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Abstract

Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but

antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose

challenges for control by vaccination. For example, influenza A(H3N2) entered the human

population in 1968 causing a pandemic and has since been monitored, along with other sea-

sonal influenza viruses, for the emergence of antigenic drift variants through intensive global

surveillance and laboratory characterisation. Statistical models of the relationship between

genetic differences among viruses and their antigenic similarity provide useful information to

inform vaccine development, though accurate identification of causative mutations is com-

plicated by highly correlated genetic signals that arise due to the evolutionary process.

Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model

for integrating genetic and antigenic data, we identify the genetic changes in influenza A

(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data

into variable selection helps resolve ambiguities arising due to correlated signals, with the

proportion of variables representing haemagglutinin positions decisively included, or

excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by

proximity to experimentally determined antigenic sites was improved simultaneously. Struc-

ture-guided variable selection thus improves confidence in the identification of genetic

explanations of antigenic variation and we also show that prioritising the identification of

causative mutations is not detrimental to the predictive capability of the analysis. Indeed,

incorporating structural information into variable selection resulted in a model that could

more accurately predict antigenic assay titres for phenotypically-uncharacterised virus from

genetic sequence. Combined, these analyses have the potential to inform choices of
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reference viruses, the targeting of laboratory assays, and predictions of the evolutionary

success of different genotypes, and can therefore be used to inform vaccine selection

processes.

Author summary

Mapping the impact of genetic changes on characteristics or traits is an important chal-

lenge in biology. The practical value of accurate genotype-to-phenotype mapping is clear

in efforts to control human seasonal influenza viruses. These viruses, and particularly the

A(H3N2) subtype, evolve rapidly with natural selection favouring variants possessing

changes to the antigens recognized by the human immune system following prior infec-

tion or vaccination. This process of ‘antigenic drift’ necessitates global monitoring of the

antigenic characteristics of the virus population and frequent vaccine updates. Viruses

that are more closely related tend to be more antigenically similar. Consequently, in addi-

tion to the mutations causing antigenic drift, many antigenically neutral mutations are

also highly correlated with antigenic drift. This complicates the task of accurately identify-

ing the causative mutations and quantifying their antigenic impact. We present a model-

ling approach that attributes variation in antigenic assays to specific genetic changes while

accounting for the evolutionary relatedness of viruses. We show that incorporating data

on protein structure increases the accuracy of this process improving the reliability of

genotype-to-phenotype mapping in this context. Precise genotype-to-phenotype mapping

has the potential to improve understanding of the drivers of evolutionary success of

emerging virus variants.

Introduction

Antigenic variation is a mechanism by which an infectious agent such as a virus or bacterium

alters the proteins or carbohydrates exposed to the host immune system to allow escape from

immunity conferred by prior infection with or vaccination against a related agent. Antigenic

drift seen in influenza viruses is a prime example of this process. Human seasonal influenza

epidemics are estimated to infect around 15% of the global population annually resulting in

three to five million cases of severe illness and in the order of 290,000 to 650,000 deaths annu-

ally [1,2]. The lack of proofreading by the RNA polymerase contributes to a relatively high fre-

quency of mutation across the genome. Influenza viruses evolve rapidly, with the mutation

rate, or the accumulation of mutations during evolution, being particularly high in the genes

encoding the surface glycoproteins where selection may favour genotypes encoding antigenic

variants. Some antigenic variants may rise to dominance among circulating viruses due to

strong immune-mediated positive selection favouring viruses that infect individuals previously

immune due to prior infection or vaccination. Consequently, human seasonal influenza vac-

cines must be frequently updated to ensure the antigenic responses they elicit will be active

against viruses in circulation.

Seasonal influenza epidemics are caused by viruses belonging to two influenza A subtypes,

A(H1N1) and A(H3N2), and by influenza B viruses which are classified into antigenically dis-

tinct lineages, B/Victoria and B/Yamagata. Trivalent vaccines contain antigens based on the

influenza A(H1N1) and A(H3N2) and the predominant influenza B lineage while quadrivalent

compositions include antigens representative of both influenza B lineages. To monitor the
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genetic and antigenic evolution of human influenza viruses, the WHO coordinates the Global

Influenza Surveillance and Response System (GISRS) collaborating with academic scientists

and national public health organisations [3,4]. Vaccine strain selection is based on the anti-

genic and genetic evolution of circulating influenza viruses throughout the year and recom-

mendations are developed by representatives of the GISRS at twice-yearly vaccine

composition meetings.

Within each of the influenza A subtypes and influenza B lineages that cause seasonal influ-

enza epidemics, the global virus populations typically consist of several antigenically distinct

groups of viruses. It takes around six months to develop, produce and deliver an updated influ-

enza vaccine so strain selection decisions must be made up to nine months in advance of the

period when influenza viruses will circulate in a forthcoming season. It is therefore necessary

to understand the antigenic similarity of circulating viruses to current vaccine strains and vac-

cine candidates to predict which antigenic variants are most likely to circulate at high fre-

quency in advance of a future influenza season, a task that benefits from predictive modelling

[5]. Various approaches have demonstrated prediction of successful influenza lineages, from

those emerging, with potential to inform vaccine virus selections [6–8]. One approach is to use

the shape and branching pattern of haemagglutinin (HA) phylogenetic trees to track and

extrapolate changes in genotype frequency [6]. Another approach is to predict lineage fitness

using counts of amino acid substitutions inside and outside described antigenic sites as proxies

for antigenic drift and reduced stability respectively [7]; an approach that can be adapted to

incorporate data from assays used to measure antigenic drift. Both the accuracy of and the reli-

ance on such predictive models depend on an understanding of the indirect link between

genotype and reproductive fitness in a partially immune population, a relationship that is

informed by the more direct phenotypic consequences of genetic changes.

The antigenic characterisation of circulating viruses is dependent upon haemagglutination

inhibition (HI) and virus neutralisation (VN) assays, both of which are used to assess the anti-

genic similarity of a circulating test virus to a panel of reference viruses that includes previous

and current vaccine viruses and other candidate vaccine viruses. The panel of reference

viruses, and post-infection ferret antisera raised against them, are selected to represent the

diversity of antigenic phenotypes observed over the most recent seasons. Various modelling

approaches have used data from antigenic assays to quantify similarity [9], and to explore the

relationship between genetic and antigenic evolution allowing predictions of antigenic rela-

tionships from sequence data [8,10–12]. A general challenge for modelling genotype-pheno-

type relationships is differentiating causative mutations from those that are non-causative and

correlate with phenotypic changes due to genetic hitchhiking. Various phylogenetic compara-

tive methods exist to account for shared evolutionary history of taxa when modelling quantita-

tive traits, though these tend to focus on traits intrinsically associated with particular taxa

rather than measures that relate to relationships between taxa, as is the case here when working

with pairwise measures of antigenic similarity. However, by including terms that represent

branches of the phylogenetic tree, it is possible to account for shared evolutionary history and

to prevent false statistical support for genetic terms due to repeated measurements in the

assessment of variation in VN titres for foot-and-mouth disease virus (FMDV) [13]. This

approach was subsequently applied to influenza A(H1N1), demonstrated to preferentially

identify genetic changes that correlate with antigenic changes in multiple locations across the

phylogeny, and experimentally validated [12].

Comparing sequences of test and reference viruses, while accounting for phylogenetic cor-

relations, we have previously identified substitutions responsible for antigenic evolution

among human influenza A(H1N1) and avian influenza A(H9N2) viruses [12,14]. We then

made this phylogenetically-aware model more statistically rigorous within a Bayesian
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framework with antigenic determinants identified using ‘spike-and-slab’ priors [15], a method

of variable selection (SABRE) demonstrated to outperform alternative approaches such as

LASSO [16] and elastic net regularised regression [17] as well as our own previous work [12].

We further extended these approaches (eSABRE) by the inclusion of variables representing the

underlying HI titre for each reference/test virus pair [18]. However, in order to allow us to

fully characterise the algorithms involved, the data analysed in that study comprised only 43

viruses. These previous approaches can therefore be characterised as either applying methodo-

logically-limited methods of model selection to datasets of scientific relevance [12], or the

application of state-of-the-art Bayesian approaches to datasets of limited scale and relevance to

the problem of antigenically characterising viruses [18].

