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We study an application of stochastic games in the dynamic allocation of two types of goods when
agents have deferral rights. If all individuals strictly prefer one good to the other, the worse good can
be wasted by successive rejections. We allow different goods to be allocated in different ways and
study the combinations of three popular disciplines in an overloaded waiting list: FCFS (first-come-
first-serve), LCFS(last-come-first-serve) and RP(random-priority). The first result is that the LCFS–FCFS
queue (the better good allocated under LCFS and the worse good allocated under FCFS) does result
in zero waste, but it is unfair. To restore fairness, the agent’s age matters and the older agent has a
weakly higher probability of receiving goods. Our second result is that RP–FCFS is fair and induces less
expected waste than FCFS when the waiting cost is uniformly distributed.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Using a queue is very popular in dynamic matching, especially
hen there is a supply shortage and a lack of a price mechanism
e.g. allocating donated food, organ, public house, etc.). In this
aper, we consider how the social planner can reduce the waste
f free goods. For example, the planner allocates two types of
accines (A and B). Suppose scientists have announced that A has
ilder side effects and is more powerful than B. Then, B is wasted
hen all individuals in the queue reject it and prefer to wait for
. Then, it comes to the question: What is the optimal queue
iscipline to minimize the expected waste? Is the optimal queue
easible in reality?

The intuition for finding the optimal queue to minimize waste
s simple. There are two reasons for agents’ rejections. 1. A offers
hem a strictly higher utility than B. 2. Although waiting is costly,
heir expected waiting times for A are short enough to make
ejections more attractive. Since goods’ utilities are fixed, the
nly way to reduce the expected waste is to increase the agents’
xpected waiting times, thus reducing the probability of rejection
nd letting them be less selective. As a result, the optimal queue
iscipline should induce the longest expected waiting time. Be-
ides that, it also needs to match some social norms to be feasible
n reality. A pilot study on queue fairness is Larson (1987), which
hows from a psychological perspective that an agent is more
illing to join the queue if the front agents have a relatively
maller waiting time. So, in this paper, we assume that a longer
aiting time in the queue must correspond to a weakly higher
robability of receiving goods. We will define it in the model.

E-mail address: Xiaochang.Lei@glasgow.ac.uk.
https://doi.org/10.1016/j.mathsocsci.2023.03.001
0165-4896/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
nc-nd/4.0/).
Our main contribution to the literature on dynamic allocation
in queuing systems is introducing the complex queue disciplines,
which allow different goods to be allocated differently. Otherwise,
if both goods are allocated similarly, we call it a simple queue
discipline. For example, a simple FCFS queue means both A and B
are allocated under FCFS, while a complex RP–FCFS queue means
that A is allocated under RP, but B is allocated under FCFS. The
complex queue is allowed since we assume that the good’s type
is common knowledge after its realization. We show that LCFS–
FCFS can result in zero expected waste when there are at least
two agents since the first agent has an infinite waiting time for A.
However, this queue is not feasible since LCFS will cause reneging.
To restore fairness, we establish a criterion that the probability of
receiving A can only (weakly) decrease on positions in the queue.
We will show the intuition that with fairness guaranteed, the best
the planner can do is RP–FCFS. Also, we prove that RP–FCFS is
better than FCFS when the waiting cost is uniformly distributed.

We first establish how agents act in the simple FCFS over-
loaded queue. We show there is a rejection threshold of the
agent’s private waiting cost at each position. An agent at a specific
position will reject B if his private waiting cost is below the
corresponding threshold. Both LCFS–FCFS and RP–FCFS queues
dramatically increase the expected waiting times for all agents,
thus reducing the thresholds and rejection areas at all positions
(See Fig. 1).

Besides the rejection probability, we also need to find the
steady-state expected waste. This is not straightforward since
agents’ past rejections can change the probability of waste in
the future. Under an overloaded queue, if an agent rejects B, his
expected waiting time for A can only weakly decrease in the
future. So, whenever the planner observes a rejection, he knows
the corresponding agent will still reject it whenever he gets an

offer B (See Example 1).
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Fig. 1. Thresholds and rejection areas under different disciplines with fixed-length 4.
Fig. 2. Waste depends on the actions of all agents in the queue.

