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Abstract—Distributed Machine Learning (DML) at the edge
of the network involves model learning and inference across
networking nodes over distributed data. One type of model
learning could be the delivery of predictive analytics services to
formulate intelligent environments, however, those environments
heavily rely on real-time inference and are significantly influenced
by changes in the underlying data (concept drifts). Moreover,
the quality of service and availability in DML environments are
directly tied to each node’s reliability, since such environments
are highly susceptible to the impact of node failures. Even if such
challenges can be tackled with distributed resilience mechanisms,
their effectiveness and efficiency, due to concept drifts, should
be maintained to ensure continuous and sustained quality of
service. DML systems operate in dynamic environments, thus,
they require their models to be updated according to the novel
trends embedded in the new data they encounter. We, therefore,
introduce several model maintenance mechanisms to ensure
resilient DML systems in the long term when concept drifts
emerge. We provide a comprehensive experimental evaluation
of our resilience maintenance mechanisms over synthetic and
real data showcasing their importance and applicability in edge
learning environments.

Index Terms—Edge Computing, Edge Intelligence, model
maintenance, resilient Machine Learning

I. INTRODUCTION

The booming developments of the Internet of Things (IoT),
in specific, the advances in intelligent sensors, low-energy
wireless communication and sensor network technologies,
make it possible for a large number of computing devices
to be networked through the IoT infrastructure [1], [2]. IoT
devices produce an unprecedented amount of data, raising the
demand for pushing computation to the edge of the network
to save the cost of storing and transferring the data to the
Cloud back end and fully utilize the computational power.
This gives birth to a new computation paradigm, i.e., Edge
Computing (EC), and makes it possible for many applica-
tions (e.g., services provided in smart cities) of which the
definition and concept are still emerging and have not been
reached a consensus by diverse stakeholders [3]. However,
those environments are heavily dependent on all kinds of
predictive analytics [4] like public transportation analysis [5],
human spatial activity pattern prediction [6] and city subway
station planning [7]. Of those predictive analytics, the types

that rely on real-time inference are significantly influenced.
For instance, consider the traffic congestion prediction. Since
city traffic is a complex and dynamic system, a Distributed
Machine Learning (DML) scheme is indispensable to monitor
its status and make predictions accordingly. However, the qual-
ity of service and availability for DML systems are directly
tied to each consisting node’s reliability. Specifically, DML
systems are highly susceptible to the impact of node failures.
To tackle this problem, we proposed a resilience framework
to help each node identify its best surrogate nodes and build
enhanced models therein to serve requests on its behalf with
equivalently satisfactory performances in the case of its failure
[8]. Enhanced models can be seen as the models trained mainly
on the model’s residing node’s data and a small section of sig-
nature data (sufficient statistics) chosen by specially designed
strategies from the potential failing nodes. Therefore, these
enhanced models obtained the ability to operate effectively
on data from multiple nodes with minimal inter-nodes data
transferring. Our experiments showcased enhanced models’
capabilities to help the system to function reliably even in
the most failure-intensive environments within a certain period
of time. However, as DML systems oftentimes operate in
dynamic environments thus requiring the models to be updated
according to novel trends embedded in new data it encounters,
we have to identify how the resilience framework behaves in
the long term when concept drifts emerge.

Concept drift, also interchangeably called non-stationary
data distributions, is a cause of deteriorating predictive model
performances [9]. As stationary models were built upon prior
knowledge (like Machine Learning (ML) models), they are
expected to not handle the unforeseen changes that happen
later on well. The standard ways of handling concept drift
include detecting them, analysing and adapting the models to
the new concept (which could include forgetting mechanisms
that make the models forget the old information) and esti-
mating the loss [10]. However, in our context, the influence
of concept drifts and the way of handling them might be
very different. As enhanced models operate on multiple nodes,
the concept drifts in one node may only partially impact the
models’ performance. Furthermore, any modifications made to
the models may not affect their performance on all the entailed



nodes equally. Hence, it is a challenge to approach concept
drifts related to enhanced models than typical setups, in which
the drift affects the model and the model treats concept drifts
holistically.

