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Describing the processes leading to deforestation is essential for the development and implementation of the forest policies. In this
work, two diferent learning models were developed in order to identify the best possible model for the assessment of the
deforestation causes and trends. We developed autoregressive integrated moving average (ARIMA) model and long short-term
memory (LSTM) independently in order to see the trend between tree cover loss and carbon dioxide emission.Tis study includes
the twenty-year data of Pakistan on tree cover loss and carbon emission from the Global Forest Watch (GFW) platform, a known
platform to get numerical data. Minimum mean absolute error (MAE) for the prediction of tree cover loss and carbon emission
obtained through ARIMA model is 0.89 and 0.95, respectively. Te minimum MAE given by LSTM model is 0.33 and 0.43,
respectively. Tere is no such kind of study conducted in order to identify the increase in carbon emission due to tree cover loss
most specifcally in Pakistan. Te results endorsed that one of the main causes of increase in the pollution in the environment in
terms of carbon emission is due to tree cover loss.

1. Introduction

Global warming is a burning issue causing catastrophic
changes and calamities around the world. Te increasing
occurrence of climate dissipation has been noticed with
current global warming that had several biophysical impacts
worldwide [1]. One of the main causes of global warming is
carbon emission. Sources of carbon emission are both natural
and human. Human sources include a variety of man-made
actions such as tree logging, forest fres, burning of fossil fuels,
cement production, natural gas production, and so on [2, 3].

Hence, the degradation of forests that play an essential
role in maintaining a balance in the ecosystem directly adds to
global warming. It results in rapid environmental degrada-
tion, not only leading to a scarcity of natural resources, decline

in quality of life, and long-term public health issues but also
inficting economic losses [4]. Terefore, controlling defor-
estation can signifcantly minimize carbon emissions and help
improve the environment. Recent studies revealed that the
deforestation rate increases with extreme drought and wet
years. In another study [5], the authors examined the carbon
dioxide emission and climatic efects on major agricultural
crop production in Pakistan. Te results revealed that the
crops such as wheat, maize, sugarcane, cotton, and so on have
a constructive association with carbon dioxide emissions.
Combating deforestation is being evaluated by cost-efective
means of reducing greenhouse gas emissions [6].

Due to the negative impact of carbon emissions on the
environment, there is a lot of ongoing research work to
fnd out the efcient methods that have the ability to
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predict carbon emissions and determine their causes
[7–10]. Learning-based techniques have provided new
approaches to prediction problems that represent in-
teractions between variables in a deep and layered hi-
erarchy. ML-based techniques like support vector
machines (SVMs) and random forest (RF), as well as DL-
based algorithms like recurrent neural network (RNN)
and LSTM, have attracted lots of attention in recent years
because of their applications in a variety of felds [11–14].
In time series forecasting, DL approaches are capable of
identifying data structure and pattern, such as non-lin-
earity and complexity [15, 16]. LSTM has been extensively
utilized in time series prediction in [17–21]. Autore-
gressive integrated moving average (ARIMA) is also
another forecasting model [22] that predicts the future
values based on the past values. ARIMA is the best model
for one-step out-of-sample forecasting and is good for the
data which consist of linear and short-term dependency
(weekly or hourly) [23].

Te rapid advancement in the Internet of Tings (IoT)
would be a future enhancement of this system. Tere are
multiple privacy-related challenges in IoT architecture
during communication that can be addressed using block-
chain-enabled IoT architecture [24]. Moreover, there is a
need for a decentralized auction-based resource allocation
mechanism in edge computing-enabled IoT, which would be
helpful to make computer resources closer to the devices
[25]. To imporved the data quality during the data com-
munication, few studies foucsed on the age of information
(AOI) from the prespective of game theory [26]. Game
theory is a useful tool to optimize wireless networks by
assisting scarce wireless resource allocation, e.g., bandwidth
and channels.

