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Abstract—This paper investigates the multi-valued fault-tolerant
distributed consensus problem that pursues exact output. To this
end, the voting validity, which requires the consensus output of
non-faulty nodes to be the exact plurality of the input of non-faulty
nodes, is investigated. Considering a specific distribution of non-
faulty votes, we first give the impossibility results and a tight lower
bound of system tolerance achieving agreement, termination and
voting validity. A practical consensus algorithm that satisfies voting
validity in the Byzantine fault model is proposed subsequently. To
ensure the exactness of outputs in any non-faulty vote distribution,
we further propose safety-critical tolerance and a corresponding
protocol that prioritizes voting validity over termination property.
To refine the proposed protocols, we propose an incremental
threshold algorithm that accelerates protocol operation speed.
We also optimize consensus algorithms with the local broadcast
model to enhance the protocol’s fault tolerance ability.

Index Terms—Fault Tolerance, Distributed Algorithms, Impos-
sibility Results, Voting, Exact Consensus

I. INTRODUCTION

A. Background: Consensus and Strong Validity

The distributed consensus studies how to guarantee the
nodes agree on an identical binary value, despite the existence
of faulty (i.e., crash or Byzantine) nodes and unreliable
communication links. The implementation of consensus in
distributed systems relies on consensus algorithms (aka con-
sensus protocols), which must satisfy termination, agreement
and validity properties [1]. Termination ensures the algorithm
outputs a value in a finite time; agreement guarantees the states
of nodes are identical; validity aims to ensure the output value
is reasonable. Though defined differently in some literature,
the most common definition of validity is: if all non-faulty
nodes begin with the same input value, they output that value
[2]. The above validity definition is a suitable constraint if the
input domain is binary. However, if the input domain contains
more than two values, the consensus output can be the input
from a faulty node, which is hazardous. Therefore, the Strong
Consensus problem was further proposed by Neiger et al. in
[3] to solve this problem. As a multi-valued consensus [4],
the strong consensus extends the node input from binary (e.g.,
{0,1}) to arbitrary (e.g., {0,1,2,3}). A strong consensus retains

the termination and agreement properties and replaces the
original Validity with Strong validity as shown below:

• Termination Every non-faulty node chooses a single
output value and halts.

• Agreement The output value of non-faulty nodes are
identical.

• Strong Validity The output value of each non-faulty node
must be the input value of some non-faulty nodes.

Though the strong validity strengthens the original validity
property, it might lack applied meaning, as the input of an
arbitrary non-faulty node is regarded as a legitimate output.
Therefore, further literature linked the strong consensus output
with various physical meanings by proposing new validity
definitions. For example, in [5], Stolz et al. introduced median
validity by requiring the output to be close to the median of
non-faulty inputs. They stated that if faulty nodes exist, no
algorithm can guarantee to find the correct median of non-
faulty nodes. In [6], Melnyk et al. proposed the concept of
interval validity that accepts consensus values that are close
to the kth smallest value of non-faulty nodes. The proposed
protocol is proved to be the best approximation to the desired
value for synchronous systems.

B. Motivation

The motivation for our paper derives from the need for
a reliable voting (election) mechanism based on distributed
consensus. Note that although the idea of voting already plays
a vital role in distributed computing [7], there is a conceptual
difference between the term “voting” in distributed consensus
and social choice. In the former field, voting is a mechanism
that produces agreements among different nodes. Here, what
matters more is to reach an agreement rather than what the
agreement has reached, i.e., all nodes are assumed to have no
specific preferences for one option [8]. On the contrary, voting
in the social choice problem is a way for preference aggregation.
Therefore, a natural idea is to crossover these concepts, i.e.,
try to ensure not only agreement but also realize preference
aggregation in the consensus process.



Such crossover between social choice and distributed consen-
sus can bring considerable benefits to applications in distributed
systems and computational science, and we name a few here.
For example, in a multi-agent distributed coordination problem
[9] such as joint decision-making in connected autonomous
driving, multiple vehicles in a cluster share information and
decide on the following actions together. Distributed consensus
algorithms are considered a viable solution to deal with this
problem [10], [11]. However, applying the existing log-based
consensus algorithms (e.g., PBFT [12] or Raft [13]) solely
consent on a log entry proposed by an individual, which
prevents non-faulty nodes from expressing their preferences.
Therefore, the hazards of dictatorship may occur without a
democratic voting mechanism. Another example of benefits is
blockchain technology for edge computing, where the process
of fork resolution [14] and leader election [15] can be refined
by the distributed voting mechanism by providing a reliable
and well-founded ruling process in the absence of mutual trust.

Inspired by strong validity and its variants, our design
simultaneously achieves agreement and preference aggregation
in distributed consensus context. Given that a consensus
algorithm already satisfies the agreement property, we represent
the preference aggregation in a validity definition, since various
definitions of validity can give different physical meanings to
the output. The new validity is defined as the output must
be the exact plurality of the input values of non-faulty nodes.
This follows the plurality voting scheme [16], where a winning
candidate has more votes than other candidates, so the purpose
of preference aggregation is revealed in the output. We call
such validity as Voting Validity, and the formal definition will
be given in Section III. Note that the mathematical meaning of
voting validity is also similar to the mode of input values from
non-faulty nodes, which is representative and is not affected
by the extremely large or small values of a distribution series.

Note that voting validity requires the exactness of the
output. However, realizing the exact output in a fault-tolerant
distributed system for multi-valued consensus is challenging.
The reason is that non-faulty nodes might be interfered with by
faulty nodes’ malicious behaviors, preventing the system from
outputting the desired value. Consider a distributed system
with 10 nodes, and 3 of them are Byzantine nodes. Assume the
inputs of these seven non-faulty nodes are {0, 0, 0, 1, 1, 2, 3}.
An output that satisfies voting validity must be 0, as it is the
plurality in the input value set. However, if 3 Byzantine nodes
collude and all vote for 1, there are 5 1s and only 3 0s from
the perspective of a non-faulty node. Intuitively, the consensus
output ought to be 1 instead of 0. The voting validity would
then not be satisfied, and the exactness of the pursuit is lost.