A sequence-based model of virus fitness, grounded in an understanding of how amino acid

variations affect fitness via changes to various aspects of virus phenotype, able to predict both

the evolutionary success of existing genotypes and which unforeseen genotypes may be

selected to emerge, would be a monumental achievement in the study of virus evolution. Chal-

lenging steps towards this goal include developing i) more accurate quantitative mappings of

genotype to various phenotypes and ii) a quantitative understanding of how variations in vari-

ous phenotypes contribute to evolutionary success in dynamic fitness landscapes. Addressing

the former, our aim is to develop a practical tool for accurate, quantitative mapping of geno-

type to antigenic phenotype. Consequently, we seek to maximise the accuracy with which

causative genetic differences are identified and quantified, rather than explicitly aiming to

maximise predictive power. With this in mind, we present a hierarchical Bayesian model that

uses using Bayesian stochastic search variable selection (BSSVS) to select genetic variables and

apply it to a large set of antigenic data spanning 25 years and consisting of over 38,000 titres

derived panels of antisera and contemporary circulating test viruses. The BSSVS approach,

which aims to identify the combination of genetic variables best explaining observed antigenic

variation, is performed within the model as it undergoes Markov Chain Monte Carlo

(MCMC) sampling. Parameter estimates are made averaging over the best set of models, allow-

ing uncertainty to be accounted for directly. A further advantage of a Bayesian approach is that

existing knowledge can be used to define the prior distribution of parameters. These priors,

together with the likelihood of the observed data given the statistical model, combine using

standard Bayesian methods to form the posterior distribution of parameters. We show that

information derived from measurements of solved protein structures can be used to shape

prior distributions and improve the accuracy with which we can attribute changes in antigenic

phenotype to causative amino acid substitutions. Finally, using Bayesian model averaging,

where predictions are averaged over a range of the best supported models [19], these

approaches show the ability to accurately predict antigenic relationships from genetic

sequences.

Modelling approach

The approach presented infers the genetic determinants of antigenic evolution by attributing

variation in antigenic assays to differences in the amino acid sequences of reference and test

viruses, while accounting for both phylogenetic structure in the data and other non-antigenic

factors that cause variation in titres. Using fixed quantities of reference and test viruses, com-

monly eight or four haemagglutinating units in a particular HI assay, titres are recorded as the

reciprocal of the maximum dilution of antiserum raised to a particular reference strain that is

able to inhibit agglutination of red blood cells by a test virus. Lower titres, expressed as fold-

drops, therefore reflect reduced antigenic similarity. The log2 titre is modelled reflecting the

two-fold serial dilution of antiserum in assays. We describe below how the variation in titres
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attributable to the antigenic properties of viruses can be attributed to virus HA-gene

sequences, firstly by mapping antigenic changes to branches of the phylogenetic tree and sec-

ondly by attributing antigenic changes to specific amino acid differences between reference

and test viruses. Model selection was performed using BSSVS via binary indicator variables

associated with each branch or amino acid position [18]. These indicator variables, also known

as binary mask variables, take the value zero or one determining variable exclusion (masking)

or inclusion, respectively. The optimal combination of branches, or amino acid positions at

which substitutions explain antigenic changes, is therefore determined by sampling these

binary mask variables using MCMC.

Throughout this approach, we model the assay titre Y measured for an antiserum raised

against reference virus r and each specific virus v on a given date d as lognormally distributed:

log2 Yr;v;d � NormalðHr;v þ Dd; s
2

YÞ ð1Þ

The log2 titre has a mean determined by combining the underlying log2 titre for each combina-

tion of reference virus and test virus, Hr,v, and an effect accounting for day-to-day experimen-

tal variability in titres, Dd. The use of log2 reflects the use of a two-fold serial dilution of

antiserum, with recorded titres being the reciprocals of these dilutions. Residual variance of

measured titres around this mean is represented by s2
Y . To improve the succinctness and there-

fore clarity of this section, prior distributions and other implementation details are provided

in the Model Implementation subsection of the Materials and Methods, and details of indices,

parameters, variances and other minor terms are described in Table 1.

The underlying log2 titre in Eq 1 is itself normally distributed:

Hr;v � NormalðIr þ Av � Dr;v; s
2

HÞ ð2Þ

Underlying titres are modelled as depending on three general characteristics of the assayed

viruses and antisera. The contributions of effects for reference strain immunogenicity, Ir, test

virus avidity, Av, and the antigenic relationship, Δr,v are each inferred. The immunogenicity

and avidity terms reflect general reactivity of antisera and viruses respectively. These manifest

as a trend for higher or lower titres against all viruses or antisera for which titres are measured,

independent of antigenic relationships. The genetic determinants of this antigenic component

is of principal interest, so in the remainder of this section we describe how variation in this

term is attributed to differences in the HA protein (see Table 1 for further details on the other

effects). Since antigenic differences between reference and test viruses manifest as lower titres,

the antigenic component of the model is constrained to take only non-negative values and is

subtracted from the other terms in the model. Δr,v is defined in several different ways in Eqs 3,

4, 5 and 6 below, to allow us to compare different models of this antigenic relationship.

Antigenic difference is initially modelled as a linear combination of effects that occur dur-

ing the phylogenetic evolution of the assayed viruses, with terms representing every branch, ψ,

of the phylogeny to which amino acid substitutions were mapped in an ancestral state recon-

struction (see Materials and Methods), C, tested as predictors of reduced HI titres:

Dr;v ¼
X

c2C
gcmcdcðr; vÞ ð3Þ

For each branch, a precomputed indicator variable δψ(r, v) is one when the branch falls on a

direct path through the tree separating the reference and test viruses, and zero otherwise. Con-

sequently, the titre for each combination of reference virus and test virus only depends on the

antigenic weights for the combination of branches that fall between them on a path traced

through the tree. The parameter mψ is the antigenic weight associated with the branch, the
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Table 1. Model indices, terms and parameters.

Type Term Explanation

Indices r Reference virus used to generate ferret antisera

v Test virus evaluated as antigen in an assay

d Date on which experiment was carried out

ψ A branch

λ An amino acid position

κ A substitution at a specific amino acid position

Sets C The set of branches of the HA phylogeny inferred to contain amino

acid substitutions by phylogenetic analysis (see Materials and

Methods)

Λ The set of non-conserved amino acid positions

Kλ The set of observed substitutions at a specific amino acid position

Ĉ
^ ¼ fc 2 C : �gc > pg

The subset of the branches in C inferred from Eq 3, with probability >

p, to map to antigenic changes

Indicator variables δψ(r, v) 1 if a branch separates reference and test virus, 0 if not

d
0

k
ðr; vÞ 1 if substitution separates reference and test virus, 0 if not

Data Yr,v,d The measured titre for an antiserum raised against a particular

reference virus and a test virus on a particular date

F1,λ, F2,

λ

Structural feature scores associated with an amino acid position (scaled

to lie between zero and one)

Binary masks (determining whether a

term is included in the model)

gcð�gcÞ Binary mask determining whether to include (1) or mask (0) an

antigenic term associated with a branch in the HA phylogeny (and its

posterior mean)

zλ Binary mask determining whether to include or mask an antigenic

term associated with an amino acid position (in a structurally-naïve

model).

�z
�

l
Binary mask determining whether to include or mask an antigenic

term associated with an amino acid position (in a structurally-aware

model).

Antigenic and related terms Hr,v Underlying log2 titre for reference virus and test virus

Dd Experimental effect, for instance due to reagent variability or

temperature, that results in a general tendency for higher or lower

titres on a given day

Ir Reference virus immunogenicity effect that results in antisera with

higher or lower titres

Av Test virus avidity effect that results in a tendency for higher or lower

titres, which is attributed to differences in avidity for the virus

receptors on the red blood cell

Δr,v The antigenic difference between reference strain and test virus

mψ Antigenic weight mapping to a specific branch

m0
k

Antigenic effect of a specific substitution at an amino acid position

~m~
l

Component of antigenic effect ascribed to an amino acid position

~m~0k Component of antigenic effect ascribed to a specific amino acid

substitution

Probabilities p Threshold posterior mean probability for identifying a branch as

potentially mapping to an antigenic change from Eq 3

pð�pÞ Probability of branch being inferred to be antigenically important (and

its posterior mean), prior for γψ
p0ð �p0 Þ Structurally-naïve probability of any amino acid position being

inferred to be antigenically important (and its posterior mean), prior

for zλ

plð �pl Þ Structure-informed probability of a specific amino acid position being

inferred to be antigenically important (and its posterior mean), prior

for �z
�

l

Powers ρ1, ρ2 Power terms control importance of structural features in calculating pl

Variances s2
Y Residual variance of data around underlying titre and date effect

s2
H Variance of underlying titres around modelled effects

https://doi.org/10.1371/journal.pcbi.1010885.t001
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expected drop in log2 HI titre when two viruses are separated in the phylogeny by branch ψ.

The binary mask variable, γψ, takes the value zero or one determining whether branch ψ is

either excluded from or included in the model, respectively, and each antigenic effect, mψ, rep-

resents the antigenic effect of a specific branch when it is included (γψ = 1). When γψ is zero,

any antigenic weight attributed to the branch is nullified (as the product, γψmψ, is zero). A

higher proportion of MCMC samples with γψ = 1 indicates higher support in the data for an

antigenic change mapping to branch ψ. For each branch, the proportion of γψ = 1, which is

also the posterior mean value, �gc, is referred to as the inclusion probability for the branch.

This allows antigenic changes in the evolution of assayed viruses to be mapped to specific

branches of the phylogeny to generate Ĉ ¼ fc 2 C : �gc > pg, the subset of those branches

tested that are inferred to be potentially antigenically significant by having inclusion probabil-

ity above some threshold, p. In previous work these phylogenetic variables were selected using

a random restart hill-climbing algorithm that optimised Akaike Information Criterion (AIC)

to reduce computation cost [12,13]. However, we have subsequently shown that variable selec-

tion using these binary masks is a superior strategy [18].

