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Abstract: This paper considers the safety monitoring and enhancement for neural network-
enabled control systems with disturbance and measurement noise. A robustly stable interval
observer is designed to generate sound lower and upper bounds of the system state. The obtained
interval is used to monitor the runtime system state and predict the one-step ahead future system
trajectory, providing system safety monitoring and alert. The simulation results of a numerical
example and an adaptive cruise control system demonstrate efficacy of the observer in runtime
system monitoring and its potentials in detecting sensor faults and enhancing system safety.
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1. INTRODUCTION

The recent rapid development of machine learning tech-
niques, with neural networks (NNs) as the dominant type
of models, have revealed their power in modelling, percep-
tion, and control for dynamic systems such as robots and
autonomous vehicles (Moe et al., 2018; Hewing et al., 2020;
Tang et al., 2022). This paper focuses on NN-enabled con-
trol systems, where NNs are used to model the nonlinear
system dynamics (Zhou et al., 2022) or generate control
actions (Dai et al., 2021). One challenge of applying NNs
to control systems is lacking performance guarantee in the
continuous operation space as NNs are trained on discrete
samples of system trajectories. Another challenge is the
vulnerability of NNs to perturbations, noise and adversar-
ial attacks (Huang et al., 2020). This is even more prob-
lematic for NN-enabled control systems such as aircraft
(Julian and Kochenderfer, 2021), because uncertainties in
the NN components will be propagated and accumulated
through the closed loop. It is thus critical to provide safety
assurance of NN-enabled control systems via developing
safety monitoring techniques that can provide real-time
and predictive information of system safety.

The past decade has seen the development of many formal
methods for verifying safety of NNs in the open-loop set-
tings such as image classification and natural language pro-
cessing (Liu et al., 2021). These methods are usually based
on solving optimisation problems like mixed-integer lin-
ear programming (MILP) (Lomuscio and Maganti, 2017),
semidefinite programming (SDP) (Lan et al., 2022), or
linear programming (LP) combined with the branch-and-
bound technique (Bunel et al., 2020), requiring huge com-
putational resources. For example, verification of certain
safety properties in the next-generation airborne collision
avoidance system for unmanned aircraft (ACAS Xu) takes
more than 100 hours (Katz et al., 2017). Hence, the above
methods are unsuitable for runtime safety verification of
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NN-enabled control systems with limited onboard comput-
ing resources.

Safety of NN-enabled control systems can be verified via
computing the reachable set that contain all the possible
future system trajectories for a given initial state set and
examining inclusion of the reachable set within the safe
region. Reachability analyses have been performed based
on MILP (Xiang et al., 2019; Karg and Lucia, 2020), SDP
(Hu et al., 2020), LP with input partition (Everett et al.,
2021), or constrained zonotopes (Zhang and Xu, 2022).
However, these reachability analysis is performed in the
offline setting and their reliance on solving computation-
ally expensive optimisation problems or set operations
make them unappealing for runtime safety verification.
Runtime safety monitoring for NN-based aircraft taxiing is
achieved by a rule-based approach, where a set of monitors
continuously measure the aircraft positions relative to the
runway and behaviour of the NN relative to its training
data (Cofer et al., 2020). Inspired by the observer design
techniques (Efimov et al., 2013; Tang et al., 2019), an in-
terval observer is proposed in Xiang (2021) for monitoring
the state of continuous-time systems. The interval observer
consists of two dynamic systems which estimate the run-
time lower and upper bounds of the system state. The
observer gains are computed from linear matrix inequality
(LMI) problems that are much lighter than MILP and
SDP. However, the work (Xiang, 2021) does not consider
system disturbance and measurement noise.

This paper advances the current state of the art with a
new interval observer for discrete-time NN-enabled control
systems subject to disturbance and measurement noise.
The main contributions of this paper are as follows:

1) A robustly stable interval observer is proposed for
NN-enabled control systems with disturbance and
measurement noise. The proposed design is simpler
than Xiang (2021) as it requires computing a single
gain rather than two gains. Also, estimation robust-
ness is not considered in Xiang (2021).
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region. Reachability analyses have been performed based
on MILP (Xiang et al., 2019; Karg and Lucia, 2020), SDP
(Hu et al., 2020), LP with input partition (Everett et al.,
2021), or constrained zonotopes (Zhang and Xu, 2022).
However, these reachability analysis is performed in the
offline setting and their reliance on solving computation-
ally expensive optimisation problems or set operations
make them unappealing for runtime safety verification.
Runtime safety monitoring for NN-based aircraft taxiing is
achieved by a rule-based approach, where a set of monitors
continuously measure the aircraft positions relative to the
runway and behaviour of the NN relative to its training
data (Cofer et al., 2020). Inspired by the observer design
techniques (Efimov et al., 2013; Tang et al., 2019), an in-
terval observer is proposed in Xiang (2021) for monitoring
the state of continuous-time systems. The interval observer
consists of two dynamic systems which estimate the run-
time lower and upper bounds of the system state. The
observer gains are computed from linear matrix inequality
(LMI) problems that are much lighter than MILP and
SDP. However, the work (Xiang, 2021) does not consider
system disturbance and measurement noise.

