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1. Introduction

Skyrmions were introduced as minimal energy field configura-
tions in a nonlinear scalar field model of the atomic nucleus
by Tony Skyrme in 1962.[1] Skyrme’s model is founded on an
elegant topological construction,[2] which confers a universal
dimension to skyrmions. Consequently, skyrmions, as topologi-
cal objects, have been identified in various areas of physics
including condensed matter physics,[3] string theory,[4] magne-
tism,[5] in sound waves,[6] and recently in optics.

Research on optical skyrmions is still in its infancy. First wit-
nessed in the evanescent field of surface plasmon polaritons in

2018,[7,8] they have since been generated
in freely propagating light fields in the
paraxial[9–11] and the nonparaxial[12] regimes,
and the first nonlocal quantum skyrmions
have already been observed.[13] Combining
phase information with the polarization pro-
file of paraxial skyrmions has uncovered
novel optical topological structures called
Hopfions.[14,15] Initially, research efforts were
focused on modeling paraxial optical sky-
rmions on their magnetic counterparts,[16]

and an analogy justified because both repre-
sent “baby” skyrmions: skyrmion fields
defined in a 2D space.[17,18] In the following,
we will refer to such 2D skyrmions as sky-

rmions for simplicity. Optical polarization textures that have been
investigated include Néel-type and Bloch-type skyrmions,[9,12]

bimerons, and anti-skyrmions.[10,19] These fields can be generated
on-demand with digital micromirror devices,[11] a technology that
enables the dynamic generation of reconfigurable polarization
structures. Optical skyrmions are set to become versatile light sour-
ces for the controlled excitation of skyrmion fields in matter,[20,21]

and thus they could play a central role in the development of future
data storage devices.[22,23]

While the spin texture of magnetic skyrmions is defined by the
crystal structure, conservation laws, and energy minimization,
such constraints seem to be missing in optics. In principle,
one may generate arbitrary polarization textures, limited only
by Maxwell’s equations. Here we set out to provide a unifying
framework capable of describing all optical skyrmions based
entirely on topological considerations. This article introduces
an analytical expression to construct general paraxial optical
skyrmion fields based on rational maps, a method that has never
been explicitly employed to construct optical skyrmions. Rational
maps entered the world of skyrmions in 1998.[24] In Skyrme’s
original model, a skyrmion is a field solution of the equation that
minimizes the energy functional of the system. As Skyrme’s field
equation is not integrable, one must often resort to numerical
techniques to compute the minimum energy configurations,
which can, however, be time consuming and requires significant
computational resources. To facilitate this task, Houghton et al.
proposed the use of rational maps to find approximate solu-
tions.[24] This method turned out to be rather accurate, especially
for skyrmions of low skyrmion number.[25] Rational maps had
previously been employed to construct Bogomolny–Prasad–
Sommerfield (BPS) monopoles.[26] It was the realization that
BPS monopoles and low energy skyrmions possess similar
energy densities, symmetries, and spatial distributions that led
Houghton et al. to propose rational maps in the context of sky-
rmions. While Skyrme’s field equation describes skyrmions in
three dimensions, rational maps are equally capable of describ-
ing 2D skyrmion fields,[27,28] allowing us to use them for the
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A simple mathematical expression based on rational maps to describe all optical
paraxial skyrmion known to date, including Néel-type and Bloch-type skyrmions,
bimerons, and anti-skyrmions, is introduced. This expression is derived solely
from topological considerations and outlines the rules that fully polarized paraxial
light fields must obey to qualify as optical skyrmions. It is shown that rational
maps can be implemented experimentally by superposing a pair of orthogonally
polarized Laguerre–Gaussian modes. Novel optical skyrmion fields, called multi-
skyrmions, are obtained upon generalizing the proposed expression, laying the
foundation for the exploration of skyrmion nucleation and annihilation mecha-
nisms in optics.
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construction of optical skyrmions. There are several advantages
to using rational maps for the construction of optical skyrmions.
First, as rational maps are direct applications of the topological
skyrmion model, they allow us to distinguish topological features
from beam characteristics that are merely due to their experi-
mental realization. Second, they provide guidelines for generat-
ing novel optical skyrmion fields, as we will demonstrate in the
second part of this paper with the example of optical multi-
skyrmion fields. Finally, rational maps lay the foundation for
exploring the difference between optical skyrmion fields and
their magnetic counterparts. Indeed, expressing optical sky-
rmions in terms of rational maps effectively uncovers the equa-
tions that define optical skyrmions, marking the beginning of
investigations of their physical interpretation.

