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Abstract
In recent years, empirical Bayesian (EB) inference has
become an attractive approach for estimation in para-
metric models arising in a variety of real-life problems,
especially in complex and high-dimensional scientific
applications. However, compared to the relative abun-
dance of available general methods for computing point
estimators in the EB framework, the construction of con-
fidence sets and hypothesis tests with good theoretical
properties remains difficult and problem specific. Moti-
vated by the Universal Inference framework, we pro-
pose a general and universal method, based on holdout
likelihood ratios, and utilizing the hierarchical struc-
ture of the specified Bayesian model for constructing
confidence sets and hypothesis tests that are finite sam-
ple valid. We illustrate our method through a range
of numerical studies and real data applications, which
demonstrate that the approach is able to generate use-
ful and meaningful inferential statements in the relevant
contexts.
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1 INTRODUCTION
Let Dn = (Xi)i∈[n] be our data, presented as a sequence of n ∈ N = {1, 2,…} random variables
Xi ∈ X (i ∈ [n] = {1,…,n}). For each i ∈ [n], let 𝚯i ∈ T be a random variable with probability
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2 NGUYEN and GUPTA

density function (PDF) 𝜋 (𝜽i;𝝍), where 𝝍 ∈ P is a hyperparameter. Furthermore, suppose that
[Xi|𝚯i = 𝜽i] arises from a family of data generating processes (DGPs) with conditional PDFs

f (xi|𝚯i = 𝜽i) = f (xi|𝜽i) ,

and that the sequence ((Xi,𝚯i))i∈[n] is independent.
Suppose that (𝚯i)i∈[n] is realized at 𝝑∗n =

(
𝜽
∗
i
)

i∈[n], where each realization 𝜽
∗
i (i ∈ [n]) is

unknown, and where 𝝍 is also unknown. Let I ⊂ [n], and write 𝝑∗
I
=

(
𝜽
∗
i
)

i∈I
. When I = {i}, we

shall use the shorthand I = i, where it causes no confusion.
Under this setup, for significance level 𝛼 ∈ (0, 1), we wish to draw inference regarding the

realized sequence 𝝑∗n by way of constructing 100 (1 − 𝛼) % confidence sets 𝛼i (Dn) that satisfy:

Pr𝜽∗i
[
𝜽
∗
i ∈ 

𝛼

i (Dn)
]
≥ 1 − 𝛼, (1)

and p-values PI (Dn) for testing null hypotheses H0 ∶ 𝝑∗I ∈ TI,0 ⊂ T|I| that satisfy:

sup
𝝑
∗
I
∈TI,0

Pr𝝑∗
I
[PI (Dn) ≤ 𝛼] ≤ 𝛼, (2)

where Pr𝜽∗i and Pr𝝑∗
I

denote probability measures consistent with the PDF f
(

xi|𝜽
∗
i
)
, for each i ∈

[n], and for all i ∈ I, respectively. That is, for a measurable set  ⊂ Xn, and assuming absolute
continuity of Pr𝝑∗

I
with respect to some measure𝔪 (typically the Lebesgue or counting measure),

we can write

Pr𝝑∗
I
() =

∫


∏

i∈I

f
(

xi|𝜽
∗
i
)∏

j∉I

f
(

xj|𝜽j
)

d𝔪 (dn) , (3)

where 𝜽j is an arbitrary element of T, for each j ∉ I.
The setup above falls within the framework of empirical Bayesian (EB) inference, as exposited

in the volumes of Maritz and Lwin (1989), Ahmed and Reid (2001), Serdobolskii (2008),
Efron (2010), and Bickel (2020). Here, we note that our work differs from that of Efron (2010),
where EB methods are used to process the outcomes of hypothesis tests rather than to test
individual hypotheses.

Over the years, there has been a sustained interest in the construction and computation of EB
point estimators for 𝝑∗n, in various contexts, with many convenient and general computational
tools now made available, for instance, via the software of Johnstone and Silverman (2005), Leng
et al. (2013), Koenker and Gu (2017), and Narasimhan and Efron (2020). Unfortunately, the prob-
abilistic properties of𝝑∗n tend to be difficult to characterize, making the construction of confidence
sets and hypothesis tests with good theoretical properties relatively less routine than the con-
struction of point estimators. When restricted to certain classes of models, such constructions are
nevertheless possible, as exemplified by the works of Casella and Hwang (1983), Morris (1983a),
Laird and Louis (1987), Datta et al. (2002), Tai and Speed (2006), Hwang et al. (2009), Hwang and
Zhao (2013), and Yoshimori and Lahiri (2014), among others.

In this work, we adapt the universal inference framework of Wasserman et al. (2020) to pro-
duce valid confidence sets and p-values with properties (1) and (2), respectively, for arbitrary
estimators of 𝝑∗n. As with the constructions of Wasserman et al. (2020), the produced inferential
methods are all valid for finite sample size n and require no assumptions beyond correctness of
model specification. The confidence sets and p-values arise by construction of holdout likelihood
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NGUYEN and GUPTA 3

ratios that can be demonstrated to have the e-value property, as described in Vovk and Wang (2021)
(see also the s-values of Grunwald et al., 2020 and the betting values of Shafer, 2021). Here, we are
able to take into account the hierarchical structure of the Bayesian specified model by using the
fact that parameterized e-values are closed when averaged with respect to an appropriate probabil-
ity measure (cf. Vovk, 2007 and Kaufmann & Koolen, 2018). Due to the finite sample correctness
of our constructions, we shall refer to our methods as finite sample EB (FSEB) techniques.

Along with our methodological developments, we also demonstrate the application of our
FSEB techniques in numerical studies and real data applications. These applications include the
use of FSEB methods for constructing confidence intervals (CIs) for the classic mean estimator
of Stein (1956), and testing and CI construction in Poisson–gamma models and Beta–binomial
models, as per Koenker and Gu (2017) and Hardcastle and Kelly (2013), respectively. Real data
applications are demonstrated via the analysis of insurance data from Haastrup (2000) and differ-
ential methylation data from Cruickshanks et al. (2013). In these real and synthetic applications,
we show that FSEB methods, satisfying conditions (1) and (2), are able to generate useful and
meaningful inferential statements.

We proceed as follows. In Section 2, we introduce the confidence set and p-value constructions
for drawing inference regarding EB models. In Section 3, numerical studies of simulated data
are used to demonstrate the applicability and effectiveness of FSEB constructions. In Section 4,
FSEB methods are applied to real data to further show the practicality of the techniques. Lastly,
in Section 5, we provide discussions and conclusions regarding our results.

2 CONFIDENCE SETS AND HYPOTHESIS TESTS

We retain the notation and setup from Section 1. For each subset I ⊂ [n], let us write DI = (Xi)i∈I

and DI = (Xi)i∈[n]⧵I.
Suppose that we have available some estimator of 𝝍 that only depends on DI (and not DI),

which we shall denote by 𝝍̂ I,n. Furthermore, for fixed 𝝍 , write the integrated and unintegrated
likelihood of the data DI, as

LI (𝝍) =
∏

i∈I
∫

T

f (Xi|𝜽i)𝜋 (𝜽i;𝝍) d𝔫(𝜽i), (4)

and

lI (𝝑I) =
∏

i∈I

f (Xi|𝜽i) , (5)

respectively, where 𝝑I = (𝜽i)i∈I (here, 𝝑{i} = 𝜽i). We note that in (4), we have assumed that 𝜋(⋅;𝝍)
is a density function with respect to some measure on T, 𝔫.