Unfortunately, the exactness in previous works is absent,
reflected in the weaker definition of termination, agreement, and
the proposed validity. Some solutions weaken the agreement
property by either allowing each node to output more than one
value (i.e., the k-set consensus in [17]) or allowing each node
to output a single value, different from each other but within
a distance of ϵ (i.e., the approximate agreement [18]). On
the other hand, some solutions retain the agreement but relax

the validity by allowing the output with a legitimate interval.
The example of median and interval validity shows that the
identical output of each non-faulty node can only be reasonably
close to the exact value, but cannot guarantee to reach it
due to the impossibility results. Such good-enough output
may make sense in some applications, for example, avoiding
the interference of extreme values caused by sensor failure
from the normal measured values in the sensor network [5].
However, since the exact value is unreachable, such algorithms
might not be suitable for applications that require deterministic
and accurate outputs in safety-critical scenarios (aircraft and
vehicular control [19] [20], etc.). Unlike all of the above, we
ensure the exactness of the output while maintaining both
agreement and voting validity if certain conditions on the input
values are met.

C. Our Contribution

Given that the exactness is our primary concern, we mainly
focus on finding the condition (i.e., the lower bound on
the number of nodes in relation to t and non-faulty input
distribution) to ensure the voting validity in the presence of
faulty nodes, and propose practical protocols that can be easily
deployed on applications. The contributions of our paper are
as follows.

1) We define voting validity that ensures the exact plurality
of the output in the multi-valued consensus problem
and gives the fault tolerance analysis of consensus with
voting validity on both Byzantine fault and crash fault;

2) We design a practical synchronous Byzantine-fault-
tolerant (BFT) protocol for the voting validity;

3) We consider a safety-critical case under the Byzantine
fault model, and propose a protocol that ensures the
consensus output (if it has) satisfies the voting validity
with exactness, given arbitrary input values;

4) We define vote dispersion tolerance and analyze the
system fault tolerance from a probability distribution
perspective;

5) We propose practical voting protocols with an incremental
threshold for optimistic responsiveness, and implement
a local broadcast communication model to optimize the
tolerance of existing protocols.

D. Roadmap

In the following paper, we give a literature review about
distributed consensus and voting problems in Section II. Then
in Section III, we present several model assumptions and related
definitions. Section IV shows the impossibility results of voting
validity under Byzantine and Crash faults. The corresponding
BFT protocol is also proposed with proof of correctness.
Section V considers the safety-critical scenario, where the
exactness of the output is guaranteed. We propose safety-critical
tolerance and give corresponding safety-guaranteed protocol in
this section for such exactness. Section VI combines the lower
bounds of voting validity under different failure cases, and the
vote dispersion threshold is proposed with the probabilistic
analysis. Section VII is for the optimization of consensus



protocols. Section VIII gives the conclusion of this paper and
discusses potential future work.

II. RELATED WORKS

The fault-tolerant distributed consensus problem was first
proposed in [21] and [22] by Lamport, Shostak and Pease.
They showed that to tolerate Byzantine fault without setup
assumptions (e.g., public key infrastructure) and digital sig-
natures, the total number of nodes N must be greater than
three times the number of the faulty nodes t, i.e., N > 3t.
In contrast, a crash fault requires only N > 2t. Since then,
the distributed consensus has been studied extensively under
different assumptions, e.g., synchronous and asynchronous
networks, shared memory and message-passing models [2].

Compared to classic binary consensus problems that only
consider binary inputs, the concept of multi-valued consensus
was proposed in [4], which showed how to build multi-valued
consensus from binary consensus. In [3], a strong consensus
with stricter output requirements (i.e., only inputs from non-
faulty nodes are legitimate) was further proposed. [3] indicated
that the strong consensus is not solvable if N ≤ mt, where m
is the size of the input domain. There were variants of strong
consensus that consider the physical meanings and application
values of the consensus output, such as in [23], [5], [6], [24]
and [25]. Nevertheless, these agreements cannot guarantee to
achieve the exact desired output value (e.g., the median value of
the input) but can only be close to it. As we seek the exactness
of distributed consensus (i.e., the voting validity), our analysis
and results differ from all the above literature.

Our voting validity aims to find the plurality of non-faulty
inputs as a means of preference aggregation. Therefore, it is
related to democratic elections, and there are few prior works
on consensus theory and social choice. In economic and game
theory, there are two main forms of election: social choice
function and social welfare function [26]. The difference is
that the former outputs one candidate as the winner, while the
latter outputs the ranking of the candidates. In [27], Chauhan
et al. first considered election in faulty distributed systems and
drew preliminary conclusions about social choice and social
welfare problems respectively, considering Byzantine faults.
Then considering the social welfare problem, Melnyk et al.
proposed in [28] a deterministic algorithm to solve rankings
under Pareto Validity. For the social choice problem, in [23],
Fitzi et al. proposed the concept of δ-differential consensus
that requires the number of occurrences (i.e., plurality) of any
other input value cannot exceed the plurality of the output
by δ. The result indicated that the δ-differential consensus is
impossible if n ≤ 3t or δ < t. Then in [29], the Byzantine
social choice problem is further investigated. Two relaxed
voting property (i.e., l-majority(plurality) and c-verified) is
proposed to generate a good-enough output close to the best
result, namely the majority of the input values. However, the
output of the proposed algorithm is still approximate rather than
exact. A recent work [8] discussed the importance of social
choice in blockchain research and illustrated the potential for
cross-fertilization between them.

III. NOTATIONS, MODELS AND DEFINITIONS

This section presents symbolic notations, network assump-
tions and communication models. Then we give several
frequently used definitions in the following sections.

A. Notations

There are in total N nodes in a distributed system. At most
t of all nodes are faulty, which refers to the tolerance of the
system, i.e., the maximum number of faulty nodes that enables
the system to work normally. We denote the actual number of
faulty nodes during the execution of the consensus algorithm
as f (f ≤ t). Others are called non-faulty nodes or good nodes.
A non-faulty node does not know the value of f but knows t
as a pre-determined global parameter.

The following notations are related to the voting scenario in
this paper. There is a subject s that requires all nodes to vote.
We call the input of a node i node preference and denote it as vi.
We use the calligraphy letter X to represent an option, which
acts as a set containing the same node preference inputted
by different nodes (e.g., there might be A,B, C, etc. in one
voting). The voting option domain V refers to a set containing
all options, i.e., X ∈ V. Note that V might be pre-determined
by the subject s or generated by all nodes’ inputs. The size of
V is denoted by |V| = m, indicating the number of options.