In this paper, we investigate the interactions between en-
hanced models and concept drifts. To the best of our knowl-
edge, this issue has not been covered by any previous works.
We first built enhanced models with different strategies to
source training data from multiple nodes and then induced
concept drifts (of different types) in nodes to examine the ML
models’ performance. We also propose various strategies to
extract signature information from the drifted data to retrain
the models effectively to adapt the model to the new concept
and evaluate to impact of the models’ performance on data
from different sources. In that process, the trade-offs between
amount of data transferred among nodes and the effectiveness
of concept drift adaption are comprehensively assessed.

The paper is organized as follows: Section II reports on
related work and our contribution, Section III formulates the
problems, and Section IV demonstrates the challenges of
partial concept drift by experiments. Section V introduces our
model maintenance strategies while Section VI reports on a
performance evaluation and comparative assessment. Section
VII concludes the paper.

II. RELATED WORK & CONTRIBUTION

The domains of learning under concept drift could be
divided into three sections: concept drift detection, concept
drift understanding, and concept drift adaption [11].

Since concept drift is known to harm model performance,
one typical way to carry out concept drift detection is by
monitoring the model’s performance in specific windows. This
gives birth to many error-based detection methods like Drift
Detection Method (DDM) [12] and ADaptive WINdowing
(ADWIN) [13]. DDM maintains a dynamic window and
monitors the significant increase in online error rates within it.
Depending on its confidence level on the significant increase,
it will give out a warning to signal the building of a new
model or an indication of drift to signal the replacement of
models. ADWIN compares the model’s error on two windows
of adaptive sizes: one samples history data, and the other
samples new data. The average errors of the two windows
are used to determine if concept drift exists.

Concept drift understanding entails evaluating the severity
of concept drift, as it directly affects how concept drift could
be mitigated. A small adjustment to the model by incremental
ML might suffice for minor concept drift, while significant
concept drift could require retraining the model from scratch
[11]. For example, Minku et al. characterized the severity of
concept drift by measuring the percentage of the input space
that has its target class changed before and after the drift [14].

As our work revolves around maintaining the models’
performance in the presence of concept drift, our focus here is
concept drift adaption and resilience maintenance. Adaptation
is handling the concept drift by updating predictive models
online during their operation to react to concept drifts [10]. To

achieve that, the model has to be maintained to adapt to the
new concepts. However, the application scenarios of the exist-
ing works in this domain are limited to certain models or are
inseparable from specific concept drift detection methods due
to their integration with them. For example, the method pro-
posed in [15] approaches concept drift detection and adaption
as a whole and relies on two learners: one stable learner that
learns long-term information responsible for prediction and
one reactive learner that learns recent information used as a
concept drift indicator. When the stable learner performs worse
than the reactive learner, it indicates the emergence of concept
drift and the stable learner gets retrained. Taking the severity of
concept drift into consideration, Wang et al [16] proposed a
method that can automatically select the best retraining and
tuning strategies and find adaptive iterations to maintain a
Gradient Boosting Decision Tree (GBDT) according to the
severity of the concept drift. However, it is only limited to
the GBDT model. Similarly, CVFDT [17], the extension of
the Very Fast Decision Tree (VFDT) [18] classifier, along
with later extensions [19]–[21], could effectively adapt to new
concepts by only updating a part of the model, could not be
generally applied to concept adaption problem.

Due to the lack of flexibility and generalizability, none of the
current works could be applied to the aforementioned main-
tenance problem of the enhanced models in DML systems.
Targeting this issue, we contribute with methods to maintain
the performance of enhanced models in a DML system that
operates on multiple data sources in the case of partial concept
drifts (where concept drift only happens in one of the sources).
We, therefore, propose strategies that yield different trade-offs
between the amount of data needed to be transmitted and
the performance of the maintained models and investigate the
impact of the maintenance on different sources of data.

III. RATIONALE & PROBLEM DEFINITION

We report on the fundamentals of our proposed method
by reporting on preliminaries from our previous work [8].
Consider a DML system that is providing predictive services
in an EC environment and consists of n edge nodes (referred to
as nodes hereinafter): N = {N1, . . . , Nn}. While all the nodes
are working on the same kind of predictive tasks, each node
does work independently on its local data Di = {(x, y)ℓ}Li

ℓ=1,
with Li input-output pairs (x, y) ∈ X × Y . The input
x = [x1, . . . , xd]

⊤ ∈ Rd is a d-dim. feature vector, which
is assigned to output y ∈ Y used for regression (e.g., Y ⊆ R)
or classification predictive tasks (e.g., Y ⊆ {−1, 1}). In the
regression case, given a query input x to node Ni, the error of
the predicted outcome fi(x) = ỹ is defined as ỹ−y, where y is
the actual output. The neighborhood of Ni, Ni ⊆ N \{Ni}, is
a subset of nodes which communicate directly with Ni. The
collection of the data of all the nodes in Ni is defined as
Di = {Dj}, ∀j, j ̸= i. Moreover, we assume each node Ni is
equipped with a local model fi that is built purely on Di.

