
Operations Research Letters 51 (2023) 234–241

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Half-cycle: A new formulation for modelling kidney exchange

problems

Maxence Delorme a,∗, David Manlove b, Tom Smeets a

a Department of Econometrics and Operations Research, Tilburg University, the Netherlands
b School of Computing Science, University of Glasgow, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 October 2022
Received in revised form 17 February 2023
Accepted 21 February 2023
Available online 28 February 2023

Keywords:
Kidney exchange
Cycle formulation
Integer programming
Preprocessing
Reduced-cost variable fixing

We introduce the half-cycle formulation (HCF), a new integer programming (IP) model for the kidney
exchange problem, which has life-saving applications. In HCF, a cycle (i.e., set of kidney swaps) is
represented by two compatible halves. After giving several algorithmic enhancements for HCF, we show
through extensive computational experiments with an IP solver that our new model outperforms existing
formulations when the cycle size limit is set to 4, 5, or 6, depending on the density of the compatibility
graph.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Kidneys have an essential role in the human body as they fil-
ter the blood to get rid of waste products, they keep the elec-
trolytes (such as sodium and potassium) and water content of the
body constant, and they secrete a number of essential hormones
[18]. While most people have two kidneys, it is possible to have
a healthy and active life with only one functioning kidney. How-
ever, if someone has impaired kidney function (which is the case
for almost 700 million people in the world according to recent es-
timates [5]), they may need specialist medical care that can either
consist of dialysis or transplantation, the latter option offering both
a better quality of life and a longer life expectancy while being less
costly [4,23].

For many years, the kidney used in the transplantation could
only come from a deceased donor or from a living donor belong-
ing to the close family of the person in need (e.g., a partner or a
blood relative). This requirement was motivated by ethical reasons,
to remove any financial incentive for living kidney donors. Living
donors are in high demand as (i) there are better outcomes for re-
cipients who receive a transplant from a living donor [16] and (ii)
in most countries, the pool of deceased donors is not large enough
to cover the demand. However, due to a blood-type or tissue-type
incompatibility between the two people involved in a transplanta-
tion, many recipients cannot receive a kidney despite having found
a willing living donor.

* Corresponding author.
E-mail address: m.delorme@tilburguniversity.edu (M. Delorme).
https://doi.org/10.1016/j.orl.2023.02.009
0167-6377/© 2023 The Author(s). Published by Elsevier B.V. This is an open access artic
Thanks to the seminal works of Rapaport [24] and Roth et al.
[26] and after a series of legislation changes in many countries
to provide a legal framework for transplants between two persons
that do not know each other, kidney exchange programmes were
created. Such programmes allow a set of (not necessarily compat-
ible) recipient-donor pairs registered in the system to exchange
their donor kidneys if the resulting swaps satisfy compatibility re-
quirements. The swaps are typically determined by a centralised
matching algorithm and are computed at regular intervals (e.g., ev-
ery three months in the UK [17]). Compatibility relationships can
easily be captured by a directed compatibility graph, where an arc
is drawn from one pair to another if the donor of the first pair
is compatible with the recipient of the second pair. For example,
if we consider two recipient-donor pairs (r1, d1) and (r2, d2) and
a complete compatibility graph, then a suitable exchange matches
r1 to d2 and r2 to d1 and is called a 2-cycle (“2” because there
are two kidney transplants since two recipient-donor pairs are in-
volved in the swap, and “cycle” because the arcs associated with
these swaps form a cycle in the compatibility graph). Due to prac-
tical constraints, most kidney exchange programmes impose a limit
on the number of pairs that can be involved in the same cycle. The
kidney exchange problem (KEP) can therefore be defined as the
problem of finding a vertex-disjoint set of cycles with the maxi-
mum number of transplants, given a set of recipient-donor pairs,
a compatibility graph, and a limit on the number of pairs involved
in any cycle. Note that the vertex-disjoint requirement comes from
the fact that each recipient and donor can be involved in at most
one cycle.
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.orl.2023.02.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2023.02.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:m.delorme@tilburguniversity.edu
https://doi.org/10.1016/j.orl.2023.02.009
http://creativecommons.org/licenses/by/4.0/

M. Delorme, D. Manlove and T. Smeets Operations Research Letters 51 (2023) 234–241
Over the years, kidney exchange programmes have evolved and
developed country-specific components, resulting in several KEP
extensions. One of the most frequent extensions considers the in-
clusion of non-directed (or altruistic) donors, each of which is not
paired with any recipient. An exchange triggered by a non-directed
donor is called a chain because the recipient of the last recipient-
donor pair receives a kidney but its paired donor is not immedi-
ately matched with any other recipient in the pool of recipient-
donor pairs (this donor may initiate a chain in the next run of the
programme or give their kidney to a recipient on the deceased-
donor waiting list). Another frequent extension considers a set of
hierarchically ordered objective functions to determine the best so-
lution (i.e., the best set of cycles and chains). For example, a kidney
exchange programme may want to maximise the number of trans-
plants, and if several optimal solutions exist, may wish to pick the
one that includes the highest number of 2-cycles. We refer the
interested reader to the works of Biró et al. [6,7] for a detailed
description of European kidney exchange programmes.

As far as the KEP literature is concerned, we identified three
main (not necessarily disjoint) paper categories: (i) those provid-
ing new theoretical results and models for the KEP; (ii) those in-
creasing the algorithmic performance of existing models; and (iii)
those adapting existing approaches to take supplementary real-
world features into account.

Starting with papers in category (i), two of the most important
theoretical KEP results were obtained by Roth et al. [27] and Abra-
ham et al. [1]. The former showed that if only 2-cycle are allowed,
then an optimal solution for the KEP can be found in polyno-
mial time as the problem can be reduced to a maximum weighted
matching problem. The latter proved that the KEP becomes NP-
hard when the limit on the number of pairs involved in a cycle is
greater than or equal to 3, while it can be solved in polynomial
time if such a limit does not exist. The NP-hardness result has
motivated the research community to find effective techniques for
coping with the complexity of KEP, which include Integer Program-
ming (IP). Among the most efficient (i.e., fastest to solve with an IP
solver) KEP models without non-directed donors introduced in the
literature, we mention the cycle formulation and the edge formula-
tion that were both introduced by Roth et al. [28], the extended
edge formulation (EEF) introduced by Constantino et al. [9], and the
position-indexed edge formulation (PIEF) introduced by Dickerson et
al. [14]. Since a non-directed donor can be modelled as a recipient-
donor pair whose recipient is compatible with every other donor,
these formulations can also be used for KEP instances containing
non-directed donors. We mention however that Dickerson et al.
[14] introduced a very effective way to model chains in KEPs that,
when coupled with the cycle formulation to model cycles, obtained
state-of-the-art results for instances with at most three pairs per
cycle and up to eleven pairs per chain.

In category (ii), as far as improving the algorithmic perfor-
mance of existing models is concerned, we mention the work of
Lam and Mak-Hau [19] who solved the cycle formulation with a
branch-and-price framework, and the work of Delorme et al. [11]
who used reduced-cost variable fixing together with preprocessing
techniques and a diving algorithm to enhance the performance of
the cycle formulation for KEPs with hierarchical optimisation. Fi-
nally, for category (iii), the literature aiming at adapting existing
approaches to real-world applications is very large. We only men-
tion a few main areas such as realistic instance generators [12,29],
stochastic optimisation [2,22], and hierarchical optimisation [7,11].