Fig. 3. Waste only depends on the actions of the last two agents, since an
rejection is observed.

Example 1. Given a simple FCFS queue with 3 agents: {a1, a2, a3},
e assume the production realization in period 1 and 2 is {B, B}.
uppose when offered with B, a1 will reject it, but a2 will accept it.

The planner does not know the agents’ actions at the beginning.
Before the allocation in period 1, waste probability depends on
the actions of all three agents. The allocation finishes after a1
ejects B; a2 accepts B and leaves the queue; a3 moves up one
osition; and a new agent a4 is born at position 3. At the begin-
ing of period 2, the new queue is {a1, a3, a4}. Now, the planner
nows a1 will still reject B. So, waste probability only depends on
he decisions of a3 and a4. Here, the probability of waste in period
is different from that in period 1 due to an observed rejection
f agent a1 (See Figs. 2 and 3). □

The structure of the paper is as follows. We first list some
elevant papers. In Section 2, we construct the benchmark model
hen the allocation of B is fixed under FCFS. We first capture the
odel in a simple FCFS queue and then show how the planner
an control the discipline and explain why LCFS–FCFS can result
n zero waste. After that, we introduce the fairness criterion and
how the intuition that RP–FCFS is fair and waste-minimizing.
n Section 3, we model the evolution of observed rejections in
one-step transition matrix and find expected waste. We show

hat RP–FCFS can induce lower expected waste than FCFS when
88
the waiting cost is uniformly distributed. In the last section, we
conclude with the limitations and contributions.

1.1. Literature review

There is a huge amount of literature from operations research
on dynamic matching in queuing systems. A detailed review
is Ashlagi and Roth (2021). Here, we just list recent papers that
incorporate agents’ dynamic tradeoffs. The most relevant research
to our paper is Bloch and Cantala (2017). They analyze the welfare
and waste in a constant size overloaded probabilistic queue when
agents’ have heterogeneous or homogeneous valuations. They
show that FCFS is Pareto-superior to the lottery but can generate
more expected waste. The main difference in settings is that
goods in different periods are independent in their setting, while
we assume the goods are the same if they belong to the same
type. The difference results in a much more difficult ex-ante
waste expression in our model.

Su and Zenios (2004, 2005) analyze the effects of offer rejec-
tion in M/M/1 dynamic kidney transplant. They compare FCFS
and LCFS queues and show that FCFS makes agents more selective
and induces a higher organ discard rate. By contrast, LCFS can
maximize the expected life years, but it is practically infeasible.
Our model also has the same intuition, and we innovatively
combine different queue disciplines and make one step forward
to find the optimal discipline when fairness is restored.

Leshno (2022) investigates dynamic allocation in minimizing
misallocation under thresholds strategies. The way to reach that
is similar to ours: to let the agents be less selective. He introduces
a Loaded Independent Expected Waits (LIEW) queue, which can
balance the expected waiting time for all agents. Compared with
FCFS, the LIEW queue sacrifices the front agents and benefits the
agents in the end. In his model, the agents have heterogeneous
preferences but a homogeneous waiting cost. Instead, we model
the agents with homogeneous preferences and heterogeneous
waiting costs. We aim to minimize the expected waste and show
that under the RP–FCFS queue, all agents’ expected waiting times
will increase.

Baccara et al. (2020) studies bilateral dynamic matching in
general queuing systems. They aim to capture the utilitarian
welfare maximizing mechanism by the number of remaining
agents. Arnosti and Shi (2020) compares matching welfare and
quality under different versions of lotteries and waiting lists
in dynamic matching. Schummer (2021) discusses whether the
social planner should give deferral rights to the agents on the
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FCFS waiting list. He finds that the agents’ welfare depends on the
type of agents’ preferences. Instead, we focus on how the planner
should design the optimal mechanism when the deferral rights
have been given to the agents. Thakral (2016, 2019) analyzes
queuing systems from an axiomatic view. He discusses strate-
gyproofness, efficiency and envy-freeness in different queues.