For a node i, we denote i→ A as a vote from node i who
supports option A, which will be broadcasted to other nodes.
Due to the distributed nature, the received messages of different
nodes may not be identical, so we use Xi to represent received
votes of X in node i. A ballot is a collection of the votes in
one execution of voting. We denote |Ai| = Ai as the number
of votes received by node i that support A. Note that if node i
is non-faulty, it may receive votes from both non-faulty nodes
and faulty nodes, so Ai = AGi +AFi, where AGi represents
the number of votes from non-faulty nodes and AFi denotes
the number of votes from faulty nodes.

For example, assume 7 nodes (one is a Byzantine node)
propose three candidates in a leadership election: Alice, Bob
and Carol. Three non-faulty voters support Alice, two support
Bob, one supports Carol, and the faulty node support Bob.
Assume Alice is A, Bob is B, and Carol is C, we have V =
{A,B, C} and m = 3. For a non-faulty node 1, it receives
two non-faulty votes and one faulty vote to Bob. In this case,
B1 = 3, BG1 = 2, BF1 = 1 (though node 1 does not know
what BG1 and BF1 are).

B. Models and Assumptions

1) Faulty Model: A node is faulty if it stops running
normally. This paper covers the analysis of both Crash Fault
and Byzantine Fault. A node with a crash fault abruptly stops
working without resuming. In contrast, a node with a Byzantine
fault can act arbitrarily, e.g., sending contradicting messages
to other nodes or simply remaining silent. Considering voting
scenarios, Byzantine nodes may also collude, bribe or lobby.
To consider the worst-case scenario, we assume there is a
strong adversary that controls all Byzantine nodes to maximally
prevent reaching consensus, including but not limited to



delaying messages, selective forwarding, etc. Since Byzantine
nodes may send different messages to different nodes, we
denote k

i→ A as a malicious node k sending A to node i.
Regarding the concern of potential manipulation in the

context of voting, we assume the node preferences of non-
faulty nodes are independent in the consensus process, e.g.,
they do not engage in collusion, bribery and lobbying. Note
that the possible manipulating acts of the malicious adversary
would not affect the consensus result as long as f ≤ t.

2) Network Assumption: Different network assumptions
may lead to different tolerance and protocol design. There
are three commonly agreed levels of network synchrony [2]:
synchronous, partially synchronous and asynchronous. The
Fischer-Lynch-Paterson (FLP) result [30] indicated that in
asynchronous networks, even if only one process fails, no
algorithm can guarantee that non-faulty processes reach the
consensus. Therefore, the discussions in this paper and proposed
protocols are mainly based on synchronous networks. As all
nodes under the synchronous network will receive the same
vote from a good node with a delay with upper bound δt, we
say (eventually) AGi = AG for all i.

3) Communication Model: If not specified, the communi-
cation model is a point-to-point model (such as in [22]). In
this case, a Byzantine node k can send k

i→ A to node i but
k

j→ B to node j to prevent reaching a consensus. To refine
the proposed algorithm in Section VII-B, a local broadcast
model [31] will be used. Under the local broadcast model, any
message is received identically by all the neighbors within the
network. This implies a faulty node k can only send k → A to
any other nodes (i.e., it cannot send different votes to different
nodes).

C. Definitions

Here we give several definitions frequently used in the
following tolerance analysis.

Definition III.1 (Voting Preference). We define Voting Prefer-
ence A ≻ B as more non-faulty nodes support option A than
B in one voting.

Note that the definition of voting preference focuses on inputs
of non-faulty nodes rather than all nodes. For the case of equal
votes from non-faulty nodes (e.g., AG = BG), we assume all
nodes have agreed on an established rule to choose the identical
one from the two tie options (i.e., ties are broken arbitrarily).
To simplify, we assume that non-faulty nodes choose B if
AG = BG. Mathematically, A ≻ B ⇐⇒ AG > BG.

The following definition constrains the behavior of non-faulty
nodes.

Definition III.2 (Integrity of Non-faulty Nodes). A non-faulty
node will not output A if it sees Bi ≥ Ai.

We then give the definition of voting validity as follows.

Definition III.3 (Voting Validity). If A ≻ X for any other
X ∈ V, then the output of each non-faulty node is A.

Since voting validity compares the number of support from
non-faulty nodes, the output must be the input of at least one
non-faulty node. This implies if a consensus algorithm satisfies
voting validity, it must satisfy the strong validity mentioned in
Section I.

Then consider the existence of more than two options
(i.e., m ≥ 3), among which the top 2 choices are A and
B respectively, and A ≻ B. To simplify the following analysis,
we denote a set of other options as C, where C = V\{A,B}.
Here \ is the operator of except. We also define the size of C
as C, where

C =
∑
X∈C
|X |. (1)

For consistency, A,B, C in the following sections follow the
above preferences and definitions, if not specified.

IV. DISTRIBUTED CONSENSUS WITH VOTING VALIDITY

In this section, we discuss the properties of distributed
consensus with the proposed voting validity. Since the crash
fault is a mild case of Byzantine fault, we will first discuss
the Byzantine fault case and then turn to crash fault. After
that, we give a practical BFT consensus protocol that achieves
voting validity.

A. Impossibility Results of Voting Validity

1) Byzantine Fault:

Theorem 1. [29] There is no Byzantine fault-tolerant
consensus algorithm that can guarantee the voting validity
when |V| = m ≥ 2 and t ≥ 1.

Proof. Since a strong consensus is impossible with arbitrary
inputs [3], voting validity is naturally impossible as it satisfies
strong validity.

Theorem 1 shows the impossibility of voting validity with
Byzantine fault when m ≥ 2, if no prior knowledge is given.
In contrast, we consider the existence of prior knowledge of
the distribution of non-faulty inputs in the following Lemma
2, which provides an impossibility theorem from a different
perspective.

Lemma 2. No consensus algorithm can achieve voting validity
given AG −BG ≤ t considering Byzantine fault.

Proof. To prove it by contradiction, we assume there is an
algorithm A that achieves voting validity in AG−BG ≤ t. Since
a consensus algorithm also satisfies the agreement property, all
non-faulty nodes should consent on A as AG > BG. However,
there is a possibility that the number of Byzantine nodes f = t,
and all Byzantine nodes deliberately vote for B instead. As
a result Bi = BG +BFi for all non-faulty nodes. Recall that
AG −BG ≤ t, so BG = Bi −BFi ≥ AG − t. As in this case
BFi = f = t and Ai = AG, all non-faulty nodes see Bi ≥ Ai.
Recall the Integrity property of non-faulty nodes in Definition
III.2, non-faulty nodes will not output A as consensus result, so
we derive a contradiction, and the algorithm A cannot exist.