In this work, we introduce the half-cycle formulation (HCF), a
new IP model for KEPs without non-directed donors. The model
is inspired by the cycle formulation and represents a cycle by two
compatible halves. We detail some algorithmic enhancements for
HCF; these include the use of a reduced-cost variable fixing frame-
work [11] that could also be applied to PIEF. We show that HCF
235
together with these algorithmic enhancements obtains better em-
pirical performance when solved with a commercial IP solver than
other mathematical models when the cycle size limit is set to 4,
5, or 6, depending on the density of the compatibility graph. This
improved empirical performance includes faster solution times and
the ability to solve larger instances to optimality. Increasing the
instance size that can be solved with IP modelling is important
for the KEP community because these formulations are often con-
sidered easier to re-implement and modify than handmade algo-
rithms such as branch-and-price algorithms [19] or matheuristics
[12]. Our experimental findings are based on an extensive empir-
ical evaluation that indicates the limits of each of the tested IP
models.

The rest of the paper is organised as follows. In Section 2, we
formally define the KEP and briefly mention existing IP formula-
tions and their main features. We then introduce HCF in Section 3
together with a study of its continuous relaxation, some reduc-
tion procedures and algorithmic enhancements, a discussion about
extending the model to handle non-directed donors, and some in-
sights about a version of HCF where cycles are split into three
parts or more. Section 4 gives a summary of the results obtained
by extensive computational experiments on realistic instances and
concluding remarks are provided in Section 5.

2. Problem statement and existing formulations

In the KEP without non-directed donors (called KEP-WNDD
thereafter), we are given a set of n recipient-donor pairs together
with a limit K on the maximum number of pairs that can be in-
cluded in any cycle and a compatibility graph G = (V, A) where
vertex set V = {v1, v2, . . . , vn} contains one node per recipient-
donor pair and where arc set A contains arc (p1, p2) if the donor
of pair p1 is compatible with the recipient of pair p2. The objective
is to compute a subset of arcs A′ ⊆ A (the transplants) such that
|A′| is maximised while being solely composed of disjoint cycles
with cardinality K or below.

Let S = {v1, . . . , vr} be a set of vertices, where each recipi-
ent and donor appears in at most one vertex of S . If (vi, vi+1) ∈
A for each i (1 ≤ i ≤ r − 1) and (vr, v1) ∈ A, then S gives
rise to a cycle, denoted by [v1, v2, . . . , vr]. The size of this cy-
cle is r. In anticipation of the description of HCF, we also in-
troduce the concept of a half-cycle where a cycle can be de-
composed into two halves, denoted by 〈v1, v2, . . . , v�r/2	+1〉 and
〈v�r/2	+1, v�r/2	+2, . . . , vr, v1〉. For example if we consider the cy-
cle [A, B, C, D], where A, B, C, D ∈ V and (A, B), (B, C), (C, D),
(D, A) ∈A, then this cycle can be decomposed into two half-cycles
〈A, B, C〉 and 〈C, D, A〉. The sizes of these half-cycles are �r/2	 + 1
and �r/2� + 1, respectively. We also remark that the vertex la-
belling of {v1, v2, . . . , vn} gives an ordering on the vertices that
will be used in HCF.

One of the most intuitive models, the so-called cycle formu-
lation [28], enumerates every possible cycle of size K or below,
stores them in set C , and associates one binary variable ξc to ev-
ery feasible cycle c ∈ C , where ξc takes value 1 if cycle c is selected
in the solution and value 0 otherwise. By defining the set V (c) to
contain the vertices involved in cycle c (c ∈ C), we can define the
cycle formulation as follows:

max z =
∑

c∈C
|V (c)| ξc (1)

s.t.
∑

c∈C:v∈V (c)

ξc ≤ 1, ∀v ∈ V, (2)

ξc ∈ {0,1}, ∀c ∈ C. (3)

Objective function (1) maximises the number of transplants while
constraints (2) make sure that no recipient-donor pair appears in

M. Delorme, D. Manlove and T. Smeets Operations Research Letters 51 (2023) 234–241
more than one of the selected cycles. Even though it is one of
the first proposed IP models, the cycle formulation still obtains the
best results for KEP-WNDD instances with values of K up to 4
when compared to other IP models [9]. This can be explained by
the size of the model, containing O (nK) variables and O (n) con-
straints, which remains tractable for low values of n and K , and by
the good quality of the bound derived from the Linear Program-
ming (LP) relaxation of the model, which is the best among all
existing IP models for the KEP-WNDD [14].

Another intuitive model is the so-called edge formulation [28]
which associates a binary variable to every arc a ∈ A in the com-
patibility graph. This variable takes value 1 if the arc is selected
in the solution and value 0 otherwise. The objective is therefore to
maximise the number of arcs selected under the constraints that
(i) there should be flow conservation at every node, (ii) every node
should have at most one outgoing flow, and (iii) the selected arcs
should not form a cycle of size K + 1 or above. While the edge
formulation only uses one variable per arc (so at most n2 in to-
tal), it requires an exponential number of constraints of type (iii).
One way to model these constraints is to enumerate every feasible
chain of size K that does not form a cycle and forbid each of these
chains with a no-good cut, resulting in a total of O (nK) constraints.
It was empirically shown that the edge formulation is much less
effective than the cycle formulation [9], even when solved within
a constraint generation framework that only adds the relevant cy-
cle elimination constraints (i.e., the ones that have been violated
by a previous incumbent solution) to the enumeration tree.

The first compact (or fully polynomial) IP formulation for the
KEP-WNDD is EEF [9]. In brief, EEF considers n copies of the com-
patibility graph, one for every potential cycle, and associates one
variable for every arc in every copy. Such a variable takes value 1
if the arc is selected in the solution in its associated copy and value
0 otherwise. The objective is still to maximise the number of arcs
selected under the constraints that (i) there should be flow conser-
vation at every node in each of the n graph copies, (ii) every node
should have a sum of outgoing flow over the n copies less than or
equal to 1, and (iii) at most K arcs should be selected per graph
copy. Even though EEF has O (n3) variables and O (n2) constraints,
the model is not particularly competitive in practice due to the
poor quality of its linear relaxation. Later on, Dickerson et al. [14]
introduced PIEF, an extension of EEF that duplicates each of the n
graph copies K times to keep track of the position of every arc in
a cycle. They showed that PIEF has the same LP-relaxation as the
cycle formulation while only having O (Kn3) variables and O (Kn2)

constraints. Note that preprocessing techniques can remove many
variables and constraints in EEF and PIEF.

A summary of the most prominent existing models, their re-
spective size, and the quality of their linear relaxation is given in
Table 1. For the sake of completeness, we also included our new
formulation HCF in the table. While many features may impact the
time required by a state-of-the-art IP solver to solve an instance to
optimality, the research community tends to agree that the model
size (i.e., the number of variables and constraints) and the quality
of the LP-relaxation bound both play a crucial role. In that regard,
the cycle formulation, PIEF, and HCF complement each other very
well as each of these models has the smallest size for at least one
value of K 1 while always having a tight LP-relaxation bound (for
HCF, the model size and the tightness of the LP-relaxation are de-
rived in Section 3.1).

To the best of our knowledge, no other mathematical model
for the KEP-WNDD has been proposed in the literature, apart from
two edge formulation extensions introduced in a thesis [25] that

1 Example values are K = 2 for the cycle formulation, K = 4 for HCF and K = 6
for PIEF.
236
Table 1
Number of variables and constraints of IP models for the KEP-WNDD.

IP model No. var. No. cons. LP-relaxation bound

Cycle formulation O (nK) O (n) tight
Edge formulation O (n2) O (nK) not tight
EEF O (n3) O (n2) not tight
PIEF O (Kn3) O (Kn2) tight
HCF O (n1+�K/2) O (n2) tight

were shown to offer no competitive advantage. Note that a larger
variety of models have been proposed for the KEP with non-
directed donors [3,14,20]. Indeed, even though every modelling
technique used to represent a cycle can also be used to represent
a chain, there are also (more efficient) techniques that can be used
to represent a chain that are not suitable for representing a cycle.

