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Abstract 10 

Strain localization in soils causes the failure of slopes and foundations. Shear strength 11 

is an important factor that affects strain localization in soils. It is well known that the 12 

shear strength of natural clay is highly anisotropic due to the internal soil structure. An 13 

anisotropic failure criterion for natural clay is presented in which an anisotropic 14 

variable is used to describe the relative orientation between the stress directions and 15 

soil fabric. The failure criterion is employed in a Drucker–Prager model that considers 16 

the strain-softening of natural clay. The effect of anisotropic strength on strain 17 

localization in clay is analyzed by two examples, including an undrained slope 18 

stability analysis and a simulation of a hollow cylinder test of Boom clay. It is found 19 

that the shear strength anisotropy affects both the strain localization pattern and factor 20 

of safety for the undrained slope. Simulation of the tests on Boom clay shows that the 21 

model with the anisotropic yield criterion yields an eye-shaped strain localization 22 

pattern that cannot be obtained by the model with the isotropic yield criterion.  23 

Keywords: Anisotropic strength, Natural clay, Strain localization, Drucker–Prager 24 

(DP) model, Slope stability, Boom clay 25 

1 Introduction 26 

Strain localization, such as shear band development, causes the failure of slopes and 27 

foundations. Strain localization is affected by many factors [62, 40, 51]. Among them, 28 

the shear strength is one of the most important. Natural clays always have an 29 

anisotropic internal structure or fabric (e.g., particle orientation and void space 30 

distribution) that is caused by compaction or gravity [61, 54], which results in 31 

inherent anisotropy. This makes the shear strength of natural clay dependent on the 32 

loading direction [39] and the degree of saturation [30, 31]. Another kind of 33 
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anisotropy is caused by loading history, called stress-induced anisotropy or induced 34 

anisotropy. The inherent anisotropy is addressed in this paper. Existing research has 35 

shown that the location of the slip surfaces and the factor of safety of a clay slope are 36 

significantly affected by strength anisotropy [55]. A significantly lower factor of 37 

safety will be obtained when strength anisotropy is considered. Furthermore, strain 38 

localization in Boom clay due to excavation is found to be influenced by strength 39 

anisotropy [20].  40 

An anisotropic model is thus crucial for constitutive modelling in clays. The key 41 

feature of the anisotropic model is to use an anisotropic yield criterion for the 42 

modelling of inherent anisotropy and to incorporate a kinematic hardening law for the 43 

modelling of induced anisotropy [66]. Another attractive alternative to the kinematic 44 

hardening method is the micromechanics approach [67, 68, 66]. Rotated yield 45 

surfaces have been widely used in modelling the anisotropic behaviour of clay [2, 12, 46 

13, 35, 63, 64, 69]. This approach is effective for modelling the anisotropy caused by 47 

the previous loading history. The evolution of anisotropy can be easily considered in 48 

the modelling framework. However, when the initial effective stress state is isotropic, 49 

the soil fabric is typically assumed to be isotropic as well, which may not be 50 

reasonable for natural clay. 51 

There have been several methods where inherent anisotropy was incorporated 52 

into the constitutive description [19, 53, 72]. One of the most important ways is to 53 

construct anisotropic models based on the existing isotropic criteria, such as the von 54 

Mises criterion [29], the Mohr–Coulomb criterion [48], the Cam-Clay model [45] and 55 

the modified Cam-Clay model [11]. 56 

To model the inherent anisotropy of natural clays, Casagrande and Carillo [8] 57 

presented an expression for the anisotropic undrained shear strength of clay, in which 58 

the direction of the major principal stress is needed. While this expression has been 59 

validated by the test results of some soils, such as Canadian Welland clay [43], it can 60 

only be used when the bedding plane is horizontal. Furthermore, Grimstad et al. [28] 61 

proposed an anisotropic Tresca model for describing the undrained response of clays, 62 

i.e., NGI-ADP. Krabbenhøft et al. [37] developed the AUS model following the works 63 

of Grimstad et al. [28]. This model includes three undrained shear strength parameters 64 

obtained by three sets of tests, including triaxial extension, triaxial compression, and 65 

simple shear. However, all these tests must be performed on a soil sample with a 66 

horizontal bedding plane. The model parameters will have to be adjusted when the 67 

bedding plane orientation is not horizontal in a real application. An anisotropic 68 

modified Cam-Clay model was proposed to describe the anisotropy of rock, which 69 

involves the microstructure tensor [53, 6, 72, 73]. It is denoted by a second-order 70 

tensor, which is the tensor product of the unit normal vector to the bedding plane and 71 
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itself. Methods using fabric tensors have also been developed to model the strength 72 

anisotropy of soils. In these methods, joint invariants of the stress tensor and fabric 73 

tensor are needed in the formulations [14, 49, 46]. For instance, Gao et al. [22] 74 

developed an anisotropic model for soils based on the works of Yao et al. [65] and 75 

Dafalias et al. [14]. In this model, an anisotropic variable that describes the relative 76 

orientation between the loading direction and the material fabric is introduced. This 77 

model has been used for both soils and rocks.  78 

Some of the models have been used in modelling strain localization in clay. The 79 

