart meter s and Fog 
node g. 

2.4. Data traffic and queuing model at fog nodes 

Data traffic due to smart meters is classified into fixed-scheduling 
and event-driven traffic [31]. The fixed scheduling traffic is trans-
mitted periodically between the smart meters and the Fog node for 
normal operations. On the other hand, the event-driven traffic is 
generated in response to a critical demand-response condition. Two 
separate queues are assumed per Fog node to properly handle each 
traffic class. Fixed-scheduling data packets are transmitted from smart 
meter s following a deterministic batch arrival process with rate ΛF

s , 
while event-driven data packets are transmitted from smart meter s 
following a Poisson random process with rate ΛE

s . The overall arrival 
rates of data packets at Fog node g for fixed-scheduling and event driven 
queues are given by ΛF

g =
∑

s∈S g
ΛF

s and ΛE
g =

∑
s∈S g

ΛE
s , respectively, 

where S g denotes the set of smart meters under the jurisdiction of Fog 
node g. A single server is considered per Fog node and a deterministic 
service rate μg is employed. Since event-driven traffic reflects an emer-
gency condition, it is processed with higher priority at the Fog node than 
the fixed-scheduling traffic. The traffic intensity at Fog node g can be 

calculated as ρF/E
g = ΛF/E

g /μg, for fixed-scheduling and event-driven 
queues. 

The priority of each transmitted packet from a smart meter follows 
the rules of preemptive-resume priority [32]. Hence, an absolute pri-
ority is given to the event driven packets over the fixed scheduling 
packets. Each smart meter transmits the data packets with a 
preemptive-resume priority, i.e., once the event driven packets are 
generated, the transmission of fixed scheduling packets is paused. 
Furthermore, the service of a fixed scheduling packet is interrupted 
when an event driven packet arrives at the Fog node. Once there are no 
more event driven data packets to be served at the Fog node, the server 
resumes the service of the fixed scheduling packets from the point where 
it was interrupted. Hence, fixed scheduling packets have spent more 
time in the queue with mean waiting time [32] 

WF
g =

1
/

μg

(1 − ρE) × (1 − ρE − ρF)
−

1
μg
. (8) 

On the other hand, the mean waiting time for the event-driven 
packets is given by [32] 

WE
g =

ρE
g

2μg ×
(

1 − ρE
g

). (9)  

2.5. End-to-End delay model 

The end-to-end latency considers both: (1) data transmission latency 
from the smart meters to the Fog nodes, which reflects the time delay for 
a successful reception of data packet at the Fog node. This term is 
affected by the wireless channel condition and the relative distance 
between the smart meter and the Fog node, and (2) queuing latency that 
reflects the delay of data processing at the Fog nodes before handling the 
data packet (for further forwarding to the control center or for taking a 
control action upon the information in the data packet). This term is 
affected by the arrival rate of data packets and the processing capabil-
ities of the Fog node. 

The end-to-end average delay Δsg is defined as the time taken by a 
data packet to be transmitted from smart meter s and processed by Fog 
node g on average. This is given by 

ΔF/E
sg = ΔTX

sg + ΔQ(E/F)
sg , (10)  

where ΔTX
sg denotes the average transmission delay for successful 

reception of the packet and ΔQ
sg represents the average queuing delay. 

The transmission delay assumes negligible propagation delay and ac-
counts mainly for packet re-transmissions. Hence, it depends on the 
relationship between the SNR γsgk and a decoding threshold κ. Assuming 
a maximum of 3 transmissions allowed per packet [33], the transmission 
delay can be expressed as 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔTX
sg = 0, if γ(1)sgk > κ

τ, if γ(1)sgk < κ

2τ, if γ(2)sgk < κ,

(11)  

where γ(1)sgk and γ(2)sgk denote the SNR values at the first and second trans-
missions, respectively, and τ is a unit delay. The expression in (11) is 
averaged using Monte Carlo simulations based on the PDF in (6). On the 
other hand, the average queuing delay can be described by [32] 

ΔQ(F/E)
sg = WF/E

g +
1
μg
. (12)  
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3. Efficient allocation strategy of fog nodes 

Our objective is to allocate the minimum number of Fog cloud nodes 
that can serve the data traffic generated by the smart meters while 
ensuring minimum end-to-end latency. In turn, this would minimize the 
capital investment cost to install and maintain such Fog nodes. This can 
be expressed as follows 

min
G,X,Y

∑G

g=1

∑B

b=1
ygb

[
∑S

s=1
xsg

(
ΔF

sg +ΔE
sg

)
]

