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There is a vast array of new and improved methods for comparing groups
and studying associations that offer the potential for substantially increasing
power, providing improved control over the probability of false positives,
and yielding a deeper and more nuanced understanding of data. These new
techniques effectively deal with four insights into when and why conventional
methods can be unsatisfactory. But for the non-statistician, this vast array of
techniques for comparing groups and studying associations can seem daunting.
This article briefly reviews when and why conventional methods can have
relatively low power and yield misleading results. The main goal is to suggest
guidelines regarding the use of modern techniques that improve upon classic
approaches such as Pearson’s correlation, ordinary linear regression, ANOVA,
and ANCOVA. This updated version includes recent advances dealing with
effect sizes, including situations where there is a covariate. The R code,
figures, and accompanying notebooks have been updated as well. © 2023 The
Authors. Current Protocols published by Wiley Periodicals LLC.
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1. INTRODUCTION
The typical introductory statistics course

covers classic methods for comparing groups
(e.g., Student’s t-test, ANOVA F test, and
Wilcoxon-Mann-Whitney test) and studying
associations (e.g., Pearson’s correlation and
least-squares regression). The two-sample
Student’s t-test and the ANOVA F test as-
sume that sampling is from distributions with
normal residuals and that the population vari-
ances are identical, which is generally known
as the homoscedasticity assumption. When
testing hypotheses based on the least-squares
regression estimator or Pearson’s correlation,
similar assumptions are made; section 2.2

elaborates on the details. An issue of funda-
mental importance is whether violating these
assumptions can have a serious detrimental
impact on two key properties of a statistical
test: the probability of a false positive, also
known as a Type I error, and power, the prob-
ability of detecting true differences among
groups and a true association among two or
more variables. There is also the related issue
of whether conventional methods provide
enough detail regarding how groups differ as
well as the nature of the true association.

There are a variety of relatively well-known
techniques for dealing with non-normality
and unequal variances (e.g., a rank-based
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method). However, by modern standards,
these methods are relatively ineffective, for
reasons reviewed in Section 3. More effective
techniques are indicated in Section 4.

The good news is that when comparing
groups that have non-normal but identical
distributions, control over the Type I error
probability is, in general, reasonably good
when using conventional techniques. But
if the groups have distributions that differ
in some manner, there is now a vast litera-
ture indicating that under general conditions
power can be relatively poor. In practical
terms, important differences among groups
might be missed (e.g., Wilcox, 2022a, 2017).
Even when the normality assumption is true,
but the population variances differ (called
heteroscedasticity), power can be adversely
impacted when using the ANOVA F.

Similar concerns arise when dealing with
regression. Conventional methods, including
rank-based techniques, perform well in terms
of controlling the probability of a Type I error
when there is no association. But when there is
an association, conventional methods, includ-
ing rank-based techniques (e.g., Spearman’s
rho and Kendall’s tau), can have a relatively
low probability of detecting an association
relative to modern methods developed during
the last 30 years.

Practical concerns regarding conventional
methods stem from four major insights (e.g.,
Wilcox, 2017, 2022a). These insights can be
briefly summarized as follows:

• When sampling from skewed distribu-
tions, much larger sample sizes might be
needed to assume normality than is gener-
ally recognized.

• There is now a deeper understanding of
the role of outliers and how to deal with
them. Some seemingly obvious strategies
for dealing with outliers, based on standard
training, are known to be highly unsatis-
factory for reasons outlined later in the pa-
per.

• There is a substantial literature indicating
that methods that assume homoscedastic-
ity (equal variances) can yield inaccurate
results when in fact there is heteroscedas-
ticity, even when the sample sizes are quite
large.

• When dealing with regression, curvature
refers to situations where the regression
line is not straight. There is now consid-
erable evidence that curvature is a much
more serious concern than is generally rec-
ognized.

Robust methods are typically thought of
as methods that provide good control over the
probability of a Type I error. More broadly,
robust methods are designed to deal with the
problems associated with skewed distribu-
tions, outliers, heteroscedasticity, and curva-
ture that were outlined above. There is now a
vast array of new and improved methods that
effectively deal with concerns associated with
classic techniques (e.g., Heritier, Cantoni,
Copt, & Victoria-Feser, 2009; Maronna, Mar-
tin, & Yohai, 2006; Wilcox, 2017, 2022a, to
appear). They include substantially improved
methods for dealing with all four of the ma-
jor insights mentioned above. Perhaps more
importantly, they can provide a deeper, more
accurate, and more nuanced understanding of
data, as will be illustrated in Section 5.

One of the more fundamental goals among
robust methods is to develop techniques that
are not overly sensitive to very small changes
in distribution. For instance, a slight departure
from normality should not destroy power.
This rules out any method based on the mean
and variance (e.g., Staudte & Sheather, 1990;
Wilcox, 2022, 2017b). Section 2.3 illustrates
this point.

Many modern, robust methods are de-
signed to have nearly the same amount of
power as conventional methods under nor-
mality, but they continue to have relatively
high power under slight departures from
normality where conventional techniques
based on means perform poorly. There are
other fundamental goals, some of which are
relevant regardless of how large the sample
sizes might be. But an effective description
of these goals goes beyond the scope of this
paper. For present purposes, the focus of this
unit is on achieving relatively high power in
various situations.

Another point that should be stressed has to
do with standard power analyses. A common
goal is to justify some choice for the sample
sizes prior to obtaining any data. Note that,
in effect, the goal is to address a statistical
issue without any data. Typically, this is done
by assuming normality and homoscedasticity,
which in turn can suggest that relatively small
sample sizes provide adequate power when
using means. A practical concern is that violat-
ing either of these two assumptions can have
a tremendous impact on power when attention
is focused exclusively on comparing means.
Section 2.1 illustrates this concern when
dealing with measures of central tendency.
Similar concerns arise when dealing withWilcox and
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least-squares regression and Pearson’s cor-
relation. These concerns can be mitigated
by using recently developed robust methods
summarized here, as well as in Wilcox (2022a,
to appear).

For books focused on the mathematical
foundation of modern robust methods, see
Hampel, Ronchetti, Rousseeuw, and Stahel
(1986), Huber and Ronchetti (2009), Maronna
et al. (2006), and Staudte and Sheather (1990).
For books focused on applying robust meth-
ods, see Heritier et al. (2009) and Wilcox
(2017, 2022a, to appear). From an applied
point of view, the difficulty is not so much
finding a method that effectively deals with
violations of standard assumptions. Rather,
for the non-statistician, the difficulty is in
navigating through the many alternative tech-
niques that might be used. This paper is an
attempt to deal with this issue by providing
a general guide regarding when and how
modern robust methods might be used when
comparing two or more groups. When dealing
with regression, all the concerns associated
with conventional methods for comparing
groups remain, and new concerns are intro-
duced. A few issues related to regression and
correlations are covered here, but it is stressed
that there are many other modern advances
that have practical value. Readers interested
in regression are referred to Wilcox (2022a, to
appear) and Gelman, Hill, and Vehtari (2020).

A few general points should be stressed.
First, if methods based on the median, de-
scribed later in this paper, give similar results
to conventional methods based on means,
this provides reassurance that conventional
methods based on the mean are performing
relatively well in terms of Type I errors and
power. But when they differ, there is doubt
about the validity of conventional techniques.
In certain situations, conventional methods
might perform well in terms of controlling
the Type I error probability and providing
reasonably high power. But there are general
conditions under which conventional meth-
ods yield inaccurate inferences. A particular
concern is that they can suffer from relatively
low power in situations where more modern
methods have relatively high power. More
details are provided in Sections 3 and 4.

Second, the choice of method can make a
substantial difference in our understanding of
data. One reason is that modern methods pro-
vide alternative and interesting perspectives
that more conventional methods do not ad-
dress. A complication is that there is no single

method that dominates in terms of power or
providing a deep understanding of how groups
compare. The same is true when dealing with
regression and measures of association. The
reality is that several methods might be
needed to address even what appears as a
simple problem, for instance comparing two
groups (Rousselet, Pernet, & Wilcox, 2017).

There is, of course, the issue of controlling
the probability of one or more Type I errors
when multiple tests are performed. There are
many improvements for dealing with this issue
(e.g., Wilcox, 2017, 2022a). Another strategy
is to put more emphasis on exploratory studies.
One could then deal with the risk of false posi-
tive results by conducting a confirmatory study
aimed at determining whether significant re-
sults in an exploratory study can be replicated
(Wagenmakers, Wetzels, Borsboom, van der
Maas, & Kievit, 2012). Otherwise, there is the
danger of missing important details regarding
how groups compare. One of the main mes-
sages here is that despite the lack of a single
method that dominates, certain guidelines
can be offered regarding how to analyze data.
Modern methods for plotting data can be
invaluable as well (e.g., Rousselet et al., 2017;
Rousselet, Foxe, & Bolam, 2016; Weissger-
ber, Milic, Winham, & Garovic, 2015). They
can provide important perspectives beyond
the common strategy of using error bars.
Complete details go beyond the scope of this
paper, but Section 5 illustrates some of the
more effective plots that might be used.

This unit is organized as follows. Section
2 briefly reviews when and why conventional
methods can be highly unsatisfactory. This
is necessary to appreciate modern technol-
ogy and because standard training typically
ignores these issues. Section 3 reviews com-
mon strategies aimed at salvaging standard
techniques, such as testing assumptions and
transforming data. The point is that by modern
standards, they are relatively ineffective and
cannot be recommended. Moreover, certain
strategies are not technically sound. Section 3
also provides an indication of how concerns
regarding conventional methods are addressed
using more modern techniques. Section 4 de-
scribes strategies for comparing two indepen-
dent or dependent groups that take modern ad-
vances into account. Included are some meth-
ods aimed at comparing correlations as well
as methods designed to determine which inde-
pendent variables are most important. Section
5 illustrates modern methods using data from
several neuroscience studies. The R code and Wilcox and
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Figure 1 Sampling distributions for normal and skewed populations. (A) Example of skewed
distribution. (B) Distribution of the sample mean under normality (theoretical thin line) and the
actual distribution based on a simulation (n = 30). Each sample mean was computed based on
30 observations randomly sampled from the distribution shown in A. (C) and (D) Comparison of
the theoretical T distribution with 29 degrees of freedom to distributions of 50,000 T values. The T
values were computed from observations sampled from the distribution in A.

data to reproduce all the figures and text exam-
ples are available in a separate reproducibility
package (Wilcox & Rousselet, 2023).

2. INSIGHTS REGARDING
CONVENTIONAL METHODS

This section elaborates on the concerns
with conventional methods for comparing
groups and studying associations stemming
from the four insights previously indicated.

2.1. Skewed Distributions
A skewed distribution simply refers to

a distribution that is not symmetric about
some central value. An example is shown in
Figure 1A. Such distributions occur naturally.
An example relevant to the neurosciences is
given in Section 5.2. Skewed distributions
are a much more serious problem for sta-
tistical inferences than once thought due to
insights regarding the central limit theorem.
According to this theorem, if we take multiple
samples of independent observations from a
distribution of any shape, the means of these
samples will be normally distributed, given
sufficiently large sample sizes. The problem is
that, contrary to the theorem, normality is not
guaranteed in all situations for sample sizes
that are often presented as safe in statistics
textbooks.

Consider the one-sample case. Conven-
tional wisdom is that with a relatively small
sample size, normality can be assumed under
random sampling. An implicit assumption was
that if the sample mean has, approximately, a
normal distribution, then Student’s t-test will
perform reasonably well. It is now known
that this is not necessarily the case (Wilcox,
2022a). For example, imagine that data are
randomly sampled from the distribution
shown in Figure 1A (a lognormal distribution)
and that the mean is computed based on a
sample size of n = 30. Repeating this process
20,000 times, the thick black line in Figure 1B
shows a plot of the resulting sample means;
the thin gray line is the plot of the means when
sampling from a normal distribution instead.
The distribution of T values (remember that
the closer T is to 0, the more likely there is not
a significant difference) for samples of n = 30
is indicated by the thick black line in Figure
1C; the thin gray line is the distribution of T
values when sampling from a normal distribu-
tion. As can be seen, the actual T distribution
extends out much further to the left compared
to the distribution of T under normality. That
is, in this example, sampling from a skewed
distribution leads to much more extreme val-
ues than expected by chance under normality,
which in turn results in more false positive
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results than expected when the null hypothesis
is true (when the populations do not differ).

Suppose the goal is to test some hypothesis
at the 0.05 level. Bradley (1978) suggests that
as a general guide, control over the probability
of a Type I error is minimally satisfactory if the
actual level is between 0.025 and 0.075. When
we test at the 0.05 level, we expect 5% of the
t-tests to be significant when the null hypoth-
esis is true. However, when sampling from the
skewed distribution considered here, this is
not the case: the actual Type I error probability
is ∼0.116 for n = 30; see the dashed blue
curve in Figure 2A, which illustrates the Type
I error probability as a function of sample size.
The gray area indicates Bradley’s criterion.

Figure 1D shows the distribution of T when
n = 100. Now the Type I error probability is
∼0.087, again when testing at the 0.05 level
(Fig. 2A). Based on Bradley’s criterion, a
sample size of about 160 or larger is required.
Bradley (1978) goes on to suggest that, ide-
ally, the actual Type I error probability should
be between 0.045 and 0.055. Now even an
n = 600 is unsatisfactory, having an actual
level ∼0.055. Even with n = 700 the level
is ∼0.056. Certainly these sample sizes are
rarely compatible with wet bench work.

This poor performance of the standard
t-test can be improved by making inferences
using medians and trimmed means instead of
means. The median belongs to the class of
trimmed means, which refers to the strategy of
trimming a specified proportion of the small-
est and largest values and averaging the values
that remain. For example, if n = 10, 10% trim-
ming involves removing the lowest and high-
est values and averaging the remaining data.
Similarly, 20% trimming would remove the
two smallest and two largest values. Based on
conventional training, trimming might seem
counterintuitive. In some situations, however,
it can substantially increase our ability to con-
trol the Type I error probability, as illustrated
next, and trimming can substantially increase
power as well, for reasons to be explained.

First focus on controlling the probability
of a Type I error. (Section 2.3 illustrates one
of the reasons that methods based on means
can have relatively low power.) Figure 2A
illustrates simulation results for the mean, the
median, and the 20% trimmed mean, when
sampling from a normal distribution and
from the asymmetric (lognormal) distribution
in Figure 1A. Inferences based on the 20%
trimmed mean were made via the method
derived by Tukey and McLaughlin (1963).

Inferences based on the median were made via
the method derived by Hettmansperger and
Sheather (1986) (the software used to apply
these latter two methods is contained in the R
package described at the beginning of Section
4). Under normality, the Type I error proba-
bility is close to the expected 5% for the mean
and the median, but too high, at 0.065, for the
20% trimmed mean for n = 10, reaching 0.056
for n = 20. When sampling from a lognormal
distribution, for the 20% trimmed mean, the
Type I error probability is 0.067 for n = 30
and 0.059 for n = 100, clearly improving on
the results with the mean. Using the median,
the probability is already at 0.051 for n = 10.

Figure 2B illustrates the association be-
tween power and sample size for the same
distributions used in Figure 2A. As can be
seen, under normality the sample mean is best,
followed closely by the 20% trimmed mean.
The median is least satisfactory when deal-
ing with a normal distribution, as expected.
However, for the asymmetric (lognormal)
distribution, the median performs best, and
the mean performs very poorly.

A feature of random samples taken from
the distribution in Figure 1A is that the ex-
pected proportion of points declared to be
outliers is relatively small. For skewed distri-
butions, as we move toward situations where
outliers are more common, a sample size
>300 can be required to achieve reasonably
good control over the Type I error probability.
That is, control over the Type I error probabil-
ity is a function of both the degree to which
a distribution is skewed and the likelihood
of encountering outliers. However, there are
methods that perform reasonably well with
small sample sizes, as indicated in Section 4.1.

For symmetric distributions, where out-
liers tend to occur, the reverse can happen:
the actual Type I error probability can be
substantially less than the nominal level. This
happens because outliers inflate the standard
deviation, which in turn lowers the value of
T, which in turn can negatively impact power.
Section 2.3 elaborates on this issue.

In an important sense, outliers have a larger
impact on the sample variance than the sample
mean, which impacts the t-test. To illustrate
this point, imagine that the goal is to test H0: μ
= 1 based on the following values: 1, 1.5, 1.6,
1.8, 2, 2.2, 2.4, 2.7. Then T = 4.69, the p-value
is p = .002, and the 0.95 confidence interval
= [1.45, 2.35]. Now, including the value 8, the
mean increases from 1.9 to 2.58, suggesting
at some level there is stronger evidence for Wilcox and
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Figure 2 Inferences when sampling from a normal and a skewed distribution. (A) Type I error
probability as a function of sample size. The Type I error probability was computed by running
a simulation with 20,000 iterations. In each iteration, sample sizes from 10 to 800 were drawn
from a normal distribution and a lognormal distribution. For each combination of sample size and
distribution, we applied a t-test on the mean, a test of the median, and a t-test on the 20% trimmed
mean, all with alpha = 0.05. Depending on the test applied, the mean, median, or 20% trimmed
mean of the population sampled from was 0. The black horizontal line marks the expected 0.05
Type I error probability. The dark gray area marks Bradley’s satisfactory range. The lighter gray area
marks Bradley’s ideal range.When sampling from a normal distribution, all methods are close to the
nominal 0.05 level, except the trimmed mean for very small sample sizes. When sampling is from a
lognormal distribution, the mean and the trimmed mean give rise to too many false alarms for small
sample sizes. The mean continues to give higher false positive rates than the other techniques
even with n > 500. (B) Power as a function of sample size. The probability of a true positive was
computed by running a simulation with 20,000 iterations. In each iteration, sample sizes from 10 to
300 were drawn from a normal distribution and the lognormal distribution shown in Figure 1A. For
each combination of sample size and distribution, we applied a t-test on the mean, median, and
the 20% trimmed mean, all with alpha = 0.05. Depending on the test applied, the mean, median,
or 20% trimmed mean of the population sampled from was 0.5. The two black horizontal lines mark
the 80% and 90% power thresholds. When sampling from a normal distribution, all methods require
<50 observations to achieve 80% power, and the mean appears to have higher power at lower
sample size than the other methods. When sampling from a lognormal distribution, power drops
dramatically for the mean but not for the median and the trimmed mean; power for the median
actually improves. The exact pattern of results depends on the effect size and the asymmetry of
the distribution we sample from, so we strongly encourage readers to perform their own detailed
power analyses.

rejecting the null hypothesis. However, this
outlier increases the standard deviation from
0.54 to 2.1, and now T = 2.26, p = .054 and
the 0.95 confidence interval = [0.97, 4.12].
As such, knowing when to remove, or not

remove, outliers can impact one’s interpre-
tation, whether the distribution is skewed or
symmetrical.

Now consider the goal of comparing two
independent or dependent groups and considerWilcox and
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the situation where the groups have identical
distributions. Even if the distributions are
skewed, the difference scores have a symmet-
ric distribution, and the probability of a Type
I error is, in general, less than the nominal
level when using conventional methods based
on means. However, in addition to outliers,
differences in skewness create practical con-
cerns when using Student’s t-test. Indeed,
under general conditions, the two-sample
Student’s t-test for independent groups is not
even asymptotically correct, roughly because
the standard error of the difference between
the sample means is not estimated correctly
(e.g., Cressie & Whitford, 1986). Moreover,
Student’s t-test can be biased. This means that
the probability of rejecting the null hypoth-
esis of equal means can be higher when the
population means are equal than in situations
where the population means differ. Roughly,
this concern arises because the distribution of
T can be skewed, and in fact the mean of T can
differ from 0 even though the null hypothesis
is true. Problems persist when Student’s t-test
is replaced by Welch’s (1938) method, which
is designed to compare means in a manner that
allows unequal variances (this is the default
method in the R t.test function). Put another
way, if the goal is to test the hypothesis that
two groups have identical distributions, con-
ventional methods based on means perform
well in terms of controlling the Type I error
probability. But if the goal is to compare
the population means, and if distributions
differ, conventional methods can perform
poorly.

There are many techniques that perform
well when dealing with skewed distributions
in terms of controlling the Type I error prob-
ability, some of which are based on the usual
sample median (Wilcox, 2017, 2022a). Both
theory and simulations indicate that as the
amount of trimming increases, the ability
to control the probability of a Type I error
increases as well. Moreover, as illustrated
in Figure 2B, trimming can substantially
increase power, a result that is not obvious
based on conventional training. The optimal
amount of trimming depends on the charac-
teristics of the population distributions, which
are unknown. Currently, the best that can be
said is that the choice can make a substan-
tial difference. The 20% trimmed mean has
been studied extensively and often provides a
good compromise between the two extremes:
no trimming (the mean) and the maximum
amount of trimming (the median).

In various situations, particularly impor-
tant are inferential methods based on what
are called bootstrap techniques. Two ba-
sic versions are the bootstrap-t and percentile
bootstrap (see tutorials with R code in Rousse-
let, Pernet, & Wilcox, 2019, 2021). Roughly,
rather than assume normality, bootstrap-t
methods perform a simulation using the
observed data that yields an estimate of an ap-
propriate critical value and a p-value. Values
of T are generated as was done in Figure 1,
except that data are sampled with replacement
from the observed data. In essence, bootstrap-t
methods generate data-driven T distributions
expected by chance if there were no effect.
The percentile bootstrap proceeds in a similar
manner, except that when dealing with a
trimmed mean, for example, the goal is to de-
termine the distribution of the sample trimmed
mean, which can then be used to compute a
p-value and a confidence interval. When com-
paring two independent groups based on the
usual sample median, if there are tied (dupli-
cated) values, currently the only method that
performs well in simulations in terms of con-
trolling the Type I error probability is based
on a percentile bootstrap method. Section 4.1
elaborates on how this method is performed.

If the amount of trimming is close to
0, the bootstrap-t method is preferable to
the percentile bootstrap method. But as the
amount of trimming increases, at some point
a percentile bootstrap method is preferable.
This is the case with 20% trimming. It seems
to be the case with 10% trimming as well, but
a definitive study has not been made. Also,
if the goal is to reflect the typical response,
it is evident that the median or even a 20%
trimmed mean might be more satisfactory.
Using quantiles (percentiles) other than the
median can be important as well, for reasons
summarized in Section 4.2. When comparing
independent groups, improvements on the
Wilcoxon-Mann-Whitney (WMW) test are
another possibility, which are aimed at making
inferences about the probability that a random
observation from the first group is less than a
random observation from the second. (More
details are provided in Section 3.) Additional
possibilities are illustrated in Section 4 below.
These methods can have substantially higher
power than any method based on means.
However, it is not being suggested that these
methods always have more power. Rather, the
point is that power can depend crucially on
the conjunction of which estimator is used
(for instance, the mean versus the median) Wilcox and
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Figure 3 Homoscedasticity and heteroscedasticity. (A) Homoscedasticity: the variance of the
dependent variable is the same at any age. (B) Heteroscedasticity: the variance of the dependent
variable depends on the age of the participants.

and how a confidence interval is built (for in-
stance, a parametric method or the percentile
bootstrap). These choices are not trivial and
must be considered when analyzing data.

2.2. Heteroscedasticity
When using classic methods for comparing

means, heteroscedasticity (unequal population
variances) is a serious concern (e.g., Brown
& Forsythe, 1974). Heteroscedasticity can
impact both power and the Type I error prob-
ability. The basic reason is that, under general
conditions, methods that assume homoscedas-
ticity are using an incorrect estimate of the
standard error when in fact there is het-
eroscedasticity. Indeed, there are concerns
regardless of how large the sample size might
be. As we consider more and more compli-
cated designs, heteroscedasticity becomes
an increasing concern. For example, when
dealing with regression, homoscedasticity
means that the variance of the dependent
variable does not depend on the value of the
independent variable. When dealing with
age and depressive symptoms, for example,
homoscedasticity means that the variation in
measures of depressive symptoms at age 20 is
the same at age 80 or any age in between, as
illustrated in Figure 3.

Independence implies homoscedasticity.
This means that when there is independence,
classic methods associated with least-squares
regression, Pearson’s correlation, Kendall’s
tau, and Spearman’s rho are using a correct
estimate of the standard error, which helps
explain why they perform well in terms of
Type I errors when there is no association.
That is, when a homoscedastic method rejects,
it is reasonable to conclude that there is an as-
sociation, but in terms of inferring the nature
of the association, these methods can perform
poorly. Again, a practical concern is that
when there is heteroscedasticity, homoscedas-
tic methods use an incorrect estimate of the
standard error, which can result in poor power
and erroneous conclusions.

A seemingly natural way of salvaging ho-
moscedastic methods is to test the assumption
that there is homoscedasticity. But six stud-
ies found that this strategy is unsatisfactory
(Wilcox, 2017). Presumably situations are
encountered where this is not the case, but
it is difficult and unclear how to determine
when such situations are encountered. Instead
of testing homoscedasticity assumptions, a
general recommendation is to always use
a heteroscedastic method given the goal of
comparing measures of central tendency or

Wilcox and
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Figure 4 Sampling distributions for normal and contaminated normal distributions. (A) Density
functions for the standard normal distribution (solid line) and the mixed normal distribution (dashed
line). These distributions have an obvious similarity, yet the variances are 1 and 10.9. (B) Distribu-
tions of sample means, medians, and 20% trimmed means when sampling from a normal popula-
tion. (C) Distributions of sample means, medians, and 20% trimmed means when sampling from
a mixed normal distribution. In panels B and C, each distribution has 100,000 values, and each
of these values was obtained by computing the mean, median, or trimmed mean of 30 randomly
generated observations.

making inferences about regression param-
eters as well as measures of association.
Methods that are designed to deal with het-
eroscedasticity are easily applied using extant
software. These techniques use a correct
estimate of the standard error regardless of
whether the homoscedasticity assumption is
true.

2.3. Outliers
Even small departures from normality can

devastate power. The modern illustration of
this fact stems from Tukey (1960) and is based
on what is generally known as a mixed normal
distribution. The mixed normal considered by
Tukey means that with probability 0.9, an ob-
servation is sampled from a standard normal
distribution; otherwise an observation is sam-
pled from a normal distribution having mean
0 and standard deviation 10. Figure 4A shows
a standard normal distribution and the mixed
normal discussed by Tukey. Note that in the
center of the distributions, the mixed normal

is below the normal distribution. But for the
two ends of the mixed normal distribution
(the tails), the mixed normal lies above the
normal distribution. For this reason, the mixed
normal is often described as having heavy
tails. In general, “heavy-tailed distributions”
refers roughly to distributions where outliers
are likely to occur.

Here is an important point. The standard
normal has variance 1, but the mixed normal
has variance 10.9. That is, the population vari-
ance can be overly sensitive to slight changes
in the tails of a distribution. Consequently,
even a slight departure from normality can
result in relatively poor power when using
any method based on the mean. To put this
another way, samples from the mixed normal
are more likely to result in outliers compared
to samples from a standard normal distribu-
tion. As previously indicated, outliers inflate
the sample variance, which can negatively
impact power when using means. Another
concern is that they can give a distorted and Wilcox and
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misleading summary regarding the bulk of the
participants.

The first indication that heavy-tailed dis-
tributions are a concern stems from a result
derived by Laplace about two centuries ago.
He established that as we move from a normal
distribution to a distribution more likely to
generate outliers, the standard error of the
usual sample median can be smaller than
the standard error of the mean (Hand, 1998).
The first empirical evidence implying that
outliers might be more common than what
is expected under normality was reported by
Bessel (1818). To add perspective, we com-
puted the mean, median, and a 20% trimmed
mean based on 30 observations generated
from a standard normal distribution. (Again, a
20% trimmed mean removes the 20% lowest
and highest values and averages the remaining
data.) Then we repeated this process 100,000
times. The resulting sampling distributions
are shown in Figure 4B. Theory tells us that
under normality, the variation of the sample
means is smaller than the variation among
the 20% trimmed means and medians, and
Figure 4B provides perspective on the extent
to which this is the case. Now we repeat this
process, except that data are sampled from the
mixed normal in Figure 4A. Figure 4C reports
the results. As is evident, there is substantially
less variation among the medians and 20%
trimmed means. That is, despite trimming
data, the standard errors (the standard devi-
ations of the sampling distributions) of the
median and 20% trimmed mean are substan-
tially smaller than the standard error of the
mean, contrary to what might be expected
based on standard training. Of course, a more
important issue is whether the median or 20%
trimmed mean ever have substantially smaller
standard errors based on the data encountered
in research. There are numerous illustrations
that this is the case (e.g., Wilcox, 2022a, to
appear).

There is the additional complication that
the amount of trimming can substantially im-
pact power, and the ideal amount of trimming,
in terms of maximizing power, can depend
crucially on the nature of the unknown distri-
butions under investigation. For instance, for
the situation in Figure 4C, the 20% trimmed
mean performs best, with 0.71 power with n
= 40; in contrast, power is 0.27 for the mean
and 0.62 for the median. Roughly, a 20%
trimmed mean competes reasonably well with
the mean under normality. But as we move
toward distributions that are more likely to

generate outliers, at some point the median
will have a smaller standard error than a 20%
trimmed mean, though in some situations it
trims too much, given the goal of minimizing
the standard error. It is not being suggested
that the mere presence of outliers will nec-
essarily result in higher power when using
a 20% trimmed mean or median; but simply
ignoring the potential impact of outliers can
be a serious practical concern.

In terms of controlling the Type I error
probability, effective techniques are available
for both the 20% trimmed mean and the
median. Because the choice between a 20%
trimmed mean and a median is not straight-
forward in terms of maximizing power, it is
suggested that in exploratory studies, both
estimators be considered. When dealing with
least-squares regression or Pearson’s corre-
lation, again, outliers are a serious concern.
Indeed, even a single outlier might give a
highly distorted sense about the association
among the bulk of the participants under study
and important associations might be missed.
One of the more obvious ways of dealing
with this issue is to switch to Kendall’s tau
or Spearman’s rho. However, these measures
of associations do not resolve all possible
concerns related to outliers. For instance, two
outliers, properly placed, can give a distorted
sense about the association among the bulk of
the data (e.g., Wilcox, 2017, p. 239).

A measure of association that deals with
this issue is the skipped correlation, in
which outliers are detected using a projec-
tion method, these points are removed, and
Pearson’s correlation is computed using the
remaining data. Complete details are sum-
marized in Wilcox (2022a). This skipped
correlation can be computed with the R
function scor, and a confidence interval that
allows heteroscedasticity can be computed
with scorci. This function also reports a p-
value when testing the hypothesis that the
correlation is equal to 0. (See Section 3.2
for a description of common mistakes when
testing hypotheses and outliers are removed.)
MATLAB code is available as well (Pernet,
Wilcox, & Rousselet, 2012).

2.4. Curvature
Typically, a regression line is assumed

to be straight. In some situations, this ap-
proach seems to suffice. However, it cannot be
stressed too strongly that there is substantial
literature indicating that this is not always
the case. A simple strategy for dealing withWilcox and
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curvature is to include a quadratic term. Let
X denote the independent variable. An even
more general strategy is to include X raised to
the power a in the model for some appropriate
choice for the exponent a. But this strategy
can be unsatisfactory (e.g., Wilcox, 2022a). A
vast array of new and improved nonparametric
methods for dealing with curvature are now
available, but complete details go beyond
the scope of this paper. Here it is merely
remarked that among the many nonparametric
regression estimators that have been proposed,
generally known as smoothers, two that seem
to be particularly useful are Cleveland’s
(1979) estimator, which can be applied via
the R function lplot, and the running-interval
smoother, which can be applied with the R
function rplot. Cleveland’s smoother was
initially designed to estimate the mean of the
dependent variable given some value of the
independent variable. The R function contains
an option for dealing with outliers among the
dependent variable, but it currently seems that
the running-interval smoother is generally
better for dealing with this issue. By default,
the running-interval smoother estimates the
20% trimmed mean of the dependent variable,
but any other measure of central tendency can
be used via the argument est. Arguments can
be made that other smoothers should be given
serious consideration. Readers interested in
these details are referred to Wilcox (2022a).

There are methods for testing the hypoth-
esis that a regression line is straight (e.g.,
Wilcox, 2022a). However, failing to reject
does not provide compelling evidence that it
is safe to assume that the regression line is in-
deed straight. It is unclear when this approach
has enough power to detect situations where
curvature is an important practical concern.
The best advice is to plot an estimate of the
regression line using a smoother. If there is
any indication that curvature might be an
issue, use modern methods for dealing with
curvature, many of which are summarized in
Wilcox (2017, 2022a, to appear).

3. DEALING WITH VIOLATION
OF ASSUMPTIONS

Based on conventional training, there are
some seemingly obvious strategies for dealing
with the concerns reviewed in the previous
section. But by modern standards, generally
these strategies are relatively ineffective. This
section summarizes strategies that perform
poorly, followed by a brief description of
modern methods that give improved results.

3.1. Testing Assumptions
A natural strategy is to test assumptions.

For example, test the hypothesis that there
is homoscedasticity or normality. However,
many older approaches to this generally fail
(Wilcox, 2017, 2022a). In practical terms,
all indications are that it is best to always
use a heteroscedastic method when compar-
ing measures of central tendency and when
dealing with regression, as well as measures
of association such as Pearson’s correlation.
Some good methods for testing the normality
assumption are outlined in Section 4.

3.2. Outliers: Two Common Mistakes
There are two common mistakes regarding

how to deal with outliers. The first is to search
for outliers using the mean and standard
deviation. For example, declare the value X
an outlier if

∣
∣X̄ − X

∣
∣

s
> 2,

Equation 1

where X̄ and s are the usual sample mean
and standard deviation, respectively. A prob-
lem with this strategy is that it suffers from
masking, simply meaning that the very pres-
ence of outliers causes them to be missed (e.g.,
Rousseeuw & Leroy, 1987; Wilcox, 2022a).

Consider, for example, the values 1, 2, 2, 3,
4, 6, 100, and 100. The two last observations
appear to be clear outliers, yet the rule given
by Equation 1 fails to flag them as such. The
reason is simple: the standard deviation of the
sample is very large, at almost 45, because it
is not robust to outliers.

This is not to suggest that all outliers will
be missed; this is not necessarily the case. The
point is that multiple outliers might be missed
that adversely affect any conventional method
that might be used to compare means. Much
more effective are the box plot rule and the
so-called MAD (median absolute deviation to
the median)-median rule.

The box plot rule is applied as follows.
Let q1 and q2 be estimates of the lower and
upper quartiles, respectively. Then the value
X is declared an outlier if X < q1 – 1.5(q2

–q1) or if X > q2 + 1.5(q2 –q1). As for the
MAD-median rule, let X1,…, Xn denote a
random sample and let M be the usual sample
median. MAD is the median of the values
|X1 –M|,…, |Xn –M|. The MAD-median rule
declares the value X an outlier if

|X − M|
MAD/0.6745

> 2.24.

Equation 2
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Under normality, it can be shown that
MAD/0.6745 estimates the standard devia-
tion, and of course M estimates the population
mean. So, the MAD-median rule is similar to
using Equation 1, only rather than use a two-
standard deviation rule, 2.24 is instead used,
to avoid flagging too many points as outliers
when dealing with a normal distribution. As
an illustration, consider the values 1.85, 1.11,
1.11, 0.37, 0.37, 1.85, 71.53, and 71.53. The
MAD-median rule detects the outliers: 71.53.
But the rule given by Equation 1 does not.
The MAD-median rule is better than the box
plot rule in terms of avoiding masking. If the
proportion of values that are outliers is ≥25%,
masking can occur when using the box plot
rule. Here, for example, the box plot rule
does not flag the value 71.53 as an outlier, in
contrast to the MAD-median rule.

The second mistake is discarding outliers
and applying some standard method for com-
paring means using the remaining data. This
results in an incorrect estimate of the standard
error, regardless of how large the sample size
might be. That is, an invalid test statistic is be-
ing used. Roughly, it can be shown that if the
remaining data are dependent, then they are
correlated, which invalidates the derivation of
the standard error. Of course, if an argument
can be made that a value is invalid, discarding
it is reasonable and does not lead to technical
issues. For instance, a straightforward case
can be made if a measurement is outside
physiological bounds or if it follows a biolog-
ically non-plausible pattern over time, such
as during an electrophysiological recording.
But otherwise, the estimate of the standard
error can be off by a factor of 2 (e.g., Wilcox,
2017b), which is a serious practical issue. A
simple way of dealing with this issue, when
using a 20% trimmed mean or median, is to
use a percentile bootstrap method. (With rea-
sonably large sample sizes, alternatives to the
percentile bootstrap method can be used. They
use correct estimates of the standard error and
are described in Wilcox, 2017, 2022a.) The
main point here is that these methods are read-
ily applied with the free software R, which is
playing an increasing role in basic training.
Some illustrations are given in Section 5.

It should be noted that when dealing with
regression, outliers among the independent
variables can be removed when testing hy-
potheses. But if outliers among the dependent
variable are removed, conventional hypothesis
testing techniques based on the least-squares
estimator are no longer valid, even when there
is homoscedasticity. Again, the issue is that

an incorrect estimate of the standard error
is being used. When using robust regression
estimators that deal with outliers among the
dependent variable, again a percentile boot-
strap method can be used to test hypotheses.
There are numerous regression estimators
that effectively deal with outliers among the
dependent variable, but a summary of the
many details is impossible. The Theil and Sen
estimator as well as the MM estimator are
relatively good choices, but arguments can
be made that alternative estimators deserve
serious consideration. A recent advance that
can make a practical difference is a method
for dealing with bad leverage points. A point
is a leverage point if the independent variable
is flagged as an outlier. A bad leverage point
is a point where the residual is an outlier as
well. Even robust regression estimators can
be negatively impacted by a bad leverage
point. Robust analogs of Pearson’s correlation
that deal with bad leverage points can make a
substantial difference (Wilcox, to appear).

3.3. Transform the Data
A common strategy for dealing with

non-normality or heteroscedasticity is to
transform the data. There are exceptions,
but generally this approach is unsatisfactory.
The first problem is that a transformation
changes the hypothesis being tested. In effect,
transformations muddy the interpretation of
any comparison because a transformation of
the data also transforms the construct that it
measures (Grayson, 2004). Second, the trans-
formed data can again be skewed to the point
that classical techniques perform poorly (e.g.,
Wilcox, 2017). Third, this simple approach
does not deal with outliers in a satisfactory
manner (e.g., Doksum & Wong, 1983; Ras-
mussen, 1989). The number of outliers might
decline, but it can remain the same and even
increase. A much more satisfactory strategy is
to use a method such as a bootstrap method
in conjunction with a 20% trimmed mean
or median. This approach also deals with
heteroscedasticity in a very effective manner
(e.g., Wilcox, 2017, 2022a).

3.4. Use a Rank-Based Method
Standard training suggests a simple way of

dealing with non-normality: use a rank-based
method such as the WMW test, the Kruskal-
Wallis test, or Friedman’s method. The first
thing to stress is that under general conditions
these methods are not designed to compare
medians or other measures of central tendency
(Fagerland & Sandvik, 2009, Wilcox, 2017).
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Moreover, the derivation of these methods
assumes that the groups have identical dis-
tributions. In particular, homoscedasticity is
assumed. In practical terms, if they reject, con-
clude that the distributions differ. However,
to get a more detailed understanding of how
groups differ and by how much, alternative
inferential techniques should be used in con-
junction with plots such as those summarized
by Rousselet et al. (2017). For example, use
methods based on a trimmed mean or median.
Many improved rank-based methods have
been derived (Brunner, Domhof, & Langer,
2002). But again, these methods are aimed
at testing the hypothesis that groups have
identical distributions. Important exceptions
are the improvements on the WMW test (e.g.,
Cliff, 1996; Wilcox, 2017, 2022a), which, as
previously noted, are aimed at making infer-
ences about the probability that a random
observation from the first group is less than a
random observation from the second.

3.5. Permutation Methods
Permutation methods have received some

attention in the neuroscience literature (e.g.,
Pernet, Latinus, Nichols, & Rousselet, 2015;
Winkler, Ridgwaym, Webster, Smith, &
Nichols, 2014). Briefly, this approach is well
designed to test the hypothesis that two groups
have identical distributions. But based on re-
sults reported by Boik (1987), the approach
cannot be recommended when comparing
means. The same is true when comparing
medians, for reasons summarized by Ro-
mano (1990). Chung and Romano (2013)
summarize general theoretical concerns and
limitations. They go on to suggest a modifi-
cation of the standard permutation method,
but at least in some situations the method is
unsatisfactory (Wilcox, 2017, section 7.7). A
deep understanding of when this modification
performs well needs further study.

3.6. More Comments About the
Median

In terms of power, the mean is preferable
to the median or 20% trimmed mean when
dealing with symmetric distributions for
which outliers are rare. If the distributions are
skewed, the median and 20% trimmed mean
can better reflect what is typical, and improved
control over the Type I error probability can
be achieved. When outliers occur, there is the
possibility that the mean will have a much
larger standard error than the median or 20%
trimmed mean. Consequently, methods based
on the mean might have relatively poor power.

Note, however, that for skewed distributions,
the difference between two means might
be larger than the difference between the
corresponding medians. As a result, even
when outliers are common, it is possible
that a method based on the means will have
more power. In terms of maximizing power,
a crude rule is to use a 20% trimmed mean,
but the seemingly more important point is that
no method dominates. Focusing on a single
measure of central tendency might result in
missing an important difference. So again,
exploratory studies can be vitally important.

Even when there are tied values, it is
now possible to achieve excellent control
over the probability of a Type I error when
using the usual sample median. For the one-
sample case, this can be done with using a
distribution-free technique via the R function
sintv2. In this technique, the actual Type I
error probability can be determined exactly
assuming random sampling only. When com-
paring two or more groups, currently the only
known technique that performs well is the per-
centile bootstrap. Methods based on estimates
of the standard error can perform poorly, even
with large sample sizes. Also, when there are
tied values, the distribution of the sample me-
dian does not necessarily converge to a normal
distribution as the sample size increases. The
very presence of tied values is not necessarily
disastrous, but it is unclear how many tied
values can be accommodated before disas-
ter strikes. The percentile bootstrap method
eliminates this concern.

4. COMPARING GROUPS AND
MEASURES OF ASSOCIATION

This section elaborates on methods aimed
at comparing groups and measures of as-
sociation. First, attention is focused on two
independent groups. Comparing dependent
groups is discussed in Section 4.4. Section 4.5
comments briefly on more complex designs.
This is followed by a description of how to
compare measures of association as well as
a discussion of modern advances related to
the analysis of covariance. Included are indi-
cations of how to apply these methods using
the free software R, which now is easily the
best software for applying modern methods.
R is a vast and powerful software package.
Certainly, MATLAB and Python could be
used, but this would require writing hundreds
of functions to compete with R. There are
numerous books on R, but only a relatively
small subset of the basic commands is needed
to apply the functions described here. All
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recommended methods deal with het-
eroscedasticity. When comparing groups
and distributions that differ in shape, these
methods are generally better than classic
methods for comparing means, which can
perform poorly.

The R functions noted here are stored in the
R package WRS, which can be installed as in-
dicated at https://github.com/nicebread/WRS.
Alternatively, and seemingly easier, use the
R command source on the file Rallfun-
v41.txt, which can be downloaded from
https://dornsife.usc.edu/ labs/rwilcox/
software/ , or https://osf.io/xhe8u/ , or
https://github.com/rrwilcox/Rallfun.

4.1. Dealing with Small Sample Sizes
When the sample sizes are very small, say

≤10 and >4, conventional methods based
on means are satisfactory in terms of Type
I errors when the null hypothesis is that the
groups have identical distributions. If the goal
is to control the probability of a Type I error
when the null hypothesis is that groups have
equal means, extant methods can be unsat-
isfactory. And as previously noted, methods
based on means can have poor power relative
to alternative techniques.

Many of the more effective methods are
based in part on the percentile bootstrap
method. Consider, for example, the goal of
comparing the medians of two independent
groups. Let Mx and My be the sample medians
for the two groups being compared and let D
= Mx –My. The basic strategy is to perform a
simulation based on the observed data with the
goal of approximating the distribution of D,
which can then be used to compute a p-value
as well as a confidence interval. Let n and m
denote the sample sizes for the first and second
group, respectively. The percentile bootstrap
method proceeds as follows. For the first
group, randomly sample with replacement n
observations. This yields what is generally
called a bootstrap sample. For the second
group, randomly sample with replacement m
observations. Next, based on these bootstrap
samples, compute the sample medians, say
M∗

x and M∗
y . Let D* = M∗

x –M∗
y . Repeating

this process many times, a p-value (and con-
fidence interval) can be computed based on
the proportion of times D* < 0 as well as the
proportion of times D* = 0. (More precise
details are given in Wilcox, 2017, 2022a.)
This method has been found to provide rea-
sonably good control over the probability of
a Type I error when both n and m are ≥5. The
R function medpb2 performs this technique.

The method just described performs very
well compared to alternative techniques. In
fact, regardless of sample size, the percentile
bootstrap method is the only known method
that continues to perform reasonably well
when comparing medians and when there are
duplicated values (also see Wilcox, 2022a,
section 5.3).

For the special case where the goal is
to compare means, there is no method that
provides reasonably accurate control over the
Type I error probability for a relatively broad
range of situations. In fairness, situations can
be created where means perform well and
indeed have higher power than methods based
on a 20% trimmed mean or median. When
dealing with perfectly symmetric distribu-
tions where outliers are unlikely to occur,
methods that are based on means, and that
allow heteroscedasticity, perform relatively
well. But with small sample sizes, there is no
satisfactory diagnostic tool indicating whether
distributions satisfy these two conditions in
an adequate manner. Generally, using means
comes with the relatively high risk of poor
control over the Type I error probability and
relatively poor power.

Switching to a 20% trimmed mean, the
method derived by Yuen (1974) performs
well even when the smallest sample size is 6
(Özdemir, Wilcox, & Yildiztepe, 2013). It can
be applied with the R function yuen. (Yuen’s
method reduces to Welch’s method for com-
paring means when there is no trimming.)
When the smallest sample size is 5, it can
be unsatisfactory in situations where the per-
centile bootstrap method, used in conjunction
with the median, continues to perform reason-
ably well. A rough rule is that the ability to
control the Type I error probability improves
as the amount of trimming increases. With
small sample sizes, and when the goal is to
compare means, it is unknown how to control
the Type I error probability reasonably well
over a reasonably broad range of situations.