Incorporating amino acid substitutions. Next, terms were introduced to explicitly attri-

bute antigenic differences between viruses to specific amino acid changes. The shared evolu-

tionary history of the viruses has the potential to facilitate false statistical support for

substitutions due to repeated measurements. To control for the evolutionary relationship

between viruses and reduce this risk, Ĉ, the subset of phylogenetic terms identified as explain-

ing antigenic variation using Eq 3, were retained in the new model. Branch variables were

ranked by their inclusion probability �gc and p, the threshold inclusion probability, was chosen

so that the proportion of branches from C that were carried forward in Ĉ was �p, the posterior

mean inclusion probability of a branch.

The subsequent model then included all of these terms (to control for the shared evolution-

ary history of the viruses) together with terms representing amino acid positions:

Dr;v ¼
X

c2Ĉ

mcdcðr; vÞ þ
X

l2L

zl

X

k2Kl

m0
k
d
0

k
ðr; vÞ ð4Þ

Here, each amino acid position within the set of non-conserved positions Λ is indexed by λ,

while all observed amino acid substitutions at each position λ are in turn indexed by κ. Each

position was associated with a binary mask variable, zλ, that takes the value zero or one, as

above, determining whether substitutions at position λ contribute to variation in titres. A pre-

computed indicator variable, δ0κ(r, v), indicates whether or not each specific amino acid differ-

ence separates the reference and test viruses. Each antigenic effect, m0κ, represents the

antigenic effect of a specific substitution.

Using the model described in Eq 4, antigenic effects of alternative substitutions at the same

amino acid position are independent. An alternative model where the antigenic effects of dif-

ferent substitutions at the same position are linked is also explored:

Dr;v ¼
X

c2Ĉ

mcdcðr; vÞ þ
X

l2L

zl ~ml

X

k2Kl

~m 0kd
0

k
ðr; vÞ ð5Þ

The key difference here from Eq 4 is that the antigenic effect of a substitution is partitioned

into a position-specific component, ~ml, and a substitution-specific component, ~m0k. The posi-

tion-specific component is shared by every substitution observed at an amino acid position.

This reflects an expectation that a range of substitutions at more antigenically important posi-

tions will tend to have greater antigenic impacts than at other positions. The substitution-
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specific component, on the other hand, allows for variability in the antigenic impact of alterna-

tive substitutions at the same position.

Incorporating structural information. Eqs 4 and 5, above, describe how variation in

titres was attributed to antigenic effects of amino acid substitutions in what we term ‘structur-

ally-naïve’ models. We now incorporate information from analysis of 3-D protein structure

into the above models by using it to inform the prior probability that substitutions at an amino

acid position are involved in antigenic evolution (by influencing the binary mask variable asso-

ciated with each position). We implement this approach using two structural features: proxim-

ity to the receptor-binding site (RBS), and a predicted epitope score derived from a tool used

to predict conformational epitopes from tertiary protein structure (see Materials and Meth-

ods). However, this approach is not limited to the use of these features and could be adapted to

either a single or more than two structural features. Here, we refer to the two structural fea-

tures as F1 and F2.

In Eqs 4 and 5 (the structurally-naïve models), the binary mask terms associated with each

amino acid position, zλ, share a common prior distribution and therefore are equally likely to

be included in the model prior to observation of the data. Here, the structurally-aware version

of the models described above retain the structure described in Eqs 4 and 5. The only differ-

ence is that the binary mask variable �zl is redefined so that the probability of each position

being selected may be influenced by structural features F1,λ and F2,λ:

Dr;v ¼
X

c2Ĉ

mcdcðr; vÞ þ
X

l2L

�zl ~ml

X

k2Kl

~m 0kd
0

k
ðr; vÞ ð6Þ

�zl � BernoulliðplÞ ð7Þ

pl ¼ Fr1

1;l � F
r2

2;l ð8Þ

For each position, the outcome of Bernoulli trial which determines the value of the binary

mask variable now depends on both the data and a position-specific, structure-informed prior

probability of antigenic importance pl. As described in Eq 8, the probability term pl is com-

puted directly from the structural features associated with position λ (which are scaled between

zero and one) and the power terms ρ1 and ρ2, the values of which are fitted to the data. A ten-

dency across all positions for those with higher values for the structural features to be involved

in antigenic change will result in higher estimates for ρ1 and ρ2. Conversely, if the data do not

support a relationship between a structural feature and antigenicity, the associated ρ term will

tend towards zero.

Results

To model the genetic basis of antigenic differences between influenza viruses, we first com-

piled antigenic (HI) and HA genetic sequence data from A(H3N2) viruses isolated during the

period 1990–2014, and used the sequence data to construct a phylogeny describing the evolu-

tionary relationships between viruses. Next, we mapped variation in HI titres to branches of

the phylogenetic tree–BSSVS was used to identify branches of the phylogeny representing

amino acid substitutions causing antigenic change and to quantify the associated degree of

antigenic change. Specifically, we calculated the proportion of MCMC samples in which a phy-

logenetic variable from Eq 3 is selected (where the associated binary mask variable, γψ = 1),

which represents confidence in the selected variable, and we also recorded a quantitative esti-

mate of the antigenic change, mψ (in log2 HI units), associated with the branch.
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The contributions of each branch to antigenic evolution are shown in the phylogenetic tree

in Fig 1a where branch lengths indicate the posterior mean value of γψmψ in Eq 3. In this visu-

alisation, the horizontal dimension expresses antigenic change. Consequently, an antigenically

homogenous clade will appear as a vertical line, regardless of the amount of molecular evolu-

tion that has occurred within it or the time spanned. The mean number of branches included

in the model in an individual step of the MCMC was 64 (95% HPD, 55–75) out of 397.

Branches in the trunk lineage were more likely to be included in the model explaining varia-

tion in HI titres, compared with branches in the rest of the tree (odds-ratio 5.0; 95% CI, 3.4–

7.4). The histogram in Fig 1b illustrates a highly right-skewed distribution of antigenic weights

assigned to branches with relatively few antigenic events of more than 1 log2 HI units. While

the histogram shows branches with larger effects to be found in both the trunk and side

branches, the rate of antigenic change was found to be considerably higher in the trunk. Rates

of antigenic evolution in the trunk and side branches were calculated by summing antigenic

weights (γψmψ) and dividing by the sum of branch lengths measured in years of evolutionary

time estimated using a molecular clock analysis implemented in BEAST [20,21]. The rate of

antigenic drift in the trunk lineage was estimated to be 0.73 log2 HI units per year (95% HPD,

Fig 1. Antigenic evolution mapped to HA phylogeny. Antigenic change, as expressed in HI titres, mapped to branches of the HA1 phylogeny. The antigenic

effect (log2 HI units) for each branch estimated as the average drop in titre when virus and antiserum separated by the branch are tested together. (a) HA

phylogeny with branch lengths scaled to show antigenic effects (γψmψ). The x-axis shows cumulative antigenic distance from the root. The trunk lineage is

shown as a thick line. (b) Histogram showing antigenic effects (γψmψ) estimated for each branch in the trunk lineage (red) and in the side branches (grey). (c)

Phylogeny is plotted to show time on the x-axis (years) and cumulative antigenic distance from the root on the y-axis (log2 HI units). The trunk lineage is

shown as a thick line. Dashed red line indicates the linear regression between time since the root and antigenic distance from the root for each node in the

phylogeny (slope = 0.72).

https://doi.org/10.1371/journal.pcbi.1010885.g001
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0.67–0.78), compared with 0.05 log2 HI units per year in the rest of the tree (95% HPD, 0.04–

0.06). Cumulative antigenic distance from the root was calculated across the phylogenetic tree

by summing antigenic effects (γψmψ) across each branch in a path between the root and every

internal node and tip. This cumulative antigenic distance is represented in the horizontal

dimension in the tree in Fig 1a. Linear regression of cumulative antigenic distance for each

node and cumulative branch lengths estimated a rate of antigenic drift of 0.72 log2 HI units

per year (Fig 1c). This aligns very closely with a figure of 0.71 previously estimated for a dataset

of A(H3N2) viruses from the period 1985–2015 using a comparable approach [8].

Genetic determinants of antigenic change

Next, amino acid substitutions were tested as predictors of reduced HI titres. Antigenic

weights were estimated for each substitution with binary mask variables (zλ) dictating whether

substitutions at a particular position were included in the genetic model of variation in titres.

Based on the HI data, for each variable position the posterior mean value of zλ, or the posterior

inclusion probability, is the inferred probability that substitutions at position λ have contrib-

uted to antigenic evolution. To assess how well each model did in terms of attributing anti-

genic changes to amino acid substitutions, we examined posterior inclusion probabilities

associated with amino acid positions in the context of antigenic sites defined in the literature.

While the important antigenic areas of HA are known, definitions of the constituents and

boundaries of the antigenic sites vary, making a binary in-or-out classification to assess model

selection problematic. For this reason, we considered the distance in 3-D space from each resi-

due to these sites rather than a binary in-or-out classification. These distances were calculated

between alpha carbons, therefore were relatively insensitive to the changes in protein structure

occurring during evolution. For example, distances calculated using the HA structures of A/

Aichi/2/68 and A/Brisbane/10/2007 were highly correlated (R2 >0.99, S1a Fig), despite the

two viruses being separated by 39 years of evolution. At each step of the MCMC, the mean dis-

tance to an antigenic site, averaged across the set of positions selected by the model (zλ = 1) at

that step, was calculated. The mean distance to antigenic site averaged over the MCMC chain

was used to evaluate model performance with lower values indicating higher ability to cor-

rectly attribute antigenic variation to causative substitutions. Initial comparison of structur-

ally-naïve models showed that a model assuming a link between the antigenic impact of

substitutions occurring at the same HA position (antigenic relationships, Δr,v, modelled using

Eq 5) outperformed a simpler model that assumed no such link (Δr,v modelled using Eq 4) as

indicated by a lower mean distance to antigenic sites of amino acid residues inferred to have

substitutions explaining antigenic differences (Table 2). Using a single effect size (m0κ in Eq 4

or ~m 0k in Eq 5) for forward and reverse substitutions (symmetric substitution effects) also led

Table 2. Model performance evaluated by distance from antigenic sites of positions implicated in antigenic evolu-

tion, averaged across posterior samples.

Model Symmetric

substitution effects

Mean distance to

antigenic site (Å)

Structurally-naïve model—substitution model with independent

effect sizes (Eq 4)

Yes 11.80

No 13.28

Structurally-naïve model—substitution model with effect sizes

linked to position (Eq 5)

Yes 6.86

No 11.39

Structurally-aware model–structure influencing inclusion

probabilities for positions and effect sizes for substitutions linked

to position (Eq 6)

Yes 2.55

No 3.05

https://doi.org/10.1371/journal.pcbi.1010885.t002
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to better model performance compared with estimating two effect sizes (asymmetric

substitution).

For the best performing structurally-naïve model (described by Eq 5), inclusion probabili-

ties for each position with substitutions present in the dataset are indicated in Fig 2a, with ver-

tical bars showing the locations of antigenic sites [22]. Data underlying Fig 2 are available in S1

Data. In Fig 2b, residues on a structural model of HA are shown coloured by inclusion proba-

bilities and the locations of antigenic sites are shown to the right. Six HA positions were

Fig 2. The role of HA positions in antigenic evolution estimated using a structurally naïve model. (a) Each point represents the posterior inclusion

probability for a variable HA1 position. Blue vertical shading indicates positions on the x-axis that are described in antigenic sites A and B (dark blue) and

antigenic sites C, D, and E (light blue). (b) Amino acid positions on the surface model of a HA structure are coloured: to the left, by inclusion probability

following the colour scheme in a; to the right, antigenic sites A and B are shown in dark blue and sites C, D and E in light blue. (c) Posterior inclusion

probability for each variable amino acid position is plotted against distance from the closest residue in a defined antigenic site. Points at 0Å on the x-axis,

representing residues in described antigenic sites, have been adjusted in both dimensions to allow visualisation of overlapping points. A red line indicates the

mean distance of residues selected with inclusion probability equal to or higher than that on the y-axis. Light red lines show a null distribution derived from

1,000 randomisations retaining the inclusion probabilities from the model fitted to the data. A dashed vertical line at 8Å marks a threshold at which a position

is approximately two residues away from an amino acid in a described antigenic site.

https://doi.org/10.1371/journal.pcbi.1010885.g002
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identified with very high confidence, each being associated with an inclusion probability of at

least 0.95: positions 131, 135, 145 belonging to antigenic site A, 157 and 189 to antigenic site B,

and 223 located on an exposed loop on the boundary of the RBS. A posterior mean value of

0.12 for the probability of inclusion, �p0 , was used to determine the inclusion probability

required for inclusion of an HA position in an optimal model. Ranking inclusion probabilities

and taking the top 12th percentile corresponded to 25 HA positions. Of the top 25 positions

ranked by inclusion probability, six belonged to antigenic site A (126, 131, 135, 137, 144 and

145), five to site B (157, 158, 159, 160 and 189), one to site C (53), two to site D (121 and 173)

and none to site E. In Fig 2c, each HA position tested is positioned by its distance from the

closest antigenic site and its posterior inclusion probability. When ranked by inclusion proba-

bility, the top 16 positions fall within 8Å of the core antigenic site limits, and only two posi-

tions above this threshold (183 at 9.0Å and 296 at 16.7Å) were included (with a probability

greater than the threshold of 0.33). However, Fig 2c shows substitutions at some more distant

positions were being included in the model in a non-negligible proportion of MCMC samples

(positions 4 at 75.7Å and 14 at 52.3Å were associated with inclusion probabilities of 0.23 and

0.22 respectively). Both of these positions are in the stalk domain distant from the antigenic

sites around the RBS and therefore it is deemed very unlikely that substitutions at these posi-

tions have contributed to antigenic evolution as assessed in HI assays. The occasional inclusion

of parameters associated with positions such as these inevitably disturbs estimates for other

parameters within the model.

Incorporating structural data

To investigate whether incorporating data on protein structure could assist the accuracy with

which variables explaining antigenic differences could be identified, the locations of residues

within the HA structure were used to influence the inclusion probabilities estimated for each

position. Two structural features were considered, the distance from the RBS and a structure-

based epitope score which estimates how accessible areas of a protein are to an antibody. For

each residue, its distance to the RBS was calculated as minimum distance in 3-D space of its

alpha carbon to the closest alpha carbon of a RBS residue. A structure-based epitope score was

calculated for each HA residue using BEpro [23] and reflects how exposed and accessible for

antibody binding, the region centred on each residue is. Comparison of these two measures

calculated across solved HA structures from three A(H3N2) viruses isolated during the period

covered by the HI dataset (A/Finland/486/2004, A/Hong Kong/4443/2005 and A/Brisbane/10/

2007) and an earlier, evolutionary founder virus from the 1968 pandemic (A/Aichi/2/68) indi-

cated that changes to protein structure during virus evolution did not greatly affect these mea-

sures. The variances in measurements made between different HA structures were small

indicating that structural information used is not unduly influenced by the choice of HA struc-

ture. For example, comparison of RBS distances and epitope scores for the HAs of A/Aichi/2/

68 and A/Brisbane/10/2007 were highly correlated (R2>0.99 and 0.94 respectively, S1a and

S1c Fig). Therefore, mean distance from the RBS and epitope scores averaged over the four

structures (Fig 3) were considered suitable for use in modelling. Data underlying Fig 3 are

available in S2 Data.

The structural measurements plotted in Fig 3 were allowed to influence the selection of

amino acid substitutions inferred to explain variation in the antigenic component of HI titres,

Δr,v, according to Eqs 6–8. Structural information was used to estimate a structure-informed

probability (pl) for each HA position, with the parameters ρ1 and ρ2 determining the impor-

tance of the proximity to the RBS (denoted F1,λ) and the structure-based epitope score

(denoted F2,λ) of each position, according to Eq 8. In Fig 4a each HA residue is positioned in a
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2-D space according to these two measures, while the colouring shows the structure informed

probability of antigenic importance calculated from posterior mean values for the ρ parameters

according to Eq 8. Data underlying Fig 4 are available in S3 Data. Fig 4a shows that neither the

proximity to the RBS nor the structure-based epitope score fully dominated the determination

of the probability, however Fig 4b shows the ρ parameter associated with RBS proximity

Fig 3. Structural features of the influenza A(H3N2) HA. (a) The distance of each HA residue to the closest of the residues comprising the RBS. To the right, a

surface representation of the HA structure is shown coloured according to the distance key. (b) The structure-based epitope score for each HA residue was

calculated using BEpro [23]. To the right, a surface representation of the HA structure is shown coloured according to the epitope score key. In each plot, a

vertical dashed line at position 329 indicates the boundary between HA1 and HA2.

https://doi.org/10.1371/journal.pcbi.1010885.g003
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Fig 4. Use of structural data to guide variable selection. Plots summarise variable selection using a model where posterior inclusion probability that

substitutions at an HA position affect antigenicity is impacted by a structure-informed probability that depends on a structure-based epitope score and distance

from the RBS (a). HA residues are positioned according to a structure-based epitope score and distance from the RBS. Colour indicates the structure-informed

probability of antigenic importance. To the right, structure informed probability is shown on the HA structure. (b) Posterior distributions for power terms that

link proximity to the RBS (ρ1, top) and structure-based epitope score (ρ2, bottom) for each HA position to a structure-informed probability for the position, pl,

according to Eq 8. Individual values sampled from the posterior distribution are shown below the x-axis. Prior distributions for these parameters, defined as

Gamma(1, 1), are shown as dashed black lines. (c) Scatterplot showing the relationship between the structure-informed probability and the posterior inclusion

probability. The solid black line has a slope of 1.07 alongside a dashed line of slope 1, with standard error from the linear model indicated in grey. (d-e) HA

residues are positioned according to structure-based epitope score and distance from the RBS, identical to a. The colour scheme indicates posterior inclusion

probabilities estimated using structurally-naïve (d) and structurally-aware (e) models. Positions without substitutions are shown in grey. To the right of each

scatterplot, inclusion probabilities are shown on the HA structure. (f) Each point represents the posterior inclusion probability for a variable HA1 position.

Blue vertical shading indicates positions on the x-axis that are described in antigenic sites A and B (dark blue) and antigenic sites C, D, and E (light blue). (g)

Inclusion probability for each variable amino acid position is plotted against distance from the closest residue in a described antigenic site. Points at 0 Å on the

x-axis representing residues in described antigenic sites, have been adjusted in both dimensions to aid visualisation of overlapping points. A red line indicates

the mean distance of residues selected with inclusion probability equal to or higher than that on the y-axis. Light red lines show a null distribution derived from

1,000 randomisations retaining the inclusion probabilities from the model fitted to the data. A dotted red line shows the corresponding line from a structurally-

naïve model shown in Fig 2c. A dashed vertical line at 8Å marks a threshold at which a position is approximately two residues away from an amino acid in the

described antigenic site.

https://doi.org/10.1371/journal.pcbi.1010885.g004
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(mean, 4.43; 95% HPD, 1.60–8.61) was higher than that associated with the epitope score

(mean, 2.40; 95% HPD, 0.93–3.73), indicating proximity to the RBS to be particularly useful as

a predictor, given both structure features were rescaled between zero and one for modelling.

As expected, the structure-based probability does not fully determine whether or not a position

is included in the model but guides variable selection, according to Eq 7, when correlations

between patterns of substitution obscure relationships between antigenic change and causative

substitutions. The correlation between the structure-based probability, �pl , and the posterior

inclusion probability,
��zl , has a slope of 1.07 as shown in Fig 4c. Variation around the slope is

expected as other factors such as the side-chain properties of the actual amino acid substitu-

tions must contribute to determine whether positions influence antigenicity, however the

slope of close to 1 indicates that the relationship between structure-informed probability and

posterior inclusion probability is fitted correctly. In Fig 4d and 4e, HA positions are again

placed according to structure-based epitope scores and distance from the RBS. Each non-con-

served HA position is coloured by its posterior inclusion probability, the confidence that sub-

stitutions at the position have impacted antigenic evolution, in models fitted without (Fig 4d)

and with structural data (Fig 4e). The effect of structural information guiding variable selection

is clear with residues positioned in the bottom right corner of the scatterplot for the structur-

ally-aware model tending to be associated with higher inclusion probabilities, which corre-

sponds to a greater number of red residues in surface-exposed areas near to the RBS in Fig 4e

compared with Fig 4d. Notably, a higher proportion of positions with an inclusion probability

of one are identified using the structurally-aware model (Fig 4f compared with Fig 2a).

Incorporating structural information into variable selection reduced uncertainty in model

identification. Using the structurally-aware model, 144 of 199 (72.4%) variable HA positions

were either included in the model or excluded in at least 95% of MCMC samples (inclusion

probability >0.95 for 14 positions and<0.05 for 130, S1 Table), while for the structurally-

naïve model the corresponding number was only 119 (59.8%) (>0.95 for 6 positions and

<0.05 for 113, S1 Table). In Fig 4f, posterior probabilities are shown for each HA position

where substitutions were present with blue shading used to indicate antigenic sites. This plot

shows that the majority of selected positions either belonged to defined antigenic sites or were

very close to one of them in primary amino acid sequence. Of the 14 positions associated with

an inclusion probability of at least 0.95, four were in antigenic site A (positions 131, 135, 144

and 145), five in site B (157, 158, 159, 189 and 193) and one in site D (173), while the others

were either defined as belonging to the RBS (194 and 225) or were located close to the RBS

(138 and 223). Incorporating structure into variable selection resulted in greater accuracy as

quantified by the distances of amino acid residues from defined antigenic sites (Fig 4g and

Table 2), with a higher effective number of parameters contributing to antigenic distance (S1

Table). Each of the 18 residues with the highest inclusion probability belonged to defined anti-

genic sites or were within 8Å of these and only position 183, at 8.9Å, was further away and

associated with an inclusion probability of>0.5. Of all positions associated with an inclusion

probability of>0.05, position 43, 19.3Å away, with an inclusion probability of 0.08, was the

most distant. For comparison, 19 positions further than 19.3Å from antigenic sites were associ-

ated with inclusion probabilities of at least 0.05 using the structurally-naïve model (Fig 2c), up

to a maximum of 75.7Å (position 4, inclusion probability of 0.23).

Previous work by Koel et al. examined the genetic basis of the largest antigenic changes

through systematic testing by reverse genetics of amino acid differences mapping to transitions

between clusters apparent on antigenic maps generated from HI data for viruses spanning

1968–2003, identifying a key role for substitutions at HA positions 145, 155, 156, 158, 189 and

193 and to a somewhat lesser extent positions 133 and 135 [24]. We identify substituions in
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common with that approach such as 156QH acquired by A/Fujian/411/2002-like viruses and

observe that substitutions at these ‘Koel’ sites continued to play an important role in antigenic

drift in the period beyond 2003. For example, in the following period several substitutions at

these positions appear in trunk lineage branches to which significant antigenic drift was attrib-

uted: 159YF, 145KN, 193SF, 189NK, and 145NS. The highest average antigenic weight attrib-

uted to a substitution, averaged across titres, in the studied dataset was for amino acid

substitution 189NK (1.73 log2 HI units). Previous work has shown substitutions 189QK and

189KR contributed to changes between A(H3N2) antigenic clusters in the 1970s and 1980s

[24]. In the period studied, the substitution 189NK appears in the trunk lineage in one of the

most antigenically significant branches separating A/Perth/16/2009-like viruses from earlier

A/California/7/2004-like viruses. Interestingly the substitution 189NK also appeared in a side

branch at a similar point in time leading to an evolutionarily unsuccessful lineage. In the trunk

lineage, 189NK co-occurred with 158KN, which itself was present in multiple branches and

has an estimated mean antigenic impact of 0.94 log2 HI units and 212TA which also mapped

to two terminal branches though estimated to have a lower antigenic impact (0.29 log2 HI

units). Substitutions co-occurring with 189NK in the side branch are examined below. Except-

ing 189NK, the next highest antigenic weight assigned to a substitution was for 135KT (1.65

log2 HI units). This substitution became fixed in the A(H3N2) population in the mid-1990s

and was quickly followed by the incorporation of 133DN into the trunk lineage, a substitution

combination that introduced an additional N-linked glycosylation motif, NGT, across posi-

tions 133–135.

The highest antigenic effect (1.69 log2 HI units) for an amino acid substitution outside of

the ‘Koel’ positions was between A and T at position 131, which falls in antigenic site A. The

substitution 131AT was incorporated into a branch forming the trunk lineage with 131T

viruses rising in frequency to achieve fixation over the period ~2002–2004. After position 131,

the highest antigenic weights estimated at ‘non-Koel’ sites were at HA positions 144 and 194,

which both neighbour ‘Koel’ sites. Position 144 is of note as multiple changes across the phy-

logeny away from 144N result in antigenic effects in concert with a loss of a potential N-linked

glycosylation site (as 146S is almost entirely conserved among A(H3N2) viruses during the

period studied). Indeed, each of the two highest antigenic effects mapping to internal side

branches leading to more than only 1–3 viruses included loss of a glycosylation motif at posi-

tions 144–146 with 142RG and 144ND mapping to one and 62EK, 144NK, 158KN, and

189NK mapping to the other, with estimated antigenic weights of 2.48 and 1.41 log2 HI units

respectively.

Bayesian model averaging delivers accurate prediction of HI titres

The full dataset was comprised of 38,757 titres which included 3,477 different virus and refer-

ence antiserum combinations. These combinations were measured with 1,737 different viruses

(including reference viruses) and antisera raised against 151 reference viruses. To assess the

predictive performance of genetic models of antigenic phenotype, a range of model variants

were tested for their capacity to recover HI titres under two prediction schemes. Firstly, to

assess the capacity of models to predict unobserved antigenic relationships, 10% of virus and

reference antiserum combinations (348 combinations), were randomly selected 100 times, and

all titres associated with those combinations were removed to act as test data. Models were

trained using the remaining 90% of virus and reference antiserum combinations and tested for

their ability to accurately predict the removed titres. Secondly, to evaluate model capacity to

predict titres of uncharacterised viruses, 10% of viruses (174 viruses) were randomly selected

100 times, and all titres for these viruses measured using any antiserum were removed to act as
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test data with data for the remaining 90% of viruses used to train models. Under both predic-

tion schemes, the models (Eqs 3–6) included indicator variables to determine whether a

genetic variable contributed to differences in titres, in common with the previous sections. As

these indicator variables are present, the combination of HA positions at which substitutions

contribute to predictions may vary at each step of the MCMC. This therefore constitutes pre-

diction by model averaging rather than prediction conditioned on a single best model,

accounting for uncertainty in the identification of the substitutions that cause antigenic

differences.

Employing the first scheme, titres were predicted initially with the antigenic component of

titres, Δr,v, modelled using the phylogenetic model described by Eq 3, with information on the

antigenic changes associated with branches of the phylogeny (γψmψ) estimated using the train-

ing data only. This model provides a reasonable approximation of antigenic relationships,

allowing titres to be predicted for unknown virus and reference strain combinations under

cross-validation with a mean absolute error (MAE) of 0.60 log2 HI units (root-mean-square

deviation RMSD = 0.83, Table 3, scheme 1). However, as the antigenic weights (γψmψ) associ-

ated with branches are purely additive, the tree model fails to account for the antigenic conse-

quences of phenomena such as reverse substitutions or the presence of the same substitution

in multiple branches.