2. Topology of 2D Skyrmions

Optical skyrmions are characterized by specific polarization tex-
tures. Each position ðx, yÞ in a plane Γ transverse to the propa-
gation direction of a light beam can be uniquely mapped to a
reduced Stokes vector Sðx, yÞ ¼ ½S1ðx, yÞ, S2ðx, yÞ, S3ðx, yÞ�T .[9]
The tip of the unit vector Sðx, yÞ defines a point on the
Poincaré sphere representing the local polarization state, which
corresponds to a polarization ellipse. We refer to the mapping
from the plane (the beam profile) to the sphere (the Poincaré
sphere) as a paraxial optical skyrmion field. An equivalent defi-
nition holds for all 2D skyrmion fields, including magnetic
skyrmions.[18,29]

In the following, we will show that an integer skyrmion num-
ber N can be associated with this mapping if the plane of the

beam profile Γ can be mapped to a unit sphere Σ. This causes
the skyrmion field to become a map between two spheres, Σ
and the Poincaré sphere, as illustrated in Figure 1. This process
is usually accomplished using an inverse stereographic projection.

An inverse stereographic projection identifies spatial infinity
on the plane Γ with a single point on the unit-sphere Σ and then
uses this point as a projection point to image all remaining spa-
tial positions ðx, yÞ on Γ onto points on Σ. Let us consider, for
example, the case where the projection point is the North
Pole of Σ, with the coordinates r ¼ ðr1, r2, r3Þ ¼ ð0, 0, 1Þ, and Γ
is the plane passing through the equator of the unit sphere, cen-
tered around the center of the beam profile. A straight line from
the North Pole to the plane passes uniquely through one point on
the sphere, mapping a point ðx, yÞ in Γ to the point

r ¼ ð2x, 2y, x2 þ y2 � 1Þ=ð1þ x2 þ y2Þ (1)

on Σ. The vector Sðx, yÞ, attached to a point ðx, yÞ in Γ, now
becomes attached to the image of that point, r, in Σ. We note
that the inverse stereographic projection requires a uniform
polarization state Sðx, yÞ in all directions at spatial infinity.
This situation occurs naturally in Skyrme’s model as it ensures
that the energy gradient is divergence-less, and hence that the
field energy is finite.[30] In paraxial optical skyrmion beams, this
condition needs to be imposed in the design of the light field and
typically will be met at a finite radius rather than at infinity,
within the measurable beam intensity profile, due to the radial
profile of the constituting optical modes. The overall polarization
texture SðrÞ, hence Sðx, yÞ is now characterized by the mapping
between Σ and the Poincaré sphere, which varies from skyrmion
field to skyrmion field. We shall provide the rules for these

Figure 1. Paraxial optical fields (of bimerons) with skyrmion number a. N ¼ 1 and b. N ¼ 2. Reading from the bottom to the top, the polarization
distribution on the plane Γ is represented in terms of polarization ellipses and above that as Sðx, yÞ profile. The plane Γ was mapped onto a sphere
Σ via an inverse stereographic projection, which in turn can be mapped onto the Poincaré sphere. For N ¼ 1, Σ wraps once around the Poincaré sphere
and forN ¼ 2 twice. Consequently, the S2 vector, highlighted by a bold outline, appears once (twice) on Σ, and hence once (twice) in Γ forN ¼ 1 (N ¼ 2).
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mappings shortly, once we have defined the skyrmion number.
The skyrmion number N counts the number of times the tips of
the vectors SðrÞ cover the entire Poincaré sphere. Figure 1a illus-
trates that for N ¼ 1 the entire Poincaré sphere is covered once
by SðrÞ and hence the Sðx, yÞ distribution in the plane Γ contains
all possible polarization states exactly once. Similarly, Figure 1b
shows that for N ¼ 2, the Poincaré sphere is covered twice by
SðrÞ, and all possible polarization states appear twice in Γ.
Formally, the skyrmion number can be calculated from Sðx, yÞ as