Define the ratio statistic:

RI,n (𝝑I) = LI

(
𝝍̂ I,n

)
∕lI (𝝑I) , (6)

and consider sets of the form


𝛼

i (Dn) =
{
𝜽 ∈ T ∶ Ri,n (𝜽) ≤ 1∕𝛼

}
.
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4 NGUYEN and GUPTA

The following Lemma is an adaptation of the main idea of Wasserman et al. (2020) to
the context of empirical Bayes estimators, and allows us to show that 𝛼i (Dn) satisfies
property (1).

Lemma 1. For each I ⊂ [n] and fixed sequence 𝝑∗n ∈ Tn, E𝝑∗
I

[
RI,n

(
𝝑
∗
I

)]
= 1.

Proof. Let dI and dI be realizations of DI and DI, respectively. Then, using (3), write

E𝜽∗
I

[
RI,n

(
𝝑
∗
I

)]
=
∫

Xn
RI,n

(
𝝑
∗
I

)∏

i∈I

f
(

xi|𝜽
∗
i
)∏

j∉I

f
(

xj|𝜽j
)

d𝔪 (dn)

=
(i) ∫

X
n−|I| ∫X|I|

LI

(
𝝍̂ I,n

)

lI
(
𝝑
∗
I

)
∏

i∈I

f
(

xi|𝜽
∗
i
)

d𝔪 (dI)
∏

j∉I

f
(

xj|𝜽j
)

d𝔪
(

dI

)

=
(ii) ∫

X
n−|I| ∫X|I|

LI

(
𝝍̂ I,n

)
d𝔪 (dI)

∏

j∉I

f
(

xj|𝜽j
)

d𝔪
(

dI

)

=
(iii) ∫

X
n−|I|

∏

j∉I

f
(

xj|𝜽j
)

d𝔪
(

dI

)

=
(iv)

1.

Here, (i) is true by definition of (6), (ii) is true by definition of (5), (iii) is true by the fact
that (4) is a PDF on X|I|, with respect to𝔪, and (iv) is true by the fact that

∏
j∉I

f
(

xj|𝜽j
)

is a PDF on Xn−|I|, with respect to𝔪. ▪

Proposition 1. For each i ∈ [n], 𝛼i (Dn) is a 100 (1 − 𝛼) % confidence set, in the sense
that

Pr𝜽∗i
[
𝜽
∗
i ∈ 

𝛼

i (Dn)
]
≥ 1 − 𝛼.

Proof. For each i, Markov’s inequality states that

Pr𝜽∗i
[
Ri,n

(
𝜽
∗
i
)
≥ 1∕𝛼

]
≤ 𝛼E𝜽∗i

[
Ri,n

(
𝜽
∗
i
)]
= 𝛼,

which implies that

Pr𝜽∗i
[
𝜽
∗
i ∈ 

𝛼

i (Dn)
]
= Pr𝜽∗i

[
Ri,n

(
𝜽
∗
i
)
≤ 1∕𝛼

]
≥ 1 − 𝛼,

by Lemma 1. ▪

Next, we consider the testing of null hypotheses H0: 𝝑∗
I
∈ TI,0 against an arbitrary alternative

H1: 𝝑∗
I
∈ TI,1 ⊆ T|I|. To this end, we define the maximum unintegrated likelihood estimator of

𝝑
∗
I
, under H0 as

̃𝝑I ∈

{

̃𝝑I ∈ TI,0 ∶ lI
(
̃𝝑I

)
= sup
𝝑I∈TI,0

lI (𝝑I)

}

. (7)
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NGUYEN and GUPTA 5

Using (7), and again letting 𝝍̂ I,n be an arbitrary estimator of 𝝍 , depending only on DI, we
define the ratio test statistic

TI (Dn) = LI

(
𝝍̂ I,n

)
∕lI

(
̃𝝑I

)
.

The following result establishes the fact that the p-value PI (Dn) = 1∕TI (Dn) has the correct size,
under H0.

Proposition 2. For any 𝛼 ∈ (0, 1) and 𝝑∗
I
∈ TI,0, Pr𝝑∗

I
[PI (Dn) ≤ 𝛼] ≤ 𝛼.

Proof. Assume that 𝝑∗
I
∈ TI,0. By Markov’s inequality, we have

Pr𝝑∗
I

[
TI (Dn) ≥ 1∕𝛼

]
≤ 𝛼E𝝑∗

I
[TI (Dn)]

= 𝛼E𝝑∗
I

[
LI

(
𝝍̂ I,n

)

lI
(
̃𝝑I

)

]

≤
(i)
𝛼E𝝑∗

I

[
LI

(
𝝍̂ I,n

)

lI
(
𝝑
∗
I

)

]

=
(ii)
𝛼,

where the (i) is true due to the fact that lI
(
̃𝝑I

)
≥ lI

(
𝝑
∗
I

)
, by the definition of (7), and

the (ii) is true due to Lemma 1. ▪

We note that Propositions 1 and 2 are empirical Bayes analogues of Theorems 1 and 2 from
Wasserman et al. (2020), which provide guarantees for universal inference confidence set and
hypothesis test constructions, respectively. Furthermore, the use of Lemma 1 in the proofs also
imply that the CIs constructed via Proposition 1 are e-CIs, as defined by Xu et al. (2022), and the
p-values obtained via Proposition 2 can be said to be e-value calibrated, as per the definitions of
Wang and Ramdas (2022).

3 FSEB EXAMPLES AND SOME NUMERICAL RESULTS

To demonstrate the usefulness of the FSEB results from Section 2, we shall present a number
of synthetic and real world applications of the confidence and testing constructions. All of the
computation is conducted in the R programming environment (R Core Team, 2020) and replica-
ble scripts are made available at https://github.com/hiendn/Universal_EB. Where unspecified,
numerical optimization is conducted using the optim() or optimize() functions in the case
of multivariate and univariate optimization, respectively.

3.1 Stein’s problem

We begin by studying the estimation of normal means, as originally considered in Stein (1956).
Here, we largely follow the exposition of Efron (2010) and note that the estimator falls within the
shrinkage paradigm exposited in Serdobolskii (2008). We consider this setting due to its simplicity
and the availability of a simple EB-based method to compare our methodology against.

Let ((Xi,Θi))i∈[n] be IID and for each i ∈ [n], Θi ∼ N
(
0, 𝜓2) (𝜓2

> 0) and [Xi|Θi = 𝜃i] ∼
N (𝜃i, 1), where N

(
𝜇, 𝜎

2) is the normal law with mean 𝜇 ∈ R and variance 𝜎2
> 0. We assume

that 𝜓2 is unknown and that we observe data Dn and wish to construct CIs for the realizations
𝜃

∗
n, which characterize the DGP of the observations Xn.
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6 NGUYEN and GUPTA

Following Efron (2010), when 𝜓

2 is known, the posterior distribution of [Θn|Xn = xn] is
N

(
g
(
𝜓

2) xn, g
(
𝜓

2)), where g
(
𝜓

2) = 𝜓2∕
(
1 + 𝜓2). Using the data Dn, we have the fact that

∑n−1
i=1 X2

i ∼
(
𝜓

2 + 1
)
𝜒

2
n−1, where𝜒2

𝜈

is the chi-squared distribution with 𝜈 degrees of freedom. This
implies a method-of-moment estimator for g of the form: gn = 1 − (n − 2) ∕

∑n
i=1X2

i , in the case of
unknown 𝜓2.

We can simply approximate the distribution of [Θn|Dn] as N
(

gnXn, gn
)
, although this approx-

imation ignores the variability of gn. As noted by Efron (2010), via a hierarchical Bayesian
interpretation using an objective Bayesian prior, we may instead deduce the more accurate
approximate distribution:

N
(

gnXn, gn + 2
[

Xn
(
1 − gn

)2
] /
[n − 2]

)

. (8)

Specifically, Efron (2010) considers the hyperparameter 𝜓2 as being a random variable, say Ψ2,
and places a so-called objective (or non-informative) prior on Ψ2. In particular, the impossi-
ble prior assumption that Ψ2 + 1 ∼ Uniform (0,∞) is made, that assigns positive probability to
negative values of Ψ2. Then, it follows from careful derivation, upon application of Bayes’ rule,
that

E [Θn|Dn] = gnXn and var [Θn|Dn] = gn +
2Xn

(
1 − gn

)2

n − 2
,

and thus we obtain (8) via a normal approximation for the distribution of [Θn|Dn] (cf. Mor-
ris, 1983b).

