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IDENTIFYING BOUNDARIES IN SPATIALLY CONTINUOUS RISK
SURFACES FROM SPATIALLY AGGREGATED DISEASE COUNT DATA

BY DUNCAN LEE1,
1School of Mathematics and Statistics, University of Glasgow, Duncan.Lee@glasgow.ac.uk

Spatially aggregated disease count data relating to a set of non-
overlapping areal units are often used to make inference on population-level
disease risk. This includes the identification of risk boundaries, which are
locations where there is a sizeable change in risk between geographically
neighbouring areal units. Existing studies provide spatially discrete inference
on the areal unit footprint, which forces the boundaries to coincide with the
entire geographical border between neighbouring units. This paper is the first
to relax these assumptions, by estimating disease risk and the locations of
risk boundaries on a grid of square pixels covering the study region that can
be made arbitrarily small to approximate a spatially continuous surface. We
propose a two-stage approach that first fits a Bayesian spatio-temporal re-
alignment model to estimate disease risk at the grid-level, and then identifies
boundaries in this surface using edge detection algorithms from computer
vision. This novel methodological fusion is motivated by a new study of res-
piratory hospitalisation risk in Glasgow, Scotland between 2008 and 2017,
and we identify numerous risk boundaries across the city.

1. Introduction. Population-level disease risk varies between different communities,
and modelling this spatio-temporal variation informs public health policy. Examples include
identifying the locations of high-risk sub-regions (Wakefield and Kim, 2013), and quantify-
ing the changing magnitude of health inequalities (Mackenbach et al., 2018). This research
utilises disease count data that have been spatially aggregated to a set of non-overlapping
areal units such as census tracts, because individual level disease incidence data are not pub-
licly available. The models commonly applied to these data encourage neighbouring areal
units and time periods to have similar disease risks, which is achieved using spatio-temporally
autocorrelated random effects within a Bayesian hierarchical model (see for example Knorr-
Held, 2000 and Rushworth, Lee and Mitchell, 2014). However, disease risk surfaces are
likely to contain areas of gradual change that are separated by locations exhibiting steep risk
gradients, the latter being known as risk boundaries (Lu and Carlin, 2005). Such boundaries
may reflect the border where two different communities meet, and can be caused by physical
barriers such as rivers or railway lines that prevent two communities mixing (Mitchell and
Lee, 2014). The estimation of risk boundaries allows researchers to identify the spatial extent
of a high-risk region to aid the targeting of health resources, as well as hypothesis genera-
tion about putative risk factors that may influence disease risk and vary on each side of the
boundary.

Identifying boundaries (or step-changes) in data surfaces has been investigated in time se-
ries analysis (Fisher et al., 2022) and spatial statistics (Bradley, Wikle and Holan, 2017), with
the latter including point-level, pixel-level and areal unit level data. For example, Banerjee
and Gelfand (2006) propose curvilinear boundary detection for point-level data, Qu, Bradley
and Niu (2021) extend this to multivariate and multiscale data, while Syring and Li (2017)
identify boundaries in an image of pixels. For areal unit level data Ma, Carlin and Banerjee
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(2010), Lee and Mitchell (2012), Berchuck, Mwanza and Warren (2019) and Lee, Meeks and
Pettersson (2021) identify boundaries by jointly modelling disease risk and the underlying
neighbourhood structure of the areal units utilising conditional autoregressive (CAR) priors.

This paper aims to estimate the spatial locations and temporal evolution of bound-
aries in the risk of hospitalisation due to respiratory disease across the city of Glas-
gow, Scotland, so that the spatial extents of high-risk areas can identified allowing re-
sources to be targeted at areas with the greatest need. Glasgow is chosen for our study
because it exhibits large health inequalities (http://www.healthscotland.scot/
health-inequalities/), which has led Lee and Mitchell (2013) and Lee, Meeks and
Pettersson (2021) to identify numerous risk boundaries between geographically adjacent
areal units. However, as these studies undertake inference on the areal unit level they im-
plicitly assume that: (i) disease risk is constant within each areal unit; and (ii) the risk bound-
aries must coincide with the geographical borders separating neighbouring areal units. That
is, boundaries are not allowed to run through the interior of an areal unit. The areal units
used in this study and in the two previous studies listed above are Intermediate Zones (IZ),
which have an average population of around 4,000 people. Assumptions (i) and (ii) maybe
unrealistic for areal units comprising around 4,000 people, and if they are then this would ad-
versely affect the accuracy of the risks and boundaries estimated by Lee and Mitchell (2013)
and Lee, Meeks and Pettersson (2021). Furthermore, the IZ borders were spatially redrawn
in 2012 following the 2011 UK census, which means that areal unit level inference, such as
that conducted by the above studies would not be comparable before and after this boundary
change.

This paper proposes the first approach for solving these problems, by estimating disease
risk on an approximately spatially continuous scale and identifying risk boundaries at ap-
proximately any location in the study region using only spatially aggregated data. It thus
provides spatially consistent inference when the areal units have differing spatial supports
over time, which addresses the limitations of the existing Glasgow respiratory hospitalisa-
tion studies described above. Our two-stage approach first uses Bayesian spatial realignment
methodology to estimate disease risk on a temporally consistent grid of pixels covering the
study region, and then identifies boundaries in these gridded risk surfaces using edge detec-
tion methods borrowed from computer vision (see Muntarina, Shorif and Uddin, 2022 for a
review). The pixels can be made arbitrarily small to approximate a spatially continuous sur-
face, which thus allows risk boundaries to be identified at approximately any location in the
study region. This approach is the first to fuse spatial re-alignment count data models with
edge detection methodology, and we are not aware of existing methodologies that take in
areal unit level count data (with varying borders over time) as the input, and produce a spa-
tially continuous risk surface with the locations of boundaries identified. We note though that
spatial re-alignment count data models have a rich history, including areal interpolation (e.g.
Flowerdew and Green, 1989) and model-based approaches (e.g. Mugglin and Carlin, 1998,
Bradley, Wikle and Holan, 2016, Taylor, Andrade-Pacheco and Sturrock, 2018, and Gramat-
ica, Congdon and Liverani, 2021). The motivating Glasgow study is described in Section 2,
our novel methodological fusion is proposed in Section 3, while its efficacy is assessed in
Section 4 via simulation. The results of the Glasgow study are presented in Section 5, while
Section 6 concludes the paper.

2. Motivating study.

2.1. Aims and questions of interest. This paper is motivated by a new study of respiratory
hospitalisation risk in Glasgow, Scotland, between 2008 and 2017, which extends Lee and
Mitchell (2013) and Lee, Meeks and Pettersson (2021) by using data for a longer time period
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that crosses the IZ border changes in 2012. The overarching aim is to estimate the spatio-
temporal variation in disease risk and the locations of risk boundaries across the city, and we
specifically focus on the following questions.