N ¼ 1
4π

Z
Γ
S ⋅ ð ∂xS� ∂ySÞdxdy (2)

Equation (2) measures the area on the Poincaré sphere covered
by S as we explore the plane Γ as a fraction of the total area of the
Poincaré sphere 4π.

In practice, the measured or simulated skyrmion number is
often smaller than the true skyrmion number due to an incom-
plete mapping from Γ to Σ. For numerical simulations, this
occurs due to the finite grid over which integration is performed.
For experimental observations of skyrmions, errors occur due to
numerical apertures that limit the accessible area within Γ, noise,
especially at the beam periphery and in low-intensity regions, and
insufficient measurement resolution that limits the capacity to
capture variations of Sðx, yÞ.[11]

As paraxial optical skyrmions contain, by definition, all polari-
zation states within their transverse profile they are, de facto,
Poincaré beams.[31] The converse, however, is not true. First,
the polarization state of Poincaré beams does not necessarily
tend to the same value at spatial infinity. Second, skyrmions
are constructed according to mapping rules, which do not have
to apply for Poincaré beams.

3. Isolated Skyrmions

We shall now provide the rules for the mapping between Σ and
the Poincaré sphere to construct the simplest type of optical para-
xial skyrmions, which include Néel-type and Bloch-type sky-
rmions, anti-skyrmions, and bimerons.

We consider rational maps between two Riemann spheres as
we wish to establish a correspondence between Σ and the
Poincaré sphere. Stereographic projection relates a Skyrme field
to a complex function with both zeros and poles. The zeros cor-
respond to the South Pole of the sphere while the poles corre-
spond to the North Pole. A rational map is a meromorphic
function with this structure and a well-defined notion of degree.
We interpret Γ as a complex plane and associate ðx, yÞ ∈ Γ with
the stereographic coordinate z ¼ x þ iy on Σ. This allows us to
define a rational map of degree D as the function

RðzÞ ¼ pðzÞ
qðzÞ (3)

where p and q are polynomials of degree at most D with no com-
mon roots.[24] In analogy with Equation (1), the reduced Stokes
vector S is then deduced from the rational map according to

S ¼ 1
1þ jRðzÞj2 ð2ReðRðzÞÞ, 2ImðRðzÞÞ, � 1þ jRðzÞj2Þ (4)

We find that paraxial optical skyrmions of skyrmion numberN
can be built using rational maps of the form

RðzÞ ¼ f ðzÞjNj (5)

This expression describes the simplest type of rational maps:
polynomial functions with a single zero at z ¼ 0. In two dimen-
sions, the degree of a rational map is often called the winding
number and measures how much the phase of a function
changes as it “winds” round a zero. For the simplest complex
function f ðzÞ ¼ z ¼ r expðiθÞ, Equation (5) becomes RðzÞ ¼
rjNj expðijNjθÞ that changes by 2πjNj for a rotation around its
zero, corresponding to Néel-type skyrmions with a winding num-
ber of jNj. The corresponding polarization texture Sðx, yÞ is
shown in Figure 2a. Similarly, anti-skyrmions, i.e., skyrmions
of negative skyrmion number,[32] are generated by using the com-
plex conjugate f ðzÞ ¼ z� ¼ x � iy ¼ r expð�iθÞ (see Figure 2b).
Complex conjugation effectively swaps the orientation of the sky-
rmion field. In the complex plane, this corresponds to a reflection
of the real axis, whereas in the Poincaré sphere picture, it amounts
to turning the sphere inside out. Bloch-type skyrmions, such as the
one shown in Figure 2c, or any intermediate skyrmion for which
the polarization state is right handed circularly polarized at infinity
and left handed circularly polarized at the origin can be obtained
by rotating the complex coordinate so that f ðzÞ ¼ expðiαÞz, with
α ¼ π=2 corresponding to a Bloch-type skyrmion.