To account for these non-additive antigenic events requires terms that explicitly describe

the presence or absence of amino acid substitutions (Δr,v modelled using Eqs 4, 5 or 6). Using

a model with independently estimated effect sizes for every substitution at each position (Eq 4)

resulted in more accurate predictions with a MAE of 0.53 log2 HI units and RMSD of 0.69

(Table 3, scheme 1). Having the effects of substitutions at the same position linked (Eq 5)

resulted in a marginal improvement in predictions (MAE = 0.52 and RMSD = 0.68) (Table 3,

scheme 1). Improved predictions are expected under these substitution models, as they can

account for convergent substitutions and reversions of substitutions. Using the structurally-

aware model of antigenic relationships (Eq 6) resulted in similar prediction accuracy when

predicting missing test-reference virus combinations (MAE = 0.52 and RMSD = 0.69, Table 3,

scheme 1). The accuracy of these predictions are comparable to existing models for prediction

of A(H3N2) HI titres [8]. This indicates that our efforts to increase the stringency of variable

selection, rather than prioritising the selection of the maximally predictive set of genetic terms,

Table 3. Accuracy of genetic models in predicting antigenic phenotype. Measures of the difference between predicted and observed HI titres and the percentage of

errors within 1 or 2 log2 HI units.

Model (Equation) Symmetric

substitution effects

Prediction scheme

1. Test-reference virus

pairs

2. Test viruses

MAE RMSD % <1

(<2)1
MAE RMSD % <1

(<2)1

Phylogenetic model (Eq 3) n/a 0.60 0.83 83 (94) 1.03 1.14 64 (87)

Structurally-naïve model—substitution model with independent effect sizes (Eq 4) Yes 0.53 0.69 86 (99) 0.80 1.04 69 (94)

No 0.53 0.69 86 (99) 0.81 1.05 69 (93)

Structurally-naïve model—substitution model with effect sizes linked to position (Eq

5)

Yes 0.52 0.69 87 (99) 0.80 1.04 69 (94)

No 0.52 0.69 87 (99) 0.79 1.03 70 (94)

Structurally-aware model–structure influencing inclusion probabilities for positions

and effect sizes for substitutions linked to position (Eq 6)

Yes 0.52 0.69 87 (99) 0.77 1.01 71 (94)

No 0.52 0.69 87 (99) 0.77 1.02 71 (94)

MAE, mean absolute error; RMSD, root-mean-square deviation; n/a = not applicable. 1The percentage of predicted titres within 1 (or 2) log2 HI units of the true

underlying titre.

https://doi.org/10.1371/journal.pcbi.1010885.t003
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do not hamper the predictive ability of our approach. Under the best performing genetic

model, 87% of predictions were made within 1 log2 HI unit of the observed titre and 99%

within 2 log2 HI units (Table 3).

The accuracy of all models was reduced under this second prediction scheme (Table 3,

scheme 2) with a MAE of only 1.13 log2 HI units (RMSD = 1.14) using the phylogenetic

model. Predicting titres for viruses that are entirely absent from the training data is more chal-

lenging, in part, as it is not possible to estimate a virus avidity parameter (Av in Eq 2), as recog-

nised previously [8,12]. The accuracy of predictions was improved using the substitution-

based models (MAE 0.77–0.81 log2 HI units and RMSD = 1.01–1.05). Interestingly, the struc-

turally-aware model is slightly better performing here when predicting for cross-validation test

datasets consisting of missing test viruses (0.77 compared with 0.79, Table 3, scheme 2). This

indicates that more accurately attributing antigenic variation to the correct substitutions also

offers an advantage when predicting antigenic relationships from HA sequences for viruses

with no associated antigenic data.

In Fig 5a, titres predicted using scheme 1 are plotted against observed titres for the model

with structural information (Eq 6). In Fig 5b, titres predicted using scheme 2 are plotted

against the observed titres using the same model. Fig 5a shows a close relationship between

predicted and observed titres while Fig 5b shows that in the absence of any information on the

reactivity of a virus with any available antisera, there is a trend towards under-estimation of

high observed titres. Such high titres tend to be associated with test viruses having higher than

average titres across panels of antisera against which they are tested. Without information on

these viruses (scheme 2), we observe a mean underestimation (predicted v observed) of -0.16

(Fig 5b), which compares with a corresponding value of -0.06 for scheme 1 (Fig 5a).

It should be noted that, in both the prediction schemes described above, there is non-inde-

pendence of data points due to phylogenetic structure and the presence of viruses with highly

similar evolutionary histories. To explore prediction in a related but independent dataset, we

examined the predictive power of these models applied to VN measurements made between

viruses collected in the years 2015–2020. In this forward prediction scheme, test datasets con-

sisted of all titres for viruses collected in a specific year measured against antisera present in

VN training data comprising viruses collected in previous years and associated antisera (Fig

5c). The null model was trained to the values of homologous titres for each reference virus in

the training data only. The structural model not exposed to antigenic data was also trained

using the values of homologous titres for antisera in the training data and additionally infor-

mation from the structurally-aware model applied to the HI dataset (1990–2014): 1) the posi-

tion-specific structure-informed inclusion probability (pl in Eq 7); and 2) the position-specific

antigenic coefficient ( ~ml in Eq 6). Notably, this model trained to antigenic information in the

HI dataset (1990–2014) is able to make informative predictions of antigenic relationships for

viruses that evolved several years later, correlating with titres measured using a different assay

(green line, Fig 5c). This prediction scheme mimics the application of the model and informa-

tion from a data-rich situation to a data-poor situation. This indicates consistency in the char-

acteristics of antigenically important sites and a degree of repeatability in the positions where

substitutions affect titres. As expected, the model trained to information on the antigenic

impact of substitutions on VN titres in the training datasets generally performs better (blue

line, Fig 5c).

Discussion

Here, we describe an approach for identifying genetic changes that explain the antigenic drift

of a rapidly evolving virus pathogen. The evolutionary process results in highly correlated
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genetic signals which can prove challenging for accurate mapping of genotype to antigenic

phenotype. We describe a Bayesian approach whereby the causative amino acid changes are

identified using BSSVS, performed alongside model fitting. Incorporating phylogenetic

Fig 5. Sequence-based predictions of antigenic phenotype. Measured HI titres are plotted against predictions made under cross-validation procedures where

test sets consist of randomly selected (a) 10% of test-reference virus pairs and (b) 10% of test viruses. Predictions are made using a structurally-aware model (Eq

6) in which structural features associated with the location of each residue in the HA protein influence the combination of genetic terms that contribute to

predictions. Observed titres are the fitted titre for each reference strain and test virus, accounting for day-to-day variability in measured titres. (c) Pearson’s

correlation coefficient between observed titres and predictions made for test sets consisting of VN measurements between viruses collected in a specified year

and antisera present in training datasets of viruses collected in previous years. The null model estimates titres based on homologous titre values for antisera in

the training dataset only. The structural model with no antigenic information from the training VN data estimates titres using homologous titre values for an

antiserum in the training dataset and structure-informed probabilities (pl in Eq 7) and position-specific antigenic terms ( ~m~
l in Eq 6) from a structurally-aware

model applied to HI data collected from 1990–2014 (summarised in Fig 4). The structurally-aware model with antigenic information is additionally able to

train estimates of antigenic effects of substitutions present in VN training datasets.

https://doi.org/10.1371/journal.pcbi.1010885.g005
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structure into the analysis favours amino acid positions where there are substitutions correlat-

ing with antigenic change at multiple points in the evolutionary history of the virus [12].

Moreover, we show how information on the structural context of amino acid positions can

guide the selection of antigenically relevant genetic variables for the HA of influenza A(H3N2)

viruses, increasing the proportion of variables either included or excluded with high confi-

dence (from 59.8% to 72.4%) and increasing the tendency for the model to attribute antigenic

variation to substitutions at HA positions within or nearby recognised antigenic sites (reduc-

ing the mean distance across samples from 6.86 Å to 2.55 Å). We identify substitutions respon-

sible for antigenic changes noting remarkable repeatability in the role of key positions and

describing instances of large antigenic changes that proved evolutionarily successful and other-

wise. Accurately quantifying the impact of substitutions on phenotype and monitoring such

substitutions as they arise in different contexts should allow for a fuller understanding of how

different aspects of phenotype contribute to viral fitness. Such steps are essential in the quest to

understand the forces that govern the predictability of evolution.