1. Where are the most prominent boundaries that persist over the entire study period?
2. Has the spatial variation in risk and the locations of risk boundaries changed over time,

and how has this impacted health inequalities across the city?
3. How reasonable are the implicit assumptions made by existing studies that disease risk is

constant within an IZ and risk boundaries coincide with the borders separating neighbour-
ing Intermediate Zones?

Answering 1. and 2. allows us to identify the spatial extents of the main high-risk sub-
regions, which informs public health policy as to where limited health resources should be
targeted and the extent to which this has changed over time. Answering 3. allows us to ex-
amine how reasonable the assumptions made by existing IZ-level modelling approaches are.
For example, if within IZ variation in disease risk is small and risk boundaries largely cor-
respond to IZ borders, then IZ-level inference would be appropriate. However, if this is not
the case then it suggests that IZ-level inference is not appropriate for these data. Finally, we
note that existing methods such as Lee, Meeks and Pettersson (2021) are not able to answer
questions 1 - 3 for our study, firstly because of the IZ border changes in 2012 causing spa-
tial misalignment in the areal units over time, and secondly because it only delivers IZ-level
inference.

2.2. Respiratory hospitalisation data. The disease data are yearly spatially aggregated
counts of the numbers of individuals admitted to hospital due to respiratory disease between
2008 and 2017 for each Intermediate Zone in Glasgow. The boundaries of the IZs were
spatially redrawn in 2012 following the 2011 UK census, meaning that the first half of the
study period uses the 2001 definition of IZs, while the second half uses the 2011 definition
of IZs. Thus for the 5-year period 2008 to 2012 the disease counts {Yt(A(1)

k )} relate to
K(1) = 133 IZs denoted by S(1) = {A(1)

1 , . . . ,A(1)
K(1)}, where k denotes the IZ and t denotes

the year. Similarly, for the 5-year period 2013 to 2017 the disease counts {Yt(A(2)
k )} relate

to K(2) = 136 IZs denoted by S(2) = {A(2)
1 , . . . ,A(2)

K(2)}. These disease counts range from
17 to 282, with a median value of 91. The spatial footprints of the IZs are shown in panel
(A) of Figure 1 as red (2001 IZs) and blue (2011 IZs) lines, which shows that the number of
discordant boundaries is relatively small. The disease counts depend on the size and age-sex
demographics of the population living in each IZ during each year, which we adjust for by
computing the expected numbers of hospitalisations denoted by et(A(1)

k ) for t= 1, . . . ,5 and
et(A(2)

k ) for t= 6, . . . ,10. Specifically, the population in each IZ is partitioned into age-sex
strata, and city-wide strata specific rates of respiratory hospitalisation are multiplied by the
population totals and then summed over strata to compute the final expected count.

From these data an exploratory measure of disease risk is the standardised morbidity ra-
tio (SMR) defined as SMRt(A(1)

k ) = Yt(A(1)
k )/et(A(1)

k ) for t= 1, . . . ,5 and SMRt(A(2)
k ) =

Yt(A(2)
k )/et(A(2)

k ) for t= 6, . . . ,10. IZs with an SMR that is respectively greater / less than
one indicate respectively higher / lower risks than the Glasgow average during the study pe-
riod, where a value of 1.2 corresponds to a 20% increased risk. The spatial trend in the SMR
for 2017 is displayed in panel (C) of Figure 1, which shows that a number of regions have
sizeable differences in their risks compared to their geographical neighbours, suggesting the
presence of boundaries in the risk surface. The temporal trend in the SMR is shown in panel
(D) of Figure 1, where jittering has been added to the Year direction to improve the visibility
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(A) - IZ boundaries (B) - Inferential grid

(C) - SMR in 2017 (D) - SMR over time

FIG 1. Summary of the study region and data: (A) - the IZ boundaries in 2001 (red) and 2011 (blue); (B) - the
250m2 inferential grid; (C) - the spatial pattern in the SMR in 2017; and (D) - the temporal trend and variation
in the SMR. In panel (D) the SMR values have been jittered in the horizontal (Year) direction to improve the
presentation, and the blue line is a LOESS trend.

of the points, and a trend line has been estimated using LOESS smoothing. The SMR exhibits
a small increasing trend in risk, with mean risks of 0.93 in 2008 compared to 1.06 in 2017.

2.3. Spatial inferential grid. Our modelling framework estimates disease risk for each
year on a grid of M = 2,923 square pixels S = {Hij} covering the study region (shown in
panel (B) of Figure 1), whereHij is the pixel in the ith row and jth column. These pixels can
be made arbitrarily small to approximate a spatially continuous surface, thus allowing risk
boundaries to be identified approximately anywhere in the study region. The pixels have sides
of length 250m, which is a trade-off between the granularity of the estimated risk surface and
the computational overhead of fitting the model.
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2.4. Covariate information. It would be desirable to have covariate information at the
pixel level to aid in estimating the sub IZ variation in respiratory hospitalisation risk. A
prime candidate in this regard would be measures of smoking prevalence or social-economic
deprivation that typically correlate well with respiratory disease risk (see for example Mack-
enbach et al., 2018), but in Scotland small-area statistics such as these are not available on
a gridded footprint, precluding the inclusion of such data in the models. Environmental and
topological data are often available on a gridded footprint and so could in theory be used to
inform a grid-level model. However, they are unlikely to exhibit strong relationships with the
health outcome in our study, so are not considered here. Additionally, even if covariates with
strong links to respiratory hospitalisation were available, then the accuracy of covariate effect
estimates when the response is being spatially re-scaled has not been well studied, meaning
that any resulting effect estimates would need to be interpreted with caution.

3. Methodology. Let the set of spatially aggregated observed and expected disease
counts for time t and areal unit k be denoted by {Yt(A(t)

k ), et(A(t)
k )} for t= 1, . . . ,N , where

the set of K(t) areal units at time t change over time. We use these data to estimate disease
risk and identify risk boundaries on a spatially-continuous footprint approximated by the
grid of pixels S = {Hij}. Our two-stage approach consists of a Bayesian hierarchical spatial
re-alignment model that estimates disease risk on this gridded footprint (stage 1), and the ap-
plication of edge detection methodologies from computer vision to identify risk boundaries
(stage 2).

3.1. Stage 1 - Estimating grid-level disease risk.

3.1.1. Computing the grid-level expected disease counts. We first estimate the expected
numbers of hospitalisations at the grid-level {et(Hij)} from the known areal unit level quan-
tities {et(A(t)

k )} using area-weighted interpolation (Flowerdew and Green, 1993). Letting
a(A(t)

k ∩Hij) denote the area of intersection between areal unit A(t)
k and pixel Hij , the ex-

pected counts are estimated as

(1) et(Hij) =

K(t)∑
k=1

et(A(t)
k ∩Hij) =

K(t)∑
k=1

a(A(t)
k ∩Hij)∑

r,s a(A
(t)
k ∩Hrs)

et(A(t)
k ).