3. Half-cycle formulation and reduction procedures

In the last decade, several research papers introduced strate-
gies to exploit the symmetry within combinatorial optimisation
problems to derive IP models with a reduced size. For example,
Delorme and Iori [13] introduced a new mathematical model for
the bin packing problem that uses half of the bin capacity to model
an instance, requiring significantly fewer constraints and variables
than existing models (that used the full bin instead). The authors
represented both the first half and the second half of a bin with
the same modelling structure and showed that the resulting de-
crease in terms of model size outweighed – by far – the extra
burden brought by the supplementary constraints that are neces-
sary to ensure compatibility between the selected half bins. This
“two halves instead of a whole” strategy was extended later on to
other packing problems [10,21]. In this section, we show that a
similar idea can also be used for the KEP-WNDD.

3.1. Mathematical model

In our new formulation HCF, a cycle is represented by two com-
patible half-cycles. To guarantee that the half-cycles selected by
the model are compatible, we simply need to ensure that, for ev-
ery pair of nodes v1, v2 ∈ V , a half-cycle starting by v1 and ending
by v2 is selected if and only if another half-cycle starting by v2
and ending by v1 is also selected. It is tempting to believe that
splitting a cycle into two halves will lead to a mathematical model
that has twice as many variables as the cycle formulation. How-
ever this need not be the case, as is illustrated in Section A of the
Online Supplement.

After enumerating every possible half-cycle of size up to 1 +
�K/2	 and storing them in set H, the model associates one binary
variable xh to every feasible half-cycle h ∈H taking value 1 if half-
cycle h is selected in the solution and value 0 otherwise. Note that
half-cycles containing the same node twice are not generated. By
using V s(h) (resp. V e(h)) to indicate the vertex starting (resp. end-
ing) half-cycle h (h ∈H), and V m(h) to indicate the other (middle)
vertices of h, we can define HCF as follows:

max z =
∑

h∈H
(|V m(h)| + 1) xh (4)

s.t.
∑

h∈H:v∈V s(h)∪V e(h)

0.5xh +
∑

h∈H:v∈V m(h)

xh ≤ 1,

∀v ∈ V, (5)
∑

h∈H:v1∈V s(h),v2∈V e(h)

xh =
∑

h∈H:v1∈V e(h),v2∈V s(h)

xh,

∀v1 ∈ V, v2 ∈ V : v2 > v1 (6)

xh ∈ {0,1}, ∀h ∈ H. (7)

M. Delorme, D. Manlove and T. Smeets Operations Research Letters 51 (2023) 234–241
Objective function (4) maximises the number of transplants while
taking into account that the starting and ending nodes of every se-
lected half-cycle only count for halves as they both appear in two
half-cycles. Constraints (5) make sure that no recipient-donor pairs
appear more than once in the middle or more than twice at the
start/end of the selected half-cycles, while constraints (6) ensure
that every half-cycle selected in the solution can be matched with
another selected half-cycle to form a complete cycle. Note that, to
ensure the correctness of the model in the case where K is odd,
the following set of constraints is needed in HCF:

xh = 0, ∀h ∈ H : V s(h) > V e(h) and |V m(h)| = (K − 1)/2. (8)

Constraints (8) prevent any half-cycle 〈v1, . . . , v2〉 with size 1 +
�K/2	 and v1 index greater than v2 index from being gener-
ated. This forbids two half-cycles with size 1 + �K/2	 from being
merged, which would be the equivalent (when K is odd) of a cycle
with size K + 1.

We point out that the bound obtained by the LP-relaxation of
HCF is as tight as the bound obtained by the cycle formulation
since the two models are equivalent, or in other words, since any
continuous solution of model (4)-(8) can be transformed into a
continuous solution of model (1)-(3) with the same objective value
and vice versa (the proof is available in Section B of the Online
Supplement).

3.2. Reduction procedures and node ordering

As in the case of other IP models for the KEP, HCF displays
some symmetry. For example, a cycle [A, B, C, D] can be obtained
by selecting half-cycles 〈A, B, C〉 and 〈C, D, A〉 or by selecting half-
cycles 〈B, C, D〉 and 〈D, A, B〉. This can be avoided by deactivating
(i.e., by setting the associated variable to 0 or not generating the
variable at all) every half-cycle in which the vertex with the low-
est index is neither located at the beginning nor at the end of
the half-cycle. This rule is not sufficient to remove all symmetry
as a cycle that includes an odd number of recipient-donor pairs
such as [A, B, C, D, E] can still be obtained by selecting different
sets of half-cycles such as 〈A, B, C, D〉 and 〈D, E, A〉 or 〈A, B, C〉
and 〈C, D, E, A〉.2 This can be avoided in constraints (6) by only
allowing a half-cycle 〈v1, . . . , v2〉 with size k to be matched with
another half-cycle 〈v2, . . . , v1〉 with size k or, in case the index of
v1 is smaller than the index of v2, with size k and k − 1. Prepro-
cessing removing unnecessary variables can also be applied to HCF.
A simple rule is to only consider a half-cycle in the model if it can
be completed by another half-cycle.

Considering that the bound obtained by the LP-relaxation of
HCF is as tight as the bound obtained by the cycle formulation,
we can follow the path of Delorme et al. [11] and apply the con-
cept of a destructive bound together with a reduced-cost variable
fixing strategy to reduce the number of variables that needs to
be considered in the model. To do so, we start by solving the LP-
relaxation of model (4)-(8), save the objective value ẑ, and use it
to derive a valid upper bound U = �ẑ� on the maximum number
of transplants. From now on, we are only looking for an integer
solution with objective value U . Delorme et al. [11] proved a gen-
eral result concerning reduced-cost variable fixing, a consequence
of which is that any continuous solution of model (4)-(8) where a
variable xh with reduced cost ŝh ≤ U − ẑ −ε takes value 1 or above

2 Note that this example is only valid if K ≥ 6, as at most one half-cycle among
〈A, B, C, D〉 and 〈C, D, E, A〉 would be generated if K = 5, since in this case, the
former half-cycle would only be generated if the index of A is smaller than the
index of C (as the first reduction procedure ensures that either the index of A or
the index of D is smaller than the index of C , and constraints (8) force the index of
A to be smaller than the index of D), while the latter half-cycle is only generated
if the index of C is smaller than the index of A (again by constraints (8)).
237
must have objective value strictly below U (ε is a very small num-
ber used to avoid precision errors). As a result, no integer solution
selecting the half-cycle associated with such a variable xh can have
objective value U and xh can therefore be deactivated. If we find a
solution with value U for the reduced model, then that solution is
optimal. If that is not the case, then it means that no solution with
objective value U exists, so U − 1 becomes a valid upper bound.
Therefore, U is decremented and all the variables are reactivated
except the ones with reduced cost smaller than or equal to the
updated U − ẑ − ε value. The algorithm is iterated until a solution
with value U is found. Note that in a more efficient implementa-
tion, the algorithm terminates if the optimal objective value of the
reduced model is equal to U − 1.

A peculiarity of HCF (which also occurs with EEF and PIEF, but
not in the cycle formulation) is that the node ordering has an
impact on the number of variables required by the model. To il-
lustrate this behaviour, we consider a simple instance whose com-
patibility graph G is displayed in the left part of Fig. 1, where G
has 4 recipient-donor pairs and K = 4. In the right part of the fig-
ure, we outline the half-cycles that should be merged together in
order to build each of the feasible cycles of the instance, given
a certain node ordering and the reduction procedures mentioned
above. One can observe that using node ordering B < C < D < A
produces fewer half-cycles (and thus, fewer variables in the HCF
model) than using node ordering A < D < B < C . In fact, search-
ing for the minimum number of half-cycles that are necessary to
represent every feasible cycle in a KEP-WNDD is an optimisation
problem in its own right. Interestingly, such an objective cannot al-
ways be achieved by using a specific node ordering in the context
of our HCF model construction process. Indeed, in our example,
every feasible cycle can be obtained by using only 4 half-cycles,
namely 〈B, C〉, 〈C, B〉, 〈C, A, B〉, and 〈B, D, C〉. However, these 4
half-cycles do not correspond to any valid node ordering since
〈C, A, B〉 can only be merged with 〈B, C〉 if C < B , while 〈B, D, C〉
can only be merged with 〈C, B〉 if B < C . Empirical results out-
lining the impact of using different node ordering rules and the
impact of using a reduced-cost variable fixing strategy are provided
in Section 4.