We first introduced the concept of enhanced models in [8].
That is, for each node Ni and its neighbouring nodes Nj ∈ Ni,
we build enhanced data D̄s

i = Di ∪ {Γs(Dj)}, ∀j, j ̸= i,



in which Γs(Dj) represents the samples of representative
information extracted from Nj with a strategy s. Subsequently,
enhanced model f̄s

i is defined as the model trained over
D̄s

i that has its data sampled from neighbouring nodes with
strategy s (in which s controls how we sample the information,
e.g. with a random sampling strategy, we sample random
points within the original data).

For an enhanced model f̄s
i that operates on Di and Di, the

underlying distribution of arbitrary neighbouring node’s data
Dj ∈ Di could change over time (i.e., concept drift happens).
Given a certain threshold ε of error that the system could
tolerate (i.e., |f(x) − y| − |f(x′) − y′| > ε means that the
model has to be maintained to adapt to the new concept as it
induced intolerable error), the errors yielded by all the affected
models when facing the same concept drift are not likely to be
the same. Therefore, not all the models affected by the drift
are necessarily needed to be maintained.

Problem 1: We seek to investigate how concept drifts of
different degrees affect the performances of different kinds of
models and most importantly, the enhanced models, distinctly.

In our investigation, since we are focusing on different
kinds of models’ reactions to the concept drift, the detec-
tion and patterns (as it has been identified in [10], includes
sudden/abrupt, incremental, gradual and recurring) of it are
irrelevant in the context. But the types/classes of concept drift
do play an important role. The existing works do not reach
an absolute consensus on the terminology of the types of
concept drift. So, in this paper, we are dealing with three
types of concept drift that have the definition as follows.
Given that x, y are the original input and output and x′,
y′ are the input and output at the time when concept drift
occurs, then, the three types of drift are defined based on
the associated probability distributions P (x) and P (y), and
conditional probability P (y|x) as follows:

• Virtual Drift: P (x) ̸= P (x′) ∧ P (y) = P (y′)
• Actual Drift: P (x) ̸= P (x′) ∧ P (y) ̸= P (y′)
• Total Drift: P (x) ̸= P (x′) ∧ P (y) ̸= P (y′) ∧

P (y | x) ̸= P (y′ | x′)

When the enhanced model needs to be maintained, this can
be achieved by incremental learning or training from scratch.

Problem 2: Since the enhanced model is built with data
from other nodes and operates on multiple nodes, we seek
strategies to extract statistical information from the new drifted
data to maintain the model effectively and efficiently.

Let the enhanced model f̄i reside on node Ni and a concept
drift occur on node Nk. Consider also a neighbouring node
Nj whose data Dk are not drifted; {Nk, Nj} ∈ Ni. The f̄i
model has been built on node Ni in case of the Nk and/or
Nj failures. Consider now the maintained enhanced model
f̄ ′
i using either incremental learning or training from scratch

using the drifted data Dk′ of node Nk. We then obtain the two
prediction errors (losses L) by assessing the performance of f̄ ′

i

to drifted data Dk′ (from node Nk, EL(f̄ ′
i(Dk′)), and to non-

drifted data Dj (from node Nj), EL(f̄ ′
i(Dj)). The objectives

of the maintainability process are then:
O1: Minimize EL(f̄ ′

i(Dk′)) (for node Nk).

O2: Minimize EL(f̄ ′
i(Dj)) (for node Nj).

O3: Reduce inter-node data transfer between nodes Ni and
Nk during enhanced model maintenance.

IV. PARTIAL CONCEPT DRIFT IMPACT
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Fig. 1. Distributions of the artificially generated data

A. Investigation Scenario Set-up

To simulate concept drift in a controlled manner and provide
insights on the impact of the concept drifts in the enhanced
models, we created an artificial dataset that is comprised of
three nodes {N1, N2, N3} with data retrieved by the corre-
sponding Gaussian distributions while manipulating the means
and the covariance matrices. The results are shown in Figure
1. In this setup, D1 serves as the baseline to generate D2

and D3. Given the covariance matrix and the means adopted
to generate Di are denoted by covi and ci, cov2, c2 and
cov3, c3 are acquired by adding a 20% to 30% random
noise to cov1, c1. Concept drift was only introduced to D1,
so drifted data of three types were generated based on this
distribution. For virtual and actual drifted D1 (denoted with
Dv′

1 and Da′
1 ), the covariance matrices used are the same with

cov1. Following the definition, the virtual and actual drifted
D1 have their centres shifted along the x-axis and both the
x- and y-axis, respectively. The total drifted D1 (denoted
with Dt′

1 ) shares the same centre as the actual drifted D1

to control the variables while having a different covariance
matrix. Specifically, drifted data were shifted to where it barely
has any intersections with D1, D2 and D3 in x-axis to avoid
the case in which the same input corresponds to different
outputs to make it possible for good retraining results.

B. Building Enhanced Models

When building the enhanced models, we are focusing on
those that reside on node N2. As the main purpose of the
enhanced models is to serve as surrogate models for other
nodes, f̄2 could help us to gain insights into the enhanced
model’s performance on a drifted node (N1) and a normal



node (N3). To understand how different strategies used to
build the enhanced model affect its performance on the drifted
data, we built the enhanced model with two different strategies
mentioned in our previous paper [8], that is Global Sampling
(GS) strategy and Centroid Guided (CG) strategy. GS is based
on random sampling over the data of its neighbouring nodes.
For each node Nj ∈ Ni, we acquire Γ(Dj) by randomly
sampling α|Dj | points. Here α represents the mixing rate
that directly controls the proportion of data being selected in
the sampling process. The enhanced data is then produced
by D̄i = Di ∪ Γ(Dj), ∀j, j ̸= i. As for CG, instead of
sampling real data to build the enhanced data, we are using
the centroids (cluster heads) acquired by applying vector
quantization (clustering) to Dj . That is, for each Nj ∈ Ni,
we quantize the entire Dj into K clusters with respect to α
and |Dj | (i.e. k = α|Dj |). Then, for each cluster, we have a
centroid (cluster head) wjk that represents the centre of the
cluster. Γ(Dj) is consequently defined by:

Γ(Dj) = ∪K
k=1{wjk}. (1)

C. Effects of Concept Drift on Enhanced Model’s Performance

We focus on an abrupt concept drift on the dataset, e.g.,
N1, by concatenating D1 and three types of drifted D1 (Dv′

1 ,
Da′

1 and Dt′
1 ) and applied f̄GS

2 and f̄CG
2 on them. We then

compare the results with the local model f1 to see if they are
influenced by the concept drift any differently. Specifically, to
rule out the influence of different ML models, for each D̄i,
we feed it to a Support Vector Regression (SVR) model and a
Gradient Boosting Regression (GBR) model (all local models
are built with SVR by default).

TABLE I
PERFORMANCE OF DIFFERENT MODELS

RMSE
Model D1 Dv′

1 Dv′
1 Dv′

1
f1 0.47 1.29 8.06 7.93
f̄GS
2 (SV R) 1.73 1.69 7.57 7.41

f̄CG
2 (SV R) 1.69 1.68 7.57 7.41

f̄GS
2 (GBR) 1.54 2.19 6.26 6.12

f̄CG
2 (GBR) 1.50 2.17 6.29 6.15

Dv′
1 corresponds to virtual drifted D1

Da′
1 corresponds to actual drifted D1

Dt′
1 corresponds to total drifted D1

The performances yielded by all the models in terms of
Root-Mean-Square Error (RMSE) are shown in Table I. We
also plotted the point-wise absolute errors of them to visualize
the trends. From Figures 2 to 6, we can observe that all the
models have similar trends when they are facing the same
kind of concept drift (the light red regions on the right of the
figures represent the drifted data). In this setup, the impact
of concept drift did not seem to be affected much by the
strategies used to build the enhanced models (Figures 3 to 6),
as GS and CG provided similar results. Compared to the local
model f1 (Figure 2), being more generalized, the enhanced
models performed better on more severe drift types (Da′