, (13)  

Subject to:
ΔF/E

sg ≤ ϵF/E, ∀s, ∀g
(14)  

∑B

b=1
ygb ≤ 1 ∀g,

∑S

s=1
xsg ≤ 1, ∀s (15)  

ϵF/E ≥ 0, G ∈ Z+, X,Y ∈ {0, 1}. (16)  

The decision variables in (13) are: (a) the number of allocated Fog nodes 
G, which is a positive integer ∈ Z+, (b) the location of Fog node g, ygb, 
which is a binary indicating whether Fog node g is allocated at the 
location of bus b, and (c) the assignment of smart meter s to Fog node g, 
xsg, which is also binary. Constraint (14) ensures that the average delay 
for fixed scheduling and event-driven packets satisfy a respective target 
threshold ϵF/E, which presents a non-negative and small value. 
Constraint (15) allocates a given Fog node to one and only one location 
b, and assigns a smart meter to one and only one Fog node. The allo-
cation of the Fog nodes in (13) accounts for the transmission delay, 
which is function of the distance (i.e., relative location) and channel 
conditions between smart meter s and Fog node g, as described by ygb 

and xsg. Furthermore, the allocation accounts for the queuing delay, 
which is a function of the number of assigned Fog nodes and the 
assignment of smart meters to Fog nodes, as described by G and xsg. All 
aforementioned decision variables are impacted by the spatial distri-
bution of the smart meters and their relevant data traffic. 

The allocation in (13) represents combinatorial optimization, which 
incurs expensive computational complexity, especially in large power 
grids [34]. Hence, in the following subsections, we present an efficient 
allocation strategy that presents low computational complexity. The 
proposed solution aims at decoupling the decision variables by dividing 
(13) into two sub-problems. The first sub-problem aims to specify a 
candidate number G and locations Y of Fog nodes to be installed in the 
system. The second sub-problem aims to find an optimal assignment of 
smart meters to Fog nodes X such that the minimum number of Fog 
nodes are installed while satisfying the target latency requirements. 

3.1. Candidate number and locations of fog nodes 

In order to specify the candidate number and locations of Fog nodes, 
we resort to an unsupervised learning technique, namely, K-means 
clustering. The rationale behind choosing this approach is that by 
clustering the smart meters and allocating a Fog node to serve each 

Fig. 3. Stochastic geometry-based power grid model for a transmission system 
with 39 buses and 16 smart meter. Three Fog nodes are allocated according to 
our proposed strategy. 

Fig. 4. Stochastic geometry-based power grid model for a transmission system 
with 84 buses and 38 smart meter. Four Fog nodes are allocated according to 
our proposed strategy. 

Fig. 5. Stochastic geometry-based power grid model for a transmission system 
with 120 buses and 54 smart meter. Five Fog nodes are allocated according to 
our proposed strategy. 
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cluster, we are minimizing the transmission delay, which constitute one 
part of the end-to-end delay. It should be highlighted that such an 
approach does not provide any guarantee that the minimum number of 
Fog nodes are allocated or that the queuing (and overall end-to-end) 
delay is satisfied. Hence, the first sub-problem merely serves as an 
initialization step for the second sub-problem. 

In this sub-problem, we aim to cluster the S smart meters, whose 
geographical locations are known, into 1 ≤ G≪S clusters. A Fog node is 

allocated at the centroid of each cluster g in order to serve the smart 
meters within this cluster. Let S denote the geographical location of the 
smart meters within the power grid and G represents the set of clusters. 
The K-means algorithm clusters S into G clusters that minimize a cost 
function J(G) =

∑
G‖ Sg − Σg ‖

2, where Σg denotes the mean 
geographical location (centroid) of cluster g. Hence, a fundamental step 
is to specify the number of clusters G. A plethora of techniques are 
available in the literature to find an optimal value of G, however, there is 
no agreed-upon solution [35]. In this paper, we have adopted a 
well-known clustering validation technique, namely, the Silhouette 
method [36]. 