3.3. Extending HCF to the KEP with non-directed donors

Even though we introduced HCF for the KEP-WNDD, we point
out that there are several ways to extend the model to take non-
directed donors into account. The most intuitive (but probably not
the most efficient) strategy would be to represent the chains as cy-
cles in the compatibility graph, by introducing a dummy recipient
for each non-directed donor that is compatible with every directed
donor. However, we expect that better computational performance
could be obtained by using instead the chain structure introduced
by Dickerson et al. [14] as the latter only requires a polynomial
number of variables and constraints, O (Ln2) and O (Ln), respec-
tively (where n is now the number of recipient-donor pairs plus
the number of non-directed donors and L is the chain size limit).

3.4. Splitting a cycle into three or more parts

Considering the significant reduction in terms of number of
variables involved in the model, one might wonder if further im-
provements could be obtained by splitting the cycles into three
parts (or more) instead of two. Indeed, a cycle [A, B, C, D, E, F]
could be split, for example, into “third-cycles” 〈A, B, C〉, 〈C, D, E〉,
and 〈E, F , A〉. While this would reduce the theoretical number of
variables from O (n1+�K/2) to O (n1+�K/3), it would also increase
the total number of constraints as one now needs to make sure
that every third-cycle selected in the solution can be matched with
two other third-cycles to form a complete cycle. In other words,

M. Delorme, D. Manlove and T. Smeets Operations Research Letters 51 (2023) 234–241

C

A

B

D

Feasible
cycles

Unique half-cycle representation given a fixed node ordering

B < C < D < A A < B < C < D A < D < B < C

[A, B, D, C] 〈B, D, C〉 + 〈C, A, B〉 〈A, B, D〉 + 〈D, C, A〉 〈A, B, D〉 + 〈D, C, A〉
[A, B, C] 〈B, C, A〉 + 〈A, B〉 〈A, B, C〉 + 〈C, A〉 〈A, B, C〉 + 〈C, A〉
[B, D, C] 〈B, D, C〉 + 〈C, B〉 〈B, D, C〉 + 〈C, B〉 〈D, C, B〉 + 〈B, D〉
[B, C] 〈B, C〉 + 〈C, B〉 〈B, C〉 + 〈C, B〉 〈B, C〉 + 〈C, B〉
Total 6 distinct half-cycles 7 distinct half-cycles 8 distinct half-cycles

Fig. 1. An instance outlining the importance of the node ordering rule.
one should make sure that (i) for every node v , if there is a third-
cycle ending in v , there must be a third-cycle starting from v; and
(ii) for every three nodes v1, v2, v3, if there is both a third-cycle
starting from v1 and ending in v2 and a third-cycle starting from
v2 and ending in v3, there must be a third-cycle starting from
v3 and ending in v1. This would bring the theoretical number of
constraints to O (n3), which would not provide a competitive ad-
vantage with respect to the models presented in Table 1 for any
value of K .

4. Computational experiments

We first tested the performance of HCF on a set of randomly
generated instances with various sizes n ∈ {50, 100, 200, 400, 600,

800, 1000} and maximum cycle size values K ∈ {3, 4, 5, 6, 7, 8}
using the instance generator introduced by Delorme et al. [12]
and available at https://wpettersson .github .io /kidney-webapp. We
clicked on “Use recipient blood group distributions from the pa-
per” and left the other parameters untouched. We generated 20
instances for each value of n, resulting in 140 instances in to-
tal that can be downloaded from https://github .com /mdelorme2 /
Half _Cycle _Instances. These instances will be referred to as the
DGGKMPT instances in the following. Note that each of the 140
DGGKMPT instances were solved using different values of K .

We then tested the performance of HCF on instances from the
“Kidney Data (00036)” dataset [15], which can be downloaded
from the PrefLib library at https://www.preflib .org /dataset /00036
and which will be referred to as the PrefLib instances in the fol-
lowing. We selected the 10 PrefLib instances without non-directed
donors for each size n ∈ {64, 128, 256, 510, 1024}. PrefLib instances
have been widely used by the research community [12,19] and are
characterised by a high graph density (around 25%), which usually
increases the number of variables that needs to be generated in IP
models. The graph density for DGGKMPT instances is close to 10%,
a proportion that is similar to what is observed in the UK kidney
exchange programme, which is one of the reasons why it was ar-
gued in [12] that the generator from [12] produced more realistic
instances than those obtained by the well-known Saidman genera-
tor [29], which was used to create the PrefLib instances. We tested
the following models:

• CYCLE, the cycle formulation [28] with symmetry reduction
(only the cycles starting with the lowest indexed pair are gen-
erated);

• EDGE, the edge formulation [28] implemented within a branch-
and-cut framework;

• EEF, the extended edge formulation [9] with symmetry reduc-
tion (in copy v of the compatibility graph, only the arcs with
head and tail indices equal to v or above that can be included
in a cycle of size up to K containing node v are considered;
nodes are sorted according to a pre-defined node ordering);

• PIEF, the position-indexed edge formulation [14] with the
same symmetry reduction and node ordering as EEF;

• HCF, the half-cycle formulation introduced in Section 3 with
symmetry reduction and node ordering as described in Sec-
tion 3.2;
238
• CYCLE-RCVF, algorithm CYCLE with reduced-cost variable fix-
ing (as described by Delorme et al. [11] and summarised in
Section 3.2);

• PIEF-RCVF, algorithm PIEF with reduced-cost variable fixing;
• HCF-RCVF, algorithm HCF with reduced-cost variable fixing.

We point out that we did not use reduced-cost variable fixing
on the edge formulation and on EEF because the LP-relaxation of
those models is often more than one unit away from the optimal
solution value.

Our algorithms were all coded in C++ and can be downloaded
from https://github .com /mdelorme2 /Half _Cycle _Codes. The experi-
ments were run on an Intel(R) Core(TM) i5-1135G7, 2.40 GHz with
32 GB of memory, running under Ubuntu 22.04.1 LTS, and Gurobi
10.0.0 was used to solve the IP models. A single core was used for
the tests (i.e., parameter Threads was set to 1), the barrier al-
gorithm was used to solve the root nodes of the IP models (i.e.,
parameter Method was set to 2), and callbacks were used for the
constraint generation (and thus, parameter LazyConstraints
was set to 1 for EDGE). All the instances were first solved with
a 16 GB memory limit for the environment (i.e., parameter Mem-
Limit was set to 16). Those instances that ended prematurely
due to being out of memory were rerun with the memory limit
increased to 30 GB. For the algorithms using reduced-cost variable
fixing, we deactivated the crossover operation when solving the LP
models (i.e., parameter Crossover was set to 0). This means that
the solver did not try to transform the interior solution produced
by the barrier algorithm into a basic solution. For these last three
approaches, we also changed the focus of the solver so that more
time was spent on finding a good-quality solution (i.e., parameter
MIPFocus was set to 1). For every run, a time limit of 3600 sec-
onds was imposed. Note that, for a given K , when an approach
could not solve any instance with size n, we decided to not test
the approach on instances larger than n and filled the associated
rows with the symbol “-”.

Results for the DGGKMPT instances are presented in Section 4.1,
whilst those for the PrefLib instances are given in Section 4.2.