1 and
Dt′

1 ) while being worse on Dv′
1 . Note that enhanced models
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Fig. 2. The performance of f1 on D1, Dv′
1 , Da′

1 and Dt′
1
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Fig. 3. The performance of f̄GS
2 (SV R) on D1, Dv′

1 , Da′
1 and Dt′

1
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Fig. 4. The performance of f̄CG
2 (SV R) on D1, Dv′

1 , Da′
1 and Dt′

1
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Fig. 5. The performance of f̄GS
2 (GBR) on D1, Dv′

1 , Da′
1 and Dt′

1
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Fig. 6. The performance of f̄CG
2 (GBR) on D1, Dv′

1 , Da′
1 and Dt′

1

did not perform well on D1, indicating the relatively huge
difference between D1, D2 and D3, as they do have a low level
of overlap. Thus, from the perspective of the enhanced models,
D1 and Dv′

1 are very similar. They did provide very close
results on D1 and Dv′

1 . Furthermore, as an ensemble model,
GBR (Figures 5 and 6) demonstrated better generalizability,
and performed noticeably better on Da′

1 and Dt′
1 as compared

to SVM (Figures 3 and 4). From this investigation, we see
that if we use the relative drops in performance to trigger
the model retraining, for Dv′

1 , the retraining for f1 does not
necessarily mean the retraining for the enhanced models that
operate on D1 need to be retrained as well. However, for Da′

1

and Dt′
1 , the reaction of the local model f1 is well in line with

the enhanced models.

V. MODEL MAINTAINABILITY STRATEGIES

To adapt the models to the new concept, we sample from
the drifted data and retrain the models with the samples. The
rationale for this process is identical to the strategies with those
used to extract signature information and train the enhanced

models at first. The only difference is, instead of sampling
from the initial data D, we sample from drifted data D′. In this
way, GS and CG could be directly used for the maintenance
of the enhanced models. Moreover, we are also introducing
the Mock Data (MD) strategy and the Enhanced Centroid
Guided (ECG) strategy to experiment with how we reduce the
amount of inter-node data transmission while maintaining the
effectiveness of the retraining. Specifically, for MD, the inter-
node transmission of real data can be avoided as MD only
requires the transmission of the local model and some statisti-
cal information. That is, given the collection of all the input-
output pairs of Dj are denoted with Xj and Yj , we calculate

the average of Xj as µj =
∑|Dj |

m=1 xm

|Dj | ∈ Rd and the standard

deviation of Xj as σj =
√

1
|Dj |

∑|Dj |
m=1(xm − µj)2 ∈ Rd. We

also compute the Standard Error of the Mean (SEM) on Yj

as:

σ̄j =

√
1

|Dj |
∑|Dj |

m=1(ym −
∑|Dj |

m=1 ym

|Dj | )2√
|Dj |

∈ Rd. (2)

Such statistical information and the local model fj are then
sent to Ni to build enhanced models therein. Ni then samples
α|Dj | vectors from the Gaussian distribution of N (µj ,σ

2
j )

to obtain the fabricated training inputs X̂j . The corresponding
training outputs are acquired by Ŷj = fj(X̂j)+ϵj . In which ϵj
is the added random noise sampled from Gaussian distribution
of N (0, σ̄2

j ). In this way, we have:

Γ(Dj) = {(X̂j , Ŷj) : X̂j ∼ N (µj ,σ
2
j ), Ŷj = fj(X̂j) + ϵj} (3)

With MD, we expect the amount of inter-node transmission
to be cut down by an evident margin with a larger value of
α|Dj |. While with a smaller value of it, considering the size
of the model, MD may not help in reducing the amount of
data transmitted.

The ECG works similarly to CG. However, instead of
quantizing Dj into α|Dj | clusters directly, we introduce a new
parameter called intensity λ to control the number of clusters
as well as the duplication process later. That is, we define the
number of clusters K =

α|Dj |
λ . Nj first quantizes Dj into K

clusters and the centroids {wjk} are sent to Ni. Then, for each
centroid wjk in {wjk}, Ni sample λ − 1 points (x̂, ŷ) from
N (wjk,σ

2
j ). Here, the standard deviation σj could be set to

an arbitrary value as long as it is small enough to ensure the
sampled point does not fall far from the original distribution
of Dj . Then, the final sample used to maintain the model
is obtained by aggregating all the centroids and the sampled
points.