The Silhouette method is based on Silhouette value φsg that measures 
the similarity of a data point (in S) between assigned cluster g and other 
clusters (in G \g). These values assume a range [ − 1, 1], where a high 
value indicates that the data point is well matched to its cluster and a 
low value indicates that the number of clusters is insufficient or excee-
ded the limit. Let Vsg quantifies the suitability of assigning smart meter s 
to cluster g based on the similarity between location of smart meter s and 
other meters assigned to cluster g. Hence, we have 

Vsg =
1

|g| − 1
∑

s′ ∈g,s′ ∕=s

ds,s′ , (17)  

where |g| denotes the number of smart meters in g and ds,s′ represents the 
distance between two smart meters s and s′ in cluster g. The average 
dissimilarity between smart meter s in g and smart meters assigned to 
other cluster g′

∈ G \g is 

Usg = min
g′ ∕=g

1
|g′

|

∑

s′ ∈g′ ,g′ ∈G \g

ds,s′ . (18)  

Based on Vsg and Usg, the Silhouette value φsg can be calculated ac-
cording to the following relationship 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φsg = 1 −
Vsg

Usg
, if Vsg < Usg

0, if Vsg = Usg

Usg

Vsg
− 1, if Vsg > Usg.

(19)  

The mean Silhouette value φG can then be found by calculating the mean 
Silhouette values for all data points in S, i.e., 

Fig. 6. Determining the candidate number of Fog nodes.  

Table 2 
Average delay experienced by the fixed scheduling (FS) and event-driven (ED) 
packets under Algorithm 2  

Fog node Index Average Delay FS (sec.) Average Delay ED (sec.) 

39 Bus System 
2 1.4021 0.0294 
3 2.2433 0.047 
6 0.8412 0.0176 

84 Bus System 
1 3.9258 0.0822 
2 2.5237 0.0529 
5 0.8412 0.0176 
6 3.3649 0.0705 

120 Bus System 
1 3.9258 0.0822 
2 2.2433 0.047 
3 3.0845 0.0646 
7 2.8041 0.0587 
9 3.0845 0.0646  

Table 3 
Average delay experienced by the fixed scheduling (FS) and event-driven (ED) 
packets under Exhaustive search  

Fog node Index Average Delay FS (sec.) Average Delay ED (sec.) 

39 Bus System 
2 3.9258 0.0822 
3 0.5608 0.0118 

84 Bus System 
1 3.9258 0.0822 
2 3.9258 0.0822 
6 3.3649 0.0588 

120 Bus System 
1 3.9258 0.0822 
2 3.9258 0.0822 
3 3.9258 0.0822 
7 3.3649 0.0705  
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φG =
1
|S|

∑

S

φsg. (20) 

Algorithm 1 summarizes the steps taken in order to determine the 
optimal number and locations of Fog nodes based on K-means clustering. 
The input to Algorithm 1 is the geographical location of smart meters S 

and an initial guess for the number of clusters G̃. The process starts by 
running the K-means clustering algorithm for a different number of 
clusters G. Each time, the mean Silhouette value φG is recorded. The 
optimal number of Fog nodes G is the one that presents the maximum 
mean Silhouette value. The φG is calculated for each G (as shown in Line 
5 of Algorithm 1) then the optimal G is found as the one corresponding 
to the largest φG (as shown in Line 8 of Algorithm 1). Finally, Algorithm 
1 runs the K-means clustering using the specified optimal number of Fog 
nodes G in order to specify their locations Y as the centroids of the 
clusters in G = {1,2,⋯,G}. 

3.2. Optimal allocation strategy 

The candidate allocation strategy outlined in the previous subsection 
does not guarantee that the minimum number of Fog nodes being 
installed. Furthermore, such a candidate solution does not ensure that 
the assignment of smart meters to the Fog nodes result in a traffic load 
distribution that satisfies the queuing latency requirement. As discussed 
in the previous subsection, the goal so far has been to find an initial 
allocation strategy that we may refine later to maximize the utilization 
efficiency of the Fog nodes, by associating the smart meters to the 
minimum number of Fog nodes while satisfying the end-to-end latency 
requirements. By doing so, some of the planned Fog nodes to be allo-
cated will not be utilized, and hence, we can revise the initial allocation 
strategy and discard the allocation of such unutilized Fog nodes. In this 
subsection, we resort to a reinforcement learning strategy, namely MAB, 
in order to carry out this smart meter-Fog node association, i.e., finding 
X in (13), and revise the initial allocation strategy, i.e., specifying final 
values for G and Y. Owing to the binary nature of the problem and the 
associated computational complexity, a heuristic optimization tech-
nique may be used. On the other hand, a MAB-based solution results in a 
near-optimal allocation strategy with reduced complexity. 