2. Benchmark model

One good is produced in each discrete period and has to
be allocated within that period. Otherwise, it is wasted. Before
realization, it can be one of two types: A with probability p or
B with probability 1 − p. After realization, the type is known by
all agents. A batch of (at least 2) agents forms the initial queue
with length n. Each agent waits to get one good and then leaves.
The agents have a homogeneous preference: A ≻ B (e.g., vaccine
A has higher efficacy than B). They all get instantaneous utility
1 from accepting A or instantaneous utility u (0 < u < 1) from
accepting B. Agents have deferral rights, which means that when
an agent is offered the worse object B, he can reject the offer,
keep his position in the queue, and wait for the better good A.
However, waiting is costly. A cost is subtracted from his utility
if an agent stays in the queue for one more period. Each agent i
has his private waiting cost ci. Costs are i.i.d. distributed on (0, 1)
with CDF F (·) and will linearly decrease agents’ utility. We assume
that all agents’ reservation values are sufficiently low (e.g. −∞)
so that no one will opt out. For example, no one will leave the
queue for a vaccine and put himself at high risk of death. This
means that when an agent’s utility is zero or even negative, he
will still stay until he gets a good.

We follow the tradition of calling that the position i is higher
than the position j if i < j. When an agent accepts an offer, he
leaves the queue, and all agents positioned behind will move one
step forward. Also, a new agent is born at the last position. If no
one accepts the realized item, the good is wasted, and no new
agent is born in this period. This arrival process guarantees that
the length of the queue is always n. The only private information
is the waiting cost of each agent. Initially, the planner only knows
the distribution of waiting costs F (·) and aims to find a discipline
to minimize the steady-state expected waste.

2.1. Agents’ strategies under the simple FCFS queue

We first show the story under the benchmark simple FCFS
queue (See Fig. 4). An agent offered A will accept it since waiting
is costly, and there is no better offer in the future. So, in the
simple FCFS queue, when A is realized, it can only be offered
to and accepted by the agent at position 1. However, an agent
faces a binary choice when offered B: accept or reject it. Given
the fixed instantaneous utilities of the two goods, the decision
depends on his expected waiting time and private waiting cost.
The intuition is that under simple FCFS, an agent positioned ahead
faces a shorter expected waiting time, so he is more likely to be
selective. Also, a more patient agent is more likely to reject B since
waiting is not a big deal for him. The formal expression is that
an agent i at position k faces an optimal stopping problem when
offered B: If he accepts B now, he gets utility u. If he rejects B, he
 j

89
gets expected utility 1− ciwk. wk is the expected waiting time for
A at position k.

The first agent’s expected waiting time for A follows a geo-
metric distribution with parameter p. So, the expected waiting
time of the first agent is 1/p. Considering the agent at position
k, when offered with B, he knows all front agents have already
rejected B. Otherwise, B must have been accepted by one of them.
He can also infer that they will reject B whenever B is realized
since their expected waiting time for A can only weakly decrease.
As a result, if he rejects B now, he can only get A after all front
agents have been served with A. So, the expected waiting time
of an agent at position k is k/p. We know rejection happens only
when 1 − ciwk ≥ u. Given the expression wk =

k
p , we can find

a rejection range for agent i’s private waiting cost at position
k: ci ≤ (1 − u)p/k. Let Ck =

(1−u)p
k denote the threshold at

position k. For any agent at position k, he will reject B if his private
waiting cost is below the threshold Ck. Although the waiting cost
is private, the threshold is common knowledge. Ck is a decreasing
function on position k, which means that a more patient agent is
required to reject B at a lower position (see Fig. 5).

After finding the rejection thresholds, the probability of waste
can be easily found. Let i denote the number of agents who have
rejected B, the probability of waste is:

PW FCFS
i = Πn

k=i+1F (Ck)

Next, we show how LCFS–FCFS and RP–FCFS can reduce the
rejection thresholds, thus reducing the expected waste.

2.2. Waste minimization

We assume that the planner can arbitrarily control the prob-
ability ϕk that the good A is allocated to an agent at position
k when it is realized. However, for simplicity, the way of B’s
allocation still follows the FCFS (See Fig. 6). For example: FCFS
queue of A is captured by: ϕ1 = 1 and ∀2 ≤ k ≤ n, ϕk = 0. LCFS
ueue of A is captured by: ϕn = 1 and ∀1 ≤ k ≤ n−1, ϕk = 0. RP
f A is captured by ∀1 ≤ k ≤ n, ϕk =

1
n . Let ϕ = {ϕ1, ϕ2, . . . , ϕn}

enote the set of probabilities, we have:
∑n

k=1 ϕk = 1.
We fix the allocation of B in FCFS since it is difficult to capture

ow B can be wasted once we allow randomization in the alloca-
ion of B. The planner has to record which agent has rejected it.
nder randomization, these agents can be separately positioned,
hich results in a complicated expression for the probability
f waste. Also, adding randomization of A has already changed
he expected waiting time of all agents. Under this setting, the
lanner aims to find an optimal ϕ to minimize the expected
aste.

heorem 1. LCFS–FCFS induces zero expected waste, but it is unfair.

Intuitively, the LCFS–FCFS queue does minimize the expected
aste since the expected waiting times for A of the agents are

nfinite (except the last one). Suppose the agent at position 1
ejects B. Since A is allocated under LCFS, it will be allocated to
he agent at position n whenever it is realized. After getting A,
he agent at position n will leave the queue, and a new agent will
oin the queue at position n. So, the agent 1 will never get A. As
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Fig. 6. The general complex queue discipline.
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result, the first agent will always accept B, even if he is very
patient. This implies there is no waste.

Since the expected waiting times for the front agents are
infinite under LCFS–FCFS, the corresponding rejection thresholds
are zero for the front agents. Also, the last agent will never get
an offer B, so he has no rejection area (See Fig. 1). However,
LCFS is unfair to the front agents, who should be rewarded for
their long waiting time in the queue. Despite that, it gives us an
intuition that waste can be reduced if the planner makes ϕk of
the agents at the lower positions (larger k) as high as possible
to increase the expected waiting time of the agents positioned
ahead. To restore fairness, we assume that probability ϕk must
satisfy: ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕn. So, every agent is not treated
worse than anyone positioned behind him. This gives a range of
ϕn: 0 ≤ ϕn ≤

1
n . From the LCFS–FCFS queue, we know that to

minimize the waste, ϕn should be as large as possible (ϕn =
1
n ).

So, RP–FCFS is both fair and waste-minimizing.

2.3. Agents’ strategies under RP–FCFS

Since the allocation of B still follows FCFS, once B is offered to
an agent i at position k, he still knows that all agents positioned
ahead have rejected B and will reject B in the future. Good A′s
probability of realization is p, and the probability of getting A after
realization is 1/n, which does not depend on his position. So, the
probability that an agent is offered with A is p/n, and his expected
waiting time for A is n/p. The agent i will reject B if 1 − ci np ≥ u,
lse, he will accept B. Since the expected waiting time is inde-
endent of position, there is a uniform threshold under RP–FCFS
 o

90
or all positions: C =
(1−u)p

n . Comparing the uniform threshold
under RP–FCFS with the thresholds under simple FCFS, we find
that RP–FCFS weakly reduces the thresholds for all positions (See
Fig. 7).

After finding the rejection thresholds, the probability of waste
can be easily found. Given the number of observed rejections i,
he probability of waste is:

W RP−FCFS
i = Πn

k=i+1F (C) = F (C)n−i

We know that the threshold under RP–FCFS is always below
he thresholds under simple FCFS: ∀k, C ≤ Ck. So, for any real-
zation of the number of observed rejections i, the probability of
aste under RP–FCFS is less than the probability of waste under
imple FCFS: ∀i ≤ n, PW RP−FCFS

i ≤ PW FCFS
i .

roposition 1 (Ex-post Improvement). For any number of observed
ejections, RP–FCFS induces less probability of waste than FCFS.

. Steady state

.1. Steady state under simple FCFS

As mentioned above, the agent at position k will reject B
f his waiting cost is below Ck. Else, he will choose to accept
immediately. Although we assume that initially, the planner
nly knows the distribution of waiting costs, he can infer its
ange from observing the agent’s decision. When an acceptance is

bserved, the planner knows that the agent’s waiting cost exceeds
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Fig. 7. Thresholds and rejection areas in different queue disciplines with fixed-length 4.
w

E

is position’s threshold. When the planner observes rejection, the
gent’s waiting cost is below his position’s threshold. This infor-
ation disclosure process is vital in calculating the probability of
aste. For example, when B is realized if the planner observes
ejection at position k (1 ≤ k ≤ n − 1), he knows the agent (at
position) k’s private waiting cost is below Ck. Also, he knows all
front agents’ (1 ∼ k − 1) private waiting costs are below their
corresponding threshold since they must have already rejected
B under FCFS. So, the probability of waste is the probability of
successive rejection for the agents behind: Πn

i=k+1F (Ci). If k = n,
he expected waste is 1. Since when all agents reject B, B is
automatically wasted after realization.

Now, we use a Markov chain to capture this information
disclosure process. In period t , the number of agents who have
rejected B, is a stochastic process {X (t), t = 1, 2, 3, . . .} with
a finite state space M = {0, 1, 2, . . . , n}. We define the one-
tep transition probability as Pij = P(X (t+1)

= j|X (t)
= i) with

0 ≤ Pij ≤ 1 and
∑

j∈M Pij = 1, i = 1, 2, 3, . . ., since any state in
eriod t must transit into a state in period t+1. Let π t denote the
istribution of X (t) and P denote the one-step transition matrix,

we have:

Pπt
= πt+1

The aim is to find the stationary distribution π = {π0, π1, π2,
. . . , πn} of the number of information-disclosed positions. The
linear system is:

Pπ = π

eπ = 1

e is a vector of {1, 1, 1 · · · , 1}. By solving the system of equa-
tions, the steady state can be found.

Proposition 2. In the steady state of the simple FCFS queue, π is:

π FCFS
k =

Qk∑n
i=0 Qi

, k = 0, 1, 2, . . . , n

here ∀k ≥ 1, Qk =
1−p
pk

Π k
i=1F (

(1−u)p
i ), and Q0 = 1.

Qk is the coefficient of π0 in the equation πk = Qkπ0. Obvi-
usly, Qk is decreasing on k, so π FCFS

k is also decreasing. The intu-
tion is simple: one more rejection is less possible. The probability
hat The expected waste under FCFS queue is:

W FCFS
=

n∑
π FCFS
k ∗ PW FCFS

k

k=0
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=

Πn
i=1F (

(1−u)p
i )(1 +

1−p
p +

1−p
p2

+ · · · +
1−p
pn )

1 +
1−p
p F ((1 − u)p) +

1−p
p2

Π2
i=1F (

(1−u)p
i ) + · · · +

1−p
pn Πn

i=1F (
(1−u)p

i )

3.2. Steady state under RP–FCFS

Under RP–FCFS, the information disclosure process is similar
to the simple FCFS queue above. To find the steady-state expected
waste, we only need to know the distribution of the disclosed
information. Again, we can solve it by using a Markov chain.

Proposition 3. In the steady state of the RP–FCFS queue, the number
of observed rejections is distributed as:

πRP−FCFS
k =

Rk∑n
i=0 Ri

, ∀k = 0, 1, 2, . . . , n

where ∀k ≥ 2, Rk = Π k−1
i=1 (n − (n − i)p)n 1−p

k!pk
F ( (1−u)p

n )k, and
R1 = n 1−p

p F ( (1−u)p
n ), and R0 = 1.

Rk is the coefficient of π0 in the equation πk = Rkπ0. Obvi-
ously, Rk is decreasing on k, so πRP−FCFS

k is also decreasing. Under
uniform distribution Q1 = R1 and ∀k ≥ 2, Qk ≥ Rk. This means
πk can decrease faster under the RP–FCFS queue. The expected
aste is:

W RP−FCFS
=

n∑
k=0

πRP−FCFS
k ∗ PW RP−FCFS

k

=

F ( (1−u)p
n )n(1 + n 1−p

p +
∑n

k=2 Π k−1
i=1

(n−(n−i)p)n
k!