NGI-ADPSoft model based on NGI-ADP, which takes into account the strain-80 

softening behaviour of clays, has been used to analyze a full-scale railway 81 

embankment built on a soft clay deposit [15]. Based on the method of Pietruszczak 82 

and Mroz [49], Tang et al. [59] proposed a failure criterion in the form of 83 

Casagrande’s expression [8] to present an anisotropic DP model and conducted a 84 

simulation of strain localization in an undrained slope of clay. However, the failure 85 

criterion in this study lacks variety and is not applicable. In Belgium, Switzerland and 86 

France, Boom clay, Opalinus clay and Callovo-Oxfordian clay are candidate host 87 

rocks for the deep geological disposal of radioactive waste. Strain localization in these 88 

clays has been studied [20, 5, 47, 44]. In the study of Mánica et al. [44], a four-89 

parameter complex anisotropic failure criterion proposed by Conesa et al. [10] using a 90 

curve-fitting approach was used. However, none of these studies attempts to construct 91 

a “complete” anisotropic constitutive model but dynamically updates the anisotropic 92 

cohesion and calculates the direction of the major principal stress in nonlinear 93 

incremental iterative calculations. In other words, the gradient of the yield function of 94 

the constitutive model does not include a component of anisotropic cohesion. 95 

Excessive load increments can affect the accuracy of describing cohesion [16].  96 

In this study, an elastoplastic DP model is proposed that considers the anisotropic 97 

strength as well as strain-hardening/softening characteristics of clay. In the yield 98 

function, an anisotropic function of stress is used to describe the anisotropic strength 99 

of the clay. Since the shear strength is the focus of this study, the soil response is 100 

assumed to be purely elastic before failure. Under undrained conditions, the 101 

anisotropic DP model reduces to the anisotropic von Mises model. The model is 102 

implemented in the user subroutines of ABAQUS software [1]. The validation of the 103 

proposed anisotropic DP model is demonstrated by two typical examples, undrained 104 

slope stability analysis and simulation of the Boom clay hollow cylinder test, 105 

representing limit equilibrium and progressive failure problems, respectively. The 106 

effect of anisotropic strength on strain localization in clay is analyzed with emphasis. 107 

2 Anisotropic plastic constitutive model 108 
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2.1 Anisotropic failure criterion 109 

The cross-anisotropy of clays can be characterized by the symmetric second-order 110 

fabric tensor 𝐹௜௝ [46].  111 

𝐹௜௝ = ቎

𝐹௫ 0 0
0 𝐹௬ 0

0 0 𝐹௭

቏ =
ଵ

ଷା௱
൥
1 + 𝛥 0 0

0 1 − 𝛥 0
0 0 1 + 𝛥

൩      (1) 112 

where 𝛥 is a scalar and 0 < 𝛥 < 1. It is assumed that the principal directions of the 113 

fabric tensor are consistent with the local coordinate system (x, y, z) and that the x-z 114 

plane is the isotropic plane, as shown in Fig. 1. The global coordinate axes are the xi, 115 

yi and zi axes. It is worth noting that the isotropic plane is not necessarily horizontal. 116 

 117 

Fig. 1. Schematic diagram of the local coordinate system and the isotropic plane of 118 

the clay. 119 

 120 

The strength of clay depends on the soil structure in clay and the loading direction. 121 

Gao and Zhao [23] proposed an anisotropic function 𝑔(𝐴) (Eq. (2)) to describe the 122 

anisotropic strength of geomaterials. 123 

𝑔(𝐴) = expൣ∑ 𝑒௜(1 + 𝐴)௜௡
௜ୀଵ ൧         (2) 124 

where 𝑒௜ is a set of material parameters. For isotropic soil, 𝑒௜ = 0. 𝐴 is the anisotropic 125 

state variable. Based on the deviatoric stress tensors 𝑠௜௝ and the deviatoric part of the 126 

fabric tensor 𝑑௜௝, the variable 𝐴 can be expressed as 127 

𝐴 =
௦೔ೕௗ೔ೕ

ඥ௦೘೙௦೘೙ඥௗ೘೙ௗ೘೙
=

௦ೣିଶ௦೤ା௦೥

ଶ௤
         (3) 128 

where 𝑑௜௝ = 𝐹௜௝ − 𝐹௞௞𝛿௜௝ 3⁄ , and 𝑞 is the equivalent von Mises stress:  129 

𝑞 = ට
ଷ

ଶ
𝑠௜௝𝑠௜௝             (4) 130 

where 𝑠௜௝ is the deviatoric stress tensor and 𝑠௫, 𝑠௬ and 𝑠௭ are deviatoric stresses in the 131 

three-axis directions of the local coordinate system. It is worth noting that the 132 

normalized deviatoric fabric tensor, i.e., Eq. (5) is just a constant diagonal matrix. 133 

Therefore, the microscopic parameter 𝛥 is not required in the numerical simulation. 134 



5 

 

ௗ೔ೕ

ඥௗ೘೙ௗ೘೙
=

ଵ

√଺
൥
1 0 0
0 −2 0
0 0 1

൩         (5) 135 

In the proposed model, the anisotropic function 𝑔(𝐴)  is used to define the 136 

anisotropic strength of clays, and 𝑛 = 3. To illustrate how to determine the parameters 137 

𝑒ଵ, 𝑒ଶ and 𝑒ଷ, the hollow cylinder torsional shear test under undrained conditions on 138 