Here et(A(t)
k ∩ Hij) denotes the expected number of hospitalisations at time t from the

population who live in the intersection area A(t)
k ∩ Hij , and the first equality sums these

contributions over all K(t) areal units. The second equality estimates et(A(t)
k ∩Hij) by allo-

cating the expected hospitalisations from et(A(t)
k ) to each pixelHij proportionally to its area

of intersection with A(t)
k . Thus trivially

∑
i,j et(Hij) =

∑K(t)

k=1 et(A
(t)
k ) as would be desired,

and most et(A(t)
k ∩Hij) = 0 because most a(A(t)

k ∩Hij) = 0. Finally, as these are expected
rather than observed hospitalisation counts computed using indirect standardisation, they do
not need to be integer valued.

This approach assumes that the density of the expected hospitalisation counts is constant
within each IZ, which may be an unrealistic assumption. Such an assumption could poten-
tially be relaxed using gridded population data split by age-sex strata, such as that avail-
able from WorldPop (https://hub.worldpop.org/). However, such data are not used
here because they are only estimates and hence likely to contain errors, which may induce
errors into the estimated grid-level risks. We note that age-sex splits in the population data

https://hub.worldpop.org/
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are needed because respiratory hospitalisation rates vary dramatically by age and sex, and so
only knowing the overall population total / density in each grid square would only be appro-
priate if the age-sex demographics of the population did not vary by area which is not the
case in Glasgow.

3.1.2. Grid-level risk model. The grid-level risk model uses data {Yt(Hij), et(Hij)},
and while {et(Hij)} are computed as above, the disease counts {Yt(Hij)} are unknown and
treated as additional random variables in our Bayesian model fitting algorithm (see 3.1.3).
The first level of the model has the following Poisson log-linear form:

Yt(Hij)∼ Poisson[et(Hij)θt(Hij)](2)

ln[θt(Hij)] = xt(Hij)
>β+ φt(Hij),

where {θt(Hij)} are the grid-level model-based estimates of disease risk. The spatio-
temporal variation in risk can be modelled by covariate (xt(Hij)

>β) and random effect
(φt(Hij)) components, where xt(Hij) denotes a p×1 vector of covariates and β are the asso-
ciated regression parameters. Each regression parameter is assigned an independent weakly
informative zero-mean Gaussian prior distribution with variance 100,000, which allows the
data to speak for themselves when estimating its value. However, in the motivating case study
we only include an intercept term in the model as grid-level covariates are not available.

The random effects {φt(Hij)} model the spatio-temporal variation in disease risk after
covariate adjustment, and numerous prior structures have been proposed in the literature
including spatial and temporal main effects and a spatio-temporal interaction (Knorr-Held,
2000), spatially correlated linear time trends (Bernardinelli et al., 1995), separate spatial sur-
faces at each time period (Waller et al., 1997), and a temporally evolving spatially correlated
surface (Rushworth, Lee and Mitchell, 2014). Here we adopt the latter specification because
the motivating case study pertains to mostly chronic and non-infectious respiratory disease
cases such as COPD and lung cancer, and hence disease risk is likely to evolve slowly over
time. Therefore partition the random effects φ = {φt(Hij)} into φ = (φ1, . . . ,φN ), where
φt = {φt(Hij)} denotes the vector of random effects relating to time period t for all pixels
{Hij}. We consider the following first and second order autoregressive processes for {φt},
the former being proposed by Rushworth, Lee and Mitchell (2014).

First order autoregressive process - AR(1)

φt|φt−1 ∼ N(αφt−1, τ
2Q(W, ρ)−1) for t= 2, . . . ,N(3)

φ1 ∼ N(0, τ2Q(W, ρ)−1).

Second order autoregressive process - AR(2)

φt|φt−1,φt−2 ∼ N(α1φt−1 + α2φt−2, τ
2Q(W, ρ)−1) for t= 3, . . . ,N(4)

φ1,φ2 ∼ N(0, τ2Q(W, ρ)−1).

Here 0 denotes an M × 1 vector of zeros, and the model specification is completed
by the weakly informative priors τ2 ∼ inverse-gamma(1,0.01), ρ,α ∼ Uniform(0,1) and
f(α1, α2) ∝ 1. Temporal autocorrelation is modelled by the mean αφt−1 or α1φt−1 +
α2φt−2, where α = 0 and α1 = α2 = 0 respectively correspond to temporal independence
for the two specifications. Note, temporal stationarity of the autoregressive processes is not
enforced in the models, i.e. by restricting the values of (α,α1, α2), because in a general case
the data may exhibit a prominent temporal trend.
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Spatial autocorrelation is induced by the precision matrix Q(W, ρ) = ρ[diag(W1) −
W]+(1−ρ)I, where (1, I) are respectively an M ×1 vector of ones and an M ×M identity
matrix. This precision matrix corresponds to the conditional autoregressive (CAR) prior for
spatial autocorrelation proposed by Leroux, Lei and Breslow (2000), where the spatial auto-
correlation structure assumed by the model is defined by a binary M ×M neighbourhood
matrix W that quantifies which pairs of pixels are close together. Here wij,rs = 1 if pixels
(Hij ,Hrs) share a common border (but not a vertex), and wij,rs = 0 otherwise. Based on
this neighbourhood structure the level of spatial dependence is controlled globally for the
entire study region by ρ, where ρ = 1 corresponds to strong autocorrelation (the intrinsic
CAR model proposed by Besag, York and Mollié, 1991), while ρ= 0 corresponds to spatial
independence. Assuming that ρ > 0 then if wij,rs = 1 then [φt(Hij), φt(Hrs)] are modelled
as partially spatially autocorrelated, while if wij,rs = 0 then [φt(Hij), φt(Hrs)] are modelled
as conditionally independent given the remaining random effects. This partial autocorrela-
tion structure assumes that all pairs of spatially neighbouring pixels have correlated random
effects, despite the goal of the paper being to identify the locations of risk boundaries repre-
senting steep risk gradients.

An alternative would be to jointly estimate the spatial dependence structure as part of
the model, for example by treating by the set of {wij,rs} corresponding to neighbouring
pixels as random quantities to be estimated (e.g. Rushworth, Lee and Sarran, 2017). However,
this adds an additional 5,620 parameters to be estimated in addition to both the grid-level
disease risks and the grid-level disease counts, which need to be estimated using only the
areal unit level data. Inference from such a model would likely be extremely sensitive to
the prior distribution assumed for {wij,rs}, with little prior to posterior learning. There are
more parsimonious alternatives for modelling {wij,rs} that depend on covariates (e.g. Lee
and Mitchell, 2012, and Berchuck, Mwanza and Warren, 2019), but as described above grid-
level covariate information is not available. Additionally, the use of any of these methods
could bias the boundary identification in stage 2 below, because assuming two neighbouring
pixels have conditionally independent random effects (by estimating wij,rs = 0) would make
it more likely that a steep risk gradient is estimated than if the random effects were assumed
to be partially autocorrelated (by estimating wij,rs = 1).