This paper advances the current state of the art with a
new interval observer for discrete-time NN-enabled control
systems subject to disturbance and measurement noise.
The main contributions of this paper are as follows:

1) A robustly stable interval observer is proposed for
NN-enabled control systems with disturbance and
measurement noise. The proposed design is simpler
than Xiang (2021) as it requires computing a single
gain rather than two gains. Also, estimation robust-
ness is not considered in Xiang (2021).
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1. INTRODUCTION

The recent rapid development of machine learning tech-
niques, with neural networks (NNs) as the dominant type
of models, have revealed their power in modelling, percep-
tion, and control for dynamic systems such as robots and
autonomous vehicles (Moe et al., 2018; Hewing et al., 2020;
Tang et al., 2022). This paper focuses on NN-enabled con-
trol systems, where NNs are used to model the nonlinear
system dynamics (Zhou et al., 2022) or generate control
actions (Dai et al., 2021). One challenge of applying NNs
to control systems is lacking performance guarantee in the
continuous operation space as NNs are trained on discrete
samples of system trajectories. Another challenge is the
vulnerability of NNs to perturbations, noise and adversar-
ial attacks (Huang et al., 2020). This is even more prob-
lematic for NN-enabled control systems such as aircraft
(Julian and Kochenderfer, 2021), because uncertainties in
the NN components will be propagated and accumulated
through the closed loop. It is thus critical to provide safety
assurance of NN-enabled control systems via developing
safety monitoring techniques that can provide real-time
and predictive information of system safety.

The past decade has seen the development of many formal
methods for verifying safety of NNs in the open-loop set-
tings such as image classification and natural language pro-
cessing (Liu et al., 2021). These methods are usually based
on solving optimisation problems like mixed-integer lin-
ear programming (MILP) (Lomuscio and Maganti, 2017),
semidefinite programming (SDP) (Lan et al., 2022), or
linear programming (LP) combined with the branch-and-
bound technique (Bunel et al., 2020), requiring huge com-
putational resources. For example, verification of certain
safety properties in the next-generation airborne collision
avoidance system for unmanned aircraft (ACAS Xu) takes
more than 100 hours (Katz et al., 2017). Hence, the above
methods are unsuitable for runtime safety verification of
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NN-enabled control systems with limited onboard comput-
ing resources.

Safety of NN-enabled control systems can be verified via
computing the reachable set that contain all the possible
future system trajectories for a given initial state set and
examining inclusion of the reachable set within the safe
region. Reachability analyses have been performed based
on MILP (Xiang et al., 2019; Karg and Lucia, 2020), SDP
(Hu et al., 2020), LP with input partition (Everett et al.,
2021), or constrained zonotopes (Zhang and Xu, 2022).
However, these reachability analysis is performed in the
offline setting and their reliance on solving computation-
ally expensive optimisation problems or set operations
make them unappealing for runtime safety verification.
Runtime safety monitoring for NN-based aircraft taxiing is
achieved by a rule-based approach, where a set of monitors
continuously measure the aircraft positions relative to the
runway and behaviour of the NN relative to its training
data (Cofer et al., 2020). Inspired by the observer design
techniques (Efimov et al., 2013; Tang et al., 2019), an in-
terval observer is proposed in Xiang (2021) for monitoring
the state of continuous-time systems. The interval observer
consists of two dynamic systems which estimate the run-
time lower and upper bounds of the system state. The
observer gains are computed from linear matrix inequality
(LMI) problems that are much lighter than MILP and
SDP. However, the work (Xiang, 2021) does not consider
system disturbance and measurement noise.

This paper advances the current state of the art with a
new interval observer for discrete-time NN-enabled control
systems subject to disturbance and measurement noise.
The main contributions of this paper are as follows:

1) A robustly stable interval observer is proposed for
NN-enabled control systems with disturbance and
measurement noise. The proposed design is simpler
than Xiang (2021) as it requires computing a single
gain rather than two gains. Also, estimation robust-
ness is not considered in Xiang (2021).

2) The proposed observer generates sound and robust
intervals for the system state and output, useful
for runtime safety monitoring and predictive fault
detection and safety alerting.

3) The design is applied to monitor and enhance vehicle
safety of an adaptive cruise control (ACC) system.

Notations. The symbol Rn denotes the n-dimensional
Euclidean space, Rn×n denotes the set of n× n matrices,
and Rn×n

+ denotes the Rn×n matrices with non-negative
elements. Ln

∞ denotes the set of all n-dimensional ∞-
norm bounded functions. diag(a1, · · · , an) represents a
diagonal matrix with main diagonals a1, · · · , an and zero
elsewhere. 0 and I denote respectively a zero matrix and
an identity matrix with the dimensions known from the
context. ⋆ indicates symmetry in a matrix. For a matrix
X, X ≺ (or ≻)0 indicates that it is symmetric positive
(or negative) definite, X+ = max{0, X}, X− = X+ −X,
and |X| = X+ + X−. For two matrices X1, X2 ∈ Rn×n,
X1 ≤ X2 is defined component-wise.

2. PROBLEM DESCRIPTION AND PRELIMINARIES

2.1 Problem Description

Consider a discrete-time system represented by

xt+1 = Axt + fNN(yt, ut) + wt, (1a)

yt = Cxt + vt, (1b)

where xt ∈ Rn, ut ∈ Rm, wt ∈ Rn, yt ∈ Rp, and
vt ∈ Rp are the vectors of system state, inputs (refer-
ence/control input), disturbances, measured outputs, and
noise, respectively. A ∈ Rn×n and C ∈ Rp×n are known
constant matrices. t is the sampling step. fNN is a L-layer
feedforward NN capturing the nonlinear system dynamics
or as a stabilising control policy and it is defined as:

z0 = [y⊤t , u
⊤
t ]

⊤, (2a)

zı = ϕı(Wızı−1 + bı), ı ∈ [1, L], (2b)

fNN(z0) = zL, (2c)

where Wı and bı are the ı-th layer weight matrix and bias
vector, respectively. ϕı(·), ı ∈ [1, L], are the activation
functions for the hidden layers ı ∈ [1, L − 1] and the
last layer ı = L. Without loss of generality, this paper
considers that all the activation functions in the hidden
layers are of the same type such as a ReLU (Rectified
Linear Unit) or tanh functions (Dubey et al., 2022), and
the last layer is a purelin function zL = WLzL−1 + bL.
All the above activation functions are monotonically non-
decreasing (Dubey et al., 2022).