The approximation then provides 100 (1 − 𝛼) % posterior credible intervals for Θn of
the form

gnXn ± 𝜁1−𝛼∕2

√
√
√
√

gn +
2
[

Xn
(
1 − gn

)2
]

n − 2
, (9)

where 𝜁1−𝛼∕2 is the (1 − 𝛼∕2) quantile of the standard normal distribution. This posterior result
can then be taken as an approximate 100 (1 − 𝛼) % confidence interval for 𝜃∗n.

Now, we wish to apply the FSEB results from Section 2. Here, I = {n}, and from the setup of
the problem, we have

f (xn|𝜃n) = 𝜙 (xn; 𝜃n, 1) and 𝜋 (𝜃n;𝜓) = 𝜙
(
𝜃n; 0, 𝜓2) ,

where 𝜙
(

x;𝜇, 𝜎2) is the normal PDF with mean 𝜇 and variance 𝜎2. Thus,

LI (𝜓) =
∫

R

𝜙 (Xn; 𝜃, 1)𝜙
(
𝜃; 0, 𝜓2) d𝜃 = 𝜙

(
Xn; 0, 1 + 𝜓2)

,

and lI (𝜃n) = 𝜙 (xn; 𝜃n, 1), which yields a ratio statistic of the form

RI,n (𝜃n) = LI (𝜓−n) ∕lI (𝜃n)
= 𝜙

(
Xn; 0, 1 + 𝜓̂2

−n
)
∕𝜙 (Xn; 𝜃n, 1) ,
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NGUYEN and GUPTA 7

when combined with an appropriate estimator 𝜓̂2
−n for 𝜓2, using only DI,n = Dn−1. We can obtain

the region 𝛼
I
(Dn) by solving RI,n (𝜃n) ≤ 1∕𝛼 to obtain:

(Xn − 𝜃)2 ≤ 2 log(1∕𝛼) + 2 log
(
1 + 𝜓̂2

−n
)
+

X2
n

(
1 + 𝜓̂2

−n
) ,

which, by Proposition 1, yields the 100 (1 − 𝛼) % CI for 𝜃∗n:

Xn ±

√

2 log(1∕𝛼) + 2 log
(
1 + 𝜓̂2

−n
)
+

X2
n

(
1 + 𝜓̂2

−n
) . (10)

We shall consider implementations of the CI of form (10) using the estimator

𝜓̂

2
−n = max

{
0, s2

−n − 1
}

,

where s2
−n is the sample variance of the DI,n, and s2

−n − 1 is the method of moment estimator of
𝜓

2. The maximum operator stops the estimator from becoming negative and causes no problems
in the computation of (10).

We now compare the performances of the CIs of forms (9) and (10). To do so, we shall consider
data sets of sizes n ∈ {10,100, 1000}, 𝜓2 ∈

{
12
, 52
, 102}, and 𝛼 ∈ {0.05, 0.005, 0.0005}. For each

triplet
(

n, 𝜓2
, 𝛼

)
, we repeat the computation of (9) and (10) 1000 times and record the coverage

probability and average relative widths of the intervals (computed as the width of (10) divided by
that of (9)). The results of our experiment are presented in Table 1.

From Table 1, we observe that the CIs of form (9) tended to produce intervals with the desired
levels of coverage, whereas the FSEB CIs of form (10) tended to be conservative and contained
the parameter of interest in almost all replications. The price that is paid for this conservativeness
is obvious when viewing the relative widths, which implies that for 95% CIs, the EB CIs of form
(10) are twice as wide, on average, when compared to the CIs of form (9). However, the relative
widths decrease as 𝛼 gets smaller, implying that the intervals perform relatively similarly when a
high level of confidence is required. We further observe that n and 𝜓2 had little effect on the per-
formances of the intervals except in the case when n = 10 and 𝜓2 = 1, whereupon it was possible
for the intervals of form (9) to not be computable in some cases.

From these results we can make a number of conclusions. Firstly, if one is willing to make the
necessary hierarchical and objective Bayesian assumptions, as stated in Efron (2010), then the
intervals of form (9) provide very good performance. However, without those assumptions, we
can still obtain reasonable CIs that have correct coverage via the FSEB methods from Section 2.
Furthermore, these intervals become more efficient compared to (9) when higher levels of con-
fidence are desired. Lastly, when n is small and 𝜓2 is also small, the intervals of form (9) can
become uncomputable and thus one may consider the use of (10) as an alternative.

3.2 Poisson–gamma count model

The following example is taken from Koenker and Gu (2017) and was originally studied in Nor-
berg (1989) and then subsequently in Haastrup (2000). In this example, we firstly consider IID
parameters (Θi)i∈[n] generated with gamma DGP: Θi ∼ Gamma (a, b), for each i ∈ [n], where
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8 NGUYEN and GUPTA

T A B L E 1 Stein’s problem simulation results reported as average performances over 1000 replications.

n 𝝍
2

𝜶 Coverage of (9) Coverage of (10) Relative width
10 12 0.05 0.948∗ 1.000a 1.979a

0.005 0.988∗ 1.000a 1.738a

0.0005 0.993∗ 1.000a 1.641a

52 0.05 0.943 1.000 1.902

0.005 0.994 1.000 1.543

0.0005 0.999 1.000 1.388

102 0.05 0.947 1.000 2.058

0.005 0.994 1.000 1.633

0.0005 0.999 1.000 1.455

100 12 0.05 0.937 0.999 2.068

0.005 0.997 1.000 1.806

0.0005 1.000 1.000 1.697

52 0.05 0.949 1.000 1.912

0.005 0.995 1.000 1.540

0.0005 1.000 1.000 1.395

102 0.05 0.947 1.000 2.068

0.005 0.995 1.000 1.635

0.0005 0.999 1.000 1.455

1000 12 0.05 0.949 0.999 2.087

0.005 0.991 1.000 1.815

0.0005 1.000 1.000 1.705

52 0.05 0.963 1.000 1.910

0.005 0.997 1.000 1.544

0.0005 1.000 1.000 1.399

102 0.05 0.942 1.000 2.066

0.005 0.995 1.000 1.632

0.0005 0.999 1.000 1.455

aThe results on these lines are computed from 968, 967, and 969 replicates, respectively, from top to bottom. This was due to
the negative estimates of the standard error in the computation of (9).

a > 0 and b > 0 are the shape and rate hyperparameters, respectively, which we put into 𝝍 .
Then, for each i, we suppose that the data Dn = (Xi)i∈[n], depending on the covariate sequence
wn = (wi)i∈[n], has the Poisson DGP: [Xi|Θi = 𝜃i] ∼ Poisson (𝜃iwi), where wi > 0. We again wish
to use the data Dn to estimate the realization of Θn: 𝜃∗n, which characterizes the DGP of Xn.