3.1.3. Inference. Inference for this model uses the data augmented Markov chain Monte
Carlo (MCMC) simulation algorithm proposed by Taylor, Andrade-Pacheco and Sturrock
(2018), which jointly updates the grid-level model parameters Ω = {β,φ, τ2, ρ,α} (or
Ω = {β,φ, τ2, ρ,α1, α2} for the AR(2) model) and the grid-level disease counts YH(S) =
{Yt(Hij)} conditional on the disease and covariate data D and the area of intersection data
A= {a(A(t)

k ∩Hij)}. The disease and covariate data D comprise the IZ-level observed dis-
ease counts {Yt(A(t)

k )}, the spatially re-aligned grid-level expected counts {et(Hij)}, and
any grid-level covariate information {xt(Hij)}. The algorithm iterates the following two
steps.

1. Sample from f(Ω|YH(S),D,A), the conditional distribution of the grid-level model pa-
rameters Ω given the current values of the grid-level disease counts YH(S) and the ob-
served data {D,A}.

2. Sample from f(YH(S)|Ω,D,A), the conditional distribution of the grid-level disease
counts YH(S) given the grid-level model parameters Ω and the observed data {D,A}.

Further details of these two steps are given in Section 1.1 of the supplementary material,
while software to fit this model is also available as supplementary material. The software is
written in R, but is made computationally efficient by updating the random effects in C++
and utilising the triplet form representation of W.
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3.2. Stage 2 - Boundary detection. The second stage identifies boundaries in the gridded
risk surfaces estimated in stage 1, using edge detection algorithms from computer vision.
The aim of these algorithms is to identify locations of rapid change in the colours of an im-
age, and a review of these algorithms by Muntarina, Shorif and Uddin (2022) classify them
into 5 categories. Here we use gradient-based methods, which identifies a pixel as a bound-
ary if it has a large risk gradient (rate of change). We choose this category because spatial
smoothing has been used to estimate the gridded risk surfaces in stage 1 of our approach,
meaning that boundaries will manifest themselves where a small number of neighbouring
pixels exhibit a steep risk gradient, rather than there being a step change in risk between
2 neighbouring pixels. We consider two different types of gradient-based methods below,
which respectively identify boundaries that are either thick (multiple pixels wide) or thin
(one pixel wide). Thick boundaries allow one to identify sub-regions of rapid change in dis-
ease risk, while thin boundaries allow one to pinpoint the location of maximal change within
this sub-region. While elucidating the algorithms we denote the disease risk surface gener-
ically by θ̇ = {θ̇(Hij)}, and discuss the different options for this surface in Section 3.2.3
below.

3.2.1. Thick boundaries. Two commonly used methods for identifying thick boundaries
were proposed by Sobel, I and Feldman, G (1968) and Prewitt (1970), which begin by es-
timating the gradient at each pixel in both east-west (EW) and north-south (NS) directions.
They do this by applying the following masks to each pixel in turn:

• Sobel masks - ∇S
EW = 1

4

−1 0 1−2 0 2
−1 0 1

 and ∇S
NS = 1

4

−1−2−10 0 0
1 2 1

.

• Prewitt masks - ∇P
EW = 1

3

−1 0 1−1 0 1
−1 0 1

 and ∇P
NS = 1

3

−1−1−10 0 0
1 1 1

.

Each directional mask is placed on the gridded risk surface centered on the pixel of interest
Hij , and the set of 9 pixel level risks in the enclosing 3 × 3 square are multiplied by the
corresponding elements in the mask before summing to obtain the estimated derivative. For
example, the east-west derivative of θ̇(Hij) based on the Sobel mask is estimated by:

∇S
EW [θ̇(Hij)] =

1

4

{
[θ̇(Hi−1,j+1) + 2θ̇(Hi,j+1) + θ̇(Hi+1,j+1)]− [θ̇(Hi−1,j−1) + 2θ̇(Hi,j−1) + θ̇(Hi+1,j−1)]

}
.

This estimator smoothes the directional derivative θ̇(Hi,j+1) − θ̇(Hi,j−1) over the rows
above and below row i, which reduces the impact of random noise in the surface on the
estimated derivative. The Sobel mask gives the row / column in question double the weight
of its neighbours, while the Prewitt mask gives it the same weight as its neighbours. The
magnitude of the risk gradient at Hij based on the Sobel masks is computed by

|∇S [θ̇(Hij)]|=
√
∇S

EW [θ̇(Hij)]2 +∇S
NS [θ̇(Hij)]2,

where an analogous formula holds for the Prewitt gradient. PixelHi,j is then classified as a
boundary in the risk surface if |∇S [θ̇(Hij)]|> ξ for a chosen threshold ξ, and is classified as a
non-boundary otherwise. The threshold ξ is chosen to be an upper quantile of the distribution
of {|∇S [θ̇(Hij)]|} over all pixels, and boundaries identified using higher thresholds represent
larger boundaries with steeper gradients. Note, that derivatives and hence boundaries cannot
be computed for pixels on the very edge of the study region, because the above formulae
require neighbouring pixels to be present on all sides.
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3.2.2. Thin boundaries. The two most commonly used gradient-based algorithms that
detect thin boundaries are the Laplacian of Gaussian (LoG) detector proposed by Marr and
Hildreth (1980) and the Canny detector proposed by Canny (1986), and a brief description is
given below. A full exposition is given in Section 1.2 of the supplementary material.

Laplacian of Gaussian detector
The LoG detector has three stages, with the first applying a Gaussian smoothing mask with
variance σ2 to the estimated risk surface to reduce its noise. We consider σ2 = 0.2,2 in the
simulation studies that follow, which show that this choice has very little impact on the re-
sults. The second stage computes the Laplacian second derivative of this smoothed surface,
and identifies locations where this changes sign from negative to positive or vice-versa be-
tween spatially adjacent pixels, which are known as zero crossings. Pixels with zero second
derivatives are either a local maximum (positive gradient) or a local minimum (negative gra-
dient) in the gradient surface, which thus could correspond to boundary locations. However,
zero crossings can occur in the Laplacian surface between two spatially adjacent pixels that
exhibit a small rather than a large change in risk, meaning that a zero crossing is not a suf-
ficient condition for identifying a risk boundary. Therefore the third stage identifies pixel
Hij as a risk boundary if: (i) it is a zero crossing; and (ii) its gradient is above a threshold ξ,
which is an upper quantile of the gradient distribution taken across all zero crossing locations.