It can be shown that when there is prior knowledge of
input values, the impossibility result is relaxed, i.e., a large
enough gap between AG and BG may be possible for the
voting validity. The following Theorem 3 considers multiple
options in one voting.

Theorem 3. No consensus algorithm can achieve voting
validity given N ≤ 2t + 2BG + CG considering Byzantine
fault.

Proof. From a global perspective, the total number of nodes
N equals the number of Byzantine Nodes (f ) plus the number
of non-faulty nodes that support different options. Note that
f ≤ t, we have

N = AG +BG + CG + f ≤ AG +BG + CG + t. (2)

Substitute AG in AG −BG ≤ t in Lemma 2 using Inequality
(2), we can derive N − BG − CG − t ≤ AG ≤ BG + t, so
N ≤ 2t+ 2BG + CG.

Here we compare Theorem 3 with results of strong validity
in [3]. Recall [3], consensus with strong validity is solvable
only if N > mt, where m is the size of the input domain.
The above result is derived based on the indistinguishability of
Byzantine inputs and non-faulty inputs, and it did not take a
priori of the non-faulty inputs into consideration. If we consider
input distribution (i.e., AG and BG) in the context of strong
consensus instead, we have the following property:

Property 1. If AG > t, then the strong validity holds.

Proof. We prove it by contradiction. Assume the strong validity
cannot be reached given AG > t. In such case, the output must
be an input of faulty nodes only, and there are f > AG faulty
nodes inputted that value. However, this implies f > t, which
is impossible.

The above property shows the prior knowledge of AG can
relax the impossibility result of strong validity: given AG > t,
the strong validity is achievable even if N < mt. On the other
hand, our voting validity is achievable only if AG −BG > t,
so naturally AG > BG + t > t. This implies if voting validity
holds, strong validity also holds.

2) Crash Fault: In a distributed system with crash fault only,
although there are no malicious behaviors of Byzantine nodes,
crashes can happen at any time in the round of execution. For
example, a node may crash after it broadcasts an input. So
counter-intuitively, Xi ̸= XG can happen with crash fault.

Lemma 4. No consensus algorithm can achieve voting validity
given AG −BG ≤ t considering crash fault.

Proof. Given those non-faulty nodes are pre-determined and
any crash node can suddenly crash, we can have Xi ̸= XG

since a node may receive votes from a crash node. In the worst
case that all t faulty nodes vote for X crash in one execution
of the voting, |Xi −XG| = t. Therefore, if such an algorithm
exists, there is a possibility that Ai −Bi = AG − (BG + t) ≤
0 =⇒ Bi ≥ Ai for all non-faulty nodes. Recall Definition
III.2, non-faulty nodes will not output A as consensus result. So

there is a contradiction, and we conclude such a CFT algorithm
does not exist.

Theorem 5. No consensus algorithm can achieve voting
validity given N ≤ 2t+ 2BG + CG considering crash fault.

Proof. The proof is the same as in Theorem 3.

For voting validity, BFT and CFT give identical impossibility
results. The hidden reason is that in the limit, Byzantine nodes
and crash nodes “sabotage” consensus (whether intentional or
not) in the same way under the constraint of voting validity,
i.e., they vote for the second-highest option. The Byzantine
behaviors that send different votes to different nodes do not
help to narrow the gap in votes. However, such Byzantine
behaviors do affect the termination and agreement property of
a BFT protocol, and this will soon be revealed in the following
protocol design (i.e., there is a 3t in Inequality (3)).

B. BFT Voting Protocol

In this section, we design practical consensus protocols for
voting validity. We only demonstrate the BFT protocol here due
to space limitations, as BFT is a more general case than CFT.
The proposed Algorithm 1 achieves termination, agreement
and voting validity in a synchronous system given:

N > max{3t, 2t+ 2BG + CG}. (3)

1) The Protocol Design: There are two fundamental types
of BFT protocols: Byzantine Agreement (BA) and Byzantine
Broadcast (BB). In BA protocols, each node has an input value;
while in BB, there is only one input value in a distinguished
node (i.e., sender) who is responsible for sending the input
to all nodes. A reliable BB protocol requires all non-faulty
nodes to output the same value if the distinguished sender is
non-faulty. A leader election mechanism exists if the sender
is Byzantine. We believe in the voting scenario, it is more
reasonable to have a sender who first broadcasts a subject that
needs to be voted on, and then all nodes vote on it.

Therefore, we design a four-phase protocol, and the first
phase uses a BB protocol (e.g., can be [32]) to reliably broadcast
the subject in Line 6, i.e., guarantee the same subject in every
non-faulty node. Then we propose a BA protocol to achieve
voting validity in Line 7-17 of Algorithm 1. Given the above,
we assign the role of all nodes as follows: one is called the
Speaker who is responsible for collecting and broadcasting the
subject s (i.e., the issue that needs to be voted on), and the
others are members. After receiving the subject s from the
speaker in Phase 1, all nodes broadcast their preferences about
s in Phase 2. Note here the node preference vi in Line 8 can be
either one of an option contained in the subject or an arbitrary
number. Voting option domain Vi in node i then keeps track
of all possible options and stores the corresponding valid votes.
Also, note that A in the protocol may not mean the same
option in the perspective of each node, so when broadcasting
its local highest-voted option, the node broadcasts its actual
value.