Objective of this study is to develop an accessible
methodological approach that allows for rapid evaluation of
statistical relationships and trends in forest monitoring data
using both ML and DL. In this study, two independent
learning models were developed using the autoregressive
integrated moving average (ARIMA) model and long short-
term memory (LSTM). Moreover, this study also focused on
understanding the correlation between tree cover loss and
carbon emission by taking Pakistan as a case study. Since,
there is no such comprehensive efort found in open liter-
ature by the authors, it is a novel attempt in this direction.
Te remaining part of the paper is arranged as follows. Te
methodology is discussed in Section 2. In Section 3, results
are discussed. Section 4 describes the conclusion and future
work.

2. Methodology

2.1. Data Collection. Two time series datasets, i.e., tree cover
loss and carbon emission in Pakistan, were taken from the
GFW platform [27]. Each dataset consists of past 20 years’
information on carbon values added to the environment and
the tree cover loss from year 2001 to 2020. It should be noted
that a more organized dataset comprising other variables of
consideration for this study is not available in the open
literature.

Figure 1 shows the proposed methodology of the
framework. Following the collection of the dataset, the
preprocessing stage is carried out to make the data sta-
tionary, as shown in Figure 2.Te dataset is then divided into
training and testing portions in order to train and evaluate
the models. Te training component of the dataset is used to
train the models, and the testing portion is used for eval-
uation. Te MAP and MAPE error evaluation metrics are
evaluated for fnal analysis of the result.

2.2. Data Preprocessing. Figure 2 shows the preprocessing
framework. Firstly, we deal with all missing values of the
dataset. For any time series forecasting, being stationary is a
mandatory property for a statistical model. A series is called
stationary if its statistical property does not change with
time. To verify this feature in our dataset, we have used the
augmented Dickey–Fuller (ADF) test. After applying ADF, it
was found that our dataset taken from GFW platform [27]
does not fulfll this condition.

In order to make our dataset stationary, we performed a
series of transformations such as power log transformation
and diferencing before applying (ADF) again for the ver-
ifcation. Figure 1 illustrates our adopted methodology in the
form of a fowchart. After preprocessing, the dataset is di-
vided into test and training subsets. Te training set is used
to train the prediction model and the test set is used to
evaluate it. Te split between the training and test data is
kept at 70% and 30%, respectively.

For forecasting, the ARIMA and LSTM models are used
to make predictions and are applied on both datasets.

2.3. ARIMA and LSTM Models. Te ARIMA model is a
generalization of the simpler autoregressive moving average
that incorporates the concept of integration. Te ARIMA
model parameters are as follows:

(i) p: lag order (previously predicted values).
(ii) d: degree of diference.
(iii) q: order of moving average.

An ARIMA model is a time series forecasting model. It
incorporates the properties of two autoregression and
moving average models, where in autoregression, lags or
previously predicted values are known as “autoregression”
while lag or previously predicted error is known as “moving
average.” “Diference” is to make time series stationary (also
known as integrated stationary time series version).

First step is to determine appropriate hyperparameters
of ARIMA, p, h, and q, accurately to predict the behavior of
the time series. Ten, these hyperparameters are ftted into
the training data. Finally, the model ftting residuals are
analyzed to check whether the model assumptions are
satisfed [6].

Tis study also utilizes LSTM model, which is a special
type of RNN and is able to deal with long-term time de-
pendencies [28]. Tere are many types of LSTMmodels that
can be used for specifc type of time series forecasting
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problem. In univariate LSTM, single series of observation is
required to learn from the past values.

On the contrary, multivariate LSTMmakes use of two or
more kinds of parallel time series information to learn from
the past observations. Te basic architecture of univariate
LSTM is shown in Figure 3. Basic LSTM network consists of
cells that store the data. Tese cells resemble a transport line
that connects one module to another conveying data from
the past and gathering the present values [29]. For LSTM,
three-layer-based architectures is proposed in this study
with a dropout probability of 0.3 and zero non-trainable
parameter. Te lagged value of time series is used to predict
future value with 40,901 learnable parameters.