Canny detector
The LoG detector is known to be badly affected by noise in the image, which can result in:
(i) isolated pixels being identified as boundaries that do not form part of a connected bound-
ary segment; and (ii) holes in a connected boundary segment, which are pixels that should
have been identified as part of a boundary but were not. Canny (1986) proposed a four-stage
method for overcoming these limitations, which is still the most commonly used gradient-
based method. The first stage applies a Gaussian smoothing mask with variance σ2 to the
estimated risk surface to reduce its noise, which is analogous to the first stage in the LoG
detector. The second stage estimates the overall magnitude and direction (with respect to the
horizontal x-axis) of the gradient at each pixel. Stage three applies a non-maximal suppres-
sion procedure to the estimated gradient surface, which restricts the boundaries identified to
be a single pixel wide. Finally, stage four applies a two-level threshold procedure with higher
and lower thresholds (ξ, ξ/2) to the gradient surface obtained from stage 3, which removes
isolated boundary points generated by noise and ensures that connected boundary segments
are identified.

3.2.3. Implementation. Stage 1 produces r = 1, . . . ,R grid-level posterior risk samples
{θ(r)t (Hij)} for pixel Hij and time period t, and we propose the following approach for
identifying time-varying boundaries based on a chosen threshold ξ.

• Point estimation - Classify pixel Hij as a boundary or not at time t by applying a
boundary detection algorithm to the posterior median risk surface, that is set θ̇(Hij) =

Medianr{θ(r)t (Hij)} in the previous subsection. We use the median rather than the mean
risk because the posterior risk distributions exhibit right skew.

• Posterior uncertainty - Classify pixel Hij as a boundary or not at time t separately for
each of the R posterior risk samples. That is set θ̇(Hij) = θ

(r)
t (Hij) separately for each

sample r in the previous subsection. Then compute the posterior probability that Hij is a
risk boundary as the proportion of the R samples where Hij is classified as a boundary.

Here ξ quantifies the magnitude of the boundary identified, with pixels classified as a
boundary under higher thresholds of ξ corresponding to steeper risk gradients. Then given
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ξ the posterior probability quantifies the likelihood that a pixel is a risk boundary of that
magnitude. Obviously there is no single true value of ξ for transforming a set of continu-
ous gradients into a binary set of {boundary, non-boundary} values, as one can have small
boundaries that exhibit moderate gradients as well as large boundaries that exhibit steep gra-
dients. In practice we follow the pragmatic solution of Lu and Carlin (2005), which identifies
boundaries at a small number of different thresholds ξ.

An alternative approach to point estimation would be to classify pixelHij as a risk bound-
ary if its posterior probability of being a boundary was above a cutoff, say ν. However, this
is inferior to using the posterior median risk for boundary detection both conceptually and
in practice. Conceptually, the construction of the Canny detector includes steps to ensure the
boundaries identified are a single pixel wide and form connected boundary segments, and
these desirable properties are lost when combining the results of applying the Canny detector
to each posterior risk sample (see the uncertainty maps in Section 5 that illustrate this). In
practice, a small simulation study in Section 2.3 of the supplementary material shows that
regardless of the cutoff ν chosen for classifying boundaries, this approach performs worse in
terms of correct boundary identification than applying the algorithms to the posterior median
risk surface. This inferior performance is likely to be because the posterior median provides
a better estimate of the disease risk surface than the individual samples from its posterior
distribution do, leading to improved boundary identification.

The above implementation identifies time-varying boundaries, which allows an assessment
of how much risk boundaries change over time. However, the identification of time-invariant
boundaries that persist over the entire study period is also of interest, and point estimation in
this case is achieved by applying the boundary detection algorithms to the posterior median
of the time averaged risks, i.e. setting θ̇(Hij) = Medianr{ 1

N

∑N
t=1 θ

(r)
t (Hij)} in the previous

subsection. In this case posterior uncertainty is quantified by applying the boundary detection
algorithms to θ̇(Hij) =

1
N

∑N
t=1 θ

(r)
t (Hij) separately for each posterior sample r.

4. Simulation study - time-varying boundaries. This study quantifies the ability of
our approach to accurately estimate the locations of grid-level risk boundaries that change
over time. A second study focusing on time-invariant boundaries is presented in Section 2.2
of the supplementary material, while a study comparing posterior median classification with
the alternative posterior uncertainty classification is presented in Section 2.3 of the supple-
mentary material. The template for all these studies matches the Glasgow application, with
disease counts available at K(1) = 133 IZs (2001 definition) for the first five years and for
K(2) = 136 IZs (2011 definition) for the second five year period. Our methodology is then
used to estimate disease risk and identify risk boundaries on the 250m2 grid presented in
Figure 1.

4.1. Data generation. Grid-level observed disease counts {Yt(Hij)} are generated from
(2), where {et(Hij)} are based on the real data but are varied in size in our simulation de-
sign. The true risk surfaces are generated as {θt(Hij) = exp[φt(Hij) + δt(Hij)]}, where
{φt(Hij)} is generated from an AR(1) process similar to (3). Here, the spatial autocorrela-
tion matrix Q(W, ρ)−1 is replaced with a geostatistical style Gaussian autocorrelation ma-
trix, whose autocorrelation between pixels 1km apart is 0.9. Strong temporal autocorrelation
is induced by setting α= 0.9 while τ2 = 0.03 (both from (3)), and both were chosen to match
the motivating study results.

Boundaries are induced into the grid-level risk surfaces via a piece-wise-constant spatial
surface {δt(Hij)} that varies over time. Boundary template 1 is used for t= 1,2,3; boundary
template 2 is used for t= 4,5,6,7; and boundary template 3 is used for t= 8,9,10, and maps
of these templates together with example simulated risk surfaces are displayed in Section 2.1
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of the supplementary material. To ensure the boundaries are realistic, boundary template 1
is generated by clustering the time-averaged estimated risks from the real data in Section 5
using the k-means algorithm with 2 clusters. Pixels in the high risk cluster have δt(Hij) = λ
while those in the low risk cluster have δt(Hij) =−λ. Thus risk boundaries occur where two
spatially adjacent pixels have δt(Hij) values of λ and−λ. However, to create a single pixel at
the centre of each risk boundary we set δ(Hij) = 0 for one of these two pixels, which means
that each risk boundary spans three adjacent pixels where δ(Hij) moves from (−λ,0, λ).
The value of λ controls the size of the risk boundary as larger values of λ lead to steeper
risk gradients, and its value is varied in our simulation design. Boundary templates 2 and 3
represent a slow evolution in the boundary locations compared to template 1, with around
7% of the pixels having changed risk category between boundary templates 1 and 2, while
the change between templates 2 and 3 corresponds to 10% of the pixels.