4.1. DGGKMPT instances

We report in Table 2 the results of a first set of experiments
aimed at evaluating the impact of two node ordering rules: one
where the vertices are sorted in descending order of total degree
(denoted by the suffix “-D”) that was suggested by Dickerson et al.
[14] for PIEF, and one where the vertices are sorted in ascending
order of total degree (denoted by the suffix “-A”). For the sake of
conciseness, we only report the results for models PIEF and HCF on
instances with K = 4. The first two columns identify the limit K on
the number of pairs that can be included in a cycle and the total
number of pairs n. The following columns provide, for each of the
tested models, the number of optimal solutions found, the average
CPU time over the 20 runs (including the ones terminated by the
time limit), and the average number of variables and constraints
involved.

The results suggest that sorting the vertices in descending or-
der of total degree reduces the model size for both PIEF and HCF,
which results in more instances being solved to optimality over-

https://wpettersson.github.io/kidney-webapp
https://github.com/mdelorme2/Half_Cycle_Instances
https://github.com/mdelorme2/Half_Cycle_Instances
https://www.preflib.org/dataset/00036
https://github.com/mdelorme2/Half_Cycle_Codes

M. Delorme, D. Manlove and T. Smeets Operations Research Letters 51 (2023) 234–241

Table 2
Results of PIEF and HCF with two node ordering rules for DGGKMPT instances with K = 4.

K n PIEF-A PIEF-D HCF-A HCF-D

opt

T(s) no.
var.

no.
cons.

opt

T(s) no.
var.

no.
cons.

opt

T(s) no.
var.

no.
cons.

opt

T(s) no.
var.

no.
cons.

4 50 20 0 174 403 20 0 127 279 20 0 117 95 20 0 86 77
100 20 0 1499 2681 20 0 1127 1620 20 0 1068 470 20 0 821 312
200 20 2 16 489 20 942 20 1 11 492 10 735 20 1 13 788 3762 20 0 9546 1953
400 20 54 153 932 131 649 20 38 109 629 67 788 20 23 141 066 26 025 20 15 99 605 13 241
600 19 1010 638 524 397 533 20 396 454 042 197 518 20 91 606 854 83 422 20 69 429 021 41 236
800 6 3324 1 672 574 800 293 13 2789 1 190 571 398 566 20 515 1 616 706 174 170 20 300 1 144 460 85 692
1000 0 3600 3 658 273 1 413 525 1 3589 2 621 062 699 596 17 1811 3 566 763 312 648 20 966 2 544 940 153 453

Table 3
Results of the tested approaches for DGGKMPT instances with K = 3 and K = 4.

K n CYCLE EDGE EEF PIEF HCF CYCLE-RCVF PIEF-RCVF HCF-RCVF

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

3 50 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0
100 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0
200 20 0 5 2865 20 0 20 0 20 0 20 0 20 0 20 0
400 20 0 0 3600 20 1 20 2 20 0 20 0 20 3 20 0
600 20 1 - - 20 4 20 10 20 1 20 1 20 12 20 1
800 20 2 - - 20 20 20 30 20 3 20 2 20 32 20 3
1000 20 5 - - 20 56 20 79 20 8 20 4 20 68 20 6

4 50 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0
100 20 0 18 719 20 0 20 0 20 0 20 0 20 0 20 0
200 20 0 0 3600 20 2 20 1 20 0 20 0 20 1 20 0
400 20 7 - - 20 118 20 38 20 15 20 4 20 23 20 7
600 20 80 - - 20 1474 20 396 20 69 20 40 20 161 20 41
800 20 387 - - 0 3600 13 2789 20 300 20 110 19 1237 20 107
1000 20 1358 - - - - 1 3589 20 966 20 325 14 2611 20 294
all. This is in line with the suggestion of Dickerson et al. [14].
Note that we also tested the impact of these two ordering rules on
PIEF-RCVF and HCF-RCVF, and similar conclusions could be drawn.
As far as EEF is concerned, the descending ordering rule also led
to smaller size models, but it also led to a deterioration of the
LP-relaxation bound (we remind the reader that the LP-relaxation
bound of EEF is not tight). Empirically, we observed that instances
were solved faster for EEF when using the ascending ordering rule.

We report in Table 3 the results obtained by each of the tested
approaches (with its best ordering rule, i.e., descending for PIEF,
HCF, PIEF-RCVF, and HCF-RCVF and ascending for EEF) on DG-
GKMPT instances with K = 3 and K = 4.

For K = 3, we observe that every approach apart from EDGE
could solve all the instances. CYCLE-RCVF obtained the best results,
followed by CYCLE, HCF-RCVF, and HCF. We point out that there
is no theoretical interest in using HCF (or HCF-RCVF) over CYCLE
(or CYCLE-RCVF) for these instances as every half-cycle of size 3
can only be completed by one single half-cycle of size 2. We also
remark that the version of the model using reduced-cost variable
fixing always outperforms the corresponding version that does not
use it.

For K = 4, we observe that only CYCLE-RCVF and HCF-RCVF can
solve all the tested instances, but neither of the two approaches
clearly outperforms the other. We mention that CYCLE has around
2.8 million variables and 800 constraints on average for instances
with 800 recipient-donor pairs while HCF has around 1.1 million
variables and 86 thousand constraints. This confirms the general
paradigm behind HCF, which is to reduce the number of variables
at the cost of supplementary constraints compared to CYCLE. For
the same instances, CYCLE-RCVF has around 1 million variables
and 800 constraints on average while HCF-RCVF had 581 thou-
sand variables and 66 thousand constraints, which indicates that
reduced-cost variable fixing can be very effective.

Based on these results, we continue our tests with larger values
of K for the methods EDGE, CYCLE-RCVF, PIEF-RCVF, and HCF-
RCVF. We decided to include EDGE because it is expected that the
branch-and-cut framework becomes more effective as K increases
since the cycles found in incumbent solutions are less likely to
239
have size K + 1 or above (and therefore, are less likely to require
a cut).

We report in Table 4 the results obtained by the four remain-
ing approaches on DGGKMPT instances with K = 5 and K = 6. For
each model, we added the average number of variables and con-
straints involved in the model after reduced-cost variable fixing
(if any) and for EDGE, the average number of cuts added within
the branch-and-cut framework. As early termination due to mem-
ory limit occurred in these experiments (even after increasing that
limit to 30 GB), the number of instances that were prematurely
ended is now reported within brackets after the number of opti-
mal solutions found in column “# opt” (if that number was not 0).
Typically, an instance would run out of memory within the first
hundred seconds of running time, when solving the LP-relaxation
of the model (so before reduced-cost variable fixing). As a result,
the instances terminated because the memory limit was exceeded
were neither used to compute the average computation time of
the approach nor the average number of variables and constraints
involved in the model.

For K = 5, we observe that CYCLE-RCVF starts running out of
memory for instances with 600 recipients. This can be explained
by the very large model sizes before reduced-cost variable fixing
(40 million variables and 199 million non-zero elements in the co-
efficient matrix on average for the instances that were prematurely
terminated versus respectively 23 million and 114 million for the
instances that were not). While we cannot guarantee that CYCLE-
RCVF would not be able to solve any of the instances ended prema-
turely due to memory limitation, our results already show that the
model is not the most competitive anymore as it could not solve
two instances within the time limit while HCF-RCVF could. Indeed,
HCF-RCVF is the only approach able to solve all instances with
n = 600 and is also the fastest to solve instances with n = 400. In
addition, the model could solve 13 instances with n = 800, while
the second best approach, PIEF-RCVF, could only solve 3 instances
in that class. Note that, even though HCF-RCVF ran out of memory
for 6 instances with n = 1000, we do not expect that memory lim-
itation was a major issue since the model could not solve any of
the other 14 instances within the time limit. PIEF-RCVF is the sec-

M. Delorme, D. Manlove and T. Smeets Operations Research Letters 51 (2023) 234–241

Table 4
Results of the tested approaches for DGGKMPT instances with K = 5 and K = 6.

K n EDGE CYCLE-RCVF PIEF-RCVF HCF-RCVF

opt

T(s) no.
var.

no.
cons.

no.
cuts

opt

T(s) no.
var.

no.
cons.

opt

T(s) no.
var.

no.
cons.

opt

T(s) no.
var.

no.
cons.

5 50 20 0 95 100 59 20 0 13 50 20 0 110 326 20 0 46 82
100 17 706 690 200 9003 20 0 445 100 20 0 1279 2446 20 0 708 398
200 0 3600 3202 400 95 206 20 2 35 505 200 20 5 21 113 20 290 20 2 20 113 2941
400 - - - - - 20 171 1 007 642 400 20 189 253 464 129 307 20 76 325 892 18 985
600 - - - - - 11(7) 1654 7 650 138 600 18 1594 1 152 842 358 123 20 623 1 764 656 53 045
800 - - - - - 0(20) - - - 3 3546 2 965 211 688 450 13 2735 5 351 740 99 204
1000 - - - - - - - - - 0 3600 6 442 985 1 165 448 0(6) 3600 11 125 680 160 809

6 50 20 0 108 100 92 20 0 18 50 20 0 168 467 20 0 57 87
100 18 903 748 200 19 741 20 0 2332 100 20 0 2949 4513 20 0 2253 550
200 0 3600 3226 400 143 308 20 35 330 733 200 20 26 53 639 35 862 20 15 87 849 4510
400 - - - - - 1(19) 1049 5 840 474 400 19 1035 645 935 211 977 20 680 1 759 561 28 726
600 - - - - - 0(20) - - - 1 3597 2 782 083 561 026 0(2) 3600 10 133 013 73 822
800 - - - - - - - - - 0 3600 6 869 893 1 064 200 - - - -

Table 5
Results of the tested approaches for DGGKMPT instances with K = 7 and K = 8.

K n EDGE CYCLE-RCVF PIEF-RCVF HCF-RCVF

opt

T(s) no.
var.

no.
cons.

no.
cuts

opt

T(s) no.
var.

no.
cons.

opt

T(s) no.
var.

no.
cons.

opt

T(s) no.
var.

no.
cons.

7 50 20 0 114 100 95 20 0 23 50 20 0 233 627 20 0 71 92
100 18(1) 460 770 200 21 563 20 1 8225 100 20 1 4876 6578 20 0 4634 673
200 0 3600 3226 400 178 638 17(3) 336 2 112 290 200 20 77 101 433 52 152 20 57 267 377 5618
400 - - - - - 0(20) - - - 16 2039 1 142 383 296 453 10(1) 3138 6 900 079 30 996
600 - - - - - - - - - 0 3600 4 673 736 768 008 0(20) - - -

8 50 20 0 116 100 52 20 0 41 50 20 0 317 807 20 0 95 95
100 19(1) 79 767 200 11 908 20 6 30 453 100 20 2 7178 8480 20 1 10 843 746
200 0 3600 3226 400 200 502 1(19) 528 3 589 926 200 19 293 157 346 68 675 20 250 1 026 008 6637
400 - - - - - 0(20) - - - 7 3368 1 681 013 382 001 0(20) - - -
600 - - - - - - - - - 0 3600 6 675 680 975 641 - - - -
ond best performing algorithm for instances with n ≥ 600 and the
third best for instances with n ≤ 400. We point out that PIEF-RCVF
never ran out of memory in these experiments. EDGE struggles to
solve instances with n = 100 or more, indicating that the approach
is not competitive for low K values.

For K = 6, HCF-RCVF obtains again the best results as it was
the only approach able to solve all instances with n ≤ 400, and
its computation times were the fastest on average. However, for
n = 600, we observe that the model could not solve any of the 20
instances while PIEF-RCVF could solve one, indicating the start of
a performance shift between the two models. We note that the
number of variables grows at a lower pace with n for PIEF-RCVF
than for HCF-RCVF, but the former model involves more constraints
on average than the latter. For this K value also, we note that EDGE
struggles to solve instances with n = 100 or more and that CYCLE-
RCVF experiences difficulties due to memory limits.

We report in Table 5 the results obtained by the same four ap-
proaches on instances with K = 7 and K = 8.

For K = 7 and K = 8, it is interesting to observe that PIEF-RCVF
now obtains the best results as it is able to solve 16 out of 20
instances with size n = 400 for K = 7 (versus 10 for HCF-RCVF)
and it is the only approach able to solve instances with size n =
400 for K = 8. Even though HCF-RCVF is ahead when it comes to
solving instances with size n ≤ 200 for K = 7 and 8, we observe
that the number of variables involved in the model increases too
quickly with n compared to PIEF-RCVF, indicating that the model
loses its competitive advantage for K ≥ 7 over PIEF-RCVF. We also
note that we start to see a shift in the performance of EDGE, as it
becomes faster to solve instances with size n = 100 as K increases,
which seems to indicate that when K becomes very large, EDGE
might obtain the best results.

4.2. PrefLib instances

Our second set of experiments is intended to give evidence that
the competitive advantage displayed by HCF over the cycle formu-
lation and PIEF also occurs for KEP instances produced by other
generators. To do so, we tested EDGE, CYCLE-RCVF, PIEF-RCVF, and
HCF-RCVF on PrefLib instances and report in Section C of the On-
line Supplement the results obtained by the four tested approaches
on instances with K = 3, 4, 5 and 6.
240
For K = 3, the observations made in our previous experiments
still hold: CYCLE-RCVF obtained the best results, followed by HCF-
RCVF, and PIEF-RCVF. For K = 4, we observe an interesting shift as
HCF-RCVF now clearly outperforms CYCLE-RCVF. This is mainly due
to the model size: as the graph density is larger, the number of
variables increases at a very fast pace in CYCLE-RCVF with respect
to what is observed for HCF-RCVF. PIEF-RCVF is not yet compet-
itive as it requires almost as many variables as HCF-RCVF while
also requiring five times as many constraints. For K = 5, PIEF-RCVF
and HCF-RCVF obtain similar results: the former requires more
constraints but the latter requires more variables. For K = 6, the
number of variables in HCF-RCVF now increases too fast with the
instance size and the best performance is now obtained by PIEF-
RCVF. This observation was confirmed by similar experiments using
K = 7 and K = 8. Overall, PrefLib instances appear to be harder for
the tested models, but one should keep in mind that ad hoc strate-
gies to solve instances with high density compatibility graphs to
optimality have been proposed in the literature and are particu-
larly effective for PrefLib instances [12].

5. Conclusions

We introduced the half-cycle formulation (HCF), an IP model
to solve the KEP-WNDD that represents a cycle using two halves.
After detailing a few symmetry reduction procedures, we showed
that it was possible to use reduced-cost variable fixing to enhance
the performance of the model. We showed through extensive com-
putational experiments that HCF, when solved with symmetry re-
duction, reduced-cost variable fixing, and descending-degree node
ordering, obtained better results than the cycle formulation with
symmetry reduction and reduced-cost variable fixing when the cy-
cle size limit is set to K = 5 or above (K = 4 or above for instances
with a dense compatibility graph like PrefLib instances), but we
also observed that it was behind the position-indexed edge for-
mulation (PIEF) with symmetry reduction, reduced-cost variable
fixing, and descending-degree node ordering when the cycle size
limit is set to K = 7 or above (K = 5 or above for instances with a
dense compatibility graph). A set of rules outlining which formu-
lation to choose depending on the value of K and the density of
the compatibility graph is given in Section D of the Online Supple-
ment.