Te LSTM is applied on both of the parameters of carbon
emission and tree cover loss with same layers and param-
eters, and the model for each dataset is trained with 50
epochs. Two separate univariate LSTMmodels are applied to
two diferent time series variables, i.e., tree cover loss and

carbon emission.Temodels are not only validated based on
the diference between observed and predicted values also
known as residuals but also exploited for future prediction of
tree cover loss association with carbon emission for next
three years with upper confdence level of 80% and lower
confdence level of 90%.

3. Results

3.1. Stationary Time Series. Being stationary is an essential
condition in time series analysis. Most of the time series
models assumed that each point is independent of one an-
other. To check this feature in our time series, ADF is applied.
Moreover, to make the time series information stationary,
diferencing and log transformation are performed.Te result
of ADF test is shown in Table 1. It can be noted that the value
of P is less than 0.05. Tis clearly indicates that after applying
log transformation and diferencing, we have obtained a
stationary time series suitable for further prediction analysis.

3.2. Tree Cover Loss with ARIMA. ARIMA results for tree
cover loss are shown in Figures 4 and 5. Te model is trained
with multiple order of ARIMA. Te minimum MAE for tree
cover loss is 0.95 with ARIMA (1, 1, 1). Similarly, the min-
imum MAE for tree cover loss is 1.4 and 1.2 with ARIMA (1,
2, 1). Values of p, d, and q are cross-checked using auto
ARIMA function in Python. Figure 4 depicts the train (actual)
and test (predicted) data showing that the data predict some
trends and are at a right scale. In Figure 5, data for past twenty
years (2001–2020) are utilized to train the model for pre-
diction of tree cover loss for next fve years. Te results in-
dicate an increase in tree cover loss in the coming years.

3.3. CarbonEmissionwithARIMA. Figures 6 and 7 show the
carbon emission results using ARIMA. Te model is trained
with multiple order of ARIMA. Te minimum MAE of 1.20
and mean absolute percentage error (MAPE) of 1.24 are
obtained for carbon emission forecasting with ARIMA order
of (1, 1, 1) and (1, 2, 1), respectively. Te twenty-year data,
from 2001 to 2020, are used for the model training.Te same
model is further exploited to carry out forecasting carbon
emission over next fve years.Te results indicate an increase
in the carbon emission for this coming period.

Te two results also exhibit that increase in the carbon
emission has signifcant and similarly directed impact on the
tree cover loss.

3.4. Tree Cover Loss with LSTM. LSTM has also been applied
on the same dataset to compare the results with ARIMA
model for tree cover loss. Figures 8 and 9 demonstrate the
results for this study. Training and testing loss decay per
epoch is shown in Figure 8 while Figure 9 illustrates the tree
cover loss prediction for next three years, i.e., 2023–2025.

3.5.CarbonEmissionwithLSTM. Figures 10 and 11 show the
results of LSTM-based carbon emission. Te LSTMmodel is
trained up to 50 epochs for both tree cover loss and carbon

Dataset

Training dataset

Pre-ProcessingTest dataset

Deep Learning
model LSTM

Statistical model
ARIMA

Evaluation MAP, MAPE

Figure 1: Hierarchical representation of the proposed method-
ology used to carry out forecasting.

Dataset

StationaryTransformation Further Analysis
YesNO

Remove missing
Values

ADF Test

Figure 2: Hierarchical illustration of data preprocessing
framework.
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Figure 3: Architecture of basic LSTM network for univariate prediction.

Table 1: ADF test results.

Tree cover loss Carbon emission
Test statistic −4.1812 Test statistic −3.7851
P value 0.00078 P value 0.00532
Lag used 0.00000 Lag used 0.00000
No. of abbreviations used 18.0000 No. of abbreviations used 15.0000
Critical value (1%) −3.8590 Critical value (1%) −2.0521
Critical value (5%) −3.0420 Critical value (5%) −2.6710
Critical value (10%) −2.6609 Critical value (10%) −1.7219
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Figure 4: Actual versus predicted tree cover loss using ARIMA model.
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emission. It is observed from Figure 10 that the train and
testing loss is decreasing over time after each epoch while
using LSTM. Te results indicate that a linear correlation
exists between the carbon emission and tree cover loss.
Future predictions of the LSTM model also refect an in-
creasing pattern of the carbon emission.