A uniform rotation of the local polarization vectors S generates
different physical representations of the same polarization tex-
ture, featuring arbitrary orthogonal polarization states at infinity
and at the center of the plane Γ. A π=2 rotation around the S2-
axis, for example, will generate an in-plane skyrmion, also called
a bimeron,[10,19] with orthogonal linearly polarized states at infin-
ity and at the center as illustrated in Figure 2d. From a geometric
point of view, a rotation of S simply induces a rotation of the
Poincaré sphere, and hence does not change how many times
S covers the Poincaré sphere.

The freedom to rotate S and z ¼ x þ iy independently is a fea-
ture of the standard Skyrme model. In the context of the nuclear
Skyrme model, these are referred to as rotations for the domain
(here Σ) and isorotations for the target (here the Poincaré
sphere).[33] Interestingly, the ability to perform these indepen-
dent rotations is lost in magnetic skyrmions due the
Dzyaloshinskii–Moriya interaction between neighboring mag-
netic spins, which leads to a modification of the total energy
of the system, and which is invariant only under a combination
of rotations and isorotations. This antisymmetric exchange inter-
action stems from a combined effect of spin–orbit coupling and
broken inversion symmetry[34] and restrict the allowed skyrmion
configurations. These constraints do not apply for optical
skyrmions.

In condensed matter literature, exact skyrmion configurations
constructed from rational maps have been used as starting points
for numerical energy minimization to find stable configurations
in realistic models.[35] The rational maps only give true energy
minimizers in specific critically coupled models;[36] however,
they still capture some features of realistic configurations,
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namely the skyrmion number. Similarly, rational maps provide
excellent starting points for the physical realization of experimen-
tal paraxial optical skyrmion beams, as we shall now demonstrate.

To date, experimental paraxial skyrmion beams, jψi, have
mostly been generated by superposing a pair of orthogonally
polarized Laguerre Gaussian (LG) modes[10,11]

jψi ¼ 1ffiffiffi
2

p ðLGl0
n0 j0i þ expðiϕÞLGl1

n1 j1iÞ (6)

where the bra-ket notation is used for convenience, j0i and j1i
represent any two orthogonal polarization states, ϕ is an arbitrary
phase factor, l is the topological charge of the mode, counting
the number of phase revolutions around the optical vortex, and n
its radial order. We can, without loss of generality, ignore the
phase factor expðiϕÞ, as it does not affect the skyrmion number
or indeed the intensity profile of jψi. Equation (6) can then be
rewritten in the compact form

jψi ¼ j0i þ μðrÞj1iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jμðrÞj2

p (7)

where μðrÞ ¼ LGl1
n1=LG

l0
n0 is the ratio of the amplitude and phase

product of the spatial modes, with an overall azimuthal phase
proportional to l1 � l0. The spatial distribution S is obtained
as follows

Si ¼ ψ jσijψh i (8)

where σi are the Pauli matrices, yielding

S ¼ 1
1þ jμðrÞj2 ð2ReðμðrÞÞ, 2ImðμðrÞÞ, 1� jμðrÞj2ÞT (9)

This is equivalent to Equation (4) as it corresponds to a stereo-
graphic projection via the South Pole, followed by a reflection to
allow for comparison with our North Pole stereographic projec-
tion as introduced in Equation (1), and corresponding to the map

RðzÞ ¼ 1
μ�ðrÞ (10)

Note, however, that while rational maps are restricted to hol-
omorphic functions, this is not the case in Equation (8), where μ
can represent any complex function. Figure 3 shows the phase
and modulus distributions of RðzÞ according to Equation (5)
or (10) over a numerical grid of arbitrary size, up to an overall
scaling factor. It can be further shown that Equation (4) and (9)
yield similar S distributions, as illustrated in Figure 4, confirm-
ing that superposing LG modes naturally implements the ratio-
nal map approach for the construction of optical skyrmion
beams. Rational maps thus form a good starting point to design-
ing paraxial skyrmions, where one should seek to match the
zeros of the rational map with the zeros of a ratio of LG beams
to obtain an experimentally feasible skyrmion configuration.