Gault clay in the UK [7] is taken as an example. In Fig. 2, 𝛼 is the angle between the 139 

major principal stress and the axis of the isotropic plane. 𝑆௨ is the peak undrained 140 

shear strength of Gault clay for various 𝛼  and 𝑆௨ = 𝑔(𝐴)𝑆௨଴ , where 𝑆௨଴  is the 141 

undrained shear strength at 𝛼 = 0°. 142 

 143 

Fig. 2. Comparison between the data of the torsional test on Gault clay [7] and the 144 

proposed anisotropic failure criterion. 145 

 146 

For the hollow cylinder torsional shear test, the formula 𝐴(ఈ) has been given [23]. 147 

𝐴(ఈ) is used to determine the anisotropic parameters 𝑒ଵ, 𝑒ଶ, and 𝑒ଷ, then Eq. (3) with 148 

𝑒ଵ, 𝑒ଶ, and 𝑒ଷ is adopted in the numerical simulation. 149 

𝐴(ఈ) =
ିଷ ୡ୭ୱమ ఈା௕ାଵ

ଶ√௕మି௕ାଵ
           (6) 150 

where 𝑏 is the intermediate principal stress ratio expressed as 151 

𝑏 =
ఙమିఙయ

ఙభିఙయ
              (7) 152 

𝜎ଵ, 𝜎ଶ, and 𝜎ଷ are the major, intermediate, and minor principal stresses, respectively. 153 

The test results for Gault clay consist of five data points, of which the first (𝛼 = 0°), 154 

third (𝛼௣ = 39°), and fifth points (𝛼 = 90°) are chosen to determine 𝑒ଵ, 𝑒ଶ, and 𝑒ଷ by 155 

solving Eqs. (8) with 𝑏 = 0.5. Note that 𝑏 is a constant in all the tests. 156 

⎩
⎪
⎨

⎪
⎧𝑒ଵ൫1 + 𝐴(଴)൯ + 𝑒ଶ൫1 + 𝐴(଴)൯

ଶ
+ 𝑒ଷ൫1 + 𝐴(଴)൯

ଷ
= ln 𝐾(଴) = 0

𝑒ଵ൫1 + 𝐴(ଽ଴∘)൯ + 𝑒ଶ൫1 + 𝐴(ଽ଴∘)൯
ଶ

+ 𝑒ଷ൫1 + 𝐴(ଽ଴∘)൯
ଷ

= ln 𝐾(ଽ଴∘)

𝑒ଵ൫1 + 𝐴൫ఈ೛൯൯ + 𝑒ଶ൫1 + 𝐴൫ఈ೛൯൯
ଶ

+ 𝑒ଷ൫1 + 𝐴൫ఈ೛൯൯
ଷ

= ln 𝐾൫ఈ೛൯

 (8) 157 
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where 158 

𝐾(ఈ) = 𝑔൫𝐴(ఈ)൯ =
ௌೠ

ௌೠబ
           (9) 159 

The prediction of the anisotropic failure criterion is shown in Fig. 2. 160 

2.2 Anisotropic DP Yield Function and Potential Function 161 

In Fig. 3, the isotropic linear DP yield criterion for clays in terms of effective stresses 162 

[17] is expressed as 163 

𝐹(𝑝ᇱ, 𝑞) = 𝑞 − 𝑚 ቀ𝑝ᇱ +
௖ᇲ

୲ୟ୬ ఝᇲ
ቁ = 0        (10) 164 

where 165 

𝑚 =
଺ୱ୧ ᇲ

ଷିୱ୧୬ ᇲ
             (11) 166 

where 𝜑ᇱ and 𝑐ᇱ are the effective internal friction angle and the effective cohesion, 167 

respectively. 𝑝ᇱ is the mean effective stress. 168 

 169 

Fig. 3. Linear DP yield surface in (a) the meridional plane and (b) the deviatoric plane. 170 

 171 

There are two strength parameters in the DP yield criterion, i.e., internal friction 172 

angle and cohesion. Duncan and Seed [18] and Sergeyev et al. [54] concluded that the 173 

internal friction angle of clay shows only moderate anisotropy and is independent of 174 

the loading direction. However, the undrained shear strength and cohesion are highly 175 

anisotropic. Therefore, anisotropic DP yield criteria considering only cohesive 176 

anisotropy have been frequently used [20, 59, 60]. To describe the anisotropic shear 177 

strength of clays under drained conditions, the proposed anisotropic DP yield function 178 

is written as 179 

𝐹(𝑝ᇱ, 𝑞, 𝐴) = 𝑞 − 𝑚 ቀ𝑝ᇱ +
௚(஺)௖బ

ᇲ

୲ୟ୬ ఝᇲ
ቁ = 0       (12) 180 

where 𝑐଴
ᇱ  is the effective cohesion measure in triaxial compression with the direction 181 

of the major principal stress parallel to the axis of the isotropic plane.  182 

Under undrained conditions, 𝜑ᇱ = 0 and 𝑆௨଴ = 𝑐଴
ᇱ  are assumed, and the DP yield 183 

function reduces to the von Mises yield function. Under plane strain conditions [1], 184 
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the DP yield function is expressed as 185 