Assumption 1. The pair (A,C) is observable. x0 ∈ [x0, x̄0]
for some known x0, x̄0 ∈ Rn. ut ∈ [ut, ūt], wt ∈ [wt, w̄t] and
vt ∈ [vt, v̄t] for all t ≥ 0, where ut, ūt ∈ Lm

∞, wt, w̄t ∈ Ln
∞

and vt, v̄t ∈ Lp
∞ are known signals.

This paper aims to design a robustly stable observer (in
the form of an interval observer) that can: (i) provide a
real-time estimated lower and upper bounds of the state
and (ii) be used to monitor the runtime value of state
and predict future state trajectory. The second capability
will be valuable for checking whether the state trajectory
is within a safe region, detecting possible sensor faults or
attacks and providing safety alert in advance.

2.2 Preliminaries

We recall Lemmas 2 and 3 that are to be used in the design.

Lemma 2. (Efimov et al., 2013) Given a vector x ∈ Rn

satisfying x ∈ [x, x̄] and a constant matrix M ∈ Rm×n, it
holds that M+x−M−x̄ ≤ Mx ≤ M+x̄−M−.

Lemma 3. (Farina and Rinaldi, 2000) A matrixX ∈ Rn×n
+

is Schur stable if and only if there exists a diagonal matrix
P ≻ 0 such that X⊤PX − P ≺ 0.

The design of an interval observer for the system (1) needs
the intervals of x0, wt, ut, vt and fNN(yt, ut). The intervals
of x0, wt, ut and vt are known from Assumption 1, while
the interval of fNN(yt, ut) needs to be derived. It follows
from Assumption 1 and Lemma 2 that C+xt − C−xt +
vt ≤ yt ≤ C+xt − C−xt + vt. Let z0 = [y⊤t , u

⊤
t ]

⊤, then
z0 ≤ z0 ≤ z0, where z0 = [y⊤

t
, u⊤

t ]
⊤ and z0 = [y⊤t , u

⊤
t ]

⊤.

Similar to Theorem 1 in Xiang (2021), this paper considers
two auxiliary matrices W ı and W ı for each weight matrix

Wı. The (i, j) elements W i,j
ı and W

i,j

ı are defined as

W i,j
ı =

{
W i,j

ı , W i,j
ı < 0

0, W i,j
ı ≥ 0

,W
i,j

ı =

{
W i,j

ı , W i,j
ı ≥ 0

0, W i,j
ı < 0

, (3)

where W i,j
ı is the (i, j) element of Wı. Then fNN(z0)

satisfies f
NN

(z0, z0) ≤ fNN(z0) ≤ fNN(z0, z0), with

f
NN

(z0, z0) and fNN(z0, z0) being given by
{
zı = ϕı(W ızı−1 +W ızı−1 + bı), ı ∈ [1, L]
f
NN

(z0, z0) = zL
, (4a)

{
zı = ϕı(W ızı−1 +W ızı−1 + bı), ı ∈ [1, L]
fNN(z0, z0) = zL

. (4b)

3. INTERVAL OBSERVER DESIGN

The system (1) can be rewritten as

xt+1 = (A−LoC)xt + fNN(yt, ut)+Loyt −Lovt +wt (5)

for any matrix Lo ∈ Rn×p.

By replacing wt, Lovt and fNN(yt, ut) in (5) with their
intervals, we propose the interval observer:

xt+1 = Aoxt + fNN(yt, yt, ut, ut) + Loyt

− L+
o vt + L−

o vt + wt, (6a)

xt+1 = Aoxt + f
NN

(y
t
, yt, ut, ut) + Loyt

− L+
o vt + L−

o vt + wt, (6b)

where Ao = A− LoC and Lo is the design gain matrix.

Precision of the observer (6) can be evaluated by measur-
ing the width of its interval δxt = xt − xt. The dynamics
of the interval width are derived as

δxt+1 = Aoδxt + δfNN + |Lo|δvt + δwt, (7)

where δvt = vt − vt, δwt = wt − wt, δfNN = fNN − f
NN

and |Lo| = L+
o + L−

o .

The time response of δxt is derived as

δxt = At
oδx0 +

t−1∑
i=0

At−1−i
o (δfNN + |Lo|δvi + δwi) . (8)

Hence, the value of δxt is determined by the choice of
Lo and the uncertainty levels of wt and vt. For given
uncertainty bounds, Lo needs to be designed to ensure
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2) The proposed observer generates sound and robust
intervals for the system state and output, useful
for runtime safety monitoring and predictive fault
detection and safety alerting.

3) The design is applied to monitor and enhance vehicle
safety of an adaptive cruise control (ACC) system.