All optical skyrmions constructed using Equation (5) are iso-
lated skyrmions: RðzÞ presents one zero where z ¼ 0. We have
shown that Equation (5) introduces a unifying framework for
Néel-type and Bloch-type skyrmions, antiskyrmions, and bimer-
ons. Beam superposition methods to construct different types of
optical single skyrmions have been outlined in ref. [10] The con-
struction of optical multiskyrmions, a term borrowed from con-
densed matter research to refer to structures presenting several
skyrmion zeros,[23] is not straightforward, unless one knows the
rules for mapping Γ to Σ.

4. Multi-Skyrmions

Paraxial multi-skyrmion beams can be constructed by generaliz-
ing Equation (5). We start by noting that a map based on the func-
tion f ðz� zjÞ will generate a skyrmion or anti-skyrmion centered
at the position ðxj, yjÞ in the plane Γ. Multiple skyrmions with
individual skyrmion numbers Mj then arise from

RðzÞ ¼
Y
j

ðf ðz� zjÞÞMj (11)

Figure 2. Polarization distribution depicted as a vector field Sðx, yÞ (top row) and as distribution of polarization ellipses (bottom row) for a Néel-type
skyrmion a), an anti-skyrmion b), a Bloch-type skyrmion c), and a bimeron d) based on Equation (3). Shaded disks indicate the position of the zeros of the
associated rational map.
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Figure 5 illustrates the polarization structures of various such
multi-skyrmions. Panels a to c show: two M ¼ 1 skyrmions at
positions ð0, 1Þ and ð0, � 1Þ; the combination of a skyrmion

and an anti-skyrmion centered at the same positions; two M ¼
2 skyrmions; and Figure 5d instead has four M ¼ 1 skyrmions
positioned at ð1, � 1Þ and ð�1, � 1Þ. The polarization

Figure 3. Phase profile (in hue colors) and associated modulus (gray surfaces in arbitrary units) of RðzÞ for a skyrmion number of N ¼ 1, 2, 3 a–c).

Figure 4. Polarization distributions of paraxial optical skyrmions of skyrmion number N ¼ 1 to N ¼ 4 in panels a–d), comparing experimentally accessible
realizations in terms of superpositions of LGmodes according to Equation (6) (upper row) and realizations according to the ideal rational map of Equation (5)
(lower row). The former have finite beam waists, with varying intensity represented by the size of the ellipses. We have chosen the realization where j0i and j1i
represent left- and right-handed polarization, respectively, and where l0 ¼ 0, l1 ¼ 1, n0 ¼ n1 ¼ 0. Shaded disks indicate the position of the skyrmion cores.

Figure 5. Polarization distributions represented as vector field and as distributions of polarization ellipses of two skyrmion zerosM ¼ 1 a), one skyrmion
zero and one antiskyrmion zeroM ¼ 1 b), two skyrmion zeros withM ¼ 2 c), and four skyrmion zeros withM ¼ 1 d). Shaded disks indicate the position
of the skyrmion core.
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distribution obtained in Figure 5a is similar to that of a magnetic
bi-skyrmion such as the one presented in refs. [37,38] to describe
two partially overlapping magnetic skyrmions.

By providing an analytical expression for multi-skyrmions, we
have introduced guidelines for the experimental generation of
multi-skyrmion fields. These may include, by extension of
Equation (11), skyrmion lattices. We note, however, that the
direct application of this Equation leads to issues in the simu-
lated fields due to the overlap of the (potentially infinite) individ-
ual fields, which produces extremely narrow singularities or
“melts” them together. Just like for magnetic skyrmions, rational
maps may instead be taken as starting point for an optimization
process based on energy or more generally stability constraints. If
we follow the correspondence between rational maps and LG
beams introduced in Equation (10), we can obtain guidelines
for the experimental generation of optical multi-skyrmion
beams. Figure 6 shows the phase and modulus of the rational
map defined in Equation (11) for two M ¼ 1 skyrmions at posi-
tions ð0, 30Þ and ð0, � 30Þ. The phase profile clearly shows the
two-phase singularities of unit winding number, indicating that
this type of multi-skyrmion can be implemented experimentally
by embedding optical vortices of unit topological charges at these
locations, which is a simple task for state of the art light shaping
techniques. From an experimental perspective, constructing
multi-skyrmion beams can be seen as a phase engineering prob-
lem, involving the relative positioning of phase singularities.