Γ(Dj) = ∪K
k=1{wjk ∪ {(x̂, ŷ) ∼ N (wjk,σ

2
j )}}. (4)

VI. EXPERIMENTAL EVALUATION

We provide a comprehensive experimental evaluation to
examine how the proposed model maintenance process in a
DML system affects the models’ performance on the new
concept as well as the data from unchanged nodes. We



furthermore investigate how cutting down the amount of inter-
node data transmission influences the maintenance process.
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Fig. 7. The performance of f̄GS
2 , f̄CG

2 , f̄ECG
2 , f̄MD

2 on D1 and D3

A. Synthetic Dataset

As shown in Figure 7, though the enhanced models of
N2 built with different strategies performed similarly on D1,
they did yield noticeably different results on D3. To control
the variables in these experiments regarding enhanced model
maintenance, we (i) build all the enhanced models with GS
strategy, and (ii) use SVR to build all the models. Hence, we
first built an enhanced model f̄GS

2 . Then, for each type of the
concept drift in N1, we extract input-output pairs from the
drifted data with all four strategies (GS, CG, ECG, MD) and
retrain f̄GS

2 to get the four maintained models, respectively.
Since our focus here is the enhanced models’ performance

on D′
1 and D3, we plotted their performance before and after

the maintenance with different kinds of drifted data, shown
in Figures 8-13. Note: even though all the maintained models
are maintained on the enhanced model built with GS strategy,
the ‘before maintenance’ results are yielded by enhanced
models built with different strategies to demonstrate more
comprehensive results.

In Figure 8, by comparing the blue bars and red bars, we
could see that the performance of f̄2 barely dropped after it
encounters the virtual drifted D1 (Dv′

1 ), which is oftentimes
the sign of the model not needing maintenance. However,
as the purple bars indicate, the maintenance with Dv′

1 could
help to cut down the error on Dv′

1 (EL(f̄ ′
2(D

v′
1 ))) almost in

half while maintaining the performance on D1 (EL(f̄ ′
2(D1)),

indicated by green bars) and D3 (EL(f̄ ′
2(D3)), shown in

Figure 11) at the same level. This is the case where the model
maintenance should be triggered, but could not be triggered by
the performance drop yielded by the enhanced models. In this
case, the local model f1 was able to provide a more accurate
representation of the need for model maintenance.

The enhanced models’ performance before/after the main-
tenance with actual and total drifted data are very close. As
shown in Figures 9 and 10, before the maintenance, the f̄2
models built with all four strategies could not handle Da′

1

and Dt′
1 well, generating results with several times of error

as compared to EL(f̄2(D1)). However, after maintenance, the
enhanced models once again reduced the error on Da′

1 and Dt′
1

to a very low level, almost one-third of EL(f̄2(D1)), which are
strong evidence showing the effectiveness of the maintenance
with both Da′

1 and Dt′
1 . Moreover, as shown in Figures 12 and

13, this maintenance does not ruin the models’ performance on

D3, which means that after maintenance, f̄ ′
2 could still serve

as a valid surrogate model in the case of the failures of N1

and N2.
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Fig. 8. The performance of f̄2, f̄ ′
2 (retrained with Dv′

1 ) on D1 and Dv′
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Fig. 9. The performance of f̄2, f̄ ′
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Fig. 11. The performance of f̄2, f̄ ′
2 (retrained with Dv′

1 ) on D3

To investigate how the ECG strategy achieves a reduction
in inter-node data exchanges in the maintenance process, we
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Fig. 13. The performance of f̄2, f̄ ′
2 (retrained with Dt′

1 ) on D3

experimented with extracting data used to perform mainte-
nance with the ECG strategy of different intensities λ and
compared it with the other three strategies. Specifically, for
MD, as the model size is at an equivalent scale of all the data
points needed to be transferred, it is considered to transfer
the same amount of data as GS and CG. The results are
shown in Figures 14 and 15. In these figures, the bottom
left area means lower error and a smaller amount of data
transferred. As shown in Figure 14, for Dv′