Under the specification above, for each i, we have the fact that (Xi,Θi) has the joint PDF:

f (xi, 𝜃i;𝝍) =
ba

Γ (a)
𝜃

a−1
i exp (b𝜃i)

(𝜃iwi)xi exp (−𝜃iwi)
xi

, (11)
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NGUYEN and GUPTA 9

which we can marginalize to obtain

f (xi;𝝍) =
(

xi + a + 1
xi

)(
b

wi + b

)a( wi

wi + b

)xi

, (12)

and which can be seen as a Poisson–gamma mixture model. We can then construct the likeli-
hood of Dn using expression (12), from which we may compute maximum likelihood estimates
𝝍̂n =

(

ân, ̂bn

)

of 𝝍 . Upon noting that (11) implies the conditional expectation E [Θi|Xi = xi] =
(xi + a) ∕ (wi + b), we obtain the estimator for 𝜃∗n:

̂
𝜃n =

Xi + ân

wi + ̂bn
. (13)

3.2.1 Confidence intervals

We again wish to apply the general result from Section 2 to construct CIs. Firstly, we have I = {n}
and

f (xn|𝜃n) =
(𝜃nwn)xn exp (−𝜃nwn)

xn
and 𝜋 (𝜃n;𝝍) =

ba

Γ (a)
𝜃

a−1
n exp (b𝜃n) .

As per (12), we can write

LI (𝝍) =
(

Xn + a + 1
Xn

)(
b

wn + b

)a( wn

wn + b

)Xn

.

Then, since lI (𝜃n) = f (Xn|𝜃n), we have

RI,n (𝜃n) = LI (𝝍) ∕lI (𝜃n)

=
(

Xn + â−n + 1
Xn

)(
̂b−n

wn + ̂b−n

)â−n( wn

wn + ̂b−n

)Xn Xn

(𝜃nwn)Xn exp (−𝜃nwn)
,

when combined with an estimator 𝝍̂−n =
(

â−n, ̂b−n

)

of 𝝍 , using only DI,n = Dn−1.
For any 𝛼 ∈ (0, 1), we then obtain a 100 (1 − 𝛼) % CI for 𝜃n by solving RI,n (𝜃n) ≤ 1∕𝛼, which

can be done numerically. We shall use the MLE of 𝝍 , computed with the data DI,n and marginal
PDF (12), as the estimator 𝝍̂−n.

To demonstrate the performance of the CI construction, above, we conduct the following
numerical experiment. We generate datasets consisting of n ∈ {10, 100, 1000} observations char-
acterized by hyperparameters 𝝍 = (a, b) = {(2, 2) , (2, 5) , (5, 2)}, and we compute intervals using
significance levels 𝛼 ∈ {0.05, 0.005, 0.0005}. Here, we shall generate wn IID uniformly between 0
and 10. For each triplet (n,𝝍 , 𝛼), we repeat the construction of our CIs 1000 times and record the
coverage probability and average width for each case. The results of the experiment are reported
in Table 2.

From Table 2, we observe that the empirical coverage of the CIs are higher than the nominal
value and are thus behaving as per the conclusions of Proposition 1. As expected, we also find
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10 NGUYEN and GUPTA

T A B L E 2 Experimental results for CIs constructed for Poisson–gamma count models.

n 𝝍 𝜶 Coverage Length
10 (2, 2) 0.05 0.998 3.632

0.005 1.000 5.484

0.0005 1.000 6.919

(2, 5) 0.05 0.999 2.976

0.005 0.999 3.910

0.0005 1.000 5.481

(5, 2) 0.05 0.997a 5.468a

0.005 0.999a 7.118a

0.0005 1.000a 8.349a

100 (2, 2) 0.05 0.998 3.898

0.005 0.999 5.277

0.0005 1.000 6.883

(2, 5) 0.05 0.999 2.958

0.005 1.000 3.914

0.0005 1.000 5.374

(5, 2) 0.05 1.000 5.628

0.005 1.000 7.124

0.0005 1.000 8.529

1000 (2, 2) 0.05 1.000 4.070

0.005 1.000 5.424

0.0005 1.000 6.344

(2, 5) 0.05 0.999 3.049

0.005 1.000 3.960

0.0005 1.000 5.479

(5, 2) 0.05 0.998 5.297

0.005 1.000 7.205

0.0005 1.000 8.714

Notes: The Coverage and Length columns report the coverage proportion and average lengths in each scenario, as
computed from 1000 replications.
aThe results on these lines are computed from 999, 999, and 998 replicates, respectively. This was due to there being no
solutions to the inequality RI,n (𝜃n) ≤ 1∕𝛼, with respect to 𝜃n > 0 in some cases.

that increasing the nominal confidence level also increases the coverage proportion, but at a cost
of increasing the lengths of the CIs. From the usual asymptotic theory of maximum likelihood
estimators, we anticipate that increasing n will decrease the variance of the estimator 𝝍̂−n. How-
ever, as in Section 3.1, this does not appear to have any observable effect on either the coverage
proportion nor lengths of the CIs.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12643 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [19/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



NGUYEN and GUPTA 11

3.2.2 Hypothesis tests

Next, we consider testing the null hypothesis H0: 𝜃∗n−1 = 𝜃
∗
n. To this end, we use the hypothesis

testing framework from Section 2. That is, we let I = {n − 1,n} and estimate 𝝍 via the maximum
likelihood estimator 𝝍̂ I,n =

(
aI,n, bI,n

)
, computed from the data DI,n = Dn−2.

We can write

LI

(
𝝍̂ I,n

)
=

n∏

i=n−1

(
Xi + aI,n + 1

Xi

)(
bI,n

wi + bI,n

)aI,n
(

wi

wi + bI,n

)Xi

,

lI
(
𝝑
∗
I

)
=

n∏

i=n−1

(
𝜃

∗
i wi

)Xn exp
(
−𝜃∗i wi

)

Xi
,

and 𝝑∗
I
=

(
𝜃

∗
n−1, 𝜃

∗
n
)
. We are also required to compute the maximum likelihood estimator of 𝝑∗

I
,

under H0, as per (7), which can be written as

̃𝝑I ∈

{

̃𝜽 = (𝜃, 𝜃) ∶ lI
(
̃𝜽
)
= sup

𝜃>0

n∏

i=n−1

(𝜃wi)Xn exp(−𝜃wi)
Xi

}

Using the components above, we define the test statistic TI (Dn) = LI

(
𝝍̂ I,n

)
∕lI

(
̃𝝑I

)
, from which

we can derive the p-value PI (Dn) = 1∕TI (Dn) for testing H0.
To demonstrate the application of this test, we conduct another numerical experiment. As in

Section 3.2.1, we generate datasets of sizes n ∈ {10,100, 1000}, where the data Dn−1 are generated
with parameters (Θi)i∈[n−1] arising from gamma distributions with hyperparameters 𝝍 = (a, b) =
{(2, 2) , (2, 5) , (5, 2)}. The final observation Xn, making up Dn, is then generated with parameter
Θn = Θn−1 + Δ, where Δ ∈ {0, 1, 5, 10}. As before, we generate the covariate sequence wn IID
uniformly between 0 and 10. For each triplet (n,𝝍 ,Δ), we test H0: 𝜃∗n−1 = 𝜃

∗
n 1000 times and record

the average number of rejections under at the levels of significance 𝛼 ∈ {0.05, 0.005, 0.0005}. The
results are then reported in Table 3.

The results for the Δ = 0 cases in Table 3 show that the tests reject true null hypotheses at
below the nominal sizes 𝛼, in accordance with Proposition 2. For each combination of n and 𝝍 ,
as Δ increases, the proportion of rejections increase, demonstrating that the tests become more
powerful when detecting larger differences between 𝜃∗n−1 and 𝜃∗n, as expected. There also appears
to be an increase in power due to larger sample sizes. This is an interesting outcome, since we
can only be sure that sample size affects the variability of the estimator 𝝍 I,n. Overall, we can be
confident that the tests are behaving as required, albeit they may be somewhat underpowered as
they are not achieving the nominal sizes.