3.6. Comparison of ARIMA and LSTM. Te ARIMA model
works by fltering high-frequency noise from data, detecting
local patterns based on linear dependencies, and predicting
future trends [30]. In addition, the ARIMA model converts
tree cover losses and carbon emission features into special
temporary variables before matching them and only
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Figure 6: Actual versus predicted carbon emission using ARIMA model.
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considers the linear portion of the series [31]. Te ARIMA
model is simple and forthright and only requires to adjust
the values of p, d, and q. Te ARIMA model, however, is
unable to deal with the non-linear relationship between the
tree cover loss and carbon emissions.

On the contrary, the neural network such as LSTM can
deal with both linear and non-linear patterns [32]. LSTM is a
type of RNN that is meant to learn temporal patterns,
capture non-linear dependencies, and preserve relevant

memory for a longer period of time, resulting in achieving
more accurate predictions [33].

Working of the two approaches, ARIMA and LSTM, for
tree cover loss and carbon emission prediction is investi-
gated using mean average precision (MAP) and MAPE
evaluation matrices. Results are summarized in Table 2. It is
observed that MAP obtained through LSTM is 0.33 while
MAPE is 0.25. For carbon emission, LSTM gives MAP of
0.43 and MAPE of 0.40.
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Te results clearly show that LSTM has performed better
than the ARIMA model in estimating and predicting tree
cover loss and carbon emission for the analyzed data, hence
ratifying that LSTM architecture is more suitable for time
series prediction than ARIMA. Te results also refect the
strong reliance and linear relationship between the tree
cover loss and carbon emission.

4. Conclusion

In this work, a detailed analysis of tree cover loss and carbon
emission data is carried out using ARIMA and LSTM
techniques. 20-year data, from 2001 to 2020, are utilized to
train and test the models and get predictions for next 5 years.
Te relationship between the two environmental factors is
also established. Te results have shown that temporal
variations in the trend component of both carbon emission
and tree loss cover are remarkably associated with each
other. It has established that increase in the tree cover loss
directly afects carbon emission in the atmosphere. Carbon
emission could be one of the signifcant causes of the tree
cover loss and deforestation.

Working of LSTM is found to be more vigorous in these
prediction studies. Tough very signifcant, this study is

limited by the limited data availability. Both ARIMA and
LSTM models showed the same trends. However, LSTM is a
model that can learn the long-term dependencies, and it can
remember the information that is processed in the model for
a very long time [22]. In terms of computational time, the
ARIMA models consume more time when using the rolling
forecast method, and it is unfeasible to train new models
when the orders of p, d, and q increase [34]. LTSM models
take signifcantly less time to train, and once trained,
constant predictions can be obtained, while ARIMA models
need to be retrained.

Future aspects of this study include better understanding
of carbon emission impact and control by considering more
factors such as wood fuel, fre, and timber harvest. Inclusion
of more factors and parameters can improve the overall
prediction accuracy of the models while providing a broader
understanding of causes of carbon emission. If more vari-
ables that contribute to carbon emissions and deforestation
are taken into account, the work described in this paper will
be more sophisticated.

Data Availability

Te data used to support the fndings of this study are
available publicly on Global Forest Watch.
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Table 2: Comparison of ARIMA and LSTM for tree cover loss and
carbon emission prediction.

Tree cover loss Carbon emission
Models MAP MAPE MAP MAPE
ARIMA (1, 2, 1) 1.34 4.45 1.24 1.20
ARIMA (1, 1, 1) 0.95 4.35 0.89 5.65
ARIMA (1, 2, 2) 3.81 9.10 3.58 8.21
LSTM 0.33 0.25 0.43 0.40
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(ICRG-2020) (project no. 310366) (Deforestation in Paki-
stan: Combating through Wireless Sensor Networks
(DePWiSeN)).
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