Algorithm 1: BFT Voting Protocol

/* Utilities */
1 Function Sort(Vi):
2 Ai ← Highest-voted option;
3 Bi ← Second-highest-voted option;
4 Ci ← Vi\{Ai,Bi};
5 return Ai, Bi, Ci;
/* Main Protocol */
/* For Speaker */
▷ Phase 1: Prepare Phase

6 ByzantineBroadcast(Subject s);
/* For All Nodes */
▷ Phase 2: Vote Phase
/* Broadcast Node Preferences */

7 if Output subject s in Byzantine Broadcast then
8 Node Preference: vi;
9 Broadcast(s, i→ vi);

▷ Phase 3: Propose Phase
/* Receive and Sort Ballots */

10 if receiving at least t+ 1 votes of s then
11 Wait for 2δt to receive all votes;
12 Vi ← All votes received;
13 Ai, Bi, Ci = Sort(Vi);

/* Propose Option; For BFT, δP = 0 */
14 if Ai −Bi > δP then
15 Broadcast(propose Ai);

▷ Phase 4: Decide Phase
16 if receiving at least N − t propose Ai then
17 output Ai;

In Algorithm 1, the BYZANTINEBROADCAST method refers
to a generic BB protocol for providing the same subject s to all
non-faulty nodes, e.g., [32]. By comparison, the BROADCAST
method indicates sending messages to all nodes, which follows
the point-to-point communication model defined in Section III.
There is also a criterion for locally deciding which option to
propose after receiving all valid votes. For any protocol in this
paper, we define δP as the protocol’s local judgment condition,
i.e., a non-faulty node proposes Ai when Ai −Bi > δP . Note
that this condition may vary by protocol, and in Algorithm
1, δP = 0. We will discuss the choice of the local judgment
condition later in Section V.

2) Correctness of the Protocol: The lower bound N >
3t of BB/BA [22] in the protocol’s tolerance lower bound
(Inequality (3)) mainly serves for the protocol’s termination
and agreement properties, and ensures reliable broadcast. Given
that all non-faulty nodes have the same subject s, we now
prove the correctness of Algorithm 1 as illustrated in Theorem
9. A consensus algorithm with voting validity is correct if
it satisfies termination, agreement and voting validity. The
following Lemma 6 (termination), Lemma 7 (agreement) and
Lemma 8 (voting validity) prove the correctness of the protocol

(Theorem 9).
Before presenting the proof, we provide the following

property for the proof of Lemma 6 and Lemma 8.

Property 2. If AG−BG > t, then Ai > Bi for all non-faulty
nodes.

Proof. Recall a non-faulty node receives number of votes Ai =
AG +AFi, Bi = BG +BFi, we have

Ai −Bi = AG −BG +AFi −BFi

> t+AFi −BFi.
(4)

BFT voting follows 0 ≤ AFi ≤ t, 0 ≤ BFi ≤ t and 0 ≤
AFi + BFi ≤ t, so −t ≤ AFi − BFi ≤ t for ∀i. Then from
(4), we have Ai −Bi > t+ (−t) = 0. Thus Ai > Bi.

Lemma 6 (Termination). BFT Algorithm 1 achieves termina-
tion given N > max{3t, 2t+ 2BG + CG}.

Proof. Termination means every non-faulty node can output
a value in a finite time if a non-faulty node proposes a value
(i.e., the speaker is non-faulty). Since there are at least N − t
non-faulty nodes, Algorithm 1 can receive ≥ N − t votes in
Line 10 and broadcast propose Ai in Line 15. In Property 2,
we have shown if AG − BG > t, Ai > Bi for all non-faulty
nodes. Note that when substitute AG in AG −BG > t using
Inequality (2), we have

N > 2t+ 2BG + CG ⇒ AG −BG > t. (5)

Therefore, all non-faulty nodes will propose A according to the
integrity property in Line 15, which is exactly N − t propose
messages. Given the above, the condition in Line 16 is satisfied,
and thus termination holds.

Lemma 7 (Agreement). BFT Algorithm 1 achieves agreement
given N > max{3t, 2t+ 2BG + CG}.

Proof. Since termination property is proved in Lemma 6, the
proof of agreement property is equivalent to prove: if there are
output Ai and Aj for any pair of two non-faulty nodes i and
j, then Ai = Aj . To prove it by contradiction, if Ai ̸= Aj

holds, there are at least N − t nodes broadcasting Ai and Aj

respectively. Since 2(N − t) − N = N − 2t > t, there is a
non-faulty overlap that broadcast both propose Ai and propose
Aj , which leads to a contradiction. Thus agreement holds.

Lemma 8 (Voting Validity). BFT Algorithm 1 achieves voting
validity given N > 2t+ 2BG + CG.

Proof. Since N > 2t + 2BG + CG ⇒ AG − BG > t and
the result from Property 2, all non-faulty nodes see Ai > Bi,
propose A in Line 15 of Algorithm 1 and finally output A. As
A is the highest-voted option of non-faulty nodes, the output
satisfies the voting validity.

Theorem 9. BFT Algorithm 1 achieves termination, agreement
and voting validity given N > max{3t, 2t+ 2BG + CG}.



V. SAFETY-GUARANTEED PROTOCOL

Algorithm 1 can output consensus results with voting validity
in synchronous distributed systems. However, if N < 2t +
2BG + CG, the small gap between AG and BG may enable
Byzantine nodes to vote for the second-voted option of non-
faulty nodes deliberately and make Bi > Ai for all non-faulty
nodes. Thus by the integrity definition, the voting validity
cannot be guaranteed, and the exactness of the pursuit is also
lost.

This case might be unacceptable in some safety-critical
scenarios, especially if BG is small, and all Byzantine nodes
vote B to subvert the voting preference of good nodes. Given
the above, we seek to improve the protocol and guarantee the
voting validity for arbitrary votes from the non-faulty nodes
as long as there is an output. This ensures exactness. We
name such protocols Safety-Guaranteed protocols and the
corresponding tolerance as Safety-critical Tolerance (SCT).
We mention here that there is a similar setting and method
in quittable consensus [33] for failure detection. However, it
may output Q (for quit) and violates the voting validity, so
it cannot be applied in this case. By contrast, the proposed
safety-guaranteed protocol guarantees voting validity, but may
not meet the termination as a trade-off.

Definition V.1 (Safety-Guaranteed protocol). Denote the output
of all non-faulty nodes as vo. We say a consensus protocol A
with voting validity is a safety-guaranteed protocol if

A ≻ ∀ X
X ̸=A

⇒ vo ∈ {A, ∅},

where ∅ is the state when the protocol does not terminate (e.g.,
non-faulty nodes fail to decide on the value in finite time). The
safety-guaranteed protocol guarantees the output must satisfy
the voting validity if the output is not an empty set.

A. Properties of Safety-Guaranteed Protocols

Here we demonstrate the properties of a safety-guaranteed
protocol. Recall the definition of local judgment condition
δP that Ai − Bi > δP . The termination property requires
this condition to hold for all non-faulty nodes. The following
Property 3 indicates the relationship between AG − BG and
the local judgment condition δP .