Another approach is to focus on P (X <

Y), the probability that a randomly sampled
observation from the first group is less than
a randomly sampled observation from the
second group. This strategy is based in part
on an estimate of the distribution of D = X
–Y, the distribution of all pairwise differences
between observations in each group.

To illustrate this point, let X1,…, Xn and
Y1,…, Ym be random samples of size n and m,
respectively. Let Dik = Xi –Yk (i = 1, …, n; k
= 1,…, m). Then the usual estimate of P (X <

Y) is simply the proportion of Dik values less
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than 0. For instance, if X = (1, 2, 3) and Y = (1,
2.5, 4), then D = (0.0, 1.0, 2.0, –1.5, –0.5, 0.5,
–3.0, –2.0, –1.0), and the estimate of P (X < Y)
is 4/9, the proportion of D values less than 0.

Let μx, μy, and μD denote the population
means associated with X, Y, and D, respec-
tively. From basic principles, μx – μy = μD.
That is, the difference between two means is
the same as the mean of all pairwise differ-
ences. However, let θ x, θ y, and θD denote the
population medians associated with X, Y, and
D, respectively. For symmetric distributions,
θ x – θ y = θD, but otherwise it is generally
the case that θ x –θ y �= θ D. In other words,
the difference between medians is typically
not the same as the median of all pairwise
differences. The same is true when using any
amount of trimming greater than 0. Roughly,
θ x and θ y reflect the typical response for each
group, while θD reflects the typical difference
between two randomly sampled participants,
one from each group. Although less known,
the second perspective can be instructive in
many situations, for instance in a clinical
setting in which we want to know what effect
to expect when randomly sampling a patient
and a control participant.

If two groups do not differ in any manner,
P (X < Y) = 0.5. Consequently, a basic goal
is testing

H0 : P(X < Y ) = 0.5.

Equation 3

If this hypothesis is rejected, this indicates
that it is reasonable to make a decision about
whether P (X < Y) is less than or greater than
0.5. It can be readily verified that this is the
same as testing

H0 : θD = 0.

Equation 4

Certainly P (X < Y) has practical im-
portance for reasons summarized, among
others, by Cliff (1996), Ruscio (2008), and
Newcombe (2006). The WMW test is based
on an estimate P (X < Y). However, it is
unsatisfactory in terms of making inferences
about this probability because the estimate of
the standard error assumes that the distribu-
tions are identical. If the distributions differ,
an incorrect estimate of the standard error is
being used. More modern methods deal with
this issue. The method derived by Cliff (1996)
for testing Equation 3 performs relatively well
with small sample sizes and can be applied

via the R function cidv2 (Ruscio & Mullens,
2012). However, there is a complication.
For skewed distributions, differences among
the means, for example, can be substantially
smaller or larger than differences among 20%
trimmed means or medians. That is, regard-
less of how large the sample sizes might be,
power can be substantially impacted by which
measure of central tendency is used.

4.2. Comparing Quantiles
Rather than compare groups based on a

single measure of central tendency, typically
the mean, another approach is to compare
multiple quantiles. This provides more detail
about where and how the two distributions
differ (Rousselet et al., 2017). For example,
the typical participants might not differ very
much based on the medians, but the reverse
might be true among low-scoring individuals.

First consider the goal of comparing all
quantiles in a manner that controls the proba-
bility of one or more Type I errors among all
the tests that are performed. Assuming random
sampling only, Doksum and Sievers (1976)
derived a method that can be applied via the R
function sband. This method is based on a gen-
eralization of the Kolmogorov-Smirnov test. A
negative feature is that power can be adversely
affected when there are tied values and/or the
goal is to compare the more extreme quantiles.
A way of reducing these concerns is to com-
pare the deciles using a percentile bootstrap
method in conjunction with the quantile esti-
mator derived by Harrell and Davis (1982).
This is easily done with the R function qcomhd.

Note that if the distributions associated
with X and Y do not differ, then D = X –Y will
have a symmetric distribution about 0. Let
xq be the qth quantile of D, 0 < q < 0.5. In
particular, it will be the case that xq + x1–q =
0 when X and Y have identical distributions.
The median (2nd quartile) will be 0, and, for
instance, the sum of the 3rd quartile (0.75
quantile) and the 1st quartile (0.25 quantile)
will be 0. Thus, this sum provides yet another
perspective on how distributions differ (see
illustrations in Rousselet et al., 2017).

For example, consider a comparison in
which an experimental group is compared to
a control group based on some measure of de-
pressive symptoms. If x0.25 = –4 and x0.75 = 6,
then for a single randomly sampled observa-
tion from each group, there is a sense in which
the experimental treatment outweighs no treat-
ment, because positive differences (beneficial
effect) tend to be larger than negative differ-
ences (detrimental effect). The hypothesis
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H0 : Xq + X1−q = 0

Equation 5

can be tested with the R function cbmhd.
A confidence interval is returned as well. Cur-
rent results indicate that the method provides
reasonably accurate control over the Type
I error probability when q = 0.25 and the
sample sizes are ≥10. For q = 0.1, sample
sizes ≥20 should be used (Wilcox, 2012).

4.3. Eliminate Outliers and Average
the Remaining Values

Rather than use means, trimmed means,
or the median, another approach is to use
an estimator that down-weights or eliminates
outliers. For example, use the MAD-median
to search for outliers, remove any that are
found, and average the remaining values. This
is generally known as a modified one-step M-
estimator (MOM). There is a method for es-
timating the standard error, but currently a
percentile bootstrap method seems preferable
when testing hypotheses. This approach might
seem preferable to using a trimmed mean or
median because trimming can eliminate points
that are not outliers. But this issue is far from
simple. Indeed, there are indications that when
testing hypotheses, the expectation is that a
trimmed mean or median will perform better
in terms of Type I errors and power (Wilcox,
2022a). However, there are exceptions: no sin-
gle estimator dominates. As previously noted,
an invalid strategy is to eliminate extreme val-
ues and apply conventional methods for means
based on the remaining data because the
wrong standard error is used. Switching to a
percentile bootstrap deals with this issue when
using MOM as well as related estimators. The
R function pb2gen applies this method.

4.4. Dependent Variables
Next, consider the goal of comparing two

dependent variables. That is, the variables
might be correlated. Based on the random
sample (X1, Y1),…, (Xn, Ym), let Di = Xi –Yi (i
= 1,…, n). Even when X and Y are correlated,
μx – μy = μD, the difference between the
population means is equal to the mean of the
difference scores. But under general condi-
tions, this is not the case when working with
trimmed means. When dealing with medians,
for example, it is generally the case that θ x –
θ y �= θD. If the distribution of D is symmetric
and light-tailed (outliers are relatively rare),
the paired t-test performs reasonably well.
As we move toward a skewed distribution,
at some point this is no longer the case, for

reasons summarized in Section 2.1. More-
over, power and control over the probability
of a Type I error are also a function of the
likelihood of encountering outliers.

There is a method for computing a con-
fidence interval for θD for which the prob-
ability of a Type I error can be determined
exactly assuming random sampling only
(e.g., Hettmansperger & McKean, 2011).
In practice, a slight modification of this
method is recommended that was derived by
Hettmansperger and Sheather (1986). When
sample sizes are very small, this method
performs very well in terms of controlling the
probability of a Type I error. And in general, it
is an excellent method for making inferences
about θD. The method can be applied via the
R function sintv2. This is the function we
used in the one-sample simulations presented
in Figures 2 and 5.

As for trimmed means, with the focus still
on D, a percentile bootstrap method can be
used via the R function trimpb or wmcppb.
Again, with 20% trimming, reasonably good
control over the Type I error probability can
be achieved. With n = 20, the percentile boot-
strap method is better than the non-bootstrap
method derived by Tukey and McLaughlin
(1963). With large enough sample sizes, the
Tukey-McLaughlin method can be used in
lieu of the percentile bootstrap method via the
R function trimci, but it is unclear just how
large the sample size must be.

In some situations, there might be interest
in comparing measures of central tendencies
associated with the marginal distributions
rather than the difference scores. Imagine, for
example, participants consist of married cou-
ples. One issue might be the typical difference
between a husband and his wife, in which
case difference scores would be used. Another
issue might be how the typical male compares
to the typical female. So now the goal would
be to test H0: θ x = θ y, rather than H0: θD = 0.
The R function dmeppb tests the first of these
hypotheses and performs relatively well, even
when there are tied values. If the goal is to
compare the marginal trimmed means, rather
than to make inferences about the trimmed
mean of the difference scores, use the R
function dtrimpb, or use wmcppb and set the
argument dif = FALSE. When dealing with a
moderately large sample size, the R function
yuend can be used instead, but there is no clear
indication of just how large the sample size
must be. A collection of quantiles can be com-
pared with Dqcomhd and all of the quantiles
can be compared via the function lband.

Wilcox and
Rousselet

16 of 31

Current Protocols

 26911299, 2023, 3, D
ow

nloaded from
 https://currentprotocols.onlinelibrary.w

iley.com
/doi/10.1002/cpz1.719 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [28/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



0.000

0.025

0.050

0.075

0.100

0.125

0.150

10 50 100150200250300350400 500 600 700 800

Sample size
Ty

pe
 I 

er
ro

r 
pr

ob
ab

ili
ty

Estimator
Mean
Trimmed mean
Median

Distribution
Normal
Contaminated normal

A

0.0

0.2

0.4

0.6

0.8

1.0

10 50 100 150 200 250 300
Sample size

P
ow

er
 (

tr
ue

 p
os

iti
ve

 p
ro

ba
bi

lit
y)

B

Figure 5 Inferences when sampling from a normal and a contaminated normal distribution. See
Figure 2 caption for details.

Another approach is to use the classic
sign test, which is aimed at making inferences
about P (X < Y). As is evident, this probability
provides a useful perspective on the nature
of the difference between the two dependent
variables under study beyond simply com-
paring measures of central tendency. The R
function signt performs the sign test, which
by default uses the method derived by Agresti
and Coull (1998). If the goal is to ensure that
the confidence interval has probability cover-
age of at least 1 – α, rather than approximately
equal to 1 – α, the Schilling and Doi (2014)
method can be used by setting the argument
SD = TRUE when using the R function signt.
In contrast to the Schilling and Doi method,
p-values can be computed when using the
Agresti and Coull technique. Another nega-
tive feature of the Schilling and Doi method
is that execution time can be extremely high
even with a moderately large sample size.

A criticism of the sign test is that its power
might be lower than that of the Wilcoxon
signed rank test. However, this issue is not
straightforward. Moreover, the sign test can
reject in situations where other conventional

methods do not. Again, which method has the
highest power depends on the characteristics
of the unknown distributions generating the
data. Also, in contrast to the sign test, the
Wilcoxon signed rank test provides no insight
into the nature of any difference that might
exist without making rather restrictive as-
sumptions about the underlying distributions.
In particular, under general conditions, it does
not compare medians or some other measure
of central tendency as previously noted.

4.5. More Complex Designs
It is noted that when dealing with a one-

way or higher ANOVA design, violations of
the normality and homoscedasticity assump-
tions, associated with classic methods for
means, become an even more serious issue in
terms of both Type I error probabilities and
power. Robust methods have been derived
(Wilcox, 2017, 2022a), but the many details
go beyond the scope of this paper. However, a
few points are worth stressing.

Momentarily assume normality and ho-
moscedasticity. Another important insight
has to do with the role of the ANOVA F test Wilcox and
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versus post hoc multiple comparison proce-
dures such as the Tukey-Kramer method. In
terms of controlling the probability of one or
more Type I errors, is it necessary to first re-
ject with the ANOVA F test? The answer is an
unequivocal no. With equal sample sizes, the
Tukey-Kramer method provides exact control.
But if it is used only after the ANOVA F test
rejects, this is no longer the case; it is lower
than the nominal level (Bernhardson, 1975).
For unequal sample sizes, the probability of
one or more Type I errors is less than or equal
to the nominal level when using the Tukey-
Kramer method. But if it is used only after the
ANOVA F test rejects, it is even lower, which
can negatively impact power. More generally,
if an experiment aims to test specific hypothe-
ses involving subsets of conditions, there is
no obligation to first perform an ANOVA:
the analyses should focus directly on the
comparisons of interest using, for instance,
the functions for linear contrasts listed below.

Now consider non-normality and het-
eroscedasticity. When performing all pairwise
comparisons, for example, most modern
methods are designed to control the probabil-
ity of one or more Type I errors without first
performing a robust analog of the ANOVA F
test. There are, however, situations where a
robust analog of the ANOVA F test can help
increase power (e.g., Wilcox, 2022a, section
7.4). For a one-way design in which the goal
is to compare all pairs of groups, a percentile
bootstrap method can be used via the R
function linconpb. A non-bootstrap method is
performed by lincon. For medians, use medpb.
For an extension of Cliff’s method, use cid-
mul. Methods and corresponding R functions
for both two-way and three-way designs, in-
cluding techniques for dependent groups, are
available as well (see Wilcox, 2017, 2022a).

4.6. Effect Size
Rather than compare groups based on

some measure of location, another approach
is to use some measure of effect size that is
based on both a measure of location and a
measure of variation. Certainly, one of the
better-known approaches is Cohen’s d. How-
ever, this is not robust, roughly meaning that it
can miss a large effect size among the bulk of
the participants. Another concern is that Co-
hen’s d assumes homoscedasticity. A robust,
heteroscedastic analog of Cohen’s d is now
available that is based on a trimmed mean and
a Winsorized variance (Wilcox, 2022a). When
dealing with a two-way design, methods for
comparing groups based on this measure of ef-

fect size have been derived and can reveal im-
portant differences among groups that may be
missed by other techniques (Wilcox, 2022b).

A possible concern with heteroscedastic
analogs of Cohen’s d occurs when dealing
with skewed distributions. Situations are en-
countered where, say, an effect size of −0.5 is
more important than an effect size of 0.5. If,
for example, the median of an experimental
group corresponds to the 0.67th quantile of
a control group, this might be viewed as less
important compared to when the median of
an experimental group corresponds to the
0.2th quantile of a control group. One way
of dealing with this issue is to use a quantile
shift measure of effect size (Wilcox, 2022c).
More details about this measure of effect size
can be found in Wilcox (to appear).

Another approach is to use what is called
explanatory power, which reflects a gener-
alization of the coefficient of determination.
Basically, the variation in the measures of
location is divided by the variance of the
observed data. There are estimation issues
when dealing with unequal sample sizes, but a
method for dealing with this has been derived
(Wilcox, 2022a).

For convenience, when comparing
two independent groups, the R function
ES.summary.CI computes six measures of
effect size and reports a confidence interval
for each. Included are results for P (X < Y),
a robust, heteroscedastic analog of Cohen’s
d, explanatory power, and two versions of the
quantile shift measure of effect size.

4.7. Comparing Independent
Correlations and Regression
Slopes

Next, consider two independent groups
where for each group there is interest in the
strength of the association between two vari-
ables. A common goal is to test the hypothesis
that the strength of association is the same for
both groups.

Let ρ j (j = 1, 2) be Pearson’s correlation for
the jth group, and consider the goal of testing

H0 : ρ1 = ρ2.

Equation 6

Various methods for accomplishing this
goal are known to be unsatisfactory (Wilcox,
2009). For example, one might use Fisher’s
r-to-z transformation, but it follows imme-
diately from results in Duncan and Layard
(1973) that this approach performs poorly un-
der general conditions. Methods that assume
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homoscedasticity, as depicted in Figure 4, can
also be unsatisfactory. As previously noted,
when there is an association (the variables are
dependent), and there is heteroscedasticity, a
practical concern is that the wrong standard
error is being used when testing hypotheses
about the slopes. That is, the derivation of the
test statistic is valid when there is no associa-
tion; independence implies homoscedasticity.
But under general conditions, it is invalid
when there is heteroscedasticity. This concern
extends to inferences made about Pearson’s
correlation.

There are two methods that perform rel-
atively well in terms of controlling the Type
I error probability. The first is based on a
modification of the basic percentile bootstrap
method. Imagine that Equation 6 is rejected
if the confidence interval for ρ1 – ρ2 does
not contain 0. The Type I error probability
depends on the width of this confidence in-
terval. If it is too narrow, the actual Type I
error probability will exceed 0.05. With small
sample sizes, this is exactly what happens
when using the basic percentile bootstrap
method. The modification consists of widen-
ing the confidence interval for ρ1 – ρ2 when
the sample size is small. The amount it is
widened depends on the sample sizes. The
method can be applied via the R function
twopcor. A limitation is that this method can
be used only when the Type I error is 0.05,
and it does not yield a p-value.

The second approach is to use a method
that estimates the standard error in a man-
ner that deals with heteroscedasticity. When
dealing with the slope of the least-squares
regression line, several methods are now
available for getting valid estimates of the
standard error when there is heteroscedasticity
(Wilcox, 2022a). One of these is called the
HC4 estimator, which can be used to test
Equation 6 via the R function twohc4cor.

As previously noted, Pearson’s correlation
is not robust: even a single outlier might
substantially impact its value, giving a dis-
torted sense of the strength of the association
among the bulk of the points. Upon switching
to Kendall’s tau or Spearman’s rho, now a
basic percentile bootstrap method can be used
to compare two independent groups, in a
manner that allows heteroscedasticity, via the
R function twocor. As noted in Section 2.3,
the skipped correlation can be used via the R
function scorci.

The slopes of regression lines can be
compared as well using methods that allow
heteroscedasticity. For least-squares regres-

sion, use the R function ols2ci. For robust
regression estimators, use reg2ci.

4.8. Comparing Correlations, the
Overlapping Case

Consider a single dependent variable Y
and two independent variables, X1 and X2. A
common and fundamental goal is to under-
stand the relative importance of X1 and X2 in
terms of their association with Y. A typical
mistake in neuroscience is to perform two
separate tests of associations, one between X1

and Y and another between X2 and Y, without
explicitly comparing the association strengths
between the independent variables (Nieuwen-
huis, Forstmann, & Wagenmakers, 2011). For
instance, reporting that one test is significant,
and the other is not, cannot be used to con-
clude that the associations themselves differ.
A common example would be when an asso-
ciation is estimated between each of two brain
measurements and a behavioral outcome.

There are many methods for estimating
which independent variable is more important,
many of which are known to be unsatisfactory
(e.g., Wilcox, 2017, section 6.13). One po-
tential strategy is to test H0: ρ1 = ρ2, where
now ρ j (j = 1, 2) is the correlation between Y
and Xj. This can be done with the R function
TWOpov. When dealing with robust correla-
tions, use the function twoDcorR. However,
a criticism of this approach is that it does not
consider the nature of the association when
both independent variables are included in the
model. This is a concern because the strength
of the association between Y and X1 can de-
pend on whether X2 is included in the model as
illustrated in Section 5.4. There is now a robust
method for testing the hypothesis that there is
no difference in the association strength when
both X1 and X2 are included in the model
(Wilcox, 2018a, 2022a). Heteroscedasticity is
allowed. If, for example, there are three inde-
pendent variables, one can test the hypothesis
that the strength of the association for the
first two independent variables is equal to the
strength of the association for the third inde-
pendent variable. The method can be applied
with the R function regIVcom. A modification
and extension of the method has been derived
when there is curvature (Wilcox, 2018b), but
it is limited to two independent variables.

4.9. ANCOVA
The simplest version of the analysis of

covariance (ANCOVA) consists of compar-
ing the regression lines associated with two
independent groups when there is a single
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independent variable. The classic method
makes several restrictive assumptions: (1)
the regression lines are parallel; (2) for each
regression line, there is homoscedasticity; (3)
the variance of the dependent variable is the
same for both groups; (4) there is normality
of the residuals; and (5) a straight regression
line provides an adequate approximation of
the true association. Violating any of these
assumptions is a serious practical concern.
Violating two or more of these assumptions
makes matters worse. There is now a vast
array of more modern methods that deal with
violations of these assumptions in Wilcox
(2022a, chapter 12). These newer techniques
can substantially increase power compared to
the classic ANCOVA technique, and perhaps
more importantly, they can provide a deeper
and more accurate understanding of how the
groups compare. Included are several robust,
heteroscedastic measures of effect size. They
include robust heteroscedastic analogs of
Cohen’s d, heteroscedastic analogs of the
Wilcoxon-Mann-Whitney test, and an analog
of the coefficient of determination (Wilcox,
to appear, chapter 10). For methods that deal
with a covariate, see Wilcox (in press, to ap-
pear). The many details go beyond the scope
of this unit.

As noted in the introduction, curvature
is a more serious concern than is generally
recognized. One strategy, as a partial check on
the presence of curvature, is to simply plot the
regression lines associated with two groups
using the R functions lplot2g and rplot2g. A
better-known approach is to plot predicted val-
ues and the residuals (e.g., Montgomery, Peck,
& Vining, 2012). In some situations, lplot2g
and rplot2g provide a better indication of the
nature of any curvature (Wilcox, to appear).
Currently there are no known situations where
plotting the predicted values and the residuals
provides better results. When using lplot2g
and rplot2g, as well as related functions, it can
be vitally important to check on the impact
of removing outliers among the independent
variables. This is easily done with the func-
tions mentioned here by setting the argument
xout = TRUE. If these plots suggest that cur-
vature might be an issue, consider the R func-
tions ancova and ancdet. This latter function
applies method TAP in Wilcox (2022a, section
12.2.4) and can provide more detailed infor-
mation about where and how two regression
lines differ compared to the function ancova.
These functions are based on methods that
allow heteroscedasticity and non-normality,
and they eliminate the classic assumption that

the regression lines are parallel. For two inde-
pendent variables, see Wilcox (2022a, section
12.4). If there is evidence that curvature is not
an issue, again there are very effective meth-
ods that allow heteroscedasticity as well as
non-normality (Wilcox, 2022a, section 12.1).

5. SOME ILLUSTRATIONS
Using data from several studies, this sec-

tion illustrates modern methods and how they
contrast. Extant results suggest that robust
methods have a relatively high likelihood of
maximizing power, but as previously stressed,
no single method dominates. Another goal in
this section is to underscore the suggestion
that multiple perspectives can be important.
More complete descriptions of the results, as
well as the R code that was used, are available
on figshare (Wilcox & Rousselet, 2023).

5.1. Spatial Acuity for Pain
The first illustration stems from Mancini

et al. (2014), who reported results aimed at
providing a whole-body mapping of spatial
acuity for pain (also see Mancini, 2016).
Here the focus is on their second experiment.
Briefly, spatial acuity was assessed by mea-
suring 2-point discrimination thresholds for
both pain and touch in 11 body territories. One
goal was to compare touch measures taken
at different body parts: forehead, shoulder,
forearm, hand, back, and thigh. Plots of the
data are shown in Figure 6A for the six body
parts. The sample size is n = 10.

Their analyses were based on the ANOVA
F test, followed by paired t-tests when the
ANOVA F test indicated significance. Their
significant results indicate that the distribu-
tions differ, but because the ANOVA F test is
not a robust method when comparing means,
there is some doubt about the nature of the
differences. So, one goal is to determine in
which situations robust methods give similar
results. And for the non-significant results,
there also is the question of whether an im-
portant difference was missed due to using
the ANOVA F test and Student’s t-test.