Notations. The symbol Rn denotes the n-dimensional
Euclidean space, Rn×n denotes the set of n× n matrices,
and Rn×n

+ denotes the Rn×n matrices with non-negative
elements. Ln

∞ denotes the set of all n-dimensional ∞-
norm bounded functions. diag(a1, · · · , an) represents a
diagonal matrix with main diagonals a1, · · · , an and zero
elsewhere. 0 and I denote respectively a zero matrix and
an identity matrix with the dimensions known from the
context. ⋆ indicates symmetry in a matrix. For a matrix
X, X ≺ (or ≻)0 indicates that it is symmetric positive
(or negative) definite, X+ = max{0, X}, X− = X+ −X,
and |X| = X+ + X−. For two matrices X1, X2 ∈ Rn×n,
X1 ≤ X2 is defined component-wise.

2. PROBLEM DESCRIPTION AND PRELIMINARIES

2.1 Problem Description

Consider a discrete-time system represented by

xt+1 = Axt + fNN(yt, ut) + wt, (1a)

yt = Cxt + vt, (1b)

where xt ∈ Rn, ut ∈ Rm, wt ∈ Rn, yt ∈ Rp, and
vt ∈ Rp are the vectors of system state, inputs (refer-
ence/control input), disturbances, measured outputs, and
noise, respectively. A ∈ Rn×n and C ∈ Rp×n are known
constant matrices. t is the sampling step. fNN is a L-layer
feedforward NN capturing the nonlinear system dynamics
or as a stabilising control policy and it is defined as:

z0 = [y⊤t , u
⊤
t ]

⊤, (2a)

zı = ϕı(Wızı−1 + bı), ı ∈ [1, L], (2b)

fNN(z0) = zL, (2c)

where Wı and bı are the ı-th layer weight matrix and bias
vector, respectively. ϕı(·), ı ∈ [1, L], are the activation
functions for the hidden layers ı ∈ [1, L − 1] and the
last layer ı = L. Without loss of generality, this paper
considers that all the activation functions in the hidden
layers are of the same type such as a ReLU (Rectified
Linear Unit) or tanh functions (Dubey et al., 2022), and
the last layer is a purelin function zL = WLzL−1 + bL.
All the above activation functions are monotonically non-
decreasing (Dubey et al., 2022).

Assumption 1. The pair (A,C) is observable. x0 ∈ [x0, x̄0]
for some known x0, x̄0 ∈ Rn. ut ∈ [ut, ūt], wt ∈ [wt, w̄t] and
vt ∈ [vt, v̄t] for all t ≥ 0, where ut, ūt ∈ Lm

∞, wt, w̄t ∈ Ln
∞

and vt, v̄t ∈ Lp
∞ are known signals.

This paper aims to design a robustly stable observer (in
the form of an interval observer) that can: (i) provide a
real-time estimated lower and upper bounds of the state
and (ii) be used to monitor the runtime value of state
and predict future state trajectory. The second capability
will be valuable for checking whether the state trajectory
is within a safe region, detecting possible sensor faults or
attacks and providing safety alert in advance.

2.2 Preliminaries

We recall Lemmas 2 and 3 that are to be used in the design.

Lemma 2. (Efimov et al., 2013) Given a vector x ∈ Rn

satisfying x ∈ [x, x̄] and a constant matrix M ∈ Rm×n, it
holds that M+x−M−x̄ ≤ Mx ≤ M+x̄−M−.

Lemma 3. (Farina and Rinaldi, 2000) A matrixX ∈ Rn×n
+

is Schur stable if and only if there exists a diagonal matrix
P ≻ 0 such that X⊤PX − P ≺ 0.

The design of an interval observer for the system (1) needs
the intervals of x0, wt, ut, vt and fNN(yt, ut). The intervals
of x0, wt, ut and vt are known from Assumption 1, while
the interval of fNN(yt, ut) needs to be derived. It follows
from Assumption 1 and Lemma 2 that C+xt − C−xt +
vt ≤ yt ≤ C+xt − C−xt + vt. Let z0 = [y⊤t , u

⊤
t ]

⊤, then
z0 ≤ z0 ≤ z0, where z0 = [y⊤

t
, u⊤

t ]
⊤ and z0 = [y⊤t , u

⊤
t ]

⊤.

Similar to Theorem 1 in Xiang (2021), this paper considers
two auxiliary matrices W ı and W ı for each weight matrix

Wı. The (i, j) elements W i,j
ı and W

i,j

ı are defined as

W i,j
ı =

{
W i,j

ı , W i,j
ı < 0

0, W i,j
ı ≥ 0

,W
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ı =
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ı , W i,j
ı ≥ 0

0, W i,j
ı < 0

, (3)

where W i,j
ı is the (i, j) element of Wı. Then fNN(z0)

satisfies f
NN

(z0, z0) ≤ fNN(z0) ≤ fNN(z0, z0), with

f
NN

(z0, z0) and fNN(z0, z0) being given by
{
zı = ϕı(W ızı−1 +W ızı−1 + bı), ı ∈ [1, L]
f
NN

(z0, z0) = zL
, (4a)

{
zı = ϕı(W ızı−1 +W ızı−1 + bı), ı ∈ [1, L]
fNN(z0, z0) = zL

. (4b)

3. INTERVAL OBSERVER DESIGN

The system (1) can be rewritten as

xt+1 = (A−LoC)xt + fNN(yt, ut)+Loyt −Lovt +wt (5)

for any matrix Lo ∈ Rn×p.

By replacing wt, Lovt and fNN(yt, ut) in (5) with their
intervals, we propose the interval observer:

xt+1 = Aoxt + fNN(yt, yt, ut, ut) + Loyt

− L+
o vt + L−

o vt + wt, (6a)

xt+1 = Aoxt + f
NN

(y
t
, yt, ut, ut) + Loyt

− L+
o vt + L−

o vt + wt, (6b)

where Ao = A− LoC and Lo is the design gain matrix.

