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Abstract: Since the CubeSats have become inherently used for the Internet of space things (IoST)
applications, the limited spectral band at the ultra-high frequency (UHF) and very high frequency
should be efficiently utilized to be sufficient for different applications of CubeSats. Therefore,
cognitive radio (CR) has been used as an enabling technology for efficient, dynamic, and flexible
spectrum utilization. So, this paper proposes a low-profile antenna for cognitive radio in IoST
CubeSat applications at the UHF band. The proposed antenna comprises a circularly polarized
wideband (WB) semi-hexagonal slot and two narrowband (NB) frequency reconfigurable loop slots
integrated into a single-layer substrate. The semi-hexagonal-shaped slot antenna is excited by
two orthogonal +/−45◦ tapered feed lines and loaded by a capacitor in order to achieve left/right-
handed circular polarization in wide bandwidth from 0.57 GHz to 0.95 GHz. In addition, two NB fre-
quency reconfigurable slot loop-based antennas are tuned over a wide frequency band from 0.6 GHz to
1.05 GH. The antenna tuning is achieved based on a varactor diode integrated into the slot loop
antenna. The two NB antennas are designed as meander loops to miniaturize the physical length and
point in different directions to achieve pattern diversity. The antenna design is fabricated on FR-4
substrate, and measured results have verified the simulated results.

Keywords: CubeSats; reconfigurable antenna; cognitive radio; internet of space things; UHF band

1. Introduction

With the advanced varieties of wireless applications along with addressing the re-
quirements of end user demands which can be varied daily, especially during disaster
situations, a flexible communication system is necessary. Numerous use cases require
a more global, scalable, flexible, and robust solution, such as monitoring remote areas,
internet provisioning to underserved or disturbed regions, or intelligent global transport
management. CubeSats are recommended to achieve global communication systems be-
tween those different services [1–3]. CubeSats are a type of low-weight satellite (1.33 kg)
that have a volume of 10× 10× 10 cm3 and a weight of less than 10 kg (commonly repre-
sented as 1 U). Their small weight considerably lowers launch costs, making the idea of
multiple satellites constellation in orbit possible. Several CubeSats have been proposed in
the last couple of years, such as the RainCube precipitation radar, Internet of Space Things
(IoST), space exploration, rural communication, remote sensing, and other contemporary
CubeSat constellation projects [1,4–11].

In order to solve the connection problems between multiple CubeSats, the cognitive
radio (CR) offers a potential solution. In CR communication, a transceiver is able to discern
between channels that are being used and those that are not. It avoids occupied channels
and rapidly enters vacated ones without interference with the licensed user. Thus, CRs are
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a class of intelligent transceivers with increased situational awareness due to their cognitive
skills. This can result in the improvement of the efficient and robust use of communi-
cation resources and low delay of data exchange in the CubeSat constellation [5,9,12,13]
(see Figure 1). While to solve the problems of globality services, the IoST, a pervasive
cyber-physical system that will enable full global communication, is recommended (see the
IoST services in Figure 1). The use of CubeSat does not limit to previous applications. Still,
it extends to serve low data rate links for telecommand, telemetry, and control data for 5G
networks at very high frequency and ultra-high frequency (VHF/UHF) [14–16].
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Figure 1. The conceptual scenario of satellite services.

Due to space restrictions, achieving multifunctional antennas in the CubeSat is chal-
lenging. Indeed, the antenna is the main key for the CubeSat to provide those aforemen-
tioned services (CR and IoST); so, a wideband antenna for sensing and a reconfigurable
narrowband antenna for communication in low profile and compact size is mandatory.
Thus, some physically changing antenna techniques such as origami folding, hinges, soft
robotics, spring forces, and telescopic actuation are implemented [17–23], but those methods
significantly increase the mechanical complexity of the CubeSat.

Extensive work has been undertaken to provide antennas for cognitive radio appli-
cations [24–33], but most of them do not fit with CubeSat regarding operating frequency,
size, and compatibility. Although several designs have been employed for the CubeSat [34],
such as slot antennas [8,35], the spiral antenna [36], helix [37], aperture antennas [38,39],
superstrate antenna [40], solar cell-integrated antennas [40–43], dipole antenna [44], and
folded dipole antenna [45], they do not support the UHF band with compact size and
simple structure.

In this paper, a simple structure-folded slot antenna design has been presented. The
proposed antenna consists of three antennas; one works as wideband antenna which is
fed by two feedlines to provide circular polarization, while the other two are narrowband
antennas that are fed by separate feedlines in a different orientation, to achieve radiation
diversity. In addition, each NB antenna has a varactor diode. The NB antennas change their
frequency over the operating band of the wideband antenna. By changing the value of
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the loading capacitor, the antenna will achieve frequency reconfigurability. The proposed
antenna with reconfigurability features in addition to wideband at UHF can be a good
candidate for the Cubesate of IoST applications.

2. Antenna System Structure

The proposed antenