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Abstract:  17 

GPR35 is a poorly characterised, orphan G protein-coupled receptor that is attracting 18 

considerable interest as a therapeutic target.  Marked differences in pharmacology between 19 

human and rodent orthologues of the receptor and a dearth of antagonists with affinity for 20 

mouse and rat GPR35 have previously restricted use of pre-clinical disease models. The 21 

development of improved ligands, novel transgenic knock-in mouse lines and detailed 22 

analysis of the disease relevance of single nucleotide polymorphisms has greatly enhanced 23 

understanding of key roles of GPR35 and stimulated efforts towards disease-targeted proof-24 

of-concept studies. In this Opinion, new information on the biology of the receptor is 25 

considered, whilst insight into how GPR35 is currently being assessed for therapeutic utility 26 

in areas ranging from inflammatory bowel diseases to non-alcoholic steatohepatitis and 27 

various cancers is also provided.  28 

 29 

 30 
 31 

32 
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Main text 33 
 34 
GPR35 is a poorly understood receptor 35 
 36 

First identified more than 20 years ago, and nominally identified in 2006 as a receptor 37 

for the tryptophan metabolite kynurenic acid [1], GPR35 (see Glossary) officially remains 38 

an ‘orphan’ (Box 1) G protein-coupled receptor (GPCR) [2], and the nature of the 39 

endogenous ligand(s) that stimulate GPR35 remains a highly active area of research. Marked 40 

variation in the potency of many synthetic agonists between human GPR35 and both the rat 41 

and mouse orthologues [3] (Box 2), and the exceptionally limited range of available 42 

antagonist ligands, has greatly restricted progress in understanding the functions and 43 

regulation of this receptor. Moreover, the currently described antagonists are ‘human 44 

specific’, displaying negligible affinity at rat and mouse GPR35 [3-5]. Recently the first 45 

atomic level cryo-EM structure of a human GPR35-G protein complex was published with 46 

global resolution reported to be to 3.2 Å [6].  As with other GPCRs this identified the 47 

canonical transmembrane domain of seven transmembrane helices, three extracellular loops, 48 

three intracellular loops, and an amphipathic helix at the cytoplasmic interface. Although of 49 

considerable interest and including a range of mutational studies that largely supported earlier 50 

efforts to understand the nature of ligand binding selectivity [7-8], this study concentrated 51 

more on the role of potential allosteric cations than considering species orthologue 52 

differences in pharmacology.  It did, however, re-iterate the importance of positively charged 53 

residues around the ligand binding pocket [6] that reflects that many agonist ligands contain a 54 

carboxylate moiety or are di-acids [3].   55 

Whilst species orthologues of GPR35 can each interact effectively with arrestin 56 

adapter proteins in an agonist-dependent manner [e.g., 9] it remains uncertain which G 57 

protein subsets are the primary transducers of GPR35-mediated signals. In various settings 58 

results favour either pertussis toxin-sensitive Gi-family G proteins [10-13] or the less well 59 

studied, pertussis toxin-insensitive G12/G13 G protein family [5, 12, 14-17]. Indeed, the 60 

reported cryo-EM structure incorporated a chimeric G protein that was based significantly on 61 

the sequence of Ga13 [6]. Whether G protein selection is tissue or cell type specific also 62 

remains a question for future research.  63 

Despite such issues there has been growing interest in the potential to target GPR35 in 64 

a range of conditions. This Opinion will therefore also consider therapeutic opportunities 65 

currently attracting the greatest interest with a focus on inflammatory bowel diseases, the 66 

spectrum of fatty-liver diseases and stomach and lower-gut tumours. 67 
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What is/are the endogenous activator(s) of GPR35? 68 

 69 

Kynurenic acid can activate GPR35 70 

As noted earlier kynurenic acid [18-19] was the first ligand reported to activate 71 

GPR35 [1, 3]. The basic observations have been repeated and confirmed in numerous in vitro 72 

and ex vivo assays but, as with other GPR35 activators, there is variation in potency of 73 

kynurenic acid between human, mouse and rat orthologues [1, 14].  Indeed, the very modest 74 

potency of kynurenic acid reported by many groups at, particularly human, GPR35 has led to 75 

doubts if this is the key endogenous agonist [13-14]. Kynurenic acid has a range of other 76 

known molecular targets [20-21] and in recent studies was shown to be some 20-fold more 77 

potent in activating the GPCR hydroxycarboxylic acid receptor (HCAR) 3 than GPR35 [22].  78 

In addition, it can act as a negative allosteric modulator (NAM) (and hence blocker) of the 79 

adenosine A2B receptor [22]. Despite these illustrations that simple small molecules that 80 

derive from intermediary metabolism (and many such molecules are indeed carboxylic acids) 81 

can have multiple targets, kynurenic acid has been used extensively in both ex vivo and in 82 

vivo studies with the anticipation that effects will reflect activation of GPR35. These include 83 

early studies that indicated that at concentrations lower than might be expected (from in vitro 84 

studies) to be able to occupy GPR35 to a substantial degree kynurenic acid was able to induce 85 

interactions between monocytes and intercellular adhesion molecule (ICAM)-1 expressing 86 

human umbilical vein endothelial cells (HUVECs) [10].  87 

 88 

Use of kynurenic acid in rodent models 89 

Clearly the lack of both receptor knock-out lines and cross-species active antagonist 90 

ligands means that in vivo studies performed with kynurenic acid in rat are difficult to 91 

interpret [e.g., 23]. By contrast, studies in mice have the potential, and now indeed 92 

expectation, to use GPR35 knock-out animals as controls to provide greater confidence of 93 

reported effects being ‘on-target’. For example, Agudelo et al., [24] used wild type and 94 

GPR35 knock-out mice to assess the effect of intraperitoneal (ip) injection of kynurenic acid 95 

on adipose tissue energy homeostasis and inflammation and to define a role for GPR35. 96 

However, whilst related studies have integrated siRNA-based knock-down of GPR35 [25], in 97 

such settings effects are still difficult to attribute specifically to the receptor. This is also the 98 

case in studies in which GPR35 ‘antagonists’ have been employed in cells and tissue from 99 

species in which these ligands have been shown to lack significant affinity. For example, in a 100 

study exploring effects of kynurenic acid to limit lipopolysaccharide-induced endometritis in 101 
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mouse Wang et al., [26] reported that ML194 (better known as CID2745687, 1-(2,4-102 

difluorophenyl)-5-[[2-[[(1,1-dimethylehyl)amino]thioxomethyl]hydrazinylidene]methyl]-1H-103 

pyrazole-4-carboxylic acid methyl ester) prevented anti-inflammatory effects of kynurenic 104 

acid. However, this compound has no measurable effect at mouse GPR35 in defined cell lines 105 

expressing this orthologue [5], indicating that the reported effect cannot reflect blockade of 106 

GPR35. The same issue raises concerns over the use of ip-injected CID2745687 in a study in 107 

which it was reported to block effects of kynurenic acid on bone mineral loss in 108 

ovariectomized female mice [27]. This must be an ‘off-target’ effect. There is clearly a need 109 

for the identification of cross-species GPR35 antagonist ligands, with well characterised 110 

pharmacology at rodent orthologues of the receptor, to help better define effects that are 111 

mediated unequivocally by GPR35. 112 

A much more intriguing study has recently suggested that protective effects of 113 

kynurenic acid on ischaemia in mice is produced via GPR35 [12]. Here, using both GPR35 114 

knock-out mice and the re-introduction of a kynurenic acid-defective binding site mutant 115 

(Arg 151Ala) of GPR35 into induced pluripotent stem cell-derived cardiomyocytes, the direct 116 

role of GPR35 was defined unambiguously. As part of well performed studies, a fascinating 117 

(but surprising) feature, however, was that activation of GPR35 was associated with its 118 

translocation to mitochondria. This study has also received additional commentary [28]. How 119 

the trans-plasma membrane receptor is then able to regulate the ATP synthase inhibitory 120 

factor 1 present on the mitochondrial cristae (and therefore on the mitochondrial inner 121 

membrane) remains to be established. In the context of the NLR family pyrin-domain-122 

containing 3 (NLRP3) inflammasome, use of bone marrow-derived macrophages from wild 123 

type and GPR35 knock-out mice has shown that kynurenic acid, in a GPR35-dependent 124 

manner, can also limit mitochondrial damage by suppressing mitochondrial production of 125 

reactive oxygen species [29]. Whether this may be related to the release of oxidised DNA 126 

fragments [30-31] is uncertain but may warrant investigation. Most recently, use of wild type 127 

and GPR35 knock-out mice has indicated that kynurenic acid can limit the development of 128 

high-fat-diet induced non-alcoholic steatohepatitis (NASH) [32]. Although this once more 129 

does not define that kynurenic acid is the only or indeed most important endogenous activator 130 

of GPR35, these studies are consistent with the potential of agonists of GPR35 to be useful in 131 

treating fatty liver diseases, including NASH [33] (Figure 1A). The therapeutic potential of 132 

agonists of GPR35 will be discussed in a subsequent section.  133 

Publication of negative data can be just as useful in defining or eliminating roles for 134 

GPR35 and kynurenic acid. For example, by employing a bone marrow transplantation 135 
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strategy from wild type and GPR35 knock-out mice, Baumgartner et al., [34] suggested that 136 

GPR35 expression does not play a direct role in macrophage activation, vascular 137 

inflammation, or the development of atherosclerosis. This study indicates that regulation of 138 

GPR35 is unlikely to provide an effective means to limit the development of atherosclerosis.  139 

 140 

CXCL17 is not an agonist of GPR35  141 

In 2015 Maravillas-Montero et al., [35] suggested that the molecule CXCL17 was a 142 

high potency activator of GPR35. The evidence to support this was indirect, and although the 143 

study used b-arrestin interaction studies to show that CXCL17 did not activate either of the 144 

true chemokine receptors CXCR2 or CCR5, they did not assess whether CXCL17 promoted 145 

interactions of GPR35 with an arrestin. This seemed a surprising omission as b-arrestin 146 

interaction studies have been widely used, over many years, to identify and characterise a 147 

wide range of ligands and compounds with agonist activity at GPR35 [e.g., 9]. Subsequent 148 

reports found no evidence to support the CXCL17-GPR35 pairing [36-37] and no other direct 149 

evidence has been forthcoming to confirm a role for CXCL17. As such this must be 150 

considered as one of many efforts at de-orphanisation of poorly characterised GPCRs that 151 

have not been widely replicated and failed to stand up to scrutiny. Unfortunately, the initial 152 

report [35] suggested renaming GPR35 as an additional chemokine receptor ‘CXCR8’, even 153 

though systematic naming of receptors is the perogative of the International Union of 154 

Pharmacology (IUPHAR) (see Resources I). This has resulted in various publications using 155 

the ‘CXCR8’ terminology, particularly those focused on expression patterns of GPR35 and 156 

CXCL17 and their potential association with early cancer diagnosis and predictions of 157 

prognosis [38-40] (Figure 1B). Although these are useful studies, it is important to note that 158 

CXCL17 should not be directly linked to GPR35, but rather they should be considered as two 159 

independent markers. 160 

 161 

5-hydroxyindoleacetic acid as a putative activator of GPR35  162 

The most recent suggestion of a high potency endogenous activator of GPR35 is the 163 

serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) [13]. Given that serotonin is 164 

present in high levels in the intestine and colon, that 5-HIAA is a major metabolite, and that 165 

expression of GPR35 is also highest in the lower gut, this is an enticing possibility.  De 166 

Giovanni et al., [13] presented clear data that both kynurenic acid and the high potency 167 

synthetic GPR35 agonist lodoxamide (N,N′-(2-chloro-5-cyano-1,3-phenylene)dioxamic acid) 168 
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[6-7] were able to promote chemotaxis of murine WEHI-231 B lymphoma cells that had been 169 

virally transduced to express a GFP-tagged form of GPR35. By contrast application of 170 

various lysophosphatidic acids (LPA) did not produce this effect, despite a limited number of 171 

studies having suggested previously that at least certain species of LPA can activate GPR35 172 

[41-42]. Consistent with the concept that 5-HIAA may directly activate GPR35, although 173 

serotonin was unable to promote migration of GPR35-GFP transduced WEHI-231 cells, 5-174 

HIAA was able to do so in a concentration-dependent manner with a clear peak between 10-175 

100 nM, whilst in neutrophil attachment assays 5-HIAA promoted this for cells from wild 176 

type but not GPR35 knock-out mice. Moreover, returning to the WEHI-231 cell model 1 µM 177 

5-HIAA was shown to be as effective as 10 µM lodoxamide [13], suggesting it to act as a 178 

high-efficacy and potency agonist. Such effects were observed for both human and mouse 179 

GPR35. This study [13] represents perhaps the most comprehensive analysis of the likely 180 

pairing of a new endogenous ligand with GPR35 and provides strong support for the 181 

relevance of 5-HIAA. One element lacking from the study was, however, direct measures of 182 

activation of each of human and rodent orthologues of GPR35 after their transfection into, 183 

and confirmed expression in, more standard cell lines that are used widely for 184 

pharmacological and functional characterisation of GPCRs. As such, although the results of 185 

[13] are exciting and appear compelling, independent validation is still awaited. 186 

 187 

Synthetic ligands for GPR35 research 188 

 189 

Agonists of GPR35 to interrogate GPR35 function  190 

The first substantially characterised synthetic ligand that acts as an agonist at GPR35 191 

was zaprinast (5-(2-propoxyphenyl)-1H-[1,2,3]triazolo[4,5-d]pyrimidin-7(4H)-one). It 192 

displays moderate potency at GPR35 that is not dissimilar to its potency as an inhibitor of 193 

cGMP-phosphodiesterase subtypes. However, although of little use in specifically defining 194 

GPR35-mediated effects in vivo, zaprinast remains a widely utilised tool compound for in 195 

vitro and even ex vivo studies [3]. This reflects that it shows relatively similar potency at 196 

human, rat and mouse GPR35, with rank order rat > mouse > human. Subsequent years 197 

resulted in the identification of a substantial number of both synthetic and naturally produced 198 

(but not endogenously generated) compounds that displayed modest potency as agonists [see 199 

3, 18 for reviews]. Recognition that cromolyn (5,5′-(2-hydroxypropane-1,3-200 

diyl)bis(oxy)bis(4-oxo-4H-chromene-2-carboxylic acid) disodium is able to activate GPR35 201 
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with rather higher potency at human than rodent forms [43] was the initial indication that 202 

some clinically employed medicines might mediate at least some of their effects via GPR35. 203 

A major surprise was the recognition that pamoate salts of various drugs activated (at least 204 

human) GPR35 and that this congener was the common feature of a disparate group of 205 

medicines that apparently activated the receptor [44]. Pamoate is also markedly selective for 206 

human GPR35 and in many settings acts as a partial agonist. Starting with the discovery that 207 

compounds from library screens could be developed via medicinal chemistry to produce 208 

ligands with mid-nM and higher potency [45] substantial progress has been made [46-48].  209 

However, serendipity has also played a part in the identification of ligands such as 210 

lodoxamide [7] that display excellent potency at human GPR35 and have become widely 211 

employed tool compounds [6]. As highlighted earlier, variation in potency of agonist ligands 212 

between rat, mouse and human GPR35 can be very marked. For example, lodoxamide, which 213 

is a mast cell stabiliser used to treat allergic conjunctivitis, is more than 100-fold less potent 214 

at mouse GPR35 than at either rat or human [49]. This makes it a poor choice of ligand to 215 

assess the function of GPR35 in wild type mice. In contrast, although pemirolast (9-methyl-3-216 

(1H-tetrazol-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one) is also a mast cell stabiliser and anti-217 

allergy medicine and is a relatively potent activator of rat and mouse GPR35, this ligand has 218 

no significant potency at human GPR35 [49]. Thus, whilst lodoxamide might find use as a 219 

‘re-purposed’ GPR35-targeting medicine, pemirolast will not. However, in rat, equivalent 220 

results produced by lodoxamide, pemirolast and zaprinast might be consistent with a GPR35-221 

mediated end point, even in the absence of suitable antagonists or knock-out models. Overall, 222 

considerable thought needs to be given to the choice of ligands used to assess GPR35 223 

function in different species because, although more information is becoming available, it is 224 

not uncommon for detailed pharmacology to be available only for human GPR35. 225 

 226 

Antagonists of GPR35 and species selectivity 227 

As highlighted, there are few characterised GPR35 antagonists, with CID2745687 228 

[50] and ML145 (CID2286812) (2-hydroxy-4-[4-[(5Z)-5-[(E)-2-methyl-3-phenylprop-2-229 

enylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]butanoylamino]benzoic acid) [51] 230 

being the only ones used in a significant number of studies in human-derived cells and tissues 231 

[e.g., 52-53]. However, as they both lack any significant affinity at either rat or mouse 232 

GPR35 [54] they clearly cannot be used to define roles of GPR35 in rat or in wild type mice. 233 

Some studies have reported effects, and these have been reviewed and considered elsewhere 234 

[3]. To overcome this issue, Lin et al., [33] recently generated and employed tissue from a 235 
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transgenic knock-in mouse line in which mouse GPR35 was replaced with the equivalent 236 

human isoform. Here, ML145 was able to reverse, in a concentration-dependent manner, and 237 

with IC50 consistent with its known binding affinity at human GPR35, the ability of 238 

lodoxamide to prevent triglyceride accumulation in hepatocytes of these animals. The ability 239 

of current antagonists to block human GPR35 suggest these transgenic mice may find use in a 240 

range of disease models where contributions of GPR35 are being assessed [3]. 241 

 242 

GPR35 and disease:  243 

 244 

Inflammatory bowel disease 245 

Despite the challenges of defining roles of GPR35, the strong genetic association between 246 

single nucleotide polymorphisms (SNPs) within the GPR35 gene [3] and both inflammatory 247 

bowel diseases and autoimmune liver diseases, including primary sclerotic cholangitis [55-248 

58] has provided clear line-of-sight to targeting this receptor. Dextran sulphate sodium 249 

(DSS)-induced colitis in mice has been the most used animal model to assess contribution of 250 

GPR35 and potential for therapeutic intervention. Farooq et al., [59] illustrated the greater 251 

extent and degree of damage induced by exposure to DSS in GPR35 knock-out compared to 252 

wild type mice. This built on earlier studies of Tsukahara et al., [11] that reached broadly 253 

similar conclusions and also incorporated a number of pharmacological interventions. These, 254 

however, included some surprising outcomes. These included that the human orthologue 255 

specific GPR35 antagonist CID2745687 was able to prevent effects of various GPR35 256 

activators in studies conducted in either murine young adult colon epithelium or rat small 257 

intestinal epithelial cells [11]. This is incompatible with the orthologue selectivity of 258 

CID2745687 discussed earlier. DSS treatment in mice resulted in marked shortening of the 259 

colon, and sustained treatment with pamoic acid as a potential GPR35 agonist (at 100mg/kg 260 

but not 30mg/kg, injected subcutaneously) both reversed this feature and all but eliminated 261 

expression of the inflammatory markers TNFa, IL1 and IL6. Hence, despite the earlier noted 262 

very low potency of pamoic acid at murine GPR35, and the lack of potential ‘off-target’ 263 

controls in the mouse studies, aspects of this report were also supportive of the potential of 264 

GPR35 agonism. Additionally, specific deletion of GPR35 from CX3CR1+ macrophages is 265 

reported to aggravate DSS-induced colitis, suggesting a specific mechanism [37]. However, 266 

by contrast Yansen et al., [60] reported ‘lower’ susceptibility to DSS in GPR35 knock-out 267 

than wild type animals while Schneditz et al., [61] did not observe a significant difference. 268 



 

9 
 

Based in part on accumulating evidence that predominantly indicates that lack of GPR35 269 

increases susceptibility to DSS-induced colitis, GlaxoSmithKline and Sosei-Heptares have 270 

announced a programme of work to assess small molecule agonists of GPR35 in such 271 

conditions (see Resources II) (Figure 1C).  This likely reflects that although there are 272 

current treatments including aminosalicylates, glucocorticoids and increasingly anti-tumour 273 

necrosis factor-targeting biologicals, for ulcerative colitis and Crohn’s disease, which are the 274 

major forms of inflammatory bowel disease, there remains a substantial number of patients 275 

for whom such treatments are ineffective.  In addition, Melhem et al., [62] have shown 276 

recently that cell-type-specific deletion of GPR35 in epithelial cells, but not in macrophages, 277 

results in goblet cell depletion and dysbiosis, rendering animals more susceptible to 278 

Citrobacter rodentium infection (Figure 1C). 279 

 280 

Fatty liver disease 281 

Initially founded on studies that showed that lodoxamide was able to limit lipid 282 

accumulation induced by exposure to a liver X-receptor activator in human Hep3B hepatoma 283 

cells [63] there has been growing interest in the idea that agonism of GPR35 may be a useful 284 

approach to treat diseases linked to ‘fatty liver’ [32-33]. Surprisingly, however, Nam et al., 285 

[63] also showed that low concentrations of lodoxamide were able to replicate this effect in 286 

primary hepatocytes from wild type mice in a manner that was prevented, in a concentration-287 

dependent fashion, by the human GPR35 specific antagonist CID2745687. Moreover, in 288 

these studies oral delivery of lodoxamide at only 1mg/kg, for the final 7 days of a 7 week 289 

diet-induced obesity model of fat accumulation in the liver, was reported to suppress both 290 

lipid levels and reduce the amount of the key lipogenic transcription factor sterol regulatory 291 

element-binding protein-1c (SREBP-1c) [63].  Although fascinating, as noted earlier, 292 

lodoxamide is at least 100-fold less potent at mouse GPR35 than at either the human or rat 293 

orthologues [49] and little is known about either bio-availability or pharmacokinetic and 294 

pharmacodynamic characteristics of this ligand. As such, it is unclear if this dose would be 295 

sufficient to occupy mouse GPR35 to a substantial level. Based on these studies however, Lin 296 

et al., [33] confirmed the ability of lodoxamide to prevent liver X-receptor-mediated lipid 297 

accumulation in the more widely used human HepG2 hepatoma cell line. Encouraged by this, 298 

they used genome-editing to produce HepG2 clones lacking expression of GPR35 and noted 299 

both higher basal lipid levels in these, and now, a lack of effect of lodoxamide until human 300 

GPR35a was transiently re-introduced. Although the GPR35 agonist bufrolin (6-butyl-4,10-301 

dioxo-1,7-dihydro-1,7-phenanthroline-2,8-dicarboxylic acid), which has moderate potency at 302 
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mouse GPR35 [49], was able to reduce liver X-receptor-induced lipid accumulation in 303 

primary hepatocytes from wild type mice [33], the lack of antagonists with affinity at mouse 304 

GPR35 led this group to generate a transgenic mouse line in which human GPR35a replaced 305 

endogenous mouse GPR35. Using primary hepatocytes from these animals, concentrations of 306 

lodoxamide anticipated to occupy human GPR35a were able to limit lipid accumulation, and 307 

this was prevented by one of the human specific GPR35 antagonists ML145 [33]. Moreover, 308 

addition of lodoxamide post-initiation of fat accumulation was able to reverse this feature 309 

[33]. Although limited to ex vivo studies these outcomes are certainly encouraging that direct 310 

in vivo delivery of GPR35 agonists with suitable drug-like characteristics might be effective 311 

in reducing fat accumulation in hepatocytes (Figure 1A). Further support for this idea was 312 

recently provides by Wei et al., [32]. Here, in mouse models, knock-out of GPR35 313 

exacerbated diet-induced steatohepatitis, whilst simple overexpression of GPR35 was able to 314 

restrict this. Moreover, provision of kynurenic acid (5 mg/kg, ip) was able to restore many of 315 

the baseline characteristics, potentially by regulating cholesterol homeostasis.  316 

 317 

GPR35 as a target in oncology  318 

There have been more publications alluding to potential links between GPR35 and 319 

cancer than to any other disease set. These range from correlations in expression of GPR35 320 

with progression and stage of various cancers [38], analysis to suggest that high level 321 

expression of the long GPR35b isoform (Box 3) in lymph nodes of colon cancer patients is 322 

associated with poor prognosis [64-65], or maybe that expression of GPR35 is positively 323 

linked to survival [39]. Mice lacking GPR35 develop less intestinal tumours in spontaneous 324 

and inflammation-induced cancer models [61]. Moreover, although macrophage-specific 325 

knock-out of GPR35 decreases tumour size it appears to do so by creating a tumour 326 

suppressive micro-environment whereas wild type macrophages secrete substantially more 327 

angiogenic mediators [66]. These studies point towards GPR35 as a tumour-promoting 328 

protein. Although a little difficult to unravel, the well-appreciated high-level expression of 329 

GPR35 in the intestine, colon and, indeed, in the stomach, where expression levels have been 330 

associated with gastric cancers [67] and with poor prognosis in such cancers [68], and also in 331 

non-small-cell lung cancer [68] may indicate opportunities to target this receptor in such 332 

disease settings (Figure 1B). This has recently been reviewed [69]. The literature does not 333 

provide immediately obvious guidance as to whether activation or blockade of GPR35 might 334 

be more effective. Clearly the identification and use of novel, drug-like antagonists of GPR35 335 

will be integral to unravelling such questions.  336 
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Concluding Remarks and Future Perspectives 337 

After years of relative disinterest, recent times have seen great strides taken in our 338 

understanding of the function of the enigmatic receptor GPR35. These include the effective 339 

use of both constitutive and, increasingly, tissue-specific knock-out mouse lines and the first 340 

reports on knock-in mouse lines in which a human GPR35 isoform replaced the mouse 341 

orthologue. This will hopefully start to allow challenges about the use of human selective 342 

pharmacological ligands to be unravelled and whether effects they are reported to produce in 343 

wild type rodents reflect genuine ‘on-target’ functions (see Outstanding Questions). 344 

Potential efforts at drug-repurposing to target GPR35 are being rapidly bolstered by new 345 

chemistry programmes designed to develop a larger group of drug-like agonists and, 346 

hopefully also, antagonist ligands which will likely validate GPR35 in therapeutics areas 347 

ranging from ulcerative colitis to cancer. 348 

 349 

Outstanding Questions 350 

• Will kynurenic acid or 5-hydroxyindoleacetic acid (or some other endogenously 351 

produced ligand) be defined as the true ligand partner for GPR35? 352 

• Will it be possible to identify high affinity cross-species antagonists of GPR35 to 353 

assist with target validation in rodent models of disease? 354 

• What will additional either x-ray crystallography and/or cryo-EM tell us about the 355 

details of ligand binding to GPR35 and will this promote effective structure-based 356 

drug design of novel antagonist and agonist ligands? 357 

• Will efforts to develop GPR35 agonists for the treatment of lower gut inflammation 358 

be successful in a clinical setting? 359 

• Will activators of GPR35 gain a place in the wider pharmacopeia currently being 360 

directed towards non-alcoholic fatty liver diseases, including NASH? 361 

• Will potential effects of GPR35 ligands on blood pressure and other aspects of 362 

cardiovascular biology limit systematic use of GPR35 directed ligands? 363 
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Resources and References 373 

Resources 374 

(I) IUPHAR/BPS Guide to Pharmacology (https://www.guidetopharmacology.org/). 375 

(II) Information on GlaxoSmithKline/Sosei-Heptares collaboration 376 

(https://www.prnewswire.com/news-releases/sosei-heptares-and-gsk-enter-global-377 

collaboration-and-license-agreement-targeting-immune-disorders-of-the-digestive-system-378 
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Glossary 628 

 629 

Arrestin: A member of a small group of cytosolic proteins that can interact with agonist-630 

occupied GPCRs to ‘arrest’ and prevent interactions of the receptor with G proteins. 631 

Dextran sulphate sodium: (DSS) a sulphated polysaccharide widely used to induce a 632 

disease model of colitis in mice.  633 

CXCL17: A molecule termed CXCL17, although lacking a chemokine fold, has been 634 

described as an activator of GPR35. Although this is incorrect, it is also sometimes described 635 

as an ‘orphan’ ligand because its cognate receptor has yet to be defined. 636 

‘CXCR8’: a term sometimes used to describe GPR35 as a member of the chemokine receptor 637 

family. This is based on a single publication which has not been replicated. 638 

GPR35: A member of the GPCR superfamily which has been suggested to be the cognate 639 

receptor for each of kynurenic acid, 5-hydroxyindoleacetic acid and the ligand CXCL17. Still 640 

officially designated as an ‘orphan’. 641 

GPCR: G protein-coupled receptor. A member of a superfamily of trans-plasma membrane 642 

proteins with seven transmembrane domain architecture and which mediates a range of its 643 

actions by facilitated interaction with, and activation of, members of the family of 644 

heterotrimeric G proteins.  645 

Negative allosteric modulator: A compound that blocks the function of a receptor protein in 646 

a non-competitive manner and does so by binding to an allosteric site, spatially separate from 647 

the orthosteric binding cavity. 648 

Non-alcoholic steatohepatitis (NASH): A condition within the spectrum of diseases related 649 

to accumulation of triglycerides and lipids within the liver. NASH is associated with liver 650 

inflammation and fibrosis. 651 

Orphan receptor: a receptor protein, for example a GPCR, for which the cognate activating 652 

ligand(s) remains unidentified or is (are) not fully accepted.  653 

On-target: a biological effect of a ligand, drug or medicine which is produced 654 

unambiguously by interaction with a specified protein or other receptor species.  655 

Off-target: a biological effect produced by a ligand, drug or medicine but by means that do 656 

not reflect regulation of the specifically defined target receptor or other protein. 657 

Pertussis toxin-sensitive: Pertussis toxin is produced by the bacterium Bordetalla pertussis. 658 

By causing ADP-ribosylation of a cysteine reside that is present in all the widely expressed 659 

‘Gi’-members of the family of heterotrimeric G proteins it prevents their interaction with 660 
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GPCRs. Hence a signalling pathway that is ‘Pertussis toxin-sensitive’ is concluded to be 661 

transduced by one or other members of the ‘Gi’ G protein group. 662 

Single nucleotide polymorphism (SNP): A single alteration in the nucleotide sequence of a 663 

gene that alters directly or indirectly the function of the anticipated encoded protein. 664 

 665 

  666 
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Text Boxes  667 

 668 

Box 1. Orphan G protein-coupled receptors and their potential endogenous activators 669 

Despite extensive efforts over many years, clear understanding of the identity of ligands that 670 

are the endogenous activators of a significant number of GPCRs remains either uncertain or 671 

completely unknown. Such GPCRs are designated as ‘orphans’. A key resource for many 672 

aspects of the function and ligand regulation of all GPCRs, including orphans, is provided by 673 

the IUPHAR/BPS Guide to Pharmacology [2] (see Resources I). In many cases, including 674 

GPR35, GPCRs remain orphans despite a range of publications supporting the ability of 675 

specific ligands to activate the receptor. In the case of GPR35 a substantial number of reports 676 

have shown that kynurenic acid can certainly activate the receptor and this is now well 677 

established.  However, particularly for the human orthologue the potency of kynurenic acid is 678 

low, and this has resulted in discussions as to whether the concentration of kynurenic acid 679 

may be too low in many settings to occupy the receptor to a significant degree. By contrast, 680 

the suggestion that ligand CXCL17 is the key endogenous agonist of GPR35 was based on a 681 

single publication [35], that other reports subsequently refuted [36-37]. Most recently, a 682 

single report to date [13] has provided evidence that 5-HIAA is a potent activator of GPR35, 683 

as least in the context of neutrophil function. Across the GPCR field there are many reports 684 

of the pairing of new and distinct ligands with orphan GPCRs. In many cases these have been 685 

validated by further work by the research community, but in a substantial number of other 686 

cases reproduction of initial findings have not been forthcoming. The IUPHAR/BPS Guide to 687 

Pharmacology (noted above) plays an important role in recording these developments. 688 

 689 

 690 
Box 2. Pharmacology differences between GPR35 orthologues   691 
 692 
One of the greatest challenges in understanding the function(s) of GPR35 and the 693 

opportunities to target the receptor therapeutically has been, and remains, the complex 694 

differences in ligand pharmacology between human and rodent orthologues of the receptor. 695 

Moreover, differences in GPR35 pharmacology between rat and mouse are frequently as 696 

marked as between either of these and human. Challenges posed by this were highlighted 697 

more than 10 years ago [70] but still remain. Unless there are unappreciated aspects of the 698 

mode of action and ligand binding to GPR35 in native systems that are simply not replicated 699 

in simple heterologous cell lines, then none of the very limited set of currently reported 700 
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‘GPR35 antagonists’ have useful affinity at either rat or mouse GPR35. As such, and as 701 

highlighted in the main text, reports in which CID2745687 or ML145 have been used in 702 

mouse or rat tissues or in cell lines derived from these species cannot reflect blockade of 703 

GPR35 and hence must be ‘off-target’. Even for studies on the human receptor more ‘drug-704 

like’ GPR35 selective antagonists are greatly needed to allow better therapeutic validation of 705 

GPR35 and, once more as discussed in the main text, may provide stating points for 706 

therapeutic intervention. Whilst agonist ligands display a gamut of characteristics across 707 

species, careful reading of the literature, allows selection of molecules with at least moderate 708 

potency at each of human, mouse and rat. There are potentially compounds that display levels 709 

of ‘bias’ between signal pathways [71-72], but this topic has been assessed in a less rigorous 710 

and systematic manner than for many other GPCRs. This may reflect the challenges for many 711 

years in establishing the G protein-coupling pattern of GPR35 and suitable assays to measure 712 

these. 713 

 714 

 715 

Box 3. Isoform variation in human GPR35 716 

Unlike both rat and mouse that express a single isoform of GPR35, human differentially 717 

expresses two isoforms across tissues [3,73]. The shorter GPR35a isoform corresponds to the 718 

single rat and mouse isoform in amino acid number. This is the reason that Lin et al., [33] 719 

selected to replace mouse GPR35 with the shorter human GPR35a isoform when generating 720 

the transgenic knock-in mouse line described in the main text.  Compared to GPR35a, the 721 

long GPR35b isoform has an additional N-terminal 31 amino acid extension [3, 71]. The 722 

functional significance of this additional isoform is uncertain. No distinct pharmacology has 723 

been reported for the two forms after expression in heterologous cells. However, Schihada et 724 

al., [16] have reported differences in the ability of the long and short isoforms to mediate 725 

interactions with G proteins versus b-arrestin-2. This was not observed, however, by Marti-726 

Solano et al., [73] who noted rather that the GPR35b isoform was less effective in promoting 727 

both G protein activation and b-arrestin-2 recruitment in response to various agonists than the 728 

GPR35a isoform. As such, although rather little focus has been directed to the GPR35b 729 

isoform there are clearly contradictions in reports of their functions that remain to be 730 

clarified. 731 

  732 
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Figure Legends  733 

 734 

Figure 1. Therapeutic opportunities in targeting GPR35 735 

Recent work has highlighted a number of disease areas in which activation or blockade of 736 

GPR35 may prove to be therapeutically useful. 737 

 738 

Figure 1A. GPR35 activation reduces liver steatosis 739 

GPR35 can be activated by ligands such as lodoxamide or kynurenic acid, and ultimately 740 

inhibits liver steatosis. Potential mechanisms involved in this inhibitory effect of GPR35 741 

include SREBP1-induced lipogenesis or CREB-regulated cholesterol homeostasis. 742 

Lodoxamide-activated GPR35 may act through a p38 MAPK/JNK signaling pathway to 743 

reduce SREBP1 protein expression, and hence block the lipid accumulation in human 744 

hepatocellular carcinoma cells [63]. Kynurenic acid also activates GPR35 in mouse primary 745 

hepatocytes. Although which G protein is regulated in this system by GPR35 activation has 746 

not been identified (and therefore is designated Gx), this may up-regulate ERK-CREB 747 

signaling pathways and further increase the expression of STARD4, which maintains 748 

cholesterol homeostasis [33]. 749 

CRE = cAMP response element, CREB = cAMP response element-binding protein 750 

KYNA = kynurenic acid, SRE = sterol regulatory element, SREBP1 = sterol regulatory 751 

element-binding protein 1, STARD4 = steroidogenic acute regulatory protein 4. 752 

 753 

 754 

Figure 1B. GPR35 as a prognostic and potential therapeutic in intestinal cancers 755 

 756 
Links between GPR35 levels and outcomes in intestinal and other cancers have been 757 

established with prognosis and survival inversely correlated with expression levels [38-40, 758 

64-65]. Higher levels of GPR35 may promote hyperplasia with subsequent angiogenesis [61, 759 

66] and metastasis. GPR35 antagonists/inverse agonists may be worth assessing as a novel 760 

therapy. 761 

 762 

Figure 1C. Roles of lower gut expressed GPR35 in irritable bowel disease, ulcerative 763 

colitis and Citrobacter rodentium infection 764 

 765 

 766 
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GPR35 is present in the lower gut, with high expression in both immune cells and epithelial 767 

[3]. A T108M variation is strongly associated with susceptibility to inflammatory bowel 768 

diseases including ulecerative colitis and Crohn’s disease. In the majority of studies in mice 769 

global elimination of GPR35 worsens the severity of Dextran Sodium Sulphate (DSS)-770 

induced colitis [e.g. 59] resulting in epithelial damage, alterations in colon length, diarrhoea 771 

and bleeding. This may relate to contributions of macrophage-expressed GPR35 as targeted 772 

knock-out produces similar outcomes. Studies are underway to assess the potential 773 

effectiveness of GPR35 agonists for treatment of colitis in clinical settings (see Resources II). 774 

In the case of epithelial specific knock-out of GPR35 this is associated with reduced goblet 775 

cell number and greater susceptibility to Citrobacter rodentium infection [62]  776 

 777 
 778 
  779 

 780 
 781 
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