3.3 Beta–binomial data series

Data from genome-level biological studies, using modern high-throughput sequencing technolo-
gies (Krueger et al., 2012), often take the form of a series of counts, which may be modeled through
sets of nonidentical (possibly correlated) binomial distributions, with beta priors, in a Bayesian
framework. The question of interest may vary, for example, from assessing the range of likely
values for the binomial parameter in a particular region of the data, to comparing whether two
sections of one or more data series are generated from identical distributions. For purposes of
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12 NGUYEN and GUPTA

T A B L E 3 Experimental results for testing the hypothesis H0: 𝜃∗n−1 = 𝜃
∗
n for Poisson–gamma count

models.

Rejection proportion at level 𝜶

n 𝝍 𝚫 0.05 0.005 0.0005
10 (2, 2) 0 0.000 0.000 0.000

1 0.004 0.000 0.000

5 0.280 0.193 0.128

10 0.413 0.363 0.317

(2, 5) 0 0.000 0.000 0.000

1 0.007 0.002 0.000

5 0.143 0.096 0.064

10 0.222 0.192 0.170

(5, 2) 0 0.001 0.000 0.000

1 0.001 0.000 0.000

5 0.177 0.107 0.052

10 0.389 0.320 0.254

100 (2, 2) 0 0.000 0.000 0.000

1 0.014 0.003 0.000

5 0.401 0.289 0.194

10 0.562 0.489 0.427

(2, 5) 0 0.000 0.000 0.000

1 0.015 0.000 0.000

5 0.208 0.127 0.074

10 0.296 0.235 0.179

(5, 2) 0 0.000 0.000 0.000

1 0.004 0.000 0.000

5 0.264 0.150 0.090

10 0.500 0.425 0.344

1000 (2, 2) 0 0.001 0.000 0.000

1 0.021 0.001 0.000

5 0.423 0.300 0.216

10 0.576 0.513 0.450

(2, 5) 0 0.000 0.000 0.000

1 0.012 0.000 0.000

5 0.185 0.108 0.061

10 0.321 0.254 0.197

(5, 2) 0 0.000 0.000 0.000

1 0.003 0.001 0.000

5 0.276 0.168 0.088

10 0.507 0.428 0.354

Notes: The rejection proportion columns report the average number of rejections, from 1000 tests, at levels of
significance 𝛼 ∈ {0.05, 0.005, 0.0005}.
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NGUYEN and GUPTA 13

demonstrating the performance of the FSEB method in these scenario, we will make the simpli-
fying assumption that all data points are independently distributed, within, as well as across, any
of G data series that may be observed.

3.3.1 Confidence sets

First, let us assume that we only have a single series, that is, G = 1. Then, we can assume Xi ∼
Bin(mi, 𝜃i), and propose a common prior distribution for Θi (i = 1,…,n): Beta(𝛾, 𝛽). Using the
techniques described in Section 2, we can find confidence sets for 𝜃∗i , (i = 1,…,n). For each i, we
define, as previously, a subset I = {i}, so that DI = Xi and DI = (Xi)i∈[n]⧵{i}. We then have,

RI,n (𝝑I) =
LI

(
𝝍̂ I,n

)

lI (𝝑I)
,

where

lI (𝝑I) =
(

mi
xi

)

𝜃

xi
i (1 − 𝜃i)mi−xi

,

and

LI

(
𝝍̂ I,n

)
=
∫
𝜃i

f (xi|𝜃i)𝜋(𝜃i; 𝛾̂−n, ̂𝛽−n)d𝜃i,

which gives the ratio

RI,n (𝝑I) =
B(xi + 𝛾̂−n,mi − xi + ̂

𝛽−n)
B(𝛾̂ , ̂𝛽−n)𝜃

xi
i (1 − 𝜃i)mi−xi

. (14)

Here, 𝛾̂−n and ̂
𝛽−n are the empirical Bayes estimates of 𝛾 and 𝛽, given by

𝛾̂−n = ( ̂𝜙
−1
EB − 1)𝜇̂EB

and

̂
𝛽−n = ( ̂𝜙

−1
EB − 1)(1 − 𝜇̂EB),

where

𝜇̂EB =
1

n − 1
∑

j∈[n]⧵i

xj

mj
,

̂
𝜙EB =

[
m ̂V x

𝜇(1 − 𝜇)
− 1

]/

(m − 1),

m = 1
n−1

∑
j∈[n]⧵i mj, and ̂V x = 1

n−1

∑
j∈[n]⧵i

( xj

mj
− 𝜇̂EB

)2. Further, B (a, b) = ∫ 1
0 ta−1(1 − t)b−1dt is the

Beta function, taking inputs a > 0 and b > 0.
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14 NGUYEN and GUPTA

F I G U R E 1 Plots of 95% confidence regions for 𝜃∗i when true values of 𝜃∗i span the interval 0.1 to 0.9
(n = 10). Here, the 95% CIs are given by the points where the curves for log RI,n (𝝑I) intersect with the horizontal
line (black), representing a confidence level of 1 − 𝛼 = 0.95. Each CI can be seen to contain the corresponding
true value of 𝜃∗i , represented by a vertical line of the same colour as the interval. [Colour figure can be viewed at
wileyonlinelibrary.com]

We simulated data from the binomial model under two cases: (a) setting beta hyperparameters
(𝛼, 𝛽) = (10, 10), and hierarchically simulating 𝜃∗i , i ∈ [n], and then xi from a binomial distribu-
tion; and (b) setting a range of 𝜃∗i (i ∈ [n]) values equidistantly spanning the interval (0.1, 0.9) for
n = 10,100. Here, mi (i ∈ [n]) were given integer values uniformly generated in the range [15, 40].
In all cases, it was seen that the CIs had perfect coverage, always containing the true value of 𝜃∗i .
An example of the n = 10 case is shown in Figure 1.

3.3.2 Hypothesis testing

Aiming to detect genomic regions that may have differing characteristics between two series, a
pertinent question of interest may be considered by testing the hypotheses: H0: 𝜃∗i1 = 𝜃

∗
i2 versus

H1: 𝜃∗i1 ≠ 𝜃
∗
i2, for every i ∈ [n] (with G = 2 series). Then, Dn = (Xi)i∈[n], where Xi = (Xi1,Xi2). From

Section 2, the ratio test statistic takes the form

TI (Dn) = LI

(
𝛾̂I,n, ̂𝛽I,n

)
∕lI

(
̃𝝑I

)
,

where 𝛾̂I,n and ̂
𝛽I,n are EB estimators of 𝛾 and 𝛽, depending only on DI,n = Dn ⧵ {Xi1,Xi2}. With

̃
𝜗I =

xi1+xi2
mi1+mi2

= ̃
𝜃i, write lI

(
̃
𝜗I

)
= f (xi1, xi2| ̃𝜃i), and

LI

(
𝛾̂I,n, ̂𝛽I,n

)
=
∫

T

f (xi1|𝜽i)f (xi2|𝜽i)𝜋(𝜽i; 𝛾̂I,n, ̂𝛽I,n)d𝜽i

=
(

mi1
xi1

)(
mi2
xi2

) B(xi1 + 𝛾̂I,n,mi1 − xi1 + ̂
𝛽I,n)B(xi2 + 𝛾̂I,n,mi2 − xi2 + ̂

𝛽I,n)
[
B(𝛾̂I,n, ̂𝛽I,n)

]2 ,
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NGUYEN and GUPTA 15

which gives

TI (Dn) =
B(xi1 + 𝛾̂I,n,mi1 − xi1 + ̂

𝛽I,n)B(xi2 + 𝛾̂I,n,mi2 − xi2 + ̂
𝛽I,n)

[B(𝛾̂I,n, ̂𝛽I,n)]2 ̃𝜃
xi1+xi2
i (1 − ̃

𝜃i)mi1+mi2−xi1−xi2
,

where 𝛾̂I,n and ̂
𝛽I,n are calculated in a similar fashion to Section 3.3.1 except that data from both

sequences should be used to estimate 𝜇̂EB and ̂
𝜙EB, in the sense that

𝜇̂EB =
1

2n − 2
∑

k≠i

2∑

g=1

xkg

mkg
, and

̂
𝜙EB =

[ mVxy

𝜇̂EB(1 − 𝜇̂EB)
− 1

]/

(m − 1),

where

m = 1
2n − 2

∑

k≠i

2∑

g=1
mkg, and

Vxy =
1

2n − 2
∑

k≠i

2∑

g=1

( xkg

mkg
− 𝜇̂EB

)2

.