1 , Da′
1 and Dt′

1 ,
the lowest errors are all yield by ECG with only 5% to 20%
of the data transferred, which showcased ECG’s potential in
performing models maintenance effectively. Moreover, ECG is
also very helpful for not deteriorating the maintained models’
performance on D3. As showcased in Figure 15, all the best
results in terms of RMSE are acquired with ECG. Although
holistically speaking, the maintained models’ performance on
D3 is not sensitive to what strategy we use (as the maximum
and minimum RMSE only differ around 0.02).
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Fig. 14. The performance of f̄ ′
2 on Dv′

1 , Da′
1 and Dt′

1 given different ratio
of the amount of data transferred

B. Real Dataset

We also evaluate our resilience framework over real multi-
node datasets adopted by [22]. The dataset consists of mo-
bile sensors readings over four Unmanned Surface Vehicles
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Fig. 15. The performance of f̄ ′
2 on D3 given different ratio of the amount

of data transferred

(USVs), floating over the sea surface in a testbed in Athens,
Greece. Each USV (node) records the measurements such as
humidity and temperature of the sea surface, each of which
represents an edge node within a DML environment. For our
experiments, the local data gathered by two of the USVs
are employed notated by D1 and D2. Using as input the
temperature variable x ∈ R, we are seeking to predict the
humidity which acts as our output variable y ∈ R.

Similarly, a concept drift only happens in D1 local data,
encompassing the three different drift types mentioned, virtual,
actual and total. Using all four model maintenance strategies
presented, enhanced models are constructed for each node,
evaluating their response to concept drift. Subsequently, we
retrain the f̄2 for all the strategies against all the drifted
types, thus, maintaining high predictability analytics perfor-
mance over the environment. A series of enhanced models are
constructed using the ECG strategy by varying the number of
cluster centroids transferred over the network while maintain-
ing a constant number of data samples used for the training
of the enhanced models. Therefore, we can evaluate whether
our approach sacrifices performance for less transferred data.

Figure 16 illustrates the RMSE performance of the f̄2
enhanced model after maintenance over drifted D1 data
types using the different maintenance strategies. One could
observe that the severity of the drift types correlates with
the increase of the RMSE value, regardless of the value of
the data transferred ratio. However, as evidenced, the data
compression ratio over the ECG strategy is not associated in
a proportional manner with the overall performance of the
enhanced model. The results demonstrate that the enhanced
model’s performance is adversely affected by either a very
small or a very large number of cluster centroids used. In
the latter, the high number of cluster centroids and hence
the small number around them, overfit the enhanced models.
While, in the former case, there are too few cluster centroids
to adequately capture the characteristics of the dataset, leading
to under-fitting. Accordingly, the best trade-off lies within
the 0.1 data transmission ratio, which scores a lower RMSE
for each type of drift. In this way, our framework achieves
similar performance with GS, CG, and MD strategies while
transferring 10 times fewer data in the network.
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Fig. 16. The performance of f̄ ′
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of the amount of data transferred over the GNFUV dataset.

VII. DISCUSSION & CONCLUSIONS

We investigated the model maintenance problem in the
case of concept drift in DML environments. We introduced
enhanced models to build resilience to node failures for models
operating in such environments. Such models are trained on
and operate over data from multiple nodes’ data. The challenge
we tackled is to maintain their performance in the presence
of drifts as they may emerge in several data sources that the
enhanced models operate on.

We conducted experiments to explore how the enhanced
models react to different types of concept drifts and compared
the results against the performance of nodes’ local models. It
turned out that, by being generalizable, the enhanced models’
performance was hardly affected by simple concept drifts and
got impacted less by harder concept drift types compared to
local models’ performances. We also found this trend is barely
affected by what kind of model we adopted and what strategies
we used to build the enhanced model. This makes it possible
for concept drifts to be handled in a unified way, i.e., model
retraining with the drifted data. Therefore, we performed
model maintenance by retraining the enhanced models with
information extracted from different kinds of drifted data
with multiple strategies proposed. The results showcased the
effectiveness of maintenance as in all of the scenarios tested,
the maintained models’ performance on the drifted data was
significantly improved while not ruining the performance on
the other node’s data. This indicates that, after maintenance,
the enhanced model could gain the ability to operate on
the new concept while not losing the capability to operate
on the node where no concept drift happens. Furthermore,
the proposed ECG demonstrated its potential in reducing
the amount of inter-node data transfer while achieving better
results in maintaining the model. This further reduced the cost
of performing model maintenance.
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