The main idea behind reinforcement learning is to learn from the 
environment using an agent that selects the best action based on expe-
riences to yield the maximum reward. In this context, the agents/players 
are the S smart meters, and the machines/states of the environment are 
the G Fog nodes. Hence, in the MAB-based assignment strategy, each 
smart meter s ∈ S plays G Fog nodes for multiple times and selects a Fog 
node g ∈ G , which maximizes the reward Ψsg that reflects the satisfac-
tion of the latency requirements. Let Ψsg(t) = 1 if smart meter s selects a 
Fog node g that satisfies the end-to-end latency requirements, at itera-
tion t, and at the same time Fog node g is serving as many smart meters 
as possible. Otherwise, Ψsg(t) = 0. This reward definition associates the 
smart meters to the minimum number of Fog nodes while at the same 
time satisfying the latency requirements. At each iteration, this reward is 
random as it depends on the wireless channel conditions and the 
queuing process at the Fog nodes. The main target of the MAB is to find 
an assignment strategy that maximizes the average reward over T iter-
ations. Specifying the optimal assignment requires that smart meter s 
tries all G Fog nodes to estimate the expected reward, a process that is 
referred to as the learning phase. During this phase, smart meter s learns 
to select Fog node g that maximizes the long term average reward. This is 
done by choosing the best Fog node g that is known so far, which is know 
as exploitation, while also exploring other Fog node options G \g in hope 
of finding a better solution, which is known as exploration. 

In literature, there exists a plethora of methods to solve this exploi-
tation versus exploration trade-off. In this paper, we adopt the upper 
confidence bound (UCB) approach as it offers an optimal solution with 
minimal storage and processing requirements [37]. Hence, the assign-
ment action taken by smart meter s ∈ S during iteration t, πs(t), is the 

one that maximizes the following function 

πs(t) = argmax
g∈G

[

Ψsg(t) + c ×

̅̅̅̅̅̅̅̅̅̅̅̅
ln(t)

Nsg(t)

√ ]

, (21)  

where Ψsg(t) is the average reward of an action πs(t) = g that is taken by 
smart meter s at iteration t, given by 

Ψsg(t) =
1

Nsg(t)

∑t

τ=1
Ψsg(τ)1(πs(τ)=g), (22)  

where Nsg(t) in (21) and (22) denotes the number of times smart meter s 
selects Fog node g until iteration t, c in (21) is the exploration coefficient. 
The term inside the square root of (21) is referred to as the confidence 
interval of average reward Ψsg(t). Hence, the assignment in (21) is based 
on the past experience, which converges over time to the optimal policy. 

Algorithm 2 summarizes the steps taken to carry out the smart meter- 
Fog node assignment strategy to find the optimal X and to update the 
optimal values of G and Y. The input to the algorithm is the number of 
Fog nodes G, their IDs G , and their respective locations Y as obtained 
from Algorithm 1. Further, the set of smart meters S and their respec-
tive locations are used as inputs. Moreover, sample channel gain matrix 
Υ is generated by sampling the PDF expression in (6). The rows and 
columns of Υ are the smart meters and Fog nodes. Algorithm 2 is run for 
several times (∼ 103 iterations) for different Υ samples and the average 
policy is then recorded. The algorithm also takes the end-to-end delay 
matrix Δ as described by (10) - (12) and number of iterations T as input. 
At the first iteration, the algorithm finds an initial assignment by map-
ping smart meter s to Fog node g that presents the highest channel gain 
and satisfies the end-to-end delay requirement. Over the next iterations, 
the assignment strategy is carried out based on the UCB in (21). Upon 
completing all iterations, the number of Fog nodes G and their locations 
Y are updated such that the unutilized Fog nodes from Algorithm 1 are 
discarded. 

3.3. Computational complexity 

The proposed allocation strategy consists of two phases, namely on 
K-means and MAB. The worst case computational complexity of K- 
means algorithm is O (S2). Whereas, the computational complexity of 
the Silhouette method used within the K-means is O (S2). Algorithm 1 is 
iterated over G, and generally we have G << S. Hence, the worst case 
computational complexity of Algorithm 1 is O (2Slog(S)). Furthermore, 
the computational complexity of Algorithm 2 that is based on the MAB 
UCB scheme is O (log(S)). On the other hand, adopting an exhaustive 
search to directly solve the allocation in (13) presents a worst case 
complexity of O (2S/2). 

4. Performance evaluation 

This section presents performance evaluation results of the proposed 
allocation strategy versus benchmark solutions. 