Property 3. If AG − BG > δP + t, then Ai − Bi > δP for
all non-faulty nodes.

Proof. Ai − Bi = (AG − BG) + (AFi − BFi) > (AG −
BG)min + (AFi −BFi)min > δP + t+ (−t) = δP .

We then give an impossibility result of a safety-guaranteed
protocol regarding its local judgment condition.

Theorem 10. There is no safety-guaranteed protocol with a
local judgment condition δP < t considering Byzantine fault.

Proof. We prove this theorem by contradiction with indis-
tinguishability. Assume a safety-guaranteed protocol A that
outputs A with voting validity, and its local judgment condition
δP < t. Assume the number of votes received by a non-faulty

node i satisfies Ai − Bi = t > δP . Note that the local view
of Ai − Bi = t may result from different vote distributions
of non-faulty nodes and various strategies of the Byzantine
adversary, and we give two cases here. In case 1, AG > BG

and t − (AG − BG) Byzantine nodes vote for A. In this
case, the output satisfies the voting validity is A. In case
2, AG = BG, but all Byzantine nodes vote for A. Since ties
are broken arbitrarily, the output satisfies the voting validity
can be B. Given the same local view, a non-faulty node cannot
distinguish the above two cases, and the output of either A or
B is untenable. Therefore, the protocol A does not exist.

Property 3 and Theorem 10 indicate the necessity of

AG −BG > δP + t ≥ 2t (6)

for safety-guaranteed protocols. The Property 4 below indicates
the global condition to satisfy the local judgment condition.

Property 4. If N > 3t + 2BG + CG, then Ai − Bi > t for
all non-faulty nodes.

Proof. Substitute N using Inequality (2), we have AG +BG +
CG+t > 3t+2BG+CG, thus we have AG−BG > 2t. Then for
all non-faulty nodes i, Ai−Bi = (AG−BG)+(AFi−BFi) >
2t + AFi − BFi. So Ai − Bi > 2t + (AFi − BFi)min =
2t+ (−t) = t.

B. The Protocol

Considering safety-critical scenarios, we present a safety-
guaranteed protocol in Algorithm 2 with voting validity in a
synchronous system given:

N > 3t+ 2BG + CG. (7)

Algorithm 2: Safety-Guaranteed BFT Voting Protocol
(Change Phase 4 in Algorithm 1)

▷ Phase 3: Propose Phase
/* Receive and Sort Ballots */

16 if receiving at least t+ 1 votes of s then
17 Wait for 2δt to receive all votes;
18 Vi ← All votes received;
19 Ai, Bi, Ci = Sort(Vi);

/* Propose Option; For SCT, δP = t */
20 if Ai −Bi > δP then
21 Broadcast(propose Ai);

▷ Phase 4: Decide Phase
22 if receiving at least t+ 1 propose Ai then
23 output Ai;

We do not demonstrate the full algorithm here, as Phase 1-2
between Algorithm 1 and 2 are identical. The differences are
the alteration in the local judgment condition to δP = t, and
the change of the required number of propose Ai in the decide
phase as shown above. Note that the number of propose in
Line 22 drops to t+1 because Ai−Bi > t→ AG > BG, i.e.,



one broadcast from a non-faulty node can guarantee the voting
validity. Theorem 11 proves the correctness of this protocol.

Theorem 11. The safety-guaranteed consensus protocol in
Algorithm 2 achieves termination, agreement and voting validity
given N > 3t+ 2BG + CG considering Byzantine fault.

Proof. The proof of termination property is similar to Lemma
6. As Property 4 indicates, all N − f non-faulty nodes have
Ai −Bi > t given N > 3t+ 2BG + CG, so N − t ≤ N − f
propose Ai must be satisfied, and non-faulty nodes are always
output Ai in finite time. Thus termination holds. For agreement,
even if all f ≤ t Byzantine nodes propose another option Aj ,
the number of proposed Aj cannot exceed t, so the agreement
also holds. For voting validity, since N > 3t+ 2BG + CG ⇒
AG − BG > 2t in Property 4, the output A always satisfies
the voting validity.

To show the proposed Algorithm 2 is a safety-guaranteed
protocol, we show the following property.

Property 5. If N ≤ 3t+ 2BG + CG, then vo ∈ {A, ∅}.

Proof. We can prove it by contradiction and assume there is
an output X /∈ {A, ∅} when N ≤ 3t+ 2BG +CG. According
to the definition, XG ≤ AG. For a node i, Xi ≤ XG + t, so
Xi−Ai ≤ t in any non-faulty nodes. Therefore, no non-faulty
node broadcasts propose Xi in Line 15 of Algorithm 2, and
the consensus cannot terminate with the output X .

Note that though the voting validity can always hold
in Algorithm 1, the protocol may fail to terminate to the
majority/plurality value in such a safety-critical case. Recall
the results from the Byzantine fault in Section IV-A1, there is
a trade-off in searching for exactness in consensus problems.
Given the arbitrary input distribution of non-faulty nodes,
termination and voting validity can not hold simultaneously
in one protocol. Nevertheless, the safety-guaranteed protocol
has its strength in some scenarios. In practice, the distributed
system can conduct multiple rounds of votes to circumvent the
situation of failing to terminate. Nodes can adjust their voting
preferences (e.g., reconsider A and not vote for options in
C) to enlarge AG −BG and allow the consensus to terminate
successfully.

VI. RESULT DISCUSSION

In this section, we summarize the results of Section IV
and Section V using one inequality, and further introduce the
concept of vote dispersion tolerance. We then discuss the voting
validity from a probability point of view, and demonstrate the
impossibility results of voting validity from the perspective of
system entropy.

A. Vote Dispersion Tolerance

Recall Theorem 3 and Theorem 5, a protocol that achieves
voting validity with both BFT and CFT should satisfy N >
2t + 2BG + CG, which yields N/2 > t + (2BG + CG) /2.
Meanwhile, we show in Property 4 that N > 3t+2Bg +Cg is
necessary for safety-guaranteed protocols, which yields N/3 >

t+(2BG + CG) /3. As the inequalities of these three tolerance
cases (i.e., BFT, CFT and SCT) have similar structures, we
combine them together and present the following theorem.