In our first simulation, we assessed the performance of the test statistic in terms of the Type
I error. Assuming a window size of n = 20, realized data (xi1, xi2) (i ∈ [n]), were simulated from
independent binomial distributions with 𝜃∗i1 = 𝜃

∗
i2 = 𝜃

∗
i (i = 1,…,n), with 𝜃∗i ranging between 0.1

and 0.9, and mi1,mi2 ∈ N uniformly and independently sampled from the range [15, 40]. The first
panel of Figure 2 shows the calculated test statistic values TI (Dn) for the 20 genomic indices on
the logarithmic scale, over 100 independently replicated datasets, with horizontal lines display-
ing values log(1∕𝛼), for significance levels 𝛼 ∈ {0.01, 0.02, 0.05}. No points were observed above
the line corresponding to 𝛼 = 0.01, indicating that the Type I error of the test statistic does not
exceed the nominal level. Next, we assessed the power of the test statistic at three levels of sig-
nificance (𝛼 ∈ {0.01, 0.02, 0.05}) and differing effect sizes. For each i (i ∈ [n]), 𝜃∗i1 was set to be
a value between 0.05 and 0.95, and 𝜃∗i2 = 𝜃

∗
i1 + Δ, where 0.1 < Δ < 0.9 (with 𝜃

∗
i2 < 1). A sample

of 20 replicates were simulated under each possible set of values of (𝜃∗1 , 𝜃
∗
2 ). The second panel of

Figure 2 shows that the power functions increased rapidly to 1 as the difference Δwas increased.
In our next numerical experiment, we generated datasets of sizes n ∈ {10,100, 1000},

where realized observations xi1, and xi2 are simulated from independent binomial distribu-
tions with parameters 𝜃∗i1 and 𝜃

∗
i2, respectively, (i ∈ [n]). For each i, 𝜃i1∗ was generated from

a beta distribution, in turn, with hyperparameters 𝝍 = (𝛾, 𝛽) ∈ {(2, 2), (2, 5), (5, 2)}; and 𝜃

∗
i2 =

𝜃

∗
i1 + Δ, where Δ ∈ {0, 0.2, 0.5, 0.9}. We generated 100 instances of data under each setting and

assessed the power of the FSEB test statistic through the number of rejections at levels 𝛼 ∈
{0.0005, 0.005, 0.05}. The results are shown in Table 4.

Similarly to the Poisson–gamma example, it can be seen that the tests reject true null
hypotheses at below the nominal sizes 𝛼, in each case. For each combination of n and 𝝍 , as
Δ increases, the rejection rate increases, making the tests more powerful as expected, when
detecting larger differences between 𝜃∗i1 and 𝜃∗i2, frequently reaching a power of 1 even when the
difference was not maximal. There did not appear to be a clear increase in power with the sample
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16 NGUYEN and GUPTA

F I G U R E 2 Panel (a): Test statistic for 100 replications of the beta–binomial example under the null
hypothesis of equality of proportions. The three horizontal lines correspond to cutoffs according to significance
levels of 𝛼 = 0.05 (green), 𝛼 = 0.02 (blue), and 𝛼 = 0.01 (turquoise). Panel (b): Power function over different
values of Δ = 𝜃∗2 − 𝜃

∗
1 at three levels of significance: 𝛼 ∈ {0.01, 0.02, 0.05}. [Colour figure can be viewed at

wileyonlinelibrary.com]

size, within the settings considered. Overall, we may conclude, as previously, that the tests are
behaving as expected, although both this example and the Poisson–gamma case show that the
tests may be underpowered as they do not achieve the nominal size for any value of 𝛼.

As an additional assessment of how FSEB performs in comparison to other tests in a similar
setting, we carried out a number of additional simulation studies, in which FSEB was compared
with Fisher’s exact test and a score test, over various settings of n,𝝍 andΔ, as well as for different
ranges of mi (i = 1 ∈ [n]). Comparisons were made using the p-values as well as false discovery
rate (FDR) corrected p-values arising from FDR control methods (Wang & Ramdas, 2022), and are
presented in the Data S1 (Tables S1–S8 and Figures S1–S8). It is evident in almost all cases (and
especially in case C, which most closely resembles the real life application scenario) that (i) the
power levels are very similar across methods, especially as values of n, mi (i ∈ [n]) and effect sizes
increase, and (ii) in every case, there are some settings in which Fisher’s test and the score test
are anti-conservative (even after FDR correction), with their Type I error greatly exceeding the
nominal levels of significance, while this never occurs for FSEB, even without FDR correction.

4 REAL-DATA APPLICATIONS

4.1 The Norberg data

We now wish to apply the FSEB CI construction from Section 3.2.1 to produce CIs in a real data
application. We shall investigate the Norberg dataset from the REBayes package of Koenker
and Gu (2017), obtained from Haastrup (2000). These data pertain to group life insurance claims
from Norwegian workmen. Here, we have n = 72 observations Dn, containing total number
of death claims Xi, along with covariates wn, where wi is the number of years of exposure,
normalized by a factor of 344, for i ∈ [n]. Here each i is an individual occupation group.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12643 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [19/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


NGUYEN and GUPTA 17

T A B L E 4 Experimental results for testing the hypothesis H0: 𝜃∗i1 = 𝜃
∗
i2 for Beta–binomial count series

models.

Rejection proportion at level 𝜶

n 𝝍 𝚫 0.0005 0.005 0.05
10 (2, 2) 0 0.000 0.000 0.000

0.2 0.000 0.004 0.039

0.5 0.305 0.471 0.709

0.9 0.980 1.000 1.000

(2, 5) 0 0.000 0.000 0.000

0.2 0.000 0.001 0.025

0.5 0.249 0.464 0.692

0.9 0.995 1.000 1.000

(5, 2) 0 0.000 0.000 0.000

0.2 0.000 0.006 0.052

0.5 0.281 0.459 0.690

0.9 0.993 0.993 1.000

100 (2, 2) 0 0.000 0.000 0.000

0.2 0.000 0.004 0.037

0.5 0.272 0.459 0.700

0.9 0.996 0.998 1.000

(2, 5) 0 0.000 0.000 0.000

0.2 0.000 0.003 0.032

0.5 0.267 0.459 0.693

0.9 0.994 0.999 1.000

(5, 2) 0 0.000 0.000 0.000

0.2 0.000 0.004 0.047

0.5 0.269 0.459 0.697

0.9 0.987 0.998 0.999

1000 (2, 2) 0 0.000 0.000 0.000

0.2 0.000 0.003 0.031

0.5 0.280 0.476 0.707

0.9 0.982 0.992 0.998

(2, 5) 0 0.000 0.000 0.000

0.2 0.000 0.003 0.030

0.5 0.264 0.459 0.693

0.9 0.989 0.996 1.000

(5, 2) 0 0.000 0.000 0.000

0.2 0.000 0.005 0.047

0.5 0.279 0.474 0.706

0.9 0.986 0.995 0.999

Notes: The rejection proportion columns report the average number of rejections, from 100 test replicates, at levels of
significance 𝛼 ∈ {0.05, 0.005, 0.0005}.
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18 NGUYEN and GUPTA

F I G U R E 3 Estimates of risk factors 𝝑∗n for the Norberg dataset along with associated 95% CIs. The
estimated risk factor for each occupation group is depicted as a cross and the associate (individually valid) CI is
depicted as a line. The top plot displays the CIs at their entire lengths, whereas the bottom plot displays only the
risk factor range between 0 and 10. [Colour figure can be viewed at wileyonlinelibrary.com]

To analyze the data, we use the Poisson–gamma model and estimate the generative parameters
𝝑
∗
n using estimates of form (13). Here, each 𝜃∗i can be interpreted as an unobserved multiplica-

tive occupation specific risk factor that influences the number of claims made within occupation
group i. To obtain individually valid 95%CIs for each of the n estimates, we then apply the method
from Section 3.2.1. We present both the estimated risk factors and their CIs in Figure 3.