Based on {θt(Hij)} and the area intersection data {a(A(t)
k ∩ Hij)}, we generate ob-

served and expected disease counts for each intersection area {A(t)
k ∩ Hij}. The majority

have a(A(t)
k ∩Hij) = 0, in which case Yt(A(t)

k ∩Hij) = et(A(t)
k ∩Hij) = 0. Conversely, if

a(A(t)
k ∩ Hij) > 0 then we compute et(A(t)

k ∩ Hij) = γ
a(A(t)

k ∩Hij)∑
r,s a(A

(t)
k ∩Hrs)

et(A(t)
k ) using area

weighted interpolation, where et(A(t)
k ) comes from the real data and γ controls disease

prevalence and is varied in our simulation design. Finally, we generate Yt(A(t)
k ∩ Hij) ∼

Poisson[et(A(t)
k ∩ Hij)θ(Hij)], which has a similar mean model to (2). Then IZ-level data

are computed via Yt(A(t)
k ) =

∑
i,j Yt(A

(t)
k ∩Hij) and et(A(t)

k ) =
∑

i,j et(A
(t)
k ∩Hij) respec-

tively, which are the only quantities used when estimating risk boundaries.

4.2. simulation design. We generate 100 data sets under each of 6 scenarios, which com-
prise all pairwise combinations of the following 2 factors.

• Boundary size - The magnitude of the risk boundaries (i.e. the risk gradient at a boundary)
is either small (λ= 0.125) or large (λ= 0.25), and example realisations of both cases are
presented in Section 2.1 of the supplementary material.

• Disease prevalence - The disease is either rare (γ = 0.5, around 33 disease cases on aver-
age), moderately prevalent (γ = 1, around 66 disease cases on average) or common (γ = 2,
around 132 disease cases on average), with the middle case matching the size of the counts
observed in the motivating study.

4.3. Results. The AR(1) random effects model was used in this study rather than the
AR(2) model due to its simpler form, and the real data results show the estimated risk surfaces
from both models are almost identical. Inference for each data set is based on 6,000 MCMC
samples from a single Markov chain, which was run for 350,000 samples that were thinned
by 50 to reduce their autocorrelation and the first 50,000 were removed as the burnin period.
The data augmentation step was implemented every G = 30th iteration of the algorithm,
and pilot runs showed this was sufficient for MCMC convergence. The generation of these
samples took around 2 hours on an iMac with 32 GB of memory and a 3.8 GHz i7 processor,
and the mean effective sample size across the set of grid-level risk parameters was around
700.

The four edge detection algorithms Canny, LoG, Prewitt and Sobel were then applied to the
posterior median grid-level risk surfaces estimated from each simulated data set separately for
each year, and both the Canny and LoG detectors were applied with two levels of smoothing
defined by σ2 = 0.2,2. Each method classifies every pixel as either a boundary or a non-
boundary based on a threshold gradient ξ, and this binary classification is computed for 27
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Boundary Disease Boundary detection method
Size Prevalence Canny (0.2) Canny (2) LoG (0.2) LoG (2) Prewitt Sobel
Small Low 0.85 0.83 0.78 0.76 0.84 0.85
Small Medium 0.87 0.86 0.80 0.78 0.87 0.87
Small High 0.89 0.88 0.81 0.80 0.90 0.90
Large Low 0.90 0.90 0.83 0.82 0.92 0.92
Large Medium 0.92 0.92 0.85 0.84 0.94 0.94
Large High 0.93 0.93 0.86 0.85 0.95 0.95

TABLE 1
Area under the curve results for each boundary detection method and scenario.

different ξ values ranging between the 1st and 99th percentile of the estimated gradients
across the study region. For each value of ξ we compute: (i) True positive rate -
percentage of the true boundaries that are correctly identified; and (ii) False positive
rate - percentage of the true non-boundaries that are falsely identified as boundaries. As
previously discussed each true risk boundary is 3 pixels wide, so we define an estimated
boundary as correctly identifying a true boundary if it coincides with any of the 3 pixels
that make up the boundary. From these metrics we compute receiver operating characteristic
(ROC) curves presented in Figure 2, and the area under the curve (AUC) statistics presented
in Table 1 to quantify the accuracy of boundary identification, and these results are averaged
over all time periods and simulated data sets.

The figure and table show that all methods perform well in all scenarios, with AUC values
ranging between 0.76 and 0.95. Better performance is achieved when the disease is more
prevalent (compare the top and bottom rows of Figure 2), which is because there are more
disease cases and hence better estimates of disease risk. For example, the differences in the
AUC between the low and high prevalence cases is between 0.02 and 0.06. Secondly, better
performance is achieved for larger boundaries that are easier to identify (compare the left and
right columns in Figure 2), with the AUC increasing by between 0.04 and 0.08. The amount
of smoothing applied by the Canny and Laplacian of Gaussian detectors has minimal effects
on the results, as the ROC curves for σ2 = 0.2 and σ2 = 2 are almost identical in all scenarios.

In comparing the different methods the Prewitt and Sobel detectors (thick boundaries)
deliver almost identical results, while Canny always outperforms the Laplacian of Gaussian
method (thin boundaries). The differences in AUC between the Canny and Prewitt / Sobel
detectors are minimal, and as discussed above, they produce different boundary types (thin
and thick). These different types explain the differences in the true and false positive rates
obtained by these detectors, with Prewitt / Sobel identifying more pixels as boundaries and
thus having higher true and false positive rates compared to the Canny detector.

5. Results from the Glasgow respiratory hospitalisation study.

5.1. Stage 1 - Grid-level risk estimation. The AR(1) and AR(2) grid-level disease risk
models were fitted to the IZ-level respiratory hospitalisation data with no covariates, where
the grid-level expected numbers of respiratory hospitalisations were estimated by (1). Infer-
ence is based on 9,000 MCMC samples generated from 3 independent Markov chains, which
were each burnt in for 100,000 samples before being run for a further 300,000 samples that
were then thinned by 100 to reduce their autocorrelation. Convergence of the Markov chains
for (β,ρ,α,α1, α2, τ

2) and a sample of the grid-level risks {θt(Hi)} was assessed by trace-
plots and the Gelman-Rubin diagnostic (Gelman et al., 2013), and both indicate that conver-
gence is likely with the potential scale reduction factors being less than 1.1 in all cases. The
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FIG 2. Receiver operating characteristic curves for each boundary detection method and simulation scenario.
The black lines are the y = x line and represent random guessing.

generation of these samples took around 6 hours on an iMac with 32 GB of memory and a 3.8
GHz i7 processor, and the mean effective sample size across the grid-level risks was 1,854
for the AR(1) model and 2,927 for the AR(2) model.

The disease risk surfaces exhibit strong spatio-temporal dependence, which is illustrated
by the posterior median and 95% credible intervals for the dependence parameters ρ (spa-
tial) and (α,α1, α2) (temporal). For the AR(1) model ρ: 0.91 (0.87, 0.94) and α: 0.94 (0.91,
0.97), while for the AR(2) model ρ: 0.91 (0.86, 0.94), α1: 0.58 (0.49, 0.68) and α2: 0.39
(0.29, 0.49). The two models also produce very similar grid-level disease risk estimates, with
their posterior medians having a Pearson’s correlation coefficient of 0.99 and a mean abso-
lute difference of 0.035. Furthermore, their widely applicable information criterion (WAIC,
Watanabe, 2010) and effective number of independent parameters (in brackets) are very sim-
ilar, being AR(1): 132,594 (15,340); and AR(2): 132,613 (15,240). Therefore we use the
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results from the AR(1) model as its WAIC is slightly lower, but this choice should not affect
the risk boundaries identified below.