𝐹(𝑞, 𝐴) = 𝑞 − √3𝑆௨଴𝑔(𝐴) = 0         (13) 186 

where 𝑆௨଴ is the undrained shear strength when the direction of the major principal 187 

stress is parallel to the axis of the isotropic plane of the clay.  188 

The plastic potential function 𝐺 of the proposed model is written as 189 

𝐺 = 𝑞 − 𝑚ᇱ𝑝ᇱ = 0            (14) 190 

where 191 

𝑚ᇱ =
଺ୱ୧୬ట

ଷିୱ୧୬
             (15) 192 

where 𝜓 is the dilation angle. The gradient of the proposed anisotropic yield function 193 

is introduced in Appendix 1. Since the plastic potential function does not include the 194 

fabric tensor 𝐹௜௝, the flow rule is noncoaxial [71, 24]. 195 

2.3 Hardening law and nonlocal strain-softening 196 

Strain localization is usually simulated by the plastic model with strength parameters 197 

that decrease linearly or nonlinearly with increasing equivalent plastic strain [32, 33, 198 

36]. In the proposed model, the isotropic strain-hardening/softening law of clay is a 199 

function of the equivalent plastic strain 𝜀ௗ௣.  200 

𝜀ௗ௣ = ∫ ට
ଶ

ଷ
𝒆̇: 𝒆̇

௧

଴
𝑑𝑡            (16) 201 

where 𝒆̇ is the rate tensor of the deviatoric plastic strain and 𝑡  is the time of the 202 

simulation.  203 

 204 

Fig. 4. Isotropic strain-softening law and changes in (a) yield surface and (b) relation 205 

between undrained shear strength and the equivalent plastic strain. 206 

 207 

The simplest softening law is a linear relationship between the shear strength and 208 

the equivalent plastic strain, e.g., the one proposed by Potts et al. [50], as shown in 209 

Fig. 4 (b). In the analysis in Section 4.2, a nonlinear hardening/softening relationship 210 

is used. Based on the anisotropic parameters of Gault clay, the method proposed by 211 
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Gao and Zhao [23] is utilized to plot the yield surfaces in the deviatoric plane that 212 

change from a circle to an irregular ellipse due to the anisotropic function 𝑔(𝐴). The 213 

yield surface shape does not change but shrinks with increasing plastic strain (Fig. 4 214 

(a)).  215 

For simplicity, the anisotropy of undrained shear strength and the softening 216 

characteristics of cohesion are assumed to be independent. Therefore, in Fig. 5, the 217 

undrained shear strength can be illustrated as a function of the anisotropy parameters 218 

𝑒ଵ, 𝑒ଶ, and 𝑒ଷ and softening parameters 𝑘௥ and 𝜀ௗ௣
௥ . 219 

 220 

Fig. 5. Undrained strength as a function of the equivalent plastic strain and major 221 

principal stress direction α. 222 

 223 

In finite element analysis (FEA), strain softening of the material results in mesh 224 

sensitivity. A partially nonlocal softening regularization approach proposed by Galavi 225 

and Schweiger [21] is employed to reduce the mesh sensitivity. In the approach, only 226 

the deviatoric strain is considered a nonlocal variable. A detailed introduction of the 227 

approach has been given [56, 57]. Following the implementation of the nonlocal 228 

approach proposed by Gao et al. [24], the nonlocal equivalent plastic strain at an 229 

integration point is expressed as 230 

𝜀ௗ௣
∗ =

∑ ൫ఌ೏೛൯
೔
ఠ೔௩೔

ಿ
೔సభ

∑ ఠ೔௩೔
ಿ
೔సభ

            (17) 231 

where 𝑁 is the total number of integration points in the FEA. ൫𝜀ௗ௣൯
௜
, 𝑣௜, and 𝜔௜ are 232 

the local equivalent plastic strain, volume, and weight function at the ith integration 233 

point, respectively. The weight function expressed below is used. 234 

𝜔௜ =
௥೔

௟మ
exp ቀ−

௥೔

௟మ
ቁ            (18) 235 
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where 𝑙  is the internal length parameter and 𝑟௜  is the distance between the current 236 

integration point and integration point 𝑖. Their units should be consistent with the 237 

units of the geometric dimensions of the model. To better describe the strain 238 

localization characteristics, the rate of the nonlocal equivalent plastic strain is given as 239 

𝜀ௗ̇௣
∗ =

∑ ൫ఌ̇೏೛൯
೔
ఠ೔௩೔

ಿ
೔సభ

∑ ఠ೔௩೔
ಿ
೔సభ

            (19) 240 

3 Implementation of the Model 241 

 242 

Fig. 6. Flow chart of the user subroutines for implementation of the proposed 243 

anisotropic DP model. 244 

 245 

The proposed anisotropic DP model is implemented in the user subroutines of 246 

ABAQUS software [1]. Fig. 6 shows the flow chart of the user subroutines. The key 247 

parts of the code are the anisotropic yield criterion for clays and the nonlocal 248 

regularization approach. These two parts are implemented by the user subroutines to 249 

define a material’s mechanical behaviour (UMAT) and to redefine field variables at an 250 

integration point (USDFLD). The stress integration algorithm for the constitutive 251 

model is the implicit backward Euler algorithm, which requires a Newton procedure 252 

to solve the nonlinear equations [3].  253 

4 Strain Localization in Anisotropic Clay 254 

To study the effect of anisotropic shear strength on the strain localization in natural 255 

clays, undrained slope stability analysis and simulation of the hollow cylinder test of 256 