M. Delorme, D. Manlove and T. Smeets Operations Research Letters 51 (2023) 234–241
Our work focused on evaluating IP models and their perfor-
mance as the instance size grows both in terms of recipient-donor
pairs and in terms of cycle size limit. We point out, however,
that other algorithmic procedures could also be used to enhance
the performance of the tested approaches. For example, HCF could
be solved within a branch-and-price framework to be more effec-
tive on instances where K ≥ 4, but this goes beyond the scope
of our study as our primary focus is on mathematical program-
ming, which is often regarded as an accessible tool by the research
community. Also, we observed that increasing K for instances with
more than 200 recipient-donor pairs does not necessarily increase
the maximum number of transplants (e.g., for DGGKMPT instances
with 200 recipients and K = 5, the maximum number of trans-
plants was 124.20 on average versus 124.25 for K = 6). This phe-
nomenon is even more pronounced for instances with a dense
compatibility graph, as the maximum number of transplants for
every PrefLib instance with size n ≥ 128 never increased when K
was set to a value greater than or equal to 4. This indicates that
for large K values, it could be worth trying to solve the instance
with a smaller K (resulting in faster approaches) and assess after-
wards by mean of a valid upper bound (e.g., obtained by relaxing
the integrality constraints or the limitation on K) whether or not
better solutions can be obtained by considering larger cycles. We
did not empirically evaluate the performance of the models on KEP
instances with non-directed donors, but we pointed out that every
formulation could take non-directed donors into account by using
the chain structure introduced for PICEF by Dickerson et al. [14]. In
other words, one could introduce PICEF-HC, an algorithm that uses
the efficient chain structure of PICEF together with our new HCF
model to represent the cycles. Depending on the cycle size limit,
it could even be relevant to introduce PICEF-PIE, a version where
cycles are represented with PIEF.

For future work, it would be interesting to study whether or
not HCF can handle hierarchical objectives as well as the cycle for-
mulation, even though we expect that a few objectives such as
maximising the number of cross-arcs [11] will be difficult to model
with HCF. Another future research direction could focus on assess-
ing whether or not HCF can be useful for the stochastic or robust
version of the KEP [8]. Finally, it would also be worth investigating
whether the “two halves instead of a whole” idea can be extended
to other combinatorial optimisation problems.

Acknowledgements

We would like to thank the anonymous reviewers for their
valuable comments that have helped to improve the presentation
of this paper.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .orl .2023 .02 .009.

References

[1] D.J. Abraham, A. Blum, T. Sandholm, Clearing algorithms for barter exchange
markets: enabling nationwide kidney exchanges, in: Proceedings of EC’07: the
8th ACM Conference on Electronic Commerce, ACM, 2007, pp. 295–304.

[2] F. Alvelos, X. Klimentova, A. Viana, Maximizing the expected number of trans-
plants in kidney exchange programs with branch-and-price, Ann. Oper. Res.
272 (2019) 429–444.

[3] R. Anderson, I. Ashlagi, D. Gamarnik, A.E. Roth, Finding long chains in kid-
ney exchange using the traveling salesman problem, Proc. Natl. Acad. Sci. USA
112 (3) (2015) 663–668.

[4] D.A. Axelrod, M.A. Schnitzler, H. Xiao, W. Irish, E. Tuttle-Newhall, S.-H. Chang,
B.L. Kasiske, T. Alhamad, K.L. Lentine, An economic assessment of contemporary
kidney transplant practice, Am. J. Transplant. 18 (2018) 1168–1176.
241
[5] B. Bikbov, et al., Global, regional, and national burden of chronic kidney disease,
1990–2017: a systematic analysis for the global burden of disease study 2017,
Lancet 395 (2020) 709–733.

[6] P. Biró, B. Haase-Kromwijk, T. Andersson, E.I. Ásgeirsson, T. Baltesová, I. Bo-
letis, C. Bolotinha, G. Bond, G. Böhmig, L. Burnapp, K. Cechlárová, P. Di Ciaccio,
J. Fronek, K. Hadaya, A. Hemke, C. Jacquelinet, R. Johnson, R. Kieszek, D.R.
Kuypers, R. Leishman, M.-A. Macher, D. Manlove, G. Menoudakou, M. Salonen,
B. Smeulders, V. Sparacino, F.C.R. Spieksma, M.O. Valentín, N. Wilson, J. van
der Klundert, Building kidney exchange programmes in Europe–an overview of
exchange practice and activities, Transplantation 103 (2019) 1514–1522.

[7] P. Biró, J. van de Klundert, D. Manlove, W. Pettersson, T. Andersson, L. Burnapp,
P. Chromy, P. Delgado, P. Dworczak, B. Haase, A. Hemke, R. Johnson, X. Klimen-
tova, D. Kuypers, A.N. Costa, B. Smeulders, F. Spieksma, M.O. Valentín, A. Viana,
Modelling and optimisation in European kidney exchange programmes, Eur. J.
Oper. Res. 291 (2020) 447–456.

[8] D. Blom, C. Hojny, B. Smeulders, A Benders-type approach for robust optimiza-
tion of kidney exchanges under full recourse, Preprint, available from https://
arxiv.org /abs /2105 .08565. (Accessed 9 September 2021).

[9] M. Constantino, X. Klimentova, A. Viana, A. Rais, New insights on integer-
programming models for the kidney exchange problem, Eur. J. Oper. Res. 231
(2013) 57–68.

[10] M. Dell’Amico, M. Delorme, M. Iori, S. Martello, Mathematical models and de-
composition methods for the multiple knapsack problem, Eur. J. Oper. Res. 274
(2019) 886–899.

[11] M. Delorme, S. García, J. Gondzio, J. Kalcsics, D. Manlove, W. Pettersson, New al-
gorithms for hierarchical optimisation in kidney exchange programs, Oper. Res.
(2023), in press. Available from https://doi .org /10 .1287 /opre .2022 .2374. (Ac-
cessed 4 February 2023).

[12] M. Delorme, S. García, J. Gondzio, J. Kalcsics, D. Manlove, W. Pettersson, J. Trim-
ble, Improved instance generation for kidney exchange programmes, Comput.
Oper. Res. 141 (2022) 105707.

[13] M. Delorme, M. Iori, Enhanced pseudo-polynomial formulations for bin packing
and cutting stock problems, INFORMS J. Comput. 32 (2020) 101–119.

[14] J.P. Dickerson, D.F. Manlove, B. Plaut, T. Sandholm, J. Trimble, Position-indexed
formulations for kidney exchange, in: Proceedings of EC’16: the 17th ACM Con-
ference on Economics and Computation, ACM, 2016, pp. 25–42.

[15] J.P. Dickerson, A.D. Procaccia, T. Sandholm, Optimizing kidney exchange with
transplant chains: theory and reality, in: Proceedings of AAMAS’12: the 11th
International Conference on Autonomous Agents and Multiagent Systems, IFAA-
MAS, 2012, pp. 711–718.

[16] A. Hart, J.M. Smith, M.A. Skeans, S.K. Gustafson, D.E. Stewart, W.S. Cherikh,
J.L. Wainright, A. Kucheryavaya, M. Woodbury, J.J. Snyder, B.L. Kasiske, A.K. Is-
rani, OPTN/SRTR 2015 annual data report: Kidney, Am. J. Transplant. 17 (2017)
21–116.

[17] R.J. Johnson, J.E. Allen, S.V. Fuggle, J.A. Bradley, C. Rudge, Early experience
of paired living kidney donation in the United Kingdom, Transplantation 86
(2008) 1672–1677.

[18] Kidney Research UK. Kidney Health Information, https://www.nhs .uk /Livewell /
Kidneyhealth /Documents /kidney %20guide .pdf. (Accessed 21 September 2022).

[19] E. Lam, V. Mak-Hau, Branch-and-cut-and-price for the cardinality-constrained
multi-cycle problem in kidney exchange, Comput. Oper. Res. 115 (2020)
104852.

[20] V.H. Mak-Hau, On the kidney exchange problem: cardinality constrained cy-
cle and chain problems on directed graphs: a survey of integer programming
approaches, J. Comb. Optim. 33 (2017) 35–59.