5.2. Stage 2 - Boundary identification.

5.2.1. Time-invariant boundaries. We first identify the locations of the most prominent
risk boundaries that persisted over the 10-year study period (motivating question 1.), by ap-
plying the boundary detection algorithms to the time-averaged risk surfaces as described
in Section 3.2.3. We use the Sobel and Canny detectors here, because the simulation study
suggests they can accurately identify thick and thin boundaries respectively. In contrast the
LoG detector performed poorly compared to the Canny detector, while the Prewitt detector
gave almost identical results to the Sobel detector, and hence both are omitted. Results for
the Canny detector that presents the locations of maximal change are displayed in Figure
3, while results for the Sobel detector that shows sub-regions with relatively large gradients
are shown in Section 3 of the supplementary material. The Canny detector is applied with a
smoothing variance of σ2 = 2, and the boundaries using σ2 = 0.2 are almost identical and are
not shown for brevity. Maps (A) and (C) present the posterior median of the time-averaged
risk surfaces, with boundaries identified by dots at threshold levels of ξ = 0.7 and ξ = 0.9
respectively using the posterior median approach. The posterior boundary probabilities asso-
ciated with these thresholds are presented in panels (B) and (D). In both cases the grey lines
correspond to the IZ-level borders.

The boundaries identified in panels (A) and (C) visually correspond to regions of rapid
change in disease risk, being present where low risk areas (shaded yellow) neighbour high
risk areas (shaded red). They also mainly comprise connected boundary segments of multi-
ple spatially adjacent pixels, with almost no isolated boundary points. More boundaries are
identified when ξ = 0.7 (panel A) compared to when ξ = 0.9 (panel C), which is because the
latter is a subset of the former by the construction of the algorithm. The posterior probabili-
ties that each pixel is a risk boundary at both thresholds ξ are presented in panels (B) and (D),
with the darker shaded pixels having a higher probability of being a boundary. The highest
probability pixels largely correspond to the boundaries identified in panels (A) and (C), but
these elevated probability areas are not a single pixel wide, suggesting that there is some un-
certainty as to the exact location of the maximal risk gradient between spatially neighbouring
pixels.

One of the prominent boundary segments separates the low risk city centre and west-end
(between Park district and Kelvindale) parts of the city from the higher risk suburbs of Possil-
park to the north and Govan to the south. The latter boundary largely follows the river Clyde,
and physical barriers such as this have previously been shown to lead to social barriers that
separate communities and prevent them mixing (Mitchell and Lee, 2014). One of the other
prominent features is the long curved boundary segment in the east-end of the city separating
the low risk Springhill area with its more high-risk northerly neighbour Blairtummock, and a
sizeable part of this boundary also coincides with a physical barrier, namely the main railway
line that connects Glasgow with the capital city of Edinburgh.

Finally for comparison purposes with the existing literature, panel (E) presents estimated
risks and boundaries (dots) on an IZ-level footprint. The risks are estimated from an IZ-level
equivalent of the Poisson log-linear spatio-temporal model with AR(1) temporal autocor-
relation presented in Section 3, while the boundaries are identified using the recent graph-
theoretic approach proposed by Lee, Meeks and Pettersson (2021). Note, this model and the
resulting risk map are only based on data from 2013-2017, because the changes in the IZ
borders in 2012 preclude it from being applied to the entire study period as the IZs change
over time. The results show that while the boundaries agree with those identified above in
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a sizeable number of cases, there are numerous examples where the boundaries identified
appear to be false positives and separate two IZs that have very similar risks. This may be
because this approach is not designed to form extended boundary segments, resulting in a
number of short disconnected boundaries that do not appear to reflect large changes in dis-
ease risk. Finally, this approach only provides a spatially discrete approximation to the risk
surface, because the risk is assumed to be constant within each IZ.

5.2.2. Time-varying risk boundaries. To observe the extent to which the boundaries have
changed over time (motivating question 2.), we apply the Canny detector with σ2 = 2 to the
posterior median risk surface for each year separately. The resulting boundaries are displayed
in Figure 4 for: (A) 2008, (B) 2011, (C) 2014, and (D) 2017, where the boundaries corre-
spond to a threshold ξ of the 70th percentile of the set of possible boundaries across the
study region. The spatial pattern in disease risk is similar for all time periods, with Pearson’s
correlation coefficients between any two spatial risk surfaces ranging between 0.78 (2008
and 2017) and 0.90 (2014 and 2017). Additionally, a substantial number of the boundaries
are consistently observed for all four years, such as the boundary separating the high-risk
east-end areas of Blairtummock and Easterhouse from their southerly neighbours, and the
demarkation between the low-risk west-end and city centre parts of the city from the higher
risk suburbs of Possilpark to the north and Goven to the south. In fact, between 41% (2008
and 2017) and 59% (2014 and 2017) of the boundaries are exactly the same between any of
the two years presented in the figure, while a sizeable proportion of the boundaries that are
discordant have only changed slightly in space.

The main change over time is that the high-risk areas have increased in risk but shrunk in
size, which is evident from the smaller but darker shaded red areas present in the 2017 map
compared to the 2008 map. An example is Port Dundas in the middle of the city, which is
completely surrounded by a boundary in 2017 where as in 2008 it is part of a much larger but
less extreme high-risk area. These changes have increased the magnitude of the inequality
(variation) in the risk of respiratory disease hospitalisation over the study period, with for
example the spatial standard deviations being 0.33 and 0.44 in 2008 and 2017 respectively.
The reduction of health inequalities is a major target for the Scottish Government (NHS
Health Scotland, 2016), and these results suggest that this is a complex problem that cannot
be easily solved.