By construction, each zero of the rational map contributes to
the total skyrmion number by an amount given by the degree of
the rational map, Mj. This suggests that we can split an optical
skyrmion of skyrmion number N into several skyrmion zeros of
total skyrmion number N ¼ P

j Mj, or vice versa, combine mul-
tiple lower order skyrmions into a higher order one, although the
latter process may not be entropically stable. Propagation studies
such as[9] suggest that the skyrmion number is a conserved prop-
erty in freely propagating isolated skyrmion beams. We antici-
pate that the total skyrmion number of a multi skyrmion
beam will also be conserved upon free propagation, much like
the topological charge of optical vortex beams. Skyrmion splitting

may be witnessed by perturbing vortex beams, in analogy to the
effect in polarization[39,40] and phase vortices[41,42] dynamics. A
specific case of vortex combination and splitting are linked to
the annihilation and creation mechanisms of optical skyrmion
zeros, including obtaining a skyrmion number of N ¼ 0 by care-
fully combining skyrmion with anti-skyrmions. Mathematically,
combining two individual skyrmions amounts to multiplying
individual rational maps f ðzÞjNj � f ðzÞjMj ¼ f ðzÞjNjþjMj, while
combining a skyrmion with its respective antiskyrmion z� z� ¼
jzj2 yields nonhomogeneous polarization patterns of skyrmion
number N ¼ 0 as this process destroys the characteristic azi-
muthal polarization profile. Experimentally, increasing the sky-
rmion number entails merging individual phase vortices or
increasing the topological charge of the individual LG mode
to increase the difference l1 � l0 defining the phase profile
of μðrÞ in Equation (7). Identifying the correspondence between
experimental procedures, including the action of q-plates, super-
positions, and nonlinear processes, with a mathematical descrip-
tion in terms of rational maps will be a task for future studies.

5. Conclusion

We have shown that rational maps are the backbone of construct-
ing paraxial optical skyrmion fields. Not only can they model sin-
gle optical skyrmion fields, including Néel type and Bloch type
skyrmions, antiskyrmions, and bimerons, but they can also be
used to construct multi-skyrmions, paving the way for the con-
trolled experimental realization of general optical skyrmion fields
and enabling the study of skyrmion–skyrmion interactions in opti-
cal fields. The explicit rational maps, defined in Equation (5), cor-
respond to theminimum energy configurations in theOð3Þ-sigma
model.[30] Uncovering the equations that define paraxial optical
skyrmions is of paramount importance as it constitutes the first
step in understanding how optical skyrmion fields differ from
their magnetic counterparts. We saw, for instance, that in contrast
to magnetic skyrmions, the polarization and μ can be rotated inde-
pendently, yielding different types of skyrmion configurations.
This is not surprising as the freely propagating polarization tex-
tures are in principle only limited by Maxwell’s equations.
Optical skyrmion fields offer a versatile platform for the investiga-
tion of exotic topological structures, which are not otherwise sup-
ported in magnetism. In this article, we were concerned with
optical skyrmions in a single plane, and the resulting structures
are in general not eigenmodes of propagation. The rational
map formalism introduced in this article lays the foundations
for investigations confirming or ruling out the existence of stabi-
lizing terms for optical skyrmion fields, which should be possible
by studying their behavior upon perturbation or free propagation.
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Figure 6. Phase profile (in hue colors) and associated modulus (gray sur-
face) of RðzÞ for a multi-skyrmion beam presenting two skyrmions (M ¼ 1)
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