Theorem 12. The voting validity can hold if

N

K
> t+ tvd, (8)

where tvd = (2BG +CG)/K. For CFT and BFT, K = 2, and
for SCT K = 3.

As t in the right side is widely recognized as the fault
tolerance of a system where at most f ≤ t nodes can be faulty
to reach a consensus, the remaining tvd = (2BG + CG)/K
is not explicitly defined. We call this as term vote dispersion
tolerance. To distinguish the traditional tolerance from ours,
we call the right half of the inequality system tolerance, i.e.,
cannot exceed N/K considering both fault tolerance and vote
dispersion tolerance.

Note that there is a tradeoff between fault tolerance and vote
dispersion tolerance: when N remains the same, the larger
the fault tolerance, the smaller the vote dispersion tolerance.
Intuitively, in a Byzantine Broadcast problem [22] where all
nodes agree on a message from a leader, there is no vote
dispersion tolerance as there is a unique A to be agreed.
On the other hand, when the votes for different options are
gradually dispersed, the vote dispersion tolerance becomes
higher, thus inevitably sacrificing the fault tolerance. What’s
more, the weights of BG and CG are not identical, i.e., the
number of the second-highest vote can increase more on vote
dispersion tolerance, whereas other options have less impact.
Non-faulty nodes can therefore utilize this difference to improve
the consensus success rate, e.g., when a non-faulty node is
struggling between two options, vote for the third option.

B. Voting Validity: A Probability Point of View

In section VI-A, the vote dispersion threshold is proposed
and regarded as a trade-off with the fault tolerance, i.e., if
the system is required to tolerate more faulty nodes, it can
only tolerate fewer votes to the non-highest options that the
non-faulty nodes voted for. In practical application scenarios,
without loss of generality, we can assume a priori of node
preferences for different options, i.e., good nodes vote for
different options following a specific distribution. Therefore,
we can use this prior knowledge to characterize the possible
vote dispersion of the system and to evaluate the fault tolerance
ability of the system. In particular, the results also show that
voting validity cannot always be guaranteed with Byzantine
nodes as a way to demonstrate the necessity of SCT proposed
in Section V.

We assume that the preferences of non-faulty nodes for
different options obey a multinomial distribution, with pi
denoting the probability of a non-faulty node’s votes for option
i. Additionally, non-faulty nodes are assumed to be independent
in voting. We suggest NG as the number of non-faulty nodes,
Xi as the random variable of the number of non-faulty nodes
that support option i. Let AG and BG be the random variables



of the number of highest and second-highest votes from non-
faulty nodes. According to the probability density function
(p.d.f) of the multinomial distribution:

P
(
X1 = x1, X2 = x2, . . . , X|V| = x|V|

)
=

n!

x1!x2! · · ·x|V|!
px1
1 px2

2 · · · p
x|V|
|V| .

(9)

Note here if
∑|V|

i=1 xi ̸= NG, the corresponding probability
will be 0, due to the property of the multinomial distribution.
The cumulative distribution function (c.d.f) of multinomial
distribution can be obtained.

Pr(X1 ≤ x1, ..., X|V| ≤ x|V|)

=

x1∑
t1=0

...

x|V|∑
t|V|=0

Pr(X1 = t1, ..., X|V| = t|V|).
(10)

According to Theorem 12, we consider BFT and K = 2.
The probability satisfies Theorem 12 is:

Pr (AG −BG > t)

=

NG∑
aG=t+1

Pr (AG = aG) Pr (BG ⩽ aG − t− 1 |AG = aG ),

(11)

where Pr(AG = aG) can be obtained as

Pr (AG = aG) = Pr (AG ⩽ aG)− Pr (AG ⩽ aG − 1)

= Pr
(
x1 ⩽ aG, ..., x|V| ⩽ aG

)
− Pr

(
x1 ⩽ aG−1, ..., x|V| ⩽ aG−1

)
.

(12)

Since the option with the most votes AG can be all possible
options, we have

Pr (BG ⩽ aG − t− 1 |AG = aG )

=
∑
i∈V

Pr

((
Xi = aG ∩

(
∩

j∈V/i
Xj ⩽ aG − t− 1

))
=

∑
i∈V

Pr(X1 ⩽ aG−t−1, ..., Xi ⩽ aG, ..., X|V| ≤aG−t−1)

− Pr
(
X1 ⩽ aG−t−1, ..., Xi ⩽ aG−1, ..., X|V| ⩽aG−t−1

)
.

(13)

Based on p.d.f and c.d.f of multinomial distribution, we yield
Pr (AG −BG > t) combining (12) and (13).

We give a simulation result of Pr (AG −BG > t) given
the maximum number of Byzantine nodes t under different
input distributions. Particularly, we let the number of non-
faulty nodes NG = 10, and take four specific multinomial
distribution D1 ∼ D4 (shown in Figure 1(a)) as examples to
demonstrate how vote dispersion weakens faulty tolerance. The
node preference distribution {pi} shown in Figure 1(a) implies
an initial system entropy H0 (multiplied by the number of
good nodes), which is shown in the legend of Figure 1. Based
on Equation (11), Figure 1(b) demonstrates the probability of
system tolerating different maximum numbers of faulty nodes t

when guaranteeing voting validity. Note that when t ≥ 5 given
NG = 10, the consensus protocol would fail since N ≤ 3t,
but it is not shown in the figure.

Additionally, Figure 1(c) shows the system entropy of
achieving voting validity Hs, which is obtained by Hs =
−(1−pv)log(1−pv)−pvlog(pv) where pv refers to Pr(AG−
BG > f) when f ̸= 0 and pv = 1 when f = 0. Note here
when f = 0, voting validity is guaranteed; thus, the probability
of achieving voting validity is 1. Figure 1(c) shows that when
f = 0, achieving voting validity is deterministic and Hs = 0.
When Byzantine nodes are introduced, Hs increases sharply.
Then Hs decreases with larger f , inclining not to achieve
the voting validity deterministically. Additionally, the result
indicates that for a fixed f , the greater the initial system entropy
H0 (determined by the distribution of the inputs), the greater
the interference from the Byzantine nodes, i.e., smaller Hs.

The above probabilistic analysis also indicates the impos-
sibility result of voting validity from another perspective.
Meanwhile, the importance of SCT is also demonstrated, where
the output is 100% guaranteed to have voting validity.