4.1. Benchmark and parameter setup 

We compare the performance of the proposed two-step allocation 
strategy to two benchmark solutions. The first allocates the Fog nodes 
using only Algorithm 1. In this case, upon specifying G and Y based on 
Algorithm 1, each smart meter s is assigned to the Fog node g at the 
centroid of its cluster. The second benchmark adopts a more complex 
exhaustive search method, which jointly finds optimal value of G and Y, 
as well as the optimal assignment for each smart meter. It is noted that, 
in exhaustive search method the location of each g fog node is found 
using K-means. 

The following simulation parameters are used in our investigations 
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unless otherwise stated. The transmit power of all smart meters are set to 
23 dBm. The end-to-end delay thresholds are set to ϵF = 4 seconds and ϵE 
= 1 second. The exploration coefficient c = 1.5. The packet arrival rates 
are ΛF

s = 0.026 and ΛE
s = 0.0023, while μg = 1/3. The value of ΛE

s is 
calculated based on the number of outages in the power grid. We have 
used the statistics provided by Eaton [38] and as a case study we 
consider California, who has experienced 4300 outages in 2018. An 
upper bound of 3 re-transmissions is set for successful packet delivery, 
otherwise the packet is lost. The total capacity of the network is defined 
as the sum of the total available capacity at each Fog node, i.e., G ×ϵF for 
fixed scheduling packets and G × ϵE for event driven packets, 
respectively. 

We conduct a set of three experiments to cover different sizes of the 
power grid, and hence, explore the scalability of our proposed solution. 
Hence, we consider the following simulation setups:  

• Small power grid size of 39 buses. Based on [23], the power grid has 
16 smart meters, as shown in Fig. 3.  

• Medium power grid size of 84 buses. Based on [23], the power grid 
has 38 smart meters, as shown in Fig. 4.  

• Large power grid size of 120 buses. Based on [23], the power grid has 
54 smart meters, as shown in Fig. 5. 

4.2. Simulation results 

Fig. 6 shows the mean Silhouette value φG versus the number of 
clusters G̃. Based on Algorithm 1, Fig. 6 suggests that the candidate 
number of Fog nodes are 6, 8, and 10 to support the small, medium, and 
large power grid sizes, respectively. The output of Algorithm 1 is then 
fed to Algorithm 2 to determine the optimal smart meter-Fog node 
assignment, and hence, further reduces the number of required Fog 
nodes. The results of Fog allocation based on Algorithm 2 for the small, 
medium, and large power grid sizes are shown in Figs 3 - 5, respectively. 
As shown in figures, only 3, 4, and 5 Fog nodes are required to satisfy the 
target latency requirements. These represent a 50% reduction in the 
number of candidate allocations as recommended by Algorithm 1. 

Table 2 summarizes the average delay experienced by data packets 
when Algorithm 2 is adopted. As can be seen in Table 2, Algorithm 2 
reduces the number of required Fog nodes for the small size power grid 
from 6 as suggested by Algorithm 1 to only 3 Fog nodes. Similarly, for 
medium and large power grid sizes, the number of Fog nodes are 
reduced to 4 and 5, respectively. Table 2 confirms that such a reduction 
in number of Fog nodes does not come at the expense of sacrificing any 
end-to-end delay requirements. Table 3 summarizes the average delay 
experienced by data packets when exhaustive search is adopted instead 
of Algorithm 2. As shown in Table 3, exhaustive search results in the 
allocation of 2, 3, and 4 Fog nodes. While exhaustive search provides an 
optimal solution, the near-optimal solution provided by Algorithm 2 is 
merely less than the optimal solution by 16%, 12%, and 10% for the 
small, medium, and large size power grids. Two remarks can be made 
here. First, the optimality gap decreases as the size of the grid increases. 
Second, exhaustive search presents exponential complexity, unlike our 
proposed algorithm that offers a much reduced (logarithmic) 
complexity, as discussed in Section III.C. Hence, the proposed algorithm 
offers a better scalability than an exhaustive search approach. 

5. Conclusion 

This paper proposes a two-step allocation strategy of Fog nodes in 
cloud-based smart grids. The allocation strategy captures the spatial 
distribution of smart meters and data traffic within the power grid, and 
aims to install the minimum number of Fog nodes that can satisfy target 
end-to-end delay and at the same time provide a low complexity and a 
scalable solution. The first step specifies candidate number and locations 
of Fog nodes based on K-means clustering, which are further refined in 

the second step based on MAB. The proposed strategy can reduce the 
number of installed Fog nodes by 50%, while satisfying the target end- 
to-end latency. In our future work, we plan on investigating real-time 
routing strategies based on reinforcement learning to guarantee on- 
time delivery of fixed scheduling and event-driven data packets 
among the Fog nodes and the core-cloud node. 
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