Boom clay are chosen to represent the limit equilibrium problem and the progressive 257 
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failure problem, respectively.  258 

4.1 Stability analysis of undrained clay slope 259 

There are two cases for stability analysis of undrained clay slopes. Case 1 is a stability 260 

analysis of an undrained clay slope with different anisotropic undrained shear 261 

strengths. Case 2 is a stability analysis of an undrained clay slope with different 262 

orientations of the bedding plane (i.e., isotropic plane), which might exist in naturally 263 

deposited clays owing to cross-bedding or postdepositional deformations. To better 264 

compare with the results in other literature, it is assumed that the potential function is 265 

consistent with the yield function in the proposed slope stability analysis. 266 

4.1.1 Case 1: Slope with anisotropic undrained shear strengths 267 

The cross-anisotropic shear strength relation for the undrained strength of clay 268 

proposed by Casagrande and Carillo [8] is expressed as 269 

𝑆௨ = 𝑆௨଴[𝐾 + (1 − 𝐾) cosଶ 𝛼]          (20) 270 

where 𝐾 is the ratio of the undrained shear strength at 𝛼 = 90° to 𝑆௨଴. For isotropic 271 

clays, 𝐾 = 1.0. Lo (1965) found that Casagrande’s expression is valid for the Welland 272 

clay in Canada. According to the cross-anisotropic strength relation, Chen et al. [9] 273 

proposed the upper bound (UB) method of limit analysis to evaluate the stability of 274 

anisotropic undrained slopes. Based on the proposed anisotropic DP model assuming 275 

ideal plasticity, the stability number 𝑁௦ of the slope is calculated by the finite element 276 

strength reduction method (FESRM) [27, 42, 58] and is compared with the UB 277 

solution.  278 

𝑁௦ = 𝐻௖ ቀ
ఊ

ௌೠబ
ቁ            (21) 279 

where Hc is the critical height of the slope and 𝛾 is the unit weight of the clay.  280 

Normally, the FESRM is used to solve the safety factor for a slope with a given 281 

height rather than solving the critical height and corresponding stability number of the 282 

slope. There is a relation between the safety factor and the stability number. In the 283 

FESRM, 𝑆௨଴ is used for the reduction, and the factor of safety 𝐹௦ is expressed as 284 

𝐹௦ =
ௌೠబ

ௌೠబ
೑               (22) 285 

where 𝑆௨଴
௙  is the factored shear strength parameter. Therefore, 286 

𝑁௦ = 𝐻 ൬
ఊ

ௌೠబ
೑ ൰ = 𝐹௦𝐻 ቀ

ఊ

ௌೠబ
ቁ         (23) 287 
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 288 

Fig. 7. The geometry, finite element mesh, boundary condition, and material 289 

parameters of the anisotropic undrained slope. 290 

 291 

Fig. 8. Comparison between the criterion [8] and the proposed criterion for different 𝐾. 292 

 293 

Taking the slope angle 𝛽௦ = 50° as an example, Fig. 7 presents the geometry, 294 

finite element mesh, boundary conditions, and material parameters of the example, 295 

assuming that the clay has isotropic elasticity. The initial stress is caused by gravity. 296 

Fig. 8 shows that there is little difference between the proposed anisotropic criterion 297 

and the Casagrande formula for 𝐾 = 1.5 and 0.5. Kimmeridge clay [7] is a natural 298 

clay with 𝐾 > 1. Table 1 lists the stability number of the undrained slope obtained by 299 

the UB and the FESRM with various 𝐾 . When 𝐾 = 1.0 , the finite element limit 300 

equilibrium method (FELEM) [41] is used to validate the FESRM. The results 301 

obtained by the two finite element methods are close, with a percentage difference of 302 

only 3%. For 𝐾 < 1.0, the stability number obtained by the FESRM is smaller than 303 

that obtained by the UB. This is because the UB result is an upper bound and the slip 304 

surface of the UB is a fixed logarithmic spiral. Moreover, the stability number 305 

obtained by the FESRM decreases with decreasing 𝐾. The percentage differences of 306 

the stability number obtained by the FESRM between 𝐾 = 0.5 and 𝐾 = 1.5 and 𝐾 =307 

0.5 and 𝐾 = 1.0 are 42% and 17%, respectively.  308 

 309 
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Table 1. Comparison of stability number with slope angle 𝛽௦ = 50°. 310 

𝐾 
𝑁௦   

Percentage difference from 
the FESRM (%) 

Chen et al. [9] (UB) FESRM FELEM UB FELEM 
1.5 - 6.48 - - - 
1.4 - 6.21 - - - 
1.3 - 6.05 - - - 
1.2 - 5.80 - - - 
1.1 - 5.56 - - - 
1.0 5.68 5.33 5.47 7 3 
0.9 5.58 5.16 - 8 - 
0.8 5.47 5.00 - 9 - 
0.7 5.37 4.85 - 11 - 
0.6 5.27 4.71 - 12 - 
0.5 5.16 4.57 - 13 - 