A benefit of a BSSVS approach with indicator variables is that this explicitly accounts for

uncertainty in the identification of causative amino acid substitutions and reflects this uncer-

tainty in variable selection. A further advantage of a Bayesian approach in this context is the

opportunity to include prior information on the antigenicity of HA, here in the form of struc-

tural data; something we show can help to further resolve ambiguities in model selection. We

describe an approach to integrate data on proximity to the RBS and a pre-computed structure-

based epitope score into priors for the probability that substitutions at a position impact anti-

genicity, an approach that could be extended to other proteins or structural features. In this

analysis of the influenza HA, a prior expectation that antigenically important substitutions

would tend to occur at HA positions both increased proximity to the RBS and higher epitope

scores was implemented through choice of priors. However the model was free to minimise

the influence of either parameter and this approach is not limited to situations in which prior

knowledge of the directionality of a relationship exists. If a misleading or unhelpful structural

feature is selected prior to the analysis, the posterior distribution for the associated power term

is expected to tend towards zero minimising the influence of the feature (S2 and S3 Figs). An

extension of this work would be to account for the shielding of epitopes by covalently attached

glycans and the changes in the accessibility of epitopes that occurs as a result of changes in gly-

cosylation over time [25,26]. Our analysis was focused on the HA protein as the HI assay mea-

sures antigenic variation in HA. However, the analysis could be extended to also include

neuraminidase to test for an antigenic effect of substitutions in that glycoprotein which may

influence VN assays. There is also scope to exploit the transfer of information from data-rich

to data-starved virus subtypes, similar to that performed in the prediction scheme for VN titres

for viruses evolved in the years following the period covered by the principal dataset analyses

in this study (Fig 5c). For example, the relationship between structural features and the role in

antigenic evolution could be trained using a data-rich subtype such as A(H3N2); this could

inform the prior distributions for the inclusion probabilities of structurally-aligned positions

in any newly emerged subtype that would have fewer available data.

Having developed the genetic model of antigenicity to fit known data, its predictive power

was evaluated by cross-validation using multiple schemes. Under the first, titres were predicted

for training datasets comprising 10% of virus and antiserum combinations. As much as 87% of

predicted titres were within 1 log2 HI unit of the observed titre and 100% within 2 log2 HI

units and Fig 5a shows accuracy across all values of observed titre. This would mean, for exam-

ple, that if we knew some of the characteristics of a test virus we could accurately estimate its

HI titre against a new reference antiserum, a vaccine virus antiserum or a candidate vaccine

virus antiserum within a two-fold dilution in most cases. The accuracy of the prediction was
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improved by the inclusion of variables representing amino acid substitutions (Eqs 4–6) over

the basal phylogenetic model (Eq 3) which, lacking terms representing specific amino acid dif-

ferences, cannot recognise when clades separated on the tree are antigenically similar because

they share substitutions occurring convergently in different branches. Predictions were not

markedly enhanced by linking the magnitude of antigenic effects caused by different amino

acid substitutions occurring at the same HA position (Eq 5), or by the inclusion of structural

information to guide the identification of the substitutions (Eq 6).

In the second, more challenging, prediction scheme we removed all antigenic data for a

virus and predicted its titres against reference antisera. Here, predictions were somewhat less

accurate though up to 71% of predicted titres were within 1 log2 HI unit of the observed titre

and 94% within 2 log2 HI units. In this prediction scheme (scheme 2) shown in Fig 5b, it is

clear that the model rarely predicts high HI titres (e.g. >1280) with no knowledge of whether

the ‘missing’ test virus has an inherent ability to be more sensitive to specific or non-specific

inhibition by antisera. This result would, in the absence of any established antigenic data, pre-

dict whether an unknown virus was not well recognised by an antiserum (recognition of the

test virus by antisera raised against reference viruses at titres 4-fold lower than the titre with

the homologous virus) or was poorly recognised by such antisera (recognition at titres >4-fold

lower than the homologous titres). Again, the greatest enhancement was, as seen in scheme 1,

due to the inclusion of specific amino acid substitutions over and above the basal phylogenetic

model. However, in scheme 2, the accuracy of the predictions improved, first by inclusion of

specific amino acid substitutions (Eq 4), then by linkage of antigenic weights of alternative

substitutions at a position (Eq 5), and finally by including information on the proximity of res-

idues to the RBS and structure-based epitope scores (Eq 6).

In summary, the ability to predict antigenic cross-reactivity of emerging influenza viruses,

as measured by HI, while maximising identification of the causative amino acid substitutions

provides important information with which to evaluate the epidemic potential of influenza

virus variants. The development of accurate, quantitative genotype-to-phenotype maps are a

required step towards the development of accurate sequence-based prediction of viral fitness

and genotype emergence and success, a hugely exciting area for further research. Using models

parameterised using data collected in previous years can help to refine such techniques and we

describe how structural data can be incorporated into model fitting. Incorporating other

sources of prior information is an exciting area for further model development, for example

alternative protein structural data could be tested as explaining variation in alternative assays

used to characterise antigenic similarity of viruses. The benefits of being able to integrate such

data types into modelling of evolution could be particularly powerful when performing analy-

ses of emerging influenza viruses for which historic data are unavailable. The approach we

describe, allowing detailed and accurate mapping of genotype to antigenic phenotype, should

progress efforts to understand the genetic determinants of virus fitness and evolutionary tra-

jectories of influenza viruses, importantly when surveillance is increasingly based on a

‘sequence-first’ approach. Moreover, this approach could also be adapted to proteins of other

viruses such as the capsid proteins of FMDV and the spike protein of coronaviruses.

Materials and methods

Influenza data

Influenza viruses were originally isolated from clinical specimens either by WHO National

Influenza Centres or by the London-based WHO Collaborating Centre (CC). The antigenic

dataset for A(H3N2) included 1737 viruses for which HI and HA1-encoding gene sequence

data were generated at the CC. The VN dataset consisted of 8,734 titres carried out between
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5,325 combinations of virus and antiserum. All HI and VN data used were from assays per-

formed at the CC and were obtained using post-infection ferret antisera. The data associated

with this study are available online [27]. HA1 nucleotide sequences and collection dates were

analysed to generate temporal phylogenies using BEAST v1.8.2 [28]. Phylogenies were esti-

mated using a variety of nucleotide substitution, demographic, and molecular clock models. A

general time reversible model of nucleotide substitution with proportion of invariant sites and

a gamma distribution with four categories describing among-site variation (GTR + I + Γ4) was

determined to be the most suitable model by comparison of Bayes factors. The trunk lineage

was defined from the root through the descendant node leading to the greater number of sam-

pled viruses.

Structural analysis

For each residue in the structure, the distance from the RBS was calculated as the minimum

distance in 3-D space between the alpha carbon of that residue and the nearest alpha carbon of

a residue in the RBS (positions 98, 135, 136, 153, 183, 190, 194, 195, 225, 226, and 228) [29].

The distance of each HA residue to the nearest antigenic site constituent was calculated as the

minimum distance in 3-D space from the residue’s alpha carbon to the nearest alpha carbon of

a residue in the antigenic site A (positions 124, 126, 128, 131, 133, 135, 137, 142, 143, 144, 145,

and 146), site B (155, 156, 157, 158, 159, 160, 163, 164, 186, 188, 189, 190, 192, 193, 196, 197,

198 and 199), site C (48, 53, 54, 275, 276, 278), site D (121, 122, 171, 172, 173, 174, 207, 217,

226, 227, 242, 244 and 248) and site E (62, 63, 78, 81, 82, 83, 91, 92, 260 and 262) [22,30,31]. To

determine structure-based epitope scores for each residue in the HA structure from tertiary

structure, the program BEpro [23] was used to analyse structures in Protein data bank (PDB)

format. These scores reflect side chain orientation and solvent accessibility calculated using

half sphere exposure values at multiple distances and amino acid propensity scores. For each

residue, both half sphere exposure measures and propensity scores depend on all atoms within

8-16Å of the target residue, with increased weighting towards nearer atoms. Due to this, scores

for any given residue are relatively insensitive to the effects of single amino acid substitutions.

The BEpro server was accessed at http://pepito.proteomics.ics.uci.edu/info.html. Structural

features were calculated from the solved HA structures of three human A(H3N2) viruses iso-

lated during the period covered by the HI dataset, A/Finland/486/2004 (PDB: 2YP2 [32]), A/

Hong Kong/4443/2005 (PDB: 2YP7 [32]), and A/Brisbane/10/2007 (PDB: 6AOU [33]) and

from an earlier virus isolated in 1968 (A/Aichi/2/68 PDB: 3HMG [34]).

Model implementation

The Modelling Approach section above describes the modelling process by which variation in

HI titres was attributed to genetic differences between viruses while accounting for phylogenetic

relationships and non-antigenic sources of variation in titres using a hierarchical model struc-

ture. The terms used in the models are described in Table 1. This section describes choices of

prior and other implementation details. Models were fitted in JAGS v4.3.0 [35] using the R

package runjags v2.0.4–6 [36]. Post-infection ferret antisera were raised against a range of refer-

ence viruses (r) and HI titres measured for an individual antiserum and several viruses (v)

(including the homologous titre to the corresponding reference virus r and a range of other

viruses). The measured titre for antiserum against reference virus r and virus v on a given date

d, Yr,v,d was modelled as an underlying titre for the combination of reference virus and test virus

pair, Hr,v, and an effect for date along with a variance term (Eq 1). To reflect a lack of prior

information, the effect for date was implemented with a diffuse prior for the effect of date

defined as a normal distribution where Dd � Normalð0; s2
DÞ with the variance parameter s2

D
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was drawn from an inverse gamma distribution such that s2
D � Inverse Gammað0:001; 0:001Þ.