First, we describe a situation where ro-
bust methods based on a median and a 20%
trimmed mean give reasonably similar results.
Comparing foot and thigh pain measures
based on Student’s t-test, the 0.95 confidence
interval is [–0.112, 0.894], and the p-value
is 0.112. For a 20% trimmed mean, the 0.95
confidence interval is [–0.032, 0.79], and
the p-value is 0.096. As for the median, the
corresponding results were [–0.21, 1.085] and
0.111.
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Figure 6 Data from Mancini et al. (2014). (A) Marginal distributions of thresholds at locations fore-
head (FH), shoulder (S), forearm (FA), hand (H), back (B), and thigh (T). Individual participants (n =
10) are shown as colored disks and lines. The medians across participants are shown in black. (B)
Distributions of all pairwise differences between the conditions shown in A. In each stripchart (1D
scatterplot), the black horizontal line marks the median of the differences. (C) Outcomes of different
methods, using alpha = 0.05. M(nc) = parametric test on means with no correction for multiple
comparisons. The other methods use the Hochberg correction. M, parametric test on means; TM,
percentile bootstrap test on 20% trimmed means; MD, percentile bootstrap test on medians. The
size of the disks reflects the size of the absolute differences.

Next, all pairwise comparisons, based
on touch, were performed for the following
body parts: forehead, shoulder, forearm, hand,
back, and thigh. Figure 6B shows a plot of the
difference scores for each pair of body parts.
The probability of one or more Type I errors
was controlled using an improvement on
the Bonferroni method derived by Hochberg
(1988). The simple strategy of using paired
t-tests if the ANOVA F rejects does not control
the probability of one or more Type I errors.
If paired t-tests are used without controlling
the probability of Type I errors, as done by
Mancini et al. (2014), 14 of the 15 hypotheses
are rejected (see panel C). If the probability
of one or more Type I errors is controlled
using Hochberg’s method, the following re-
sults were obtained. Comparing means via
the R function wmcp (and the argument tr
= 0), 10 of the 15 hypotheses were rejected.
Using medians via the R function dmedpb, 10

were rejected. As for the 20% trimmed mean,
using the R function wmcppb, now 12 were
rejected, illustrating the point made earlier
that the choice of method can make a practical
difference.

It is noted that in various situations, using
the sign test, the estimate of P (X < Y) was
equal to 1, which provides an alternative per-
spective regarding how the groups compare.

5.2. Receptive Fields in Early Visual
Cortex

The next illustrations are based on data
analyzed by Talebi and Baker (2016) and
presented in their Figure 9. The goal was to
estimate visual receptive field (RF) models
of neurons from the cat visual cortex using
natural image stimuli. The authors provided a
rich quantification of the neurons’ responses
and demonstrated the existence of three func-
tionally distinct categories of simple cells.
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Figure 7 Data from Talebi and Baker (2016). (A) Cells’ response latencies. (B) Cells’ response
durations. The top row shows estimated distributions of latency and duration measures for three
categories: nonOri, expOri, and compOri. The middle and bottom rows show shift functions based
on comparisons between the deciles of two groups. The deciles of one reference group are on the
x axis; the difference between the deciles of the two groups is on the y axis. The black line is the
difference between deciles, plotted as function of the deciles in one group. The grey lines mark
the 95% bootstrap confidence interval, which is also highlighted by the grey shaded area. Middle
row: Differences between deciles for nonOri versus expOri, plotted as a function of the deciles for
nonOri. Bottom row: Differences between deciles for nonOri versus compOri, plotted as a function
of the deciles for nonOri.

The total sample size is 212. There are three
measures: latency, duration, and a direction
selectivity index (dsi). For each measure, there
are three independent categories: nonoriented
(nonOri) cells (n = 101), expansive oriented
(expOri) cells (n = 48), and compressive
oriented (compOri) cells (n = 63).

First focus on latency (A panels of Fig. 7).
Talebi and Baker (2016) used Student’s t-test
to compare means. Comparing the means for
nonOri and expOri, no significant difference
is found. But an issue is whether Student’s
t-test might be missing an important differ-
ence. The plot of the distributions shown in
the top row of Figure 7A, which was created
with the R function g5plot, provides a partial
check on this possibility. As is evident, the
distributions for nonOri and expOri are very
similar, suggesting that no method will yield
a significant result. Using error bars is less
convincing because important differences

might exist when focusing instead on the
median, 20% trimmed mean, or some other
aspect of the distributions.

Comparing the deciles (as noted in Section
4.2) can provide a more detailed under-
standing of how groups differ. The second
row of Figure 7 shows the estimated dif-
ference between the deciles for the nonOri
group versus the expOri group. The verti-
cal dashed line indicates the median. Also
shown are confidence intervals (computed
via the R function qcomhd) having, approx-
imately, simultaneous probability coverage
equal to 0.95. That is, the probability of
one or more Type I errors is ∼0.05. The
method is explained in detail in Rousselet
et al. (2017). In this case, differences be-
tween the deciles are more pronounced as
we move from the lower to the upper deciles,
but again no significant differences are
found.
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Figure 8 Data from Almeida-Suhett et al. (2014). Boxplots for the contralateral (contra) and ip-
silateral (ipsi) sides of the basolateral amygdala. Gray disks show individual observations. Black
disks show sample means.

The third row shows the difference be-
tween the deciles for nonOri versus compOri;
the upper ends of the confidence intervals are
<0. Again, the magnitude of the differences
becomes more pronounced moving from low
to high measures. Now all the deciles differ
significantly except the 0.1 quantiles.

Next, consider durations in column B of
Figure 7. Comparing nonOri to expOri using
means, 20% trimmed means, and medians,
the corresponding p-values are 0.001, 0.005,
and 0.009. Even when controlling the prob-
ability of one or more Type I errors using
Hochberg’s method, all three reject at the 0.01
level. The method based on means rejects at
the 0.01 level, but this merely indicates that
the distributions differ in some manner. To
provide an indication that the groups differ
in terms of some measure of central tendency,
using 20% trimmed means and medians is
more satisfactory. The plot in row 2 of Figure
7B confirms an overall shift between the two
distributions and suggests a more specific
pattern, with increasing differences in the
deciles beyond the median.

Comparing nonOri to compOri, significant
results were again obtained using means,
20% trimmed means, and medians; the largest
p-value is p = .005. In contrast, qcomhd
indicates a significant difference for all of
the deciles excluding the 0.1 quantile. As
can be seen from the last row in Figure
7B, the magnitude of the differences be-
tween the deciles increases as we move
from the lower to the upper deciles. This

function provides a more detailed under-
standing of where and how the distributions
differ.

5.3. Mild Traumatic Brain Injury
The illustrations in this section stem from a

study dealing with mild traumatic brain injury
(Almeida-Suhett et al., 2014). Briefly, 5- to 6-
week-old male Sprague Dawley rats received
a mild controlled cortical impact (CCI) injury.
The dependent variable used here is the stere-
ologically estimated total number of GAD-
67-positive cells in the basolateral amygdala
(BLA). Measures 1 and 7 days after surgery
were compared to those for the sham-treated
control group that received a craniotomy but
no CCI injury. A portion of the analyses fo-
cused on the ipsilateral sides of the BLA. Box
plots of the data are shown in Figure 8. The
sample sizes are 13, 9, and 8, respectively.

Almeida-Suhett et al. (2014) compared
means using an ANOVA F test followed by
Bonferroni post hoc tests. Comparing both
day 1 and day 7 measures for the experimental
group to those of the sham group based on
Student’s t-test, the p-values are .0375 and
<.001, respectively. So, if the Bonferroni
method is used, the day 1 group does not
differ significantly from the sham group when
testing at the 0.05 level. However, using
Hochberg’s improvement on the Bonferroni
method, now the reverse decision is made.

Here, the day 1 group was compared
again to the sham group based a percentile
bootstrap method for comparing both 20% Wilcox and
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trimmed means and medians, as well as Cliff’s
improvement on the WMW test. The corre-
sponding p-values are .031, .079, and .040.
If 20% trimmed means are instead compared
with Yuen’s method, the p-value is p = .079,
but due to the relatively small sample sizes,
a percentile bootstrap would be expected to
provide more accurate control over the Type
I error probability. The main point here is
that the choice between Yuen and a percentile
bootstrap method can make a practical differ-
ence. The box plots suggest that sampling is
from distributions that are unlikely to generate
outliers, in which case a method based on the
usual sample median might have relatively
low power. When outliers are rare, a way of
comparing medians that might have more
power is to use instead the Harrell-Davis esti-
mator mentioned in Section 4.2 in conjunction
with a percentile bootstrap method. Now p =
.052. Also, testing Equation 8.42.4 with the
R function wmwpb, p = .02. So focusing on
θD, the median of all pairwise differences,
rather than the individual medians, can make
a practical difference.

In summary, when comparing the sham
group to the day 1 group, all the methods that
perform relatively well when sample sizes
are small (described in Section 4.1) reject at
the 0.05 level except the percentile bootstrap
method based on the usual sample median
and the Harrell-Davis estimator. Taken as
a whole, the results suggest that measures
for the sham group are typically higher than
measures based on day 1 group. As for the
day 7 data, now all the methods used for the
day 1 data have p-values ≤.002.

The same analyses were done using the
contralateral sides of the BLA. Now the
results were consistent with those based on
means: none are significant for day 1. As for
the day 7 measures, both conventional and
robust methods indicate significant results.

5.4. Fractional Anisotropy and
Reading Ability

The next illustrations are based on data
dealing with reading skills and structural
brain development (Houston et al., 2014). The
general goal was to investigate maturational
volume changes in brain reading regions and
their association with performance on reading
measures. The statistical methods used were
not made explicit. Presumably they were
least-squares regression or Pearson’s correla-
tion coupled with the usual Student’s t-tests.
The ages of the participants ranged between
6 and 16. After eliminating missing values,

the sample size is n = 53. (It is unclear how
Houston and colleagues dealt with missing
values.)

As previously indicated, when dealing
with regression, it is prudent to begin with
a smoother as a partial check on whether
assuming a straight regression line appears to
be reasonable. Simultaneously, the potential
impact of outliers needs to be considered. In
exploratory studies, it is suggested that results
based on both Cleveland’s smoother and
the running interval smoother be examined.
(Quantile regression smoothers are another
option that can be very useful; use the R
function qsm.)

Here we begin by using the R function lplot
(Cleveland’s smoother) to estimate the regres-
sion line when the goal is to estimate the mean
of the dependent variable for some given value
of an independent variable. Figure 9A shows
the estimated regression line when using age
to predict left corticospinal measures. Figure
9B shows the estimate when a GORT fluency
measure of reading ability (Wiederhold &
Bryan, 2001) is taken to be the dependent
variable. The shaded areas indicate a 0.95
confidence region that contains the true regres-
sion line. In these two situations, assuming a
straight regression line seems like a reasonable
approximation of the true regression line.

Figure 9C shows the estimated regres-
sion line for predicting fluency with left
corticospinal measures. Note the dip in the
regression line. One possibility is that the dip
reflects the true regression line, but another
explanation is that it is due to outliers among
the dependent variable. (The R function out-
mgv indicates that the upper fluency values
are outliers.) Switching to the running interval
smoother (via the R function rplot), which
uses a 20% trimmed mean to estimate the
typical fluency value, the regression line now
appears to be quite straight (dashed line). (For
more details, see the figshare file mentioned
at the beginning of this section.)

The presence of curvature can depend on
which variable is taken to be the independent
variable. Figure 9D illustrates this point by
using left corticospinal measures as the depen-
dent variable and fluency as the independent
variable, in contrast to Figure 9C. Note how
the line increases and then curves down.