 311 

 312 

Fig. 9. Comparison of the slip surfaces obtained by the FESRM (contour of equivalent 313 

plastic strain) and FELEM (solid line). 314 
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In addition to the safety factor of the slope, the shape and location of the failure 315 

surface are also of great concern to geotechnical engineers or researchers. The 316 

equivalent plastic strain band (strain localization) across the slope is used as the 317 

criterion for the slope to reach the limit equilibrium state. In Fig. 9, a comparison of 318 

the slip surfaces obtained by the FELEM and FESRM with different 𝐾 is given. At 319 

𝐾 = 1.0, both slip surfaces are close. When 𝐾 ≤ 1.3, the slip surface is a deep curved 320 

band. In contrast, when 𝐾 > 1.3, the slip surface is a shallow curve band, which slides 321 

out from the toe of the slope.  322 

 323 

Fig. 10. Contours of the angle between the major principal stress and the axis of the 324 

isotropic plane at (a) 𝐾 = 0.5 and (b) 𝐾 = 1.5 and the comparison of the value of the 325 

anisotropic function g(A) at (c) 𝐾 = 0.5 and (d) 𝐾 = 1.5. 326 

 327 

Fig. 10 can be used to explain this difference. Fig. 10 (a) and (b) show the 328 

contours of the angle 𝛼 in the cases of 𝐾 = 0.5 and 1.5, and these two contours are 329 

similar. The angle 𝛼 varies from zero to 90° along the sliding direction of the slip 330 

surface, i.e., the solid line in Fig. 10 (a). The value of the undrained shear strength 331 

changes with 𝛼. At 𝐾 = 0.5 the strength increases with increasing angle 𝛼, while at 332 

𝐾 = 1.5, the strength decreases, as shown in Fig. 10 (c) and (d). When 𝐾 = 1.5, the 333 

clay on the right side of the foundation provides higher resistance, so the slip surface 334 
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is shallow. 335 

4.1.2 Case 2: Slope with inclined bedding planes 336 

Conesa et al. [10] proposed a complex cross-anisotropic failure criterion for the 337 

undrained strength of clay and analyzed undrained clay slopes with various bedding 338 

plane orientations. An inclined bedding plane may exist in a soil slope due to the 339 

loading history [25]. Taking Boston blue clay in the USA [52] as an example, the ratio 340 

of undrained shear strength is plotted in Fig. 11. The slope angle 𝛽௦ = 30° and other 341 

geometry, finite element mesh, boundary condition, and material parameters of the 342 

slope are the same as those in the last case. Fig. 11 also shows that the proposed 343 

anisotropic strength criterion and that of Conesa et al. can both capture the test data.  344 

 345 

Fig. 11. Comparison between the test data of Boston clay [52] and the anisotropic 346 

strength criteria. 347 

 348 

Fig. 12. Comparison of stability numbers with different 𝛽௕. 349 

 350 

The orientation of the bedding plane is defined as the angle 𝛽௕  between the 351 

tangent of the isotropic plane and the x-axis. Fig. 12 gives the stability numbers 352 

obtained by the proposed method and the method of Conesa et al. with different 𝛽௕. It 353 

shows that both results are close to each other. The angle 𝛽௕ related to the maximum 354 

and minimum stability numbers should occur at approximately 135° and 45°, 355 
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respectively. The difference between the maximum stability number and the minimum 356 

stability number is approximately 27%.  357 

 358 
Fig. 13. Comparison between (a) the results from Conesa et al. [10] and (b)-(e) the 359 

slip surfaces obtained by the proposed method. 360 

 361 

The slip surfaces obtained by the two methods are quite different, as shown in Fig. 362 

13, although the stability numbers are consistent. Fig. 13 (a) shows the region 363 

consisting of all slip surfaces obtained by Conesa et al. with different 𝛽௕ and angles 364 

corresponding to the entry and exit points of the slip surfaces. This reveals that in the 365 

analysis of Conesa et al., the shape and location of the slip surface are hardly affected 366 

by the bedding plane orientations. However, our analysis yields a different result in 367 

which there is an obvious difference among the slip surfaces. The angle 𝛽௕ 368 

corresponding to the slip surface with lower curvature is 45° (Fig. 13 (c)), while the 369 

angle corresponding to the slip surface with higher curvature is 135° (Fig. 13 (e)). The 370 

slip surfaces are similar when 𝛽௦ = 0 and 90° (Fig. 13 (b) and (d)). The essential 371 

difference between our undrained slope stability analysis and those from Conesa et al. 372 
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is whether the gradient of the yield function involves the component of the anisotropic 373 

undrained strength.  374 

4.2 Simulation of the hollow cylinder test of Boom clay 375 

In Belgium, Boom clay was selected as a candidate host formation for the disposal of 376 

high-level nuclear waste [4]. A set of Boom clay thick-walled hollow cylinder tests 377 

[38] reproduced the tunnel excavation in the host formation, approximated by 378 

reducing the internal confining pressure of the hollow cylinder specimen. Before and 379 

after unloading, the cross-section of the specimen was scanned by X-ray tomography, 380 

and the displacement of the tracking points within the cross-section was quantified. 381 

François et al. [20] established a hydromechanical constitutive model that can account 382 

for strain hardening/softening and elastic and plastic anisotropy to simulate the 383 

displacement of the tracking points in the hollow cylinder test. However, the major 384 

principal stress direction must be determined to obtain the drained shear strength.  385 