Precision of the observer (6) can be evaluated by measur-
ing the width of its interval δxt = xt − xt. The dynamics
of the interval width are derived as

δxt+1 = Aoδxt + δfNN + |Lo|δvt + δwt, (7)

where δvt = vt − vt, δwt = wt − wt, δfNN = fNN − f
NN

and |Lo| = L+
o + L−

o .

The time response of δxt is derived as

δxt = At
oδx0 +

t−1∑
i=0

At−1−i
o (δfNN + |Lo|δvi + δwi) . (8)

Hence, the value of δxt is determined by the choice of
Lo and the uncertainty levels of wt and vt. For given
uncertainty bounds, Lo needs to be designed to ensure
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xt ≤ xt ≤ xt, ∀t ≥ 0 and Schur stability of Ao. This then
guarantees soundness and robust stability of δxt (i.e., the
interval observer). Theorem 4 describes the design of Lo.

Theorem 4. Under Assumption 1, if there is a scalar ρ, a
diagonal matrix P ∈ Rn×n, and matrices G+, G− ∈ Rn×p

such that the following LMI problem is feasible:

min
ρ,P,G+,G−

ρ

s.t. ρ > 0, P ≻ 0, (9a)

PA− (G+ −G−)C ≥ 0, (9b)

P − I 0 [PA− (G+ −G−)C]⊤

⋆ ρI D̂⊤

⋆ ⋆ P


 ≻ 0, (9c)

where D̂ = [P, G++G−, P ], then (6) with the gains L+
o =

P−1G+, L−
o = P−1G− and Lo = L+

o − L−
o is an interval

observer for the system (1), i.e., xt ≤ xt ≤ xt, ∀t ≥ 0
and the interval width δxt is robust to the disturbance
ξt = [δf⊤

NN, δw
⊤
t , δv

⊤
t ]

⊤ with the H∞ performance gain√
ρ.

Proof. Define the estimation errors as et = xt − xt and
et = xt − xt. Their dynamics are derived as

et+1 = Aoet + (fNN − fNN) + (wt − wt)

+ Lovt − L+
o vt + L−

o vt, (10a)

et+1 = Aoet + (fNN − f
NN

) + (wt − wt)

− Lovt + L+
o vt − L−

o vt. (10b)

In view of the relations

Lovt − L+
o vt + L−

o vt = L+
o (vt − vt) + L−

o (vt − vt) ≥ 0,

−Lovt + L+
o vt − L−

o vt = L−
o (vt − vt) + L+

o (vt − vt) ≥ 0,

the following inequalities hold:

(fNN − fNN) + (wt − wt) + Lovt − L+
o vt + L−

o vt ≥ 0,

(fNN − f
NN

) + (wt − wt)− Lovt + L+
o vt − L−

o vt ≥ 0.

Since e0, e0 ≥ 0, if Ao is non-negative, then it follows from
(10) that et, et ≥ 0, ∀t ≥ 0. Let P ∈ Rn×n ≻ 0 be a
diagonal matrix, then it follows from Lemma 3 that Ao is
non-negative if

PAo ≥ 0. (11)

Submitting Ao = A − LoC with Lo = L+ − L− into (11)
and introducing G+ = PL+ and G− = PL− gives (9b).

The next step is to ensure Schur stability of Ao. Consider
a Lyapunov function Vt = δx⊤

t Pδxt. By using (7), the
difference ∆Vt = Vt+1 − Vt is derived as

∆Vt =


δxt

ξt

⊤ 
A⊤

o PAo − P A⊤
o PD

⋆ D⊤PD



  
Π


δxt

ξt


, (12)

where ξt = [δf⊤
NN, δw

⊤
t , δv

⊤
t ]

⊤ and D = [I |Lo| I].
A sufficient condition for Schur stability of Ao is Π ≺ 0. To
enhance the robustness of δxt against the disturbance term
Dξt, we use the performance index J =

∞
t=0(δx

⊤
t δxt −

γ2ξ⊤t ξt + ∆Vt) for a scalar γ > 0. If J < 0, the in-
terval width dynamics (7) satisfy the H∞ performance∞

t=0 δx
⊤
t δxt ≤ γ2

∞
t=0 ξ

⊤
t ξt. By using (12), J < 0 is

equivalent to
A⊤

o PAo − P + I A⊤
o PD

⋆ D⊤PD − γ2I


≺ 0. (13)

The inequality (13) can be re-arranged into
A⊤

o P
D⊤P


P−1[PAo PD] +


−P + I 0

⋆ −γ2I


≺ 0. (14)

By applying Schur complement to (14) and introducing
the variables G+ = PL+, G− = PL− and ρ = γ2, it leads
to the constraint (9c). �

According to Theorem 4, if the LMI problem (9) is
feasible, then (6) always provides a sound interval (outer-
approximation) for the system state, i.e., xt ∈ [xt, xt],
∀t ≥ 0, given that x0 ∈ [x0, x0]. We will show in Section 4
that the proposed interval observer can be used for safety
monitoring and alert for the NN-enable control system (1).

4. SAFETY MONITORING AND ALERT

This section describes the use of the interval observer
(6) for monitoring system safety, alerting potential unsafe
operations and detecting potential faults.

Runtime safety monitoring: The interval generated by
(6) is always an outer-approximation of the true state
value. Let the safe state interval be Xt, then the i-th state
xi
t is safe if [xi

t, x
i
t] ⊆ X i

t , i ∈ [1, n]. When this condition
is false, safety of xi

t is undefined: it could be either that
the interval generated by (6) gives a too coarse outer-
approximation of xi

t or the state xi
t is indeed unsafe.

Predictive safety alerts: The intervals generated by
(6) can also be used to raise alerts of potential unsafe
operations in the future and detect possible faults. These
features are based on the one-step ahead predicted inter-
vals of the system state and output offered by (6). To
illustrate this, we first rewrite (6) as

xt+1 = Aoxt + fNN(yt, yt, ut, ut) + Loyt

− L+
o vt + L−

o vt + wt, (15a)

xt+1 = Aoxt + f
NN

(y
t
, yt, ut, ut) + Loyt

− L+
o vt + L−

o vt + wt, (15b)

yt+1 = C+xt+1 − C−xt+1 + vt+1, (15c)

y
t+1

= C+xt+1 − C−xt+1 + vt+1, (15d)

where y
t+1

and yt+1 are the estimated lower and upper

bounds of the measured output yt+1.

1) Alerting unsafe operations: Denote the one-step ahead
predicted intervals of xt and yt as Xpred,t+1 := [xt+1, xt+1]
and Ypred,t+1 := [y

t+1
, yt+1], respectively. Let the safe

intervals of xt+1 and yt+1 be Xt+1 and Yt+1, respectively.
At time step t, the i-th state, i ∈ [1, n], is safe at t+ 1 if

Xi
pred,t+1 ⊆ X i

t+1. (16)

The j-th output, j ∈ [1, n], is safe at t+ 1 if

Y j
pred,t+1 ⊆ Yj

t+1. (17)

When (16) or (17) is violated, safety of the i-th state
or j-th output is undefined. It could be either that their
predicted intervals are too coarse or the next step state or
output are indeed unsafe. Nevertheless, the information of
violation is still practically valuable for alerting the poten-
tial unsafe system operations and introducing appropriate
preventions. For the example of adaptive cruise control
(ACC), when the next step inter-vehicular distance is

predicted to be less than the desired safe distance, the ego
vehicle can perform emergency breaking to avoid collisions
with the lead vehicle. This will be demonstrated through
simulation in Case 3 of Section 5.2.

2) Fault detection: Consider the case when there are sensor
faults f s

t acting on the measured output yt as follows:

yt = Cxt + Fsf
s
t + vt, (18)

where the matrix Fs ∈ Rp×s, with s ≤ p, specifying the
channels (outputs) that the faults influence. The faults
f s
t can be regarded as “actuator faults” to the interval
observer (15) because yt is acting as an input steering the
estimation dynamics. As seen in (15), for all t ≥ 0, the
proposed observer can provide a one-step ahead predicted
output interval [y

t+1
, yt+1]. According to Theorem 4, the

inclusion yt ∈ [y
t
, yt] holds for all t ≥ 0. At time t + 1,

there is a fault in the i-th output channel, i ∈ [1, p], if

yit+1 /∈ [yi
t+1

, yit+1]. (19)

Simulation examples of detecting sensor faults will be
provided in Case 2 of Section 5.2.

When the effect of a sensor fault is relatively small,
yt+1 may remain within the predicted interval. In such
case, checking (19) alone is unable to detect the fault
occurrence. To address this, we could combine the interval
observer with the advanced fault estimation technique
(Lan and Patton, 2020) to estimate the shape of the fault.
This aspect will be explored in the future research.

5. SIMULATION RESULTS

5.1 Neural Network based Dynamic System

We consider the discrete-time form of Example 1 in Xiang
(2021) with additional disturbance and noise:

xt+1 = Axt + fNN(yt, ut) + wt, (20a)

yt = Cxt + vt, (20b)

where A = [0.9, 0.05; 0.15, 0.75], C = I2, fNN(xt, ut) = tsΦ
and ts = 0.05 s is the sampling time. Φ is a three-input
two-output 2-layer NN capturing the nonlinear system
dynamics. The hidden layer has 5 neurons with tanh
activations and the output layer has purelin activations.

We consider ut = 10 sin(0.25t), wt = 0.1 cos(0.1πt) and
a zero-mean white noise vt satisfying |vt| ≤ 0.01. The
initial state is x0 = [0.5 0.5]⊤. The signal bounds are
set as x0 = [−0.6,−0.6]⊤, x0 = [0.6, 0.6]⊤, ut = −10,
ut = 10, vt = −0.01, and vt = 0.01. Solving (9) gives
the gains L−

o = [−0.4500,−0.025;−0.0275,−0.375] and
L+
o = [0.4500, 0.025; 0.0275, 0.375]. Fig. 1 shows that the

proposed observer provides real-time monitoring (sound
intervals) of x and it obtains tighter intervals than the
existing method (Xiang, 2021).

5.2 Neural Network Control System

We consider the following ACC system:

ẋ = Acx+Bcue + w, (21a)

y = x+ v, (21b)

where x = [pl vl al pe ve ae]
⊤, y is the measured output

with noise v, and
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The variables p, v, a and u are the position, velocity, accel-
eration and control command of the lead (with subscript
l) and ego vehicles (with subscript e), respectively. µ is the
friction parameter. Discretising (21) with a sampling time
of ts = 0.05 s gives a system in the form of (1).

Define the inter-vehicular distance as h = pl − pe, rela-
tive velocity as ṽ = vl − ve, and the safe inter-vehicular
distance as dsafe = vetgap + dstill, where tgap is the time
headway and dstill is the standstill inter-vehicular dis-
tance. When h ≥ dsafe, the ACC controller ue is in
the speed control mode which maintains the ego vehicle
at the driver-set speed vset. When h < dsafe, ue is in
the spacing control mode which ensures h = dsafe to
avoid collisions. We borrow the 2-layer feedforward NN
ue = fNN(u, z) from Xiang (2021) as the ACC controller,
where u = [vset tgap]

⊤, z = [h ṽ ve]
⊤ = Czy and

Cz = [1, 0, 0,−1, 0, 0; 0, 1, 0, 0,−1, 0; 0, 0, 0, 0, 1, 0]. The
hidden layer has 20 neurons using tanh activations and
the output layer uses purelin activations.

The simulation parameters are: µ = 0.0001, tgap = 1.4 s,
dstill = 10 m, vset = 30 m/s, amin = −3 m/s2, amax =
2 m/s2. v is a zero-mean white noise with |v| ≤ 0.001.
The initial state is x0 = [50, 20, 0, 10, 20, 0]⊤. The sig-
nal bounds are set as x0 = [49, 19,−1, 9, 19,−1]⊤, x0 =
[51, 21, 1, 11, 21, 1]⊤, ut = ut = [vset tgap]

⊤, vt = −0.001,
and vt = 0.001. Note that the interval for fNN is con-
structed using Czy instead of y. Solving (9) gives the
gains L−

o = diag(−0.5,−0.5,−0.45,−0.5,−0.5,−0.45) and
L+
o = diag(0.5, 0.5, 0.45, 0.5, 0.5, 0.45).

Case 1: The results in Figs. 2, 3 and 4 demonstrate
efficacy of the proposed interval observer in terms of
generating sound and robust runtime intervals of the
vehicle positions, velocities and accelerations.

Case 2: Suppose the lead vehicle sends its real-time posi-
tion, velocity and acceleration to the ego vehicle through a
vehicle-to-vehicle (V2V) wireless communication network.
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predicted to be less than the desired safe distance, the ego
vehicle can perform emergency breaking to avoid collisions
with the lead vehicle. This will be demonstrated through
simulation in Case 3 of Section 5.2.

2) Fault detection: Consider the case when there are sensor
faults f s

t acting on the measured output yt as follows:

yt = Cxt + Fsf
s
t + vt, (18)

where the matrix Fs ∈ Rp×s, with s ≤ p, specifying the
channels (outputs) that the faults influence. The faults
f s
t can be regarded as “actuator faults” to the interval
observer (15) because yt is acting as an input steering the
estimation dynamics. As seen in (15), for all t ≥ 0, the
proposed observer can provide a one-step ahead predicted
output interval [y
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, yt+1]. According to Theorem 4, the

inclusion yt ∈ [y
t
, yt] holds for all t ≥ 0. At time t + 1,

there is a fault in the i-th output channel, i ∈ [1, p], if

yit+1 /∈ [yi
t+1

, yit+1]. (19)

Simulation examples of detecting sensor faults will be
provided in Case 2 of Section 5.2.

When the effect of a sensor fault is relatively small,
yt+1 may remain within the predicted interval. In such
case, checking (19) alone is unable to detect the fault
occurrence. To address this, we could combine the interval
observer with the advanced fault estimation technique
(Lan and Patton, 2020) to estimate the shape of the fault.
This aspect will be explored in the future research.

5. SIMULATION RESULTS

5.1 Neural Network based Dynamic System

We consider the discrete-time form of Example 1 in Xiang
(2021) with additional disturbance and noise:

xt+1 = Axt + fNN(yt, ut) + wt, (20a)

yt = Cxt + vt, (20b)

where A = [0.9, 0.05; 0.15, 0.75], C = I2, fNN(xt, ut) = tsΦ
and ts = 0.05 s is the sampling time. Φ is a three-input
two-output 2-layer NN capturing the nonlinear system
dynamics. The hidden layer has 5 neurons with tanh
activations and the output layer has purelin activations.

We consider ut = 10 sin(0.25t), wt = 0.1 cos(0.1πt) and
a zero-mean white noise vt satisfying |vt| ≤ 0.01. The
initial state is x0 = [0.5 0.5]⊤. The signal bounds are
set as x0 = [−0.6,−0.6]⊤, x0 = [0.6, 0.6]⊤, ut = −10,
ut = 10, vt = −0.01, and vt = 0.01. Solving (9) gives
the gains L−

o = [−0.4500,−0.025;−0.0275,−0.375] and
L+
o = [0.4500, 0.025; 0.0275, 0.375]. Fig. 1 shows that the

proposed observer provides real-time monitoring (sound
intervals) of x and it obtains tighter intervals than the
existing method (Xiang, 2021).

5.2 Neural Network Control System

We consider the following ACC system:

ẋ = Acx+Bcue + w, (21a)

y = x+ v, (21b)

where x = [pl vl al pe ve ae]
⊤, y is the measured output

with noise v, and
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The variables p, v, a and u are the position, velocity, accel-
eration and control command of the lead (with subscript
l) and ego vehicles (with subscript e), respectively. µ is the
friction parameter. Discretising (21) with a sampling time
of ts = 0.05 s gives a system in the form of (1).