Using instead the running-interval
smoother, where the goal is to estimate the
20% trimmed mean of the dependent variable,
now there appears to be a distinct bend ap-
proximately at fluency = 70. For fluency <70,
the regression line appears to be quite straight,
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Figure 9 Data from Houston et al. (2014). Nonparametric estimates of the regression lines be-
tween age, fluency and left corticospinal measurements. LOESS regression lines are indicated
with thick continuous black lines. The grey shaded areas mark 95% confidence bands. In panel
C the thick dashed black line illustrates results from the running interval smoother, using the 20%
trimmed mean.

and the slope was found to be significant (p
= .007) based on the R function regci, which
uses the robust Theil-Sen estimator by default.
(It is designed to estimate the median of the
dependent variable.) For fluency >70, again
the regression line is reasonably straight, but
now the slope is negative and does not differ
significantly from 0 (p = .27). Moreover,
testing the hypothesis that these two slopes
are equal (via the R function reg2ci), p =
.027, which provides additional evidence that
there is curvature. So, a more robust smoother
suggests that there is a positive association up
to about fluency = 70, after which the associa-
tion is much weaker and possibly nonexistent.

A common strategy for dealing with cur-
vature is to include a quadratic term in the
regression model. More generally, one might
try to straighten a regression by replacing

the independent variable X with Xa for some
suitable choice for a. However, for the sit-
uation at hand, the half slope ratio method
(e.g., Wilcox, 2022a, section 11.4) does
not support this strategy. It currently seems
that smoothers provide a more satisfactory
approach to dealing with curvature.

Now consider the goal of determining
whether age or left corticospinal is more
important when fluency is the dependent vari-
able. A plot of the regression surface when
both independent variables are used to predict
fluency suggests that the regression surface
is well approximated by a plane. (Details
are in the figshare document.) Testing the
hypothesis that the two independent variables
are equally important via the R function re-
gIVcom indicates that age is more important.
(This function uses the Theil-Sen estimator by Wilcox and
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default.) Moreover, the ratio of the strength of
the individual associations is 53. Using least-
squares regression instead (via regIVcom but
with the argument regfun = ols), again age
is more important, and now the ratio of the
strength of the individual associations is 9.85.

Another measure of reading ability that
was used is the Woodcock-Johnson (WJ) basic
reading skills composite index (Woodcock,
McGrew, & Mather, 2001). Here we consider
the extent the GORT (raw) rate score is more
important than age when predicting the WJ
word attack (raw) score. Pearson’s correlation
for the word attack score and age is 0.68
(p < .001). The correlation between the
GORT rate score and the word attack score
is 0.79 (p < .001). Comparing these cor-
relations via the R function twohc4cor, no
significant difference is found at the 0.05 level
(p = .11). But when both independent vari-
ables are entered into the model, and the
Theil-Sen regression estimator is again used,
a significant result is obtained (p < .001): the
GORT rate score is estimated to be more im-
portant. In addition, the strength of the associ-
ation between age and the word attack score is
estimated to be close to 0. Using instead least-
squares regression, p = .02 and the correlation
between age and WJ word attack score drops
to 0.012. Here, both methods indicate that the
GORT rate score is more important, with the
result based on a robust regression estimator
providing more compelling evidence that this
is the case. This illustrates a point made earlier
that the relative importance of the independent
variables can depend on which independent
variables are included in the model.

6. A SUGGESTED GUIDE
Keeping in mind that no single method is

always best, this section suggests some broad
guidelines regarding how to compare groups
and study associations. This is followed
by more precise details for certain special
cases.
1) Plot the data. Error bars are popular, but

they are limited in the information they
convey, regardless of whether they are
based on the standard deviation or an es-
timate of the standard error. Better are
scatterplots, box plots, or violin plots. For
small sample sizes, scatterplots should be
the default. If the sample sizes are not too
small, plots of the distributions can be very
useful, but there is no agreed-upon guide-
line regarding just how large the sample
size should be. For the moment, we sug-

gest checking both box plots and plots of
the distributions when the sample size is
n ≥ 30, with the goal of getting different
perspectives on the nature of the distribu-
tions. It is suggested that, in general, kernel
density estimators should be used, rather
than histograms. (The R functions akerd
and g5plot use a kernel density estimator.)
For discrete data, where the number of pos-
sible values for the outcome variable is rel-
atively small, also consider a plot of the
relative frequencies. The R function splot
is one possibility. When comparing two
groups consider the R function splotg2.

2) Use a method that allows heteroscedastic-
ity. If the homoscedasticity assumption is
true, in general, little is lost when using a
heteroscedastic method. But as the degree
of heteroscedasticity increases, at some
point methods that allow heteroscedastic-
ity can make a practical difference in terms
of both Type I errors and power. Put more
broadly, avoid methods that use an incor-
rect estimate of the standard error when
groups differ or when dealing with regres-
sion and there is an association. These
methods include t-tests, ANOVA F tests
on means, and the WMW test, as well
as conventional methods for making infer-
ences about measures of association and
the parameters of the usual linear regres-
sion model.

3) Be aware of the limitations of methods
based on means: they have a relatively high
risk of poor control over the Type I er-
ror probability, as well as poor power. An-
other possible concern is that when deal-
ing with skewed distributions, the mean
might be an unsatisfactory summary of the
typical response. Results based on means
are not necessarily inaccurate, but rela-
tive to other methods that might be used,
they pose serious practical concerns that
are difficult to address. Importantly, when
using means, even a significant result can
yield a relatively inaccurate and unreveal-
ing sense of how distributions differ, and
a non-significant result cannot be used to
conclude that distributions do not differ.

4) As a useful alternative to comparisons
based on means, consider using a shift
function or some other method for compar-
ing multiple quantiles. Also consider more
modern measures of effect size. Some-
times these methods can provide a deeper
understanding of where and how groups
differ that has practical value. There is
even the possibility that they may yield
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significant results when methods based on
means, trimmed means, and medians do
not. For discrete data, where the variables
have a limited number of possible values,
consider the R function binband.

5) When checking for outliers, use a method
that avoids masking. This eliminates any
method based on the mean and variance.
Wilcox (2022a, section 6.4) summarizes
methods designed for multivariate data.
(The R functions outpro and outmgv use
methods that perform relatively well.)

6) Be aware that the choice of method can
make a substantial difference. For exam-
ple, non-significant results can become sig-
nificant when switching from a method
based on the mean to a 20% trimmed mean
or median. The reverse can happen where
methods based on means are significant but
robust methods are not. In this latter situa-
tion, the reason might be that confidence
intervals based on means are highly inac-
curate. Resolving whether this is the case
is difficult at best based on current technol-
ogy. Consequently, it is prudent to consider
the robust methods outlined in this paper.

7) When dealing with regression or mea-
sures of association, use modern methods
for checking on the impact of outliers.
When using regression estimators, dealing
with outliers among the independent vari-
ables is straightforward via the R functions
mentioned here: set the argument xout =
TRUE. As for outliers among the depen-
dent variable, use some robust regression
estimator. The Theil-Sen estimator is rel-
atively good, but arguments can be made
for using certain extensions and alternative
techniques. When there are one or two in-
dependent variables, and the sample size
is not too small, check the plots returned
by smoothers. This can be done with the
R functions rplot and lplot. Again, it can
be crucial to check the impact of removing
outlier among the independent variables by
setting the argument xout = TRUE.

8) If the goal is to compare dependent groups
based on difference scores and the sam-
ple sizes are very small, say ≤10, the
following options perform relatively well
over a broad range of situations, in terms
of controlling the Type I error probabil-
ity and providing accurate confidence in-
tervals. Each of the methods listed below
provides good control over the Type I error
probability. Which one has the most power
depends on how the groups differ, which of
course is not known.

• Use the sign test via the R function signt.
If the sample sizes are ≤10 and the goal is
to ensure that the Type I error probability
is less than the nominal level, set the ar-
gument SD = TRUE. Otherwise, the de-
fault method performs reasonably well.
For multiple groups, use the R function
signmcp.

• Focus on the median of the difference
scores using the R command sintv2(x-y),
where × and y are R variables contain-
ing the data. For multiple groups, use the
R function sintv2mcp.

• Focus on a 20% trimmed mean of the
difference scores using the command
trimcipb(x-y). This method works rea-
sonably well with a sample size of ≥6.
When dealing with multiple groups, use
the R function dtrimpb.

• Compare the quantiles of the marginal
distributions via the R function lband.

9) If the goal is to compare two independent
groups, and the sample sizes are ≤10, here
is a list of some methods that perform rel-
atively well in terms of Type I errors:
• Compare the medians using a percentile

bootstrap method via the R function
medpb2. If there are multiple groups, use
the R function medcmp.

• Compare the quantiles via the R function
sband.

• Test the hypothesis that a randomly sam-
pled observation from the first group is
less than a randomly sampled observa-
tion from the second using the R function
cidv2. For multiple groups, use cidmcp.

• Comparing 20% trimmed means via the
R function trimpb2 performs reasonably
well, but comparing medians via the R
function medpb2 is a bit safer in terms
of Type I errors. However, trimpb2 might
have higher power. For multiple groups,
use linconpb.

Larger sample sizes provide many more
options, particularly when dealing with more
than two groups. For example, rather than
comparing quantiles via the R function sband,
comparing the deciles using the R function
qcomhd might have a power advantage. There
are multiple ways of viewing interactions in a
two-way ANOVA design.

7. CONCLUDING REMARKS
It is not being suggested that methods

based on means should be completely aban-
doned or have no practical value. It is being
suggested that complete reliance on con-
ventional methods can result in a relatively
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uninformative understanding of how groups
compare. In addition, they might provide poor
control over the Type I error probability and
have relatively low power. Similar concerns
plague least-squares regression and Pearson’s
correlation.

When a method fails to reject, this leaves
open the issue of whether a significant result
was missed due to the method used. From
this perspective, multiple tests can be infor-
mative. However, there are two competing
issues that need to be considered. The first
is that when testing multiple hypotheses, this
can increase the probability of one or more
Type I errors. Imagine, for example, that all
pairs of four groups are to be compared and
that all four groups have a standard normal
distribution. Further imagine that each pair of
groups is compared using Welch’s method.
The probability of at least one Type I error
is approximately 0.21. With five groups, the
probability of at least one Type I error is
approximately 0.28. The same issue arises
when multiple methods are used to compare
two groups: the probability of one or more
Type I errors will be >0.05, but by how much
is difficult to determine exactly due to the de-
pendence among the tests that are performed.
Improvements on the Bonferroni method
deal with this issue (e.g., Hochberg, 1988;
Hommel, 1988) and are readily implemented
via the R function p.adjust. But the more tests
that are performed, the more such adjustments
come at the cost of lower power. Simultane-
ously, ignoring multiple perspectives runs the
risk of not achieving a deep understanding of
how groups compare. Also, as noted in the
previous section, if methods based on means
are used, it is prudent to check the extent to
which robust methods give similar results.

Another important issue is the impli-
cation of modern insights in terms of the
massive number of published papers using
conventional methods. These insights do
not necessarily imply that these results are
incorrect. There are conditions where classic
methods perform reasonably well. But there is
a clear possibility that misleading results were
obtained in some situations. One of the main
concerns is whether important differences or
associations have been missed. Some of the
illustrations in Wilcox (2022a, to appear), for
example, reanalyzed data from studies dealing
with regression where the simple act of remov-
ing outliers among the independent variable
resulted in a non-significant result becoming
significant at the 0.05 level. As illustrated
here, non-significant results can become sig-

nificant when using a more modern method
for comparing measures of central tendency.
There is also the possibility that a few outliers
can result in a large Pearson correlation when
in fact there is little or no association among
the bulk of the data (Rousselet & Pernet,
2012). Wilcox (2017) mentions one unpub-
lished study where this occurred. The issue is
not whether modern robust methods can make
a practical difference but, rather, how often
incorrect data analysis leads to false positives.

Finally, there is much more to modern
methods beyond the techniques and issues
described here (Wilcox, 2022a, to appear).
Included are additional methods for studying
associations as well as substantially better
techniques for dealing with ANCOVA. As
mentioned in the introduction, there are in-
troductory textbooks that include the basics
of modern advances and insights. But the
difficult task of modernizing basic training of
neuroscientists remains.
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