1−p
pk

)

1 + n 1−p
p F ( (1−u)p

n ) +
∑n

k=2 Π k−1
i=1 (n − (n − i)p)n 1−p

k!pk
F ( (1−u)p

n )k

The direct comparison between the two expected wastes is
intractable, let alone proof of RP–FCFS’s optimality. We only
find a tractable comparison when the waiting cost is uniformly
distributed.

Theorem 2 (Ex-ante Improvement). When F (x) = x, RP–FCFS
induces less expected waste than FCFS.

Theorem 2 is much stronger than Proposition 1. The ex-post
improvement does not necessarily implies ex-ante improvement
since the expected waste also depends on the stationary distri-
bution of the number of observed rejections.
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. Conclusion

This paper investigates the waste minimization problem in
ynamic queuing allocation. We find that the expected waiting
ime for the better good should be maximized to decrease the
robability of rejection, thus reducing the steady-state expected
aste. Our main theoretical contribution is to allow different
oods to be allocated under different queue disciplines. This can
e achieved when the goods’ type is public information after its
ealization. Our first result is that LCFS–FCFS generates zero waste
y inducing infinite expected waiting times for the front agents.
owever, it is unfair and impossible to be used in reality. A basic
airness criterion is that the agent must be prioritized (weakly)
igher than anyone behind him. In other words, he should have
higher probability of receiving goods than the agents arriving

ater. Our second result is that RP–FCFS is both ex-post and
x-ante better than FCFS when fairness is restored.
While the paper only discusses the fixed-length deterministic

ueue, our results can be easily extended into M/M/1 environ-
ent. Since, given any queue’s length, the rejection thresholds
nder RP–FCFS are always below the thresholds under simple
CFS. The only difference under M/M/1 environment is that the
ueue length can change. So, there are two elements in the one-
tep transition matrix under M/M/1: 1. The number of observed
ejections. 2. The queue’s length. Also, the expected waiting time
or A of the agents under RP–FCFS will change when the queue’s
ength changes. Despite the differences, the intuition on waste
inimization is the same as in the fixed-length deterministic
nvironment. Also, the waiting cost in our model is different
rom the discount factor. The discount factor exponentially de-
reases the utility, while the waiting cost linearly decreases the
tility. We adopt the waiting cost since it is more mathematically
ractable. There is not much difference in the main results when
sing the discount factor.
The limitation of this paper is that while the intuition of RP–

CFS’s optimality is easy, the proof is intractable. Also, we mainly
iscuss the complex queues under which B′s allocation is fixed

under FCFS. There are other possible combinations (e.g., LCFS–RP
and FCFS–RP). Although this direction of extension is interesting,
the information disclosure process is hard to capture when the
discipline of B moves away from the FCFS. The main reason is
that the agents need to know which agent in front of them has
rejected B before calculating their expected waiting times. So,
adding randomization in the allocation of B will complicate the
story.

Data availability

No data was used for the research described in the article.

Appendix. Proof of theorems and propositions

Proof of Theorem 1. Under LCFS–FCFS, for any n > 2, suppose
at period t , B is realized. If the agent at position 1 rejects it, his
expected waiting time is −∞. ∀c1 ∈ (0, 1), his expected utility
under rejection is 1 − ∞ ∗ c1 = −∞. His expected utility under
acceptance is u ∈ (0, 1). So, he will accept B. This means no
rejection will happen, and there is no waste. □

Proof of Theorem 2. If F (x) = x, the expected wastes are:

EW FCFS
=

(1−u)npn
n! (1 +

1−p
p +

1−p
p2

+ · · · +
1−p
pn )

(1−p)(1−u)2 (1−p)(1−u)n
1 + (1 − p)(1 − u) + 2! + · · · + n!
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EW RP−FCFS
=

(1−u)npn
nn (1 + n 1−p

p +
∑n

k=2 Π k−1
i=1

(n−(n−i)p)n
k!