VII. PROTOCOL REFINEMENT

In this section, we first optimize the proposed protocol for
optimistic responsiveness in Section IV-A, then implement
the local broadcast model in wireless networks. The analysis
shows that the former increases the efficiency of the protocol’s
operation under synchronous networks, while the latter leads
to an increase in fault tolerance ability. Here we choose BFT
and Algorithm 1 for optimization, while CFT and SCT can be
easily optimized similarly to get the above results.

A. Incremental Threshold Protocol

From the perspective of protocol design, the algorithms
proposed in this paper differ from other BA/BB protocols
in terms of the node’s local judgment condition. We focus
on AG − BG caused by multiple input values and aim to
ensure AG−BG exceeds a threshold. In contrast, other BA/BB
protocols focus on only one option and track whether the
number of messages reaches a certain limit (i.e., quorum).
Once reaching this limit, a protocol can perform the next
operation, referred to as optimistic responsiveness [34]. For
example, in PBFT [12], nodes wait for N − t valid messages
from other nodes to enter the next phase.

Luckily, these two design approaches are not opposites and
can be merged. The key to reaching optimistic responsiveness
is to focus on x votes that a node has not received due to the
delay δt in synchronous network assumption. To ensure finally
Ai −Bi > δP and propose Ai, one should consider the worst
case that all x votes that are not yet received support local
second-highest-voted option Bi. This yields Ai−(Bi+x) > δP ,
where x = N −Ai −Bi − Ci. So we have

Ai >
N − Ci + δP

2
. (14)

The above derivation implies if votes received by a non-
faulty node at a time satisfy Inequality (14), the node is safe
to propose Ai. This conclusion gives us a new perspective:
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Fig. 1. Simulation from the Probability Point of View

when receiving votes from other nodes, this inequality will
eventually hold as Ai and Ci are monotonically increasing.
Therefore, the nodes do not need to collect all the votes before
finally proposing their local maximum. This leads to “wait for
2δt to receive all votes” in Line 11 of Algorithm 1 unnecessary,
thus speeding up the operation of the protocol and increasing
the efficiency. This feature also allows the protocol to be
used in partially synchronous networks, as the protocol works
regardless of what the actual δt is. Algorithm 3 below shows
the change compared with Algorithm 1 to reach the optimistic
responsiveness property, where only Phase 3 is changed. Note
that Algorithm 3 is for BFT, so δP = 0; the SCT protocol can
also be easily modified using δP = t.

Algorithm 3: BFT Voting Protocol with Incremental
Threshold (Change Phase 3 in Algorithm 1)

▷ Phase 3: Propose Phase
/* Receive and Sort Ballots */

10 while receiving at least t+ 1 votes of s do
11 Vi ← Votes received;
12 Ai, Bi, Ci = Sort(Vi);

/* Propose Option;For BFT,δP = 0 */
/* Optimistic Responsiveness */

13 if Ai >
N−Ci

2 then
14 Broadcast(propose Ai);
15 Break;

We give an example of how such an incremental threshold
differs from the original design. Assume there is a total of 10
nodes, and {0, 0, 1, 0, 0, 0, 2, 3, 0, 1} are received successively
by a non-faulty node in a protocol run. According to Inequality
(14), Ai > (N −Ci)/2 is already satisfied when receiving the
seventh “2”, so the node can immediately propose “0”. The
incremental threshold optimizes the protocol’s speed as the
correct decision is made after receiving only 7 votes, rather
than 10 votes.

B. Consensus in Wireless Broadcast Networks

As is well known, the inherent broadcast nature of wireless
networks gives Byzantine fault-tolerant systems a higher degree

of fault tolerance ability as a Byzantine node can be restricted to
send different messages to different nodes [35]. This property
can enhance the fault tolerance of existing protocols under
wireless communication scenarios, e.g., multi-agent systems
such as UAV swarms and vehicle clusters.

We propose in Algorithm 4 below a BFT protocol that
achieves voting validity in a synchronous system given

N > 2t+ 2BG + CG. (15)

In Algorithm 4, the function BROADCAST implies the Local
Broadcast Model as defined in Section III.

Algorithm 4: BFT Voting Protocol with Local Broad-
cast Model (Change Phase 1 and 2 in Algorithm 1)

/* For Speaker ONLY */
▷ Phase 1: Prepare Phase

1 Broadcast(Subject s);
/* For All Nodes */
▷ Phase 2: Vote Phase
/* Local Broadcast Perferences */

2 if receiving subject s then
3 Node Preference: vi;
4 Broadcast(m, i→ vi);

Property 6. [36] Assume there are two subjects s and s′. All
non-faulty nodes will not agree on both s and s′ given N > 2t
with Local Broadcast Model and complete communication
graph.

Proof. The property is a degraded version of the conclusion in
[36]. Here we give simple proof from the quorum point of view.
By means of contradiction, assume both s and s′ are agreed,
and there are N − t votes from the distributed system that
support s and s′ respectively, to ensure the termination property.
So there are in total of 2(N − t) − N = N − 2t > 0 nodes
who vote for both s and s′. However, this is impossible with
the Local Broadcast Model, as a node cannot send different
messages to different nodes. Thus, this assumption leads to a
contradiction.



The proof of correctness is analog to Theorem 9 but should
consider Property 6, and we omit the proof here. Compared to
Algorithm 1, the Byzantine Broadcast in Line 6 of Algorithm
1 is no longer needed. In addition, the threshold in Algorithm
4 no longer requires N > 3t, thus increasing the protocol’s
fault tolerance ability.

VIII. CONCLUSION

In this paper, we considered the multi-valued consensus
problem with exactness. We define voting validity as the
output being the exact plurality of non-faulty inputs and
present the tolerance lower bound to achieve it. This study also
indicates several impossibility results and gives practical BFT
consensus protocols that satisfy the voting validity. Our result
provides a new perspective of tolerance which distinguishes
fault tolerance and vote dispersion tolerance. In addition,
two protocol refinement methods are introduced to lower the
threshold and improve the efficiency.

Further work can be done to discover the exactness of the
output in other variants of validity, and explore voting validity
to multi-dimensional consensus [25]. From the application
perspective, the proposed protocols are single-shot consensus
algorithms, thus not yet directly applicable in some distributed
scenarios. Therefore, future designs can focus on designing
more resilient and efficient protocols for voting in faulty
distributed systems.
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