From Figure 3, we notice that most of the estimates of 𝝑∗n are between zero and two, with the
exception of occupation group i = 22, which has an estimated risk factor of 𝜃∗22 = 2.59. Although
the risk factors are all quite small, the associated CIs can become very large, as can be seen in
the top plot. This is due to the conservative nature of the CI constructions that we have already
observed from Section 3.1.

We observe that wider CIs were associated with observations where Xi = 0, with wi being
small. In particular, the largest CI, occurring for i = 55, has response X55 = 0 and the smallest
covariate value in the dataset: w55 = 4.45. The next largest CI occurs for i = 5 and also corresponds
to a response X5 = 0 and the second smallest covariate value w5 = 11.30.

However, upon observation of the bottom plot, we see that although some of the CIs are too
wide to be meaningful, there are still numerous meaningful CIs that provide confidence regarding
the lower limits as well as upper limits of the underlying risk factors. In particular, we observe that
the CIs for occupation groups i = 26 and i = 54 are remarkably narrow and precise. Of course, the
preceding inferential observations are only valid when considering each of the n CIs, individually,
and under the assumption that we had chosen to draw inference regarding the corresponding
parameter of the CI, before any data are observed.
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NGUYEN and GUPTA 19

F I G U R E 4 Estimates of risk factors 𝝑∗n for the Norberg dataset along with the associated simultaneous
95% confidence set. The estimated risk factors for each occupation group is depicted as a cross and the
simultaneous confidence set can be constructed via the cartesian product of the adjusted CIs, depicted as lines. The
plot is focused on the risk factor range between 0 and 10. [Colour figure can be viewed at wileyonlinelibrary.com]

If we wish to draw inference regarding all n elements of 𝝑∗n, simultaneously, then we should
instead construct a 100 (1 − 𝛼) % simultaneous confidence set 

𝛼

(Dn), with the property that

Pr𝝑∗n
[

𝝑
∗
n ∈ 

𝛼

(Dn)
]

≥ 1 − 𝛼.

Using Bonferroni’s inequality, we can take 
𝛼

(Dn) to be the Cartesian product of the individual
100 (1 − 𝛼∕n) % (adjusted) CI for each parameter 𝜃∗i :


𝛼

(Dn) =
n∏

i=1

𝛼∕n
i (Dn) .

Using the 𝛼 = 0.05, we obtain the 95% simultaneous confidence set that appears in Figure 4. We
observe that the simultaneous confidence set now permits us to draw useful inference regarding
multiple parameters, at the same time. For example, inspecting the n adjusted CIs, we observe
that the occupations corresponding to indices i ∈ {8, 22, 50} all have lower bounds above 0.5.
Thus, interpreting these indices specifically, we can say that each of the three adjusted confidence
intervals, which yield the inference that the risk factors 𝜃∗i > 0.5 for i ∈ {8, 22, 50}, contains the
parameter 𝜃∗i with probability 0.95, under repeated sampling.

Since our individual CI and adjusted CI constructions are e-CIs, one can alternatively
approach the problem of drawing simultaneously valid inference via the false coverage rate
(FCR) controlling techniques of Xu et al. (2022). Using again the parameters 𝜃∗i corresponding
to i ∈ {8, 22, 50}, as an example, we can use theorem 2 of Xu et al. (2022) to make the statement
that the three adjusted CIs 3𝛼∕n

i (Dn), for i ∈ {8, 22, 50}, can be interpreted at the FCR controlled
level 𝛼 ∈ (0, 1), in the sense that

E𝝑∗
I(Dn)

⎡
⎢
⎢
⎢
⎣

∑
i∈I

⟦

𝜃

∗
i ∉ 

|I(Dn)|𝛼∕n
i (Dn)

⟧

max {1, |I (Dn)|}

⎤
⎥
⎥
⎥
⎦

≤ 𝛼,
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20 NGUYEN and GUPTA

F I G U R E 5 Finite sample empirical Bayesian test statistics over a segment of methylation data. The panels
show the demarcation of loci into differentially methylated (coded as “1”) and nondifferentially methylated sites
(coded as “0”) with an overlay of a moving average with a window size of 10 CpG sites, at significance level
cutoffs of 0.0005, 0.005, and 0.05. [Colour figure can be viewed at wileyonlinelibrary.com]

where I (Dn) is a data-dependent subset of parameter indices. In particular, we observe the real-
ization {8, 22, 50} of I (Dn), corresponding to the data-dependent rule of selecting indices with
adjusted CIs 𝛼∕n

i (Dn) with lower bounds greater than 0.5. Here, ⟦A⟧ = 1 if statement A is true
and 0, otherwise.

Clearly, controlling the FCR at level 𝛼 yields narrower CIs for each of the three assessed param-
eters than the more blunt simultaneous confidence set approach. In particular, the 95% simul-
taneous adjusted CIs obtained via Bonferroni’s inequality are (0.775, 4.485), (1.375, 5.520), and
(0.505, 3.565), and the 0.05 level FCR controlled adjusted CIs are (0.810, 4.300), (1.430, 5.390), and
(0.555, 3.390), for the parameters 𝜃∗i corresponding to the respective parameters i ∈ {8, 22, 50}.
Overall, these are positive results as we do not know of another general method for generating
CIs in this EB setting, whether individually or jointly.

4.2 Differential methylation detection in bisulphite sequencing data

DNA methylation is a chemical modification of DNA caused by the addition of a methyl (CH3-)
group to a DNA nucleotide—usually a C that is followed by a G—called a CpG site, which
is an important factor in controlling gene expression over the human genome. Detecting dif-
ferences in the methylation patterns between normal and aging cells can shed light on the
complex biological processes underlying human aging, and hence has been an important sci-
entific problem over the last decade (Smith & Meissner, 2013). Methylation patterns can be
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NGUYEN and GUPTA 21

F I G U R E 6 Results of three testing procedures to detect sites of differential methylation over a segment of
methylation data. The first two panels show the negative logarithms of the false discovery rate (FDR)-corrected
p-values for the (i) Fisher test (− log pF) and (ii) score test (− log pS), while the third panel shows the logarithm of
the finite sample empirical Bayesian test statistic (log T(Dn)). The black curve in each plot corresponds to a
moving average with a window size of 10. The points are coloured by differential methylation state call: green if
differentially methylated, and red if not, at test size 0.05. [Colour figure can be viewed at wileyonlinelibrary.com]

detected using high-throughput bisulfite sequencing experiments (Krueger et al., 2012), in which
data are generated in the form of sequences of numbers of methylated cytosines, xig, among the
total counts of cytosines, mig, for n CpG sites on a genome (i ∈ [n]), for G groups of cell types
g ∈ [G]. Often, there are G = 2 groups, as in our example that follows, for which the question of
interest is to detect regions of differential methylation in the DNA of normal and ageing cells.
Based on the setup above, a set of bisulphite sequencing data from an experiment with G groups
might be considered as G series of (possibly correlated) observations from non-identical bino-
mial distributions. The degree of dependence between adjacent CpG sites typically depends on
the genomic distance between these loci, but since these are often separated by hundreds of
bases, for the moment it is assumed that this correlation is negligible and is not incorporated into
our model.