[21] J. Martinovic, M. Delorme, M. Iori, G. Scheithauer, N. Strasdat, Improved flow-
based formulations for the skiving stock problem, Comput. Oper. Res. 113
(2020) 104770.

[22] D.C. McElfresh, H. Bidkhori, J.P. Dickerson, Scalable robust kidney exchange, in:
Proceedings of AAAI’19: the 33rd AAAI Conference on Artificial Intelligence,
AAAI Press, 2019, pp. 1077–1084.

[23] National Kidney Foundation. Dialysis, https://www.kidney.org /atoz /content /
dialysisinfo. (Accessed 21 September 2022).

[24] F.T. Rapaport, The case for a living emotionally related international kidney
donor exchange registry, Transplant. Proc. 18(3) (Suppl. 2) (1986) 5–9.

[25] L.C. Riascos-Álvarez, Formulations and algorithms for the kidney exchange
problem, Master’s thesis, Universidad Autonoma de Nuevo León, 2017. Avail-
able from https://eprints .uanl .mx /18121 /2 /tesisM _2017 _Caro .pdf. (Accessed 21
September 2022).

[26] A.E. Roth, T. Sönmez, M.U. Ünver, Kidney exchange, Q. J. Econ. 119 (2) (2004)
457–488.

[27] A.E. Roth, T. Sönmez, M.U. Ünver, Pairwise kidney exchange, J. Econ. Theory
125 (2) (2005) 151–188.

[28] A.E. Roth, T. Sönmez, M.U. Ünver, Efficient kidney exchange: coincidence of
wants in a market with compatibility-based preferences, Am. Econ. Rev. 97 (3)
(2007) 828–851.

[29] S.L. Saidman, A.E. Roth, T. Sönmez, M. Unver, F.L. Delmonico, Increasing the
opportunity of live kidney donation by matching for two- and three-way ex-
changes, Transplantation 81 (2006) 773–782.

https://doi.org/10.1016/j.orl.2023.02.009
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB395E8BA1EF626DD8A3486149488F88Cs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB395E8BA1EF626DD8A3486149488F88Cs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB395E8BA1EF626DD8A3486149488F88Cs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2E62D5D69AC1261AFBE9EC6427E6689Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2E62D5D69AC1261AFBE9EC6427E6689Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2E62D5D69AC1261AFBE9EC6427E6689Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2EA8360D0F236EC79A9552B0D5C4DC39s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2EA8360D0F236EC79A9552B0D5C4DC39s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2EA8360D0F236EC79A9552B0D5C4DC39s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib0D8D66D489F8E194AB7E550C53F6D9D8s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib0D8D66D489F8E194AB7E550C53F6D9D8s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib0D8D66D489F8E194AB7E550C53F6D9D8s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibC7B3C368A3987DB9DDB13D9493A473ECs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibC7B3C368A3987DB9DDB13D9493A473ECs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibC7B3C368A3987DB9DDB13D9493A473ECs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB728CBFA2A2C862DBBD65E0055DFA579s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB728CBFA2A2C862DBBD65E0055DFA579s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB728CBFA2A2C862DBBD65E0055DFA579s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB728CBFA2A2C862DBBD65E0055DFA579s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB728CBFA2A2C862DBBD65E0055DFA579s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB728CBFA2A2C862DBBD65E0055DFA579s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB728CBFA2A2C862DBBD65E0055DFA579s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibD73EAAAEC384522712FF835C387CB299s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibD73EAAAEC384522712FF835C387CB299s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibD73EAAAEC384522712FF835C387CB299s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibD73EAAAEC384522712FF835C387CB299s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibD73EAAAEC384522712FF835C387CB299s1
https://arxiv.org/abs/2105.08565
https://arxiv.org/abs/2105.08565
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibA6B4548697568D8CDCEDF0E23A45DF2Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibA6B4548697568D8CDCEDF0E23A45DF2Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibA6B4548697568D8CDCEDF0E23A45DF2Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB1D975A41E6159D0889776C244E0E771s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB1D975A41E6159D0889776C244E0E771s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibB1D975A41E6159D0889776C244E0E771s1
https://doi.org/10.1287/opre.2022.2374
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib9BF3C129F7DB28320E6B91710A5F47A9s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib9BF3C129F7DB28320E6B91710A5F47A9s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib9BF3C129F7DB28320E6B91710A5F47A9s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibC28A3695A410531514CBC462D2DDAFC3s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibC28A3695A410531514CBC462D2DDAFC3s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib194415C612DEC7603F1BDAD97F1940A8s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib194415C612DEC7603F1BDAD97F1940A8s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib194415C612DEC7603F1BDAD97F1940A8s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2ACD6EB12860F57D695BD06C7CD43808s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2ACD6EB12860F57D695BD06C7CD43808s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2ACD6EB12860F57D695BD06C7CD43808s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib2ACD6EB12860F57D695BD06C7CD43808s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib32EFBFF2C3474207131D67627340FE39s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib32EFBFF2C3474207131D67627340FE39s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib32EFBFF2C3474207131D67627340FE39s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib32EFBFF2C3474207131D67627340FE39s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibF88359BB84054214A2CEB8F30D30779Bs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibF88359BB84054214A2CEB8F30D30779Bs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibF88359BB84054214A2CEB8F30D30779Bs1
https://www.nhs.uk/Livewell/Kidneyhealth/Documents/kidney%20guide.pdf
https://www.nhs.uk/Livewell/Kidneyhealth/Documents/kidney%20guide.pdf
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib3D12F85492E41A8848652F039C089D8Bs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib3D12F85492E41A8848652F039C089D8Bs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib3D12F85492E41A8848652F039C089D8Bs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibA60DACFF417B2D4BD52401BFF933205Cs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibA60DACFF417B2D4BD52401BFF933205Cs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibA60DACFF417B2D4BD52401BFF933205Cs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibEC2AA3F8574E55B011367C6B25317C2Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibEC2AA3F8574E55B011367C6B25317C2Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibEC2AA3F8574E55B011367C6B25317C2Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibC7BEC464EF9263B1A91E62CEE1ED402Ds1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibC7BEC464EF9263B1A91E62CEE1ED402Ds1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibC7BEC464EF9263B1A91E62CEE1ED402Ds1
https://www.kidney.org/atoz/content/dialysisinfo
https://www.kidney.org/atoz/content/dialysisinfo
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib8BC9713FC830B9246D5C7F6A50380FF4s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib8BC9713FC830B9246D5C7F6A50380FF4s1
https://eprints.uanl.mx/18121/2/tesisM_2017_Caro.pdf
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibD6E9BB3FF95AD7032F1707424A5CD149s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibD6E9BB3FF95AD7032F1707424A5CD149s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibE41434EF871AEC285120B5EE6D03DBABs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bibE41434EF871AEC285120B5EE6D03DBABs1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib0D0859F5A9155E01D293670A35E4027Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib0D0859F5A9155E01D293670A35E4027Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib0D0859F5A9155E01D293670A35E4027Es1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib3C51A460E5A2106B49FDFE4B859BCA96s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib3C51A460E5A2106B49FDFE4B859BCA96s1
http://refhub.elsevier.com/S0167-6377(23)00032-9/bib3C51A460E5A2106B49FDFE4B859BCA96s1

	Half-cycle: A new formulation for modelling kidney exchange problems
	1 Introduction
	2 Problem statement and existing formulations
	3 Half-cycle formulation and reduction procedures
	3.1 Mathematical model
	3.2 Reduction procedures and node ordering
	3.3 Extending HCF to the KEP with non-directed donors
	3.4 Splitting a cycle into three or more parts

	4 Computational experiments
	4.1 DGGKMPT instances
	4.2 PrefLib instances

	5 Conclusions
	Acknowledgements
	Appendix A Supplementary material
	References