Linear cross-anisotropic elastic Hooke’s law with five material parameters [26] is 386 

used to describe the elastic behaviour of boom clay, i.e., the relation of effective stress 387 

𝜎௜௝
ᇱ  and strain 𝜀௜௝. 𝐸ᇱ, 𝑣ᇱ, and 𝐺 in Eq.(24) are Young’s modulus, Poisson's ratio, and 388 

shear modulus. In the local Cartesian coordinate system (Fig. 1), the 𝑥-𝑧 plane is 389 

assumed to be an isotropic plane. If the clay is elastic isotropic, the elastic stress–390 

strain relation reduces to Hooke’s law with two material parameters, i.e., 𝐸ᇱ and 𝑣ᇱ.  391 
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 392 

(24) 393 

Fig. 14 shows the geometry, mesh, and boundary conditions of the hollow 394 

cylinder test. Under plane strain conditions, the pore water pressure and total pressure 395 

at the inner boundary gradually decrease and remain stable after 4200 s. Table 2 lists 396 

the geomechanical, hydraulic, and physical parameters of Boom clay [20]. Compared 397 

with the original parameters of Boom clay, the parameter values have not changed, 398 

but the expression has changed. For example, the anisotropy parameter 𝐾 is used. The 399 

determination of 𝑒ଵ, 𝑒ଶ and 𝑒ଷ requires the results of a hollow cylinder torsional shear 400 
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test, which increases the cost of parameter identification. Optimization-based 401 

parameter identification [34, 70] makes it possible to identify these parameters that 402 

come only from triaxial tests. For comparison with the same material parameters, 𝑒ଵ, 403 

𝑒ଶ  and 𝑒ଷ  are determined by the test results of the triaxial tests. According to the 404 

original values of the anisotropic cohesion and Eqs. (6) and (8), the predicted shear 405 

strength of Boom clay is plotted in Fig. 15. The hardening behaviour of the internal 406 

friction angle and softening behaviour of cohesion are described by Eq. (25) [20] and 407 

plotted in Fig. 16.  408 

ቐ
𝑐ᇱ൫𝜀ௗ௣൯ = 𝑐଴

ᇱ +
ఌ೏೛

஻ೄାఌ೏೛
𝑐଴

ᇱ (𝑘௥ − 1), Softening

𝜑ᇱ൫𝜀ௗ௣൯ = 𝜑଴
ᇱ +

ఌ೏೛

஻ಹାఌ೏೛
𝜑଴

ᇱ ൫𝑘௣ − 1൯, Hardening
     (25) 409 

 410 

Fig. 14. Geometry, finite element mesh, and boundary conditions of the hollow 411 

cylinder test. 412 

 413 

 414 

Fig. 15. The proposed anisotropic strength criterion of the cohesion for Boom clay. 415 

 416 



18 

 

Table 2 Set of Boom clay geomechanical, hydraulic and physical parameters in the 417 

cross-anisotropic DP model [20]. 418 

Parameters Anisotropic Isotropic 

Young elastic modulus (MPa) 
𝐸௛

ᇱ   400 
𝐸ᇱ  300 

𝐸௩
ᇱ   200 

Poisson ratio (-) 
𝑣௛௛

ᇱ   0.125 
𝑣ᇱ  0.125 

𝑣௩௛
ᇱ   0.125 

Shear modulus (MPa) 𝐺௩  178   
Initial cohesion (kPa) 𝑐଴

ᇱ   255 𝑐଴
ᇱ   255 

Initial internal friction angle (◦) 𝜑଴
ᇱ   5 𝜑଴

ᇱ   5 
Strength ratio of cohesion (-) 𝑘௥  1/3 𝑘௥  1/3 

Strength ratio of friction angle (-) 𝑘௣  18/5 𝑘௣  18/5 

Softening parameters of cohesion (-) 𝐵ௌ  0.01 𝐵ௌ  0.01 
Hardening parameters of friction angle (-) 𝐵ு  0.01 𝐵ு  0.01 
Dilatancy angle (◦) 𝜓  0 𝜓  0 

Parameters 𝐾(ఈ) (-) 
𝐾(ଽ଴°)  240/255 𝐾(ଽ଴°)  1 

𝐾(ସହ°)  330/255 𝐾(ସହ°)  1 
Internal length (mm) 𝑙  1.5 𝑙  1.5 

Permeability (m/s) 𝑘  4×10-12 𝑘  4×10-12 

Initial porosity (-) 𝑛଴  0.39 𝑛଴  0.39 

 419 

 420 

 421 

Fig. 16. Softening relation of the cohesion and hardening relation of the internal 422 

friction angle of Boom clay. 423 

 424 
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 425 

Fig. 17. Comparison of radial displacement in the horizontal (0), 45°, and vertical 426 

(90°) directions between the FEA results with a mesh of 60 × 60, the test data [38] 427 

and the results obtained by François et al. [20]. 428 

 429 

A group of finite element simulations is performed in three types of meshes, i.e., 430 

20 × 20, 40 × 40, and 60 × 60. With a 60 × 60 mesh, Fig. 17 shows the simulated 431 

radial displacements, the test results [38] and the simulated results [20] for horizontal, 432 