4.2.1 Application to methylation data from human chromosome 21

We evaluated the test statistic TI (Dn) over a paired segment of methylation data from normal and
ageing cells, from 100,000 CpG sites on human chromosome 21 (Cruickshanks et al., 2013). After
data cleaning and filtering (to remove sites with too low or too high degrees of experimental cov-
erage, that can introduce errors), 58,361 sites remained for analysis. Figure 5 shows the predicted
demarcation of the data into differentially and nondifferentially methylated sites over the entire
region, at three cutoff levels of significance, overlaid with a moving average using a window size
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22 NGUYEN and GUPTA

T A B L E 5 Comparison of differential methylation calling results between different methods: (i) finite
sample empirical Bayesian (FSEB) (ii) Fisher tests with false discovery rate (FDR)-adjusted p-values (FF)
(iii) Fisher tests, unadjusted (F); (iv) score tests with FDR-adjusted p-values (SF) and (v) score tests,
unadjusted (S).

Proportion of rejections at level

𝜶 = 0.0005 𝜶 = 0.05

FSEB 0.0012 0.0154

FF 0.0003 0.0097

F 0.0098 0.1102

SF 0.1333 0.1528

S 0.1457 0.2926

Proportion of overlap in matching calls at level

𝜶 = 0.0005 𝜶 = 0.05

Method FF F SF S Method FF F SF S

FSEB 0.999 0.991 0.866 0.856 FSEB 0.992 0.905 0.860 0.723

FF 0.991 0.867 0.855 FF 0.900 0.857 0.717

F 0.858 0.864 SF 0.777 0.818

SF 0.988 S 0.860

Notes: The upper table gives the proportions of sites called to be differentially expressed under the tests of sizes
𝛼 ∈ {0.0005, 0.05}. The lower table gives the proportion of overlaps between differential methylation calls from each pair
of methods at a fixed level 𝛼 ∈ {0.0005, 0.05}.

of 10 sites. It was observed that large values of the test statistic were often found in grouped clus-
ters, which would be biologically meaningful, as loss of methylation in ageing cells is more likely
to be highly region-specific, rather than randomly scattered over the genome. The overall rejec-
tion rates for the FSEB procedure corresponding to significance levels of 𝛼 = 0.0005, 0.05, 0.02
and 0.01 were found to be 0.0012, 0.0154, 0.0092, and 0.0064, respectively.

As a comparison to other methods for detecting differential methylation, we also applied
site-by-site Fisher tests and score tests as implemented for bisulphite sequencing data in the R
Bioconductor package DMRcaller (Catoni et al., 2018). For purposes of comparison, we used two
significance level cutoffs of 0.05 and 0.0005 for our FSEB test statistic, along with the same cut-
offs subject to a Benjamini–Hochberg FDR correction for the other two testing methods. Figure 6
shows the comparison between the calculated site-specific p-values of the Fisher and score tests
with the calculated FSEB test statistic (all on the logarithmic scale) over the entire genomic seg-
ment, which indicates a remarkable degree of overlap in the regions of differential methylation.
There are, however, significant differences as well, in both the numbers of differential methylation
calls and their location. In particular, the FSEB test statistic appeared to have stronger evidence
for differential methylation in two regions, one on the left side of the figure, and one toward the
center. The Fisher test, being the most conservative, almost missed this central region (gave a very
weak signal), while the score test gave a very high proportion of differential methylation calls
compared to both other methods—however, the results from the score test may not be as reliable
as many cells contained small numbers of counts which may render the test assumptions invalid.
Table 5 gives a summary of the overlap and differences of the results from the different methods
at two levels of significance, indicating that with FDR corrections, the Fisher test appears to be
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NGUYEN and GUPTA 23

the most conservative, the score test the least conservative, and the FSEB procedure in-between
the two. We also calculated, for each pair of methods, the proportion of matching calls, defined
as the ratio of the number of sites predicted by both methods as either differentially methylated,
or nondifferentially methylated, to the total number of sites. These proportions indicated a high
degree of concordance, especially between FSEB and Fisher tests, with the score test showing the
least degree of concordance at both levels of significance. As expected, the degree of concordance
decreased with an increase in 𝛼, but only slightly so, between the FDR-corrected Fisher test and
FSEB.

5 CONCLUSION

EB is a powerful and popular paradigm for conducting parametric inference in situations where
the DGP can be assumed to possess a hierarchical structure. Over the years, general frameworks
for point estimation have been developed for EB, such as via the shrinkage estimators of Serdobol-
skii (2008) or the various method of moments and likelihood-based methods described in Maritz
and Lwin (1989). Contrastingly, the construction of interval estimators and hypothesis tests for
EB parameters rely primarily on bespoke derivations and analysis of the specific models under
investigation.

In this paper, we have adapted the general universal inference framework for finite sample
valid interval estimation and hypothesis testing of Wasserman et al. (2020) to construct a general
framework within the EB setting, which we refer to as the FSEB technique. In Section 2, we proved
that these FSEB techniques generate valid confidence sets and hypothesis tests of the correct size.
In Section 3, we demonstrated via numerical simulations, that the FSEB methods can be used in
well-studied synthetic scenarios. There, we highlight that the methods can generate meaningful
inference for realistic DGPs. This point is further elaborated in Section 4, where we also showed
that our FSEB approach can be usefully applied to draw inference from real-world data, in the
contexts of insurance risk and the bioinformatics study of DNA methylation.

We note that although our framework is general, due to it being Markov inequality-based,
it shares the same general criticism that may be laid upon other universal inference methods,
which is that the confidence sets and hypothesis tests can often be conservative, in the sense that
the nominal confidence level or size is not achieved. The lack of power due to the looseness of
Markov’s inequality was first mentioned and discussed in Wasserman et al. (2020), where it is also
pointed out that, in the universal inference setting, the logarithm of the analogous ratio statistics
to (6) have tail probabilities that scale, in 𝛼, like those of 𝜒2 statistics. The conservativeness of
universal inference constructions is further discussed in the works of Dunn et al. (2021), Tse and
Davison (2022), and Strieder and Drton (2022), where the topic is thoroughly explored via simu-
lations and theoretical results regarding some classes of sufficiently regular problems. We observe
this phenomenon in the comparisons in Sections 3.1 (and further expanded in the Data S1). We
also explored subsampling-based tests within the FSEB framework, along the lines proposed by
Dunn et al. (2021), which led to very minor increases in power in some cases with small sample
sizes without affecting the Type I error. With such an outcome not entirely discernible from sam-
pling error, and with the substantial increase to computational cost, it does not seem worthwhile
to employ the subsampling-based approach here. A possible reason for the lack of improvement
in power observed, despite subsampling, can be attributed to the fact that the sets I, and their
complements, are not exchangeable; since the indices fundamentally define the hypotheses and
parameters of interest.
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24 NGUYEN and GUPTA

However, we note that since the methodology falls within the e-value framework, it also
inherits desirable properties, such as the ability to combine test statistics by averaging (Vovk &
Wang, 2021), and the ability to more-powerfully conduct FDR control when tests are arbitrarily
dependent (Wang & Ramdas, 2022).

Overall, we believe that FSEB techniques can be usefully incorporated into any EB-based infer-
ence setting, especially when no other interval estimators or tests are already available, and are a
useful addition to the statistical tool set. Although a method that is based on the careful analysis
of the particular setting is always preferable in terms of exploiting the problem specific properties
in order to generate powerful tests and tight intervals, FSEB methods can always be used in cases
where such careful analyses may be mathematically difficult or overly time consuming.
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