5.2.3. Appropriateness of IZ-level inference. The majority of existing studies such as
Lee, Meeks and Pettersson (2021) make inference on disease risk and boundary locations at
the areal unit level at which they have data, which in this study would imply that: (i) dis-
ease risk is constant within an IZ; and (ii) the risk boundaries identified coincide with the
geographical borders between neighbouring IZs. We examine the appropriateness of these
assumptions (motivating question 3.) by first computing the magnitude of the within IZ vari-
ation in disease risk separately for each year (assumption i). Specifically, for each IZ A(t)

k in
year t we consider all pixels Hij that overlap with A(t)

k , and compute a weighted standard
deviation of their posterior median risks. Here the weights are proportional to the areas of
overlap, so that if a pixel has a very small overlap with an IZ then it does not heavily influ-
ence its estimated standard deviation. In 2008 the average (over all IZs) within IZ standard
deviation in risk was 0.12, which was 37% of the magnitude of the standard deviation across
all pixels in the study region. By 2017 these values had increased to a within IZ standard
deviation of 0.20, which was 46% of the region-wide standard deviation. Thus there is some
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(A) - Canny risks - ξ = 0.7 (B) - Canny posterior probabilities - ξ = 0.7

(C) - Canny risks - ξ = 0.9 (D) - Canny posterior probabilities - ξ = 0.9

(E) - Areal unit based boundaries

FIG 3. The left maps (A) and (C) display the posterior median time-averaged risk surfaces with the locations of
boundaries (dots) identified using the Canny detector (σ2 = 2) with ξ = 0.7 (top) and ξ = 0.9 (middle). The right
maps (B) and (D) display the posterior probabilities that each pixel is a boundary based on thresholds of ξ = 0.7
(top) and ξ = 0.9 (middle). Panel (E) presents boundaries identified (blue dots) at the areal unit level using the
graph-theoretic approach proposed by Lee, Meeks and Pettersson (2021).
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(A) - 2008 (B) - 2011

(C) - 2014 (D) - 2017

FIG 4. Maps of the estimated risk surfaces and the boundaries identified by the Canny detector for: (A) 2008, (B)
2011, (C) 2014, and (D) 2017). The blue dots represent boundary locations based on a threshold ξ corresponding
to the 70th percentile of the set of possible boundaries across the study region.

within IZ variation in disease risk, which while less than the variation across the entire city,
nonetheless suggests that the assumption of a constant risk within each IZ is inappropriate.

To examine the appropriateness of assumption (ii), we computed the percentage of the
pixels identified as boundaries in Figure 4 that coincide with a border between two neigh-
bouring IZs. Specifically, we computed the percentages of the boundary pixels that had an IZ
border running through them, which were 78% (2008), 79% (2011), 78% (2014) and 77%
(2017) respectively for the four years presented. This shows that the locations exhibiting the
steepest risk gradients generally coincide with IZ borders, suggesting that on the whole the
most prominent community boundaries are demarked by an IZ border, and that IZs typically
represent either a single community or multiple communities whose disease risks are not too
dissimilar.

6. Discussion. This paper has proposed the first approach for estimating the locations
of disease risk boundaries at approximately any location in the study region using only spa-
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tially aggregated areal unit level data whose borders change over time, using a novel fusion
of Bayesian spatial re-alignment modelling and edge detection algorithms. This approach
improves on the existing literature such as Lu and Carlin (2005), Lee and Mitchell (2012),
Ma, Carlin and Banerjee (2010) and Lee, Meeks and Pettersson (2021), which all make the
restrictive assumptions that: (i) the disease risk surface is piece-wise constant; and (ii) the
boundaries identified must coincide with the border separating two geographically adjacent
areal units. Our simulation studies provide convincing evidence of accurate boundary detec-
tion via ROC curves and AUC statistics across a range of scenarios, with the Sobel / Prewitt
algorithms being appropriate if one wants to identify regions exhibiting steep risk gradients
(thick boundaries), while the Canny algorithm is appropriate if one wishes to identify the
exact location of the maximal risk gradient (thin boundaries). Our two-stage approach can
be utilised by other researchers using the software provided in the supplementary material,
which contains R functions to implement the methodology as well as simulated data sets to
make the simulation study reproducible.

The Glasgow study shows clear evidence of sizeable spatial variation in the risk of
respiratory hospitalisation across the city, with risks ranging between less than half the
size of the citywide average risk and over two and a half times greater than it. This
spatial variation naturally results in risk boundaries being present, and both the Canny
and Sobel algorithms identify a number of connected boundary segments that mainly
persist over the entire 10 year study period. These boundaries, such as the demarka-
tion of the city centre and west end areas, are similar to boundaries identified in 2005
by Lee and Mitchell (2013), even though in this study the boundaries were restricted to
an areal unit footprint. The high-risk areas are mainly those that are socio-economically
deprived, and reducing the link between poverty and elevated disease risk is a long-
standing priority for Public Health Scotland (http://www.healthscotland.scot/
health-inequalities/measuring-health-inequalities). Additionally, the
size of within IZ risk variation is around 40% of the size of the between IZ risk variation,
while just under 80% of the risk boundaries coincide with IZ borders. These figures suggest
that in this study while making inference at the areal unit level should capture the main spa-
tial patterns in disease risk, there will be some finer grain risk variation that will be missed
by this commonly used inferential paradigm.

A potential limitation of our approach is the implicit assumption in the spatial realign-
ment model that the random effects in all neighbouring pixels are partially autocorrelated,
when the goal of the analysis is to find the locations of risk boundaries. The reasons for
this choice were outlined in Section 3, and the simulation study in Section 4 showed that
true risk boundaries are well identified by our methodology, suggesting that it is not detri-
mental to model performance. However, a natural avenue for future work would be to relax
this assumption, perhaps by allowing the spatial dependence parameter ρ to vary across the
study region. A further area for methodological development is that here we have focused ex-
clusively on gradient-based boundary detection algorithms, because the aim was to identify
locations exhibiting steep risk gradients. However, there are many non-gradient-based edge
detection algorithms that one could apply to the grid-level risk surface, and future work will
therefore compare the approaches used here to popular alternative methods such as SUSAN
(Smith and Brady, 1997) and deep learning based approaches (Zhiding et al., 2017).

In future the application will be scaled up from the city of Glasgow to the whole of Scot-
land, which would require approximately 12 million 250m2 pixels across all 10 years of the
study compared to the 29,230 used for Glasgow. This ambition highlights a limitation of the
current approach in that it is relatively computationally expensive, and is unlikely therefore
to scale well to such a massive spatial study region. Therefore a focus in this future work
will be the development of a simpler and hence more computationally efficient spatial re-
alignment method for stage one of our approach. Finally, the existence of boundaries in areal

http://www.healthscotland.scot/health-inequalities/measuring-health-inequalities
http://www.healthscotland.scot/health-inequalities/measuring-health-inequalities
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unit level data are not just of interest in an epidemiological context, because social scientists
are interested in the identification of boundaries in other socio-demographic factors and their
resulting effects on issues such as crime rates and educational attainment (e.g. Dean et al.,
2019). Therefore future work will investigate the existence of boundaries in features such as
social class, religious beliefs and ethnicity and their effects on society, which will require the
spatial realignment models used in stage 1 to be adjusted to deal with continuous and binary
areal unit level measurements.

SUPPLEMENTARY MATERIAL

Supplementary document
Additional description of the methods and the simulation and Glasgow studies.

Supplementary code and data
Software in the form of R functions to fit the model together with simulated data (real data
are the property of Public Health Scotland) to allow others to utilise the methods developed
here.
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