The variance term accounting for residual variation in measured titres was drawn from the

prior distribution s2
Y � Inverse Gammað0:001; 0:001Þ. The underlying titre for each test

virus and reference strain was modelled according to a general structure described by Eq 2.

Priors for the estimated impact on titres associated with the use of antiserum raised using

each reference virus were defined as Ir � NormalðmI; s
2
I Þ. Here, the mean was given the

prior mI � NormalðYmax; s
2
mI
Þ where Ymax was the maximum observed titre and s2

mI
¼ 1:5 to

maintain a value for the intercept proximal to the range of possible recorded titres without

explicitly enforcing a particular value such as the maximum observed titre within the dataset

and s2
I � Inverse Gammað0:001; 0:001Þ. The prior for μI was chosen to allow a fitted model

with a high intercept from which lower titres were fitted by the subtraction of positive anti-

genic terms. Effects associated with the use of each test virus were associated with the prior

Av � Normalð0; s2
AÞ where s2

A � Inverse Gammað0:001; 0:001Þ. The variance term account-

ing for residual variation in underlying titres was drawn from the prior distribution

s2
H � Inverse Gammað0:001; 0:001Þ.

The antigenic component of the model described in Eq 3, Δr,v, estimates the drop in HI

titres caused by the antigenic dissimilarity of reference strain r and test virus v. Δr,v was mod-

elled in several ways (Eqs 3–6) though was restricted to be positive throughout and was always

subtracted from the other terms contributing to variation in titres (Eq 3). Using the combina-

tion of branches of the phylogenetic tree traversed when a path between them is drawn

through the tree (Eq 3), each branch, ψ, of the phylogenetic tree, C, was associated with a

binary mask term, γψ, that determined whether the branch ψ was included in the model or not

and an antigenic weight parameter, mψ, representing the estimated drop in HI titres due to

antigenic change mapping to the branch. These antigenic weights were required to be non-

negative and the prior was defined as mψ~Gamma(2, 1). This choice of prior distribution dis-

couraged the inclusion in the model of a high number of branches associated with very small

antigenic weights, on the basis that effects very close to zero cannot be identified in HI assay

data, thereby encouraging a more parsimonious model. Binary mask variables associated with

each branch were drawn from a Bernoulli trial defined as γψ~Bernoulli(π) where π was given

the prior π~Beta(2,8) to favour a sparse model reflecting the expectation that a relatively low

proportion of branches were expected to represent genetic differences influencing titres. The

posterior mean value of π determined the proportion of branches used to account for phyloge-

netic structure when testing variables representing specific amino acid differences (Eqs 4, 5

and 6).

Next, terms were introduced to explicitly attribute antigenic differences between viruses

expressed in HI assays to specific amino acid differences (Eq 4). These terms representing spe-

cific amino acid difference were tested in the presence of a subset of phylogenetic terms

selected using Eq 3, Ĉ. Each amino acid position was associated with a binary mask term, zλ,

for which the prior was specified as zλ~Bernoulli(π0) where given the prior π0~Beta(2,8) mir-

roring that used for the binary mask associated with phylogenetic terms above. When imple-

menting Eq 4, priors for the effect sizes associated with substitutions were specified as

m0κ~Gamma(1, 1), which allows for antigenic effects close to zero—necessary as this allows for

substitutions that do not affect antigenic cross-reactivity to occur at amino acid positions

included in the model due to the presence of other antigenically important substitutions at the

position. A similar model where substitutions occurring at the same amino acid position are

linked in their effect size is described by Eq 5, which differs from Eq 4 by having the antigenic

effect of a substitution partitioned into position-specific and substitution-specific components,

~ml and ~m0k respectively. Priors for the position-specific antigenic parameter were specified as
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~ml � Gammað2; 1Þ, discouraging near-zero antigenic effects at the position level. Eq 5 was

implemented with the prior for specific amino acid substitutions specified as ~m0k �
Gammaða; aÞ where α~Gamma(2, 1). This allows for a range of small and large antigenic

impacts, but the mean of this prior is equal to 1 regardless of the value of α. Therefore, for

rarer substitutions (ones informed by very few titres) where the data make reliable estimation

of an effect size unlikely, ~m0k tends towards 1, so the antigenic impact of the substitution will

be largely determined by the value estimated for the position-specific antigenic effect ~ml.

Structural data associated with each amino acid position were used to influence the proba-

bility that substitutions at that position contribute to antigenic evolution as apparent in HI

titres (Eqs 7 and 8). The binary mask term for each position, �zl, now depends on a position-

specific structure-based probability of antigenic importance pl. Two features derived from

structural analysis of published H3 HA structures, as described above, were defined for each

HA position: the distance from the RBS, F1, and a structure-based epitope score, F2 (see Struc-

tural analysis section). Each of these were re-scaled between zero and one prior to modelling

so that higher values reflected high proximity to the RBS and high epitope scores respectively.

Whether or not substitutions at an HA position contributed to variation in HI titres depended

on the outcome of a Bernoulli trial where for each position, λ, a structure-informed probability

pl was determined as the product of F1,λ and F2,λ. Higher values of each structural feature were

expected to increase the probability that a position was antigenically important and so the

parameters ρ1 and ρ2 were restricted to be positive and their priors were defined as

ρ1~Gamma(1, 1) and ρ2~Gamma(1, 1).

To give a sense of the complexity of the models described and computational requirements,

when the structurally-naïve with substitution effect sizes linked to position (Eq 5) is applied to

the full dataset of 38,758 titres (observed stochastic nodes) there are 14,533 unobserved sto-

chastic nodes if forward and reverse substitutions are assumed to have symmetric antigenic

effects and 14,821 if they are not. This gave total graph sizes of 3,040,790 and 3,043,157 respec-

tively. Implemented with 5,000 step MCMC chains after 1,000 adaptive iterations, two chains

took approximately 40 and 44.5 hours to run on a desktop dual-processor Ubuntu 20.04 Linux

workstation (with 18-core 2.3GHz processors and 256 GB RAM), respectively.

Cross-validation using Bayesian model averaging

Two cross-validation schemes were performed with the full dataset repeatedly divided into

training and test datasets at random, criteria for each are described in the Results section.

Under each scheme, measurements for antisera not present in the training data were excluded

from the test dataset. Models described by Eqs 3–6 were each fitted to the training data and

used to predict HI titres for virus and antiserum combinations present in the test data. Pre-

dicted titres were compared with observed titres, with both MAE and RMSD calculated. Each

error influences MAE in direct proportion to the absolute value of the error whereas RMSD

places more emphasis on penalisation of higher errors. For the forward prediction scheme car-

ried out with VN data, test datasets consisted of the following number of viruses in each year:

2015 (76); 2016 (250); 2017 (226); 2018 (248); 2019 (222); and 2020 (62).

Supporting information

S1 Fig. Correlation between structural features of A/Aichi/2/68 and A/Brisbane/10/2007

HA. (a) The correlation in the distance of the alpha carbon of each HA residue to the closest

alpha carbon of a residue belonging to a described antigenic site. (b) The correlation in the dis-

tance of the alpha carbon of each HA residue to the closest alpha carbon of a residue belonging

to the receptor-binding site. (c) The correlation in structure-based epitope scores estimated for
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each HA residue using the software BEpro.

(TIF)

S2 Fig. Posterior distributions for structural model provided with proximity to the

HA1-HA2 cleavage site and a randomised score and a structure-based epitope score. (a)

The distance of each HA residue to the HA1-HA2 boundary where post-translational cleavage

occurs. A vertical dashed line at position 329 indicates the boundary between HA1 and HA2.

To the right, a surface representation of the HA is shown. (b) In each plot, posterior distribu-

tions for power terms that link proximity to the cleavage site (left) and structure-based epitope

scores (right) for each HA position to a structure-informed probability for the position, pl,

according to Eq 8. Individual values sampled from the posterior distribution are shown below

the x-axis. Prior distributions for these parameters, defined as Gamma(1, 1), are shown as

dashed black lines.

(TIF)

S3 Fig. Posterior distributions for structural model provided with a randomised score and

proximity to receptor-binding site. (a) Values randomly drawn from a beta(1,1) distribution

and assigned to each HA residue. A vertical dashed line at position 329 indicates the boundary

between HA1 and HA2. To the right, a surface representation of the HA is shown. (b) In each

plot, posterior distributions for power terms that link randomly drawn values (left) and prox-

imity to the RBS (right) for each HA position to a structure-informed probability for the posi-

tion, pl, according to Eq 8. Individual values sampled from the posterior distribution are

shown below the x-axis. Prior distributions for these parameters, defined as Gamma(1, 1), are

shown as dashed black lines.

(TIF)

S1 Table. Model confidence in variable selection and distance of included or excluded HA

positions to known antigenic sites.

(DOCX)

S1 Data. Data underlying Fig 2 which summarises results of structurally-naïve model.

(CSV)

S2 Data. Data underlying Fig 3 which summarises structural features of influenza A

(H3N2) HA.

(CSV)

S3 Data. Data underlying Fig 4 which summarises results of structurally-aware model.

(CSV)
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