1−p
pk

)

1 + (1 − p)(1 − u) +
∑n

k=2
Π

k−1
i=1 (n−(n−i)p)n

nk
(1−p)(1−u)k

k!

When n = 2, the above expressions are reduced to:

EW FCFS
=

(1 − u)2p2( 12 +
1
2
1−p
p +

1
2
1−p
p2

)

1 + (1 − p)(1 − u) +
(1−p)(1−u)2

2!

W RP−FCFS
=

(1 − u)2p2( 14 +
1
2
1−p
p +

(2−p)
2

1
2
1−p
p2

)

1 + (1 − p)(1 − u) +
(2−p)

2
(1−p)(1−u)2

2!

Since p > 0, 2−p
2 < 1, EW FCFS > EW RP−FCFS .

Suppose when n = m − 1, EW FCFS > EW RP−FCFS . Then, when
= m, we have equation given in Box I

roof of Proposition 2. The one-step transition probability needs
o be presented separately for different situations: If 0 < i < n,
onditional on X (t)

= i, X (t+1) can be i − 1, i, i + 1, . . . , n:

P(X (t+1)
= j|X (t)

= i)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p if j = i − 1

(1 − p)(1 − F (Cj+1)) if j = i

(1 − p)(1 − F (Cj+1))Π
j
k=i+1F (Ck) if i + 1 ≤ j ≤ n − 1

(1 − p)Π j
k=i+1F (Ck) if j = n

If i = n,

(X (t+1)
= j|X (t)

= n) =

{
p if j = n − 1
(1 − p) if j = n

If i = 0, conditional on X (t)
= i, X (t+1) can be i, i + 1, . . . , n:

(X (t+1)
= j|X (t)

= 0)

=

⎧⎪⎨⎪⎩
p + (1 − p)(1 − F (C1)) if j = i = 0

(1 − p)(1 − F (Cj+1))Π
j
k=i+1F (Ck) if 0 < j < n

(1 − p)Π j
k=i+1F (Ck) if j = n

Then, we have a system of equations:

π0 = π0(p + (1 − p)(1 − F (C1))) + π1p

πk =

k−1∑
i=0

πi(1 − p)(1 − F (Ck+1))Π k
j=i+1F (Cj)

+ πk(1 − p)(1 − F (Ck+1)) + πk+1p, ∀1 ≤ k ≤ n − 1

πn =

n−1∑
i=0

πi(1 − p)Πn
j=i+1F (Cj) + πn(1 − p)

We can derive:

π1 =
1 − p
p

F (C1)π0

π2 =
1 − p
p2

F (C1)F (C2)π0

π3 =
1 − p
p3

F (C1)F (C2)F (C3)π0

· · ·

πn =
1 − p

Πn
i=1F (Ci)π0
pn
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π

P
X

P

EW FCFS
=

(1−u)mpm
m!

(1 +
1−p
p +

1−p
p2

+ · · · +
1−p
pm )

1 + (1 − p)(1 − u) +
(1−p)(1−u)2

2! + · · · +
(1−p)(1−u)m

m!

=

(1−u)p
m ( (1−u)m−1pm−1

(m−1)! (1 +
1−p
p + · · · +

1−p
pm−1 )) +

(1−p)(1−u)m
m!

1 + (1 − p)(1 − u) +
(1−p)(1−u)2

2! + · · · +
(1−p)(1−u)m−1

(m−1)! +
(1−p)(1−u)m

m!

>
( (1−u)mpm

m(m−1)m−1 (1 +
(m−1)(1−p)

p +
∑m−1

k=2
Π

k−1
i=1 ((m−1)−(m−1−i)p)(m−1)

k!
1−p
pk

)) +
(1−p)(1−u)m

m!

1 + (1 − p)(1 − u) +
∑m−1

k=2
Π

k−1
i=1 ((m−1)−((m−1)−i)p)(m−1)

(m−1)k
(1−p)(1−u)k

k! +
(1−p)(1−u)m

m!

>

(1−u)mpm
mm (1 + m 1−p

p +
∑m−2

k=2 Π k−1
i=1

(m−(m−i)p)m
k!