45°, and vertical paths. The displacements of the horizontal and 45° paths obtained by 433 

the FEA are close to the other two results. There is a certain deviation between the 434 

three displacement curves of the vertical path; however, their trends are the same. 435 

Overall, near the inner boundary, the proposed results are closer to the test data 436 

compared with those obtained by François et al. [20]. The deviation of the two 437 

numerical results may be due to whether the gradient of the yield function involves 438 

the component of anisotropic cohesion.  439 

Fig. 18 shows the displacement curves for the three path endpoints located at the 440 

inner boundary of the cross-section over the entire simulation time. The analysis 441 

process is roughly divided into three stages: unloading, consolidation, and 442 

stabilization. In the second half of the unloading stage, i.e., the plastic stage, the three 443 

curves of the displacement increase sharply. The displacements in the consolidation 444 

stage continue to increase and stabilize in the stabilization stage. Equivalent plastic 445 

strain rates of approximately 6500 s obtained by FEA using various meshes are 446 

plotted in Fig. 19. The contours of the equivalent plastic strain rate illustrate that the 447 

shape of the shear band is identical, although the mesh is coarse in Fig. 19 (a). The 448 

widths of the shear bands in Fig. 19 (b) and (c) are close. 449 
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 450 

Fig. 18. The displacement curves of the three nodes at the intersection between the 451 

inner boundary and the three paths over the entire simulation time. 452 

 453 

Fig. 19. Rate of the equivalent plastic strain obtained by the finite element analyses 454 

with various meshes. 455 

 456 
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 457 

Fig. 20. Predicted EDZ by FEA with the proposed anisotropic DP model. 458 

 459 

Fig. 19 (c) is used to assemble the entire cross-section of the sample, as shown in 460 

Fig. 20. The shape and boundary of the excavation damaged zone (EDZ) in the 461 

hollow cylindrical specimen are determined by the simulated shear band or 462 

displacement curve of the horizontal path.  463 

Four cases of anisotropic and isotropic elasticity and anisotropic and isotropic 464 

plasticity are analyzed. The results reveal that only anisotropic plasticity can yield 465 

eye-shaped strain localization (shear band), as shown in Fig. 21 (a) and (b). Moreover, 466 

Fig. 21 (c) shows symmetric strain localization, while Fig. 21 (d) shows axisymmetric 467 

strain localization. This analysis can reveal the necessity of the anisotropic strength of 468 

Boom clay in the simulation of strain localization. 469 

 470 

Fig. 22. Rate of the equivalent plastic strain obtained by the finite element analyses 471 

with (a) anisotropic elasticity and anisotropic plasticity, (b) isotropic elasticity and 472 

anisotropic plasticity, (c) anisotropic elasticity and isotropic plasticity and (d) 473 

isotropic elasticity and isotropic plasticity. 474 
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Fig. 22 shows the contour of the angle 𝛼  with anisotropic elasticity and 475 

anisotropic plasticity. The angle 𝛼 varies from zero in the horizontal direction to 90° 476 

in the vertical direction. The value of the shear strength changes with 𝛼. The clay in 477 

the vertical direction provides higher resistance, so the EDZ in the horizontal path is 478 

larger. 479 

 480 
Fig. 22. Contour of the angle between the major principal stress direction and the axis 481 

of the isotropic plane. 482 

 483 

5 Conclusions  484 

The shear strength of natural clay is highly anisotropic due to the internal structure. 485 

An anisotropic failure criterion is proposed for natural clays. An anisotropic variable 486 

is used to characterize the relative orientation between the soil fabric and principal 487 

stress directions. The model assumes that the cohesion of natural clay (or undrained 488 

shear strength) is anisotropic while the friction angle is independent of the loading 489 

direction. A DP model with the anisotropic yield criterion has been used to model 490 

strain localization in natural clays. 491 

The stability of an undrained clay slope has been analyzed. The results show that 492 

the anisotropic undrained strength affects the shape and location of the failure surface 493 

(strain localization) of the slope. In the first case, the percentage difference of the 494 

stability number obtained by the FESRM is 42% between 𝐾 = 0.5  and 𝐾 = 1.5 . 495 

When 𝐾 > 1.3, the shape of the slip surface is shallow. In the second case, with 496 

different bedding plane orientations, the percentage difference between the maximum 497 

and minimum stability numbers is approximately 27%. At 𝛽௕ = 45°, the range of the 498 

slip body is larger than that at other angles 𝛽௕. These results show that the influence of 499 

the strength anisotropy and bedding plane orientation on the undrained slope stability 500 

cannot be ignored. The influence on the strain localization leads to different slope 501 

reinforcement scheme designs. 502 

The proposed model has been applied to simulate the hollow cylinder test on 503 
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Boom clay. The displacement results are closer to the test data observed by the X-ray 504 

scan [38] than the results obtained by François et al. [20]. The nonlocal softening 505 

regularization method used reduces the mesh sensitivity. Furthermore, the rate of the 506 

equivalent plastic strain simulated by the nonlocal strain method can be taken to 507 

represent the EDZ in the sample. The range of the shear band (strain localization) in 508 

the test sample is affected by the anisotropic strength of Boom clay. Only anisotropic 509 

plasticity can yield eye-shaped strain localization.  510 

Appendix 1: Gradient of the yield function 511 

The gradient of the proposed anisotropic yield function is expressed as 512 
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