Define the inter-vehicular distance as h = pl − pe, rela-
tive velocity as ṽ = vl − ve, and the safe inter-vehicular
distance as dsafe = vetgap + dstill, where tgap is the time
headway and dstill is the standstill inter-vehicular dis-
tance. When h ≥ dsafe, the ACC controller ue is in
the speed control mode which maintains the ego vehicle
at the driver-set speed vset. When h < dsafe, ue is in
the spacing control mode which ensures h = dsafe to
avoid collisions. We borrow the 2-layer feedforward NN
ue = fNN(u, z) from Xiang (2021) as the ACC controller,
where u = [vset tgap]

⊤, z = [h ṽ ve]
⊤ = Czy and

Cz = [1, 0, 0,−1, 0, 0; 0, 1, 0, 0,−1, 0; 0, 0, 0, 0, 1, 0]. The
hidden layer has 20 neurons using tanh activations and
the output layer uses purelin activations.

The simulation parameters are: µ = 0.0001, tgap = 1.4 s,
dstill = 10 m, vset = 30 m/s, amin = −3 m/s2, amax =
2 m/s2. v is a zero-mean white noise with |v| ≤ 0.001.
The initial state is x0 = [50, 20, 0, 10, 20, 0]⊤. The sig-
nal bounds are set as x0 = [49, 19,−1, 9, 19,−1]⊤, x0 =
[51, 21, 1, 11, 21, 1]⊤, ut = ut = [vset tgap]

⊤, vt = −0.001,
and vt = 0.001. Note that the interval for fNN is con-
structed using Czy instead of y. Solving (9) gives the
gains L−

o = diag(−0.5,−0.5,−0.45,−0.5,−0.5,−0.45) and
L+
o = diag(0.5, 0.5, 0.45, 0.5, 0.5, 0.45).

Case 1: The results in Figs. 2, 3 and 4 demonstrate
efficacy of the proposed interval observer in terms of
generating sound and robust runtime intervals of the
vehicle positions, velocities and accelerations.

Case 2: Suppose the lead vehicle sends its real-time posi-
tion, velocity and acceleration to the ego vehicle through a
vehicle-to-vehicle (V2V) wireless communication network.
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Fig. 2. Vehicle positions (pl and pe) and their intervals
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Fig. 3. Vehicle velocities (vl and ve) and their intervals
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Fig. 4. Vehicle accelerations (al and ae) and their intervals

We consider constant faults of different magnitudes adding
on one of the data sent by the lead vehicle (i.e., pl, vl or al).
These faults may be due to offsets in the sensors mounted
on the lead vehicle (Lan et al., 2020) or cyber attacks
during V2V transmission (Petit and Shladover, 2014).

Fig. 5 shows the results by applying three faults fs =
0.05, 0.1, 0.5 m to the lead vehicle position pl at the time
of 200, 210, 220 s, respectively. It is seen that all the three
faults are detected by using the simple condition in (19).
Fig. 6 shows the results by applying three faults fs =
0.09, 0.12, 0.2 m/s to the lead vehicle velocity vl at the time
of 200, 210, 220 s, respectively. The two larger faults are
detected, while the fault fs = 0.09 m/s is not detectable
using (19), because the measured output at t = 200 s
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Fig. 7. Detection of faults on the lead vehicle acceleration

remains within its predicted interval. Fig. 7 shows the
results by applying three faults fs = 1, 2,−3 m/s2 to the
lead vehicle acceleration al at the time of 200, 210, 220 s,
respectively. In this case, we are unable to detect any of
the faults, even though fs = −3 m/s2 and fs = 2 m/s2

have reached the minimal and maximal accelerations,
respectively. This is because the interval of al generated
by the proposed observer is [−3, 2] m/s2 for all t > 0, as
shown in the top subplot of Fig. 4.
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Fig. 8. Relative vehicle positions and ego vehicle accelera-
tions with/without safety alert

Case 3: We use the interval observer to raise an unsafe
alert whenever the predicted one-step ahead lower bound
of the relative vehicle position ht+1 ≤ hsafe, where hsafe =
5 m is the desired safe distance. Upon receiving the alert,
the ego vehicle applies an emergency braking with ue =
−3 m/s2. It is seen from Fig. 8 that the ego vehicle receives
alert and applies emergency braking at around 21 s, 66 s
and 69 s when ht+1 ≤ 5 m and avoids collisions. Without
alerting and breaking, the two vehicles crashes.

6. CONCLUSION

A robustly stable observer is proposed to generate sound
state intervals of control systems with a NN modelling the
nonlinear dynamics or being the controller. The observer is
applied to monitoring the runtime system safety, detecting
potential sensor faults and alerting unsafe system opera-
tions. The simulation results of a numerical example and
an ACC system demonstrate effectiveness of the proposed
observer and its advantage over the existing design. Future
work will consider tightening the interval generated by the
observer to enhance its capability in safety monitoring and
alert. A systematic design of appropriate remedial actions
to ensure safe operation of the NN-enabled control system
is also of interest.
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Case 3: We use the interval observer to raise an unsafe
alert whenever the predicted one-step ahead lower bound
of the relative vehicle position ht+1 ≤ hsafe, where hsafe =
5 m is the desired safe distance. Upon receiving the alert,
the ego vehicle applies an emergency braking with ue =
−3 m/s2. It is seen from Fig. 8 that the ego vehicle receives
alert and applies emergency braking at around 21 s, 66 s
and 69 s when ht+1 ≤ 5 m and avoids collisions. Without
alerting and breaking, the two vehicles crashes.

6. CONCLUSION

A robustly stable observer is proposed to generate sound
state intervals of control systems with a NN modelling the
nonlinear dynamics or being the controller. The observer is
applied to monitoring the runtime system safety, detecting
potential sensor faults and alerting unsafe system opera-
tions. The simulation results of a numerical example and
an ACC system demonstrate effectiveness of the proposed
observer and its advantage over the existing design. Future
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