1−p
pk

) +
(1−p)(1−u)m

m!

1 + (1 − p)(1 − u) +
∑m−1

k=2
Π

k−1
i=1 ((m−1)−((m−1)−i)p)(m−1)

(m−1)k
(1−p)(1−u)k

k! +
(1−p)(1−u)m

m!

=

(1−u)mpm
mm (1 + m 1−p

p +
∑m

k=2 Π k−1
i=1

(m−(m−i)p)m
k!

1−p
pk

) +
mm

m!

(1−p)
pm

1 + (1 − p)(1 − u) +
∑m−1

k=2
Π

k−1
i=1 ((m−1)−((m−1)−i)p)(m−1)

(m−1)k
(1−p)(1−u)k

k! +
(1−p)(1−u)m

m!

>

(1−u)mpm
mm (1 + m 1−p

p +
∑m

k=2 Π k−1
i=1

(m−(m−i)p)m
k!

1−p
pk

)

1 + (1 − p)(1 − u) +
∑m

k=2
Π

k−1
i=1 (m−(m−i)p)m

mk
(1−p)(1−u)k

k!

= EW RP−FCFS □

Box I.
·

R

π

Given that F (Ci) = F ( (1−u)p
i ), so ∀k > 0:

k =
1 − p
pk

Π k
i=1F (Ci)π0

=
1 − p
pk

Π k
i=1F (

(1 − u)p
i

)π0

∀k ≥ 1, let Qk =
1−p
pk

Π k
i=1F (

(1−u)p
i ), and Q0 = 1. Since π is

a probability distribution, then
∑n

i=0 Qiπ0 = 1. So, we have the
stationary distribution π :

πk =
Qk∑n
i=0 Qi

, k = 0, 1, 2, ·, n □

roof of Proposition 3. If 0 < i < n, conditional on X (t)
= i,

(t+1) can be i − 1, i, i + 1, . . . , n:

(X (t+1)
= j|X (t)

= i)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p i

n if j = i − 1

p n−i
n + (1 − p)(1 − F (C)) if j = i

(1 − p)(1 − F (C))Π j
k=i+1F (C) if i + 1 ≤ j ≤ n − 1

(1 − p)Πn
k=i+1F (C) if j = n

If i = n,

P(X (t+1)
= j|X (t)

= n) =

{
p if j = n − 1
(1 − p) if j = n

If i = 0, conditional on X (t)
= i, X (t+1) can be i, i + 1, . . . , n:

P(X (t+1)
= j|X (t)

= 0)

=

⎧⎪⎨⎪⎩
p + (1 − p)(1 − F (C)) if j = i = 0

(1 − p)(1 − F (C))Π j
k=i+1F (C) if 0 < j < n

(1 − p)Π j
k=i+1F (C) if j = n
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Then, we have a system of equations:

π0 = π0(p + (1 − p)(1 − F (C))) + π1
p
n

πk =

k−1∑
i=0

πi(1 − p)(1 − F (C))Π k
j=i+1F (C)

+ πk(p
n − k
n

+ (1 − p)(1 − F (C))) + πk+1p
k + 1
n

,

∀1 ≤ k ≤ n − 1

πn =

n−1∑
i=0

πi(1 − p)Πn
j=i+1F (C) + πn(1 − p)

We can derive:

π1 = n
1 − p
p

F (C)π0

π2 = (n − (n − 1)p)n
1 − p
2!p2

F (C)2π0

π3 = (n − (n − 2)p)(n − (n − 1)p)n
1 − p
3!p3

F (C)3π0

· ·

πn = Πn−1
i=1 (n − (n − i)p)n

1 − p
n!pn

F (C)nπ0

∀k ≥ 2, let Rk = Π k−1
i=1 (n − (n − i)p)n 1−p

k!pk
F (C)k, R1 = n 1−p

p F (C)
and R0 = 1. We have the steady state distribution of X t in
P–FCFS queue:

k =
Rk∑n
i=0 Ri

, k = 0, 1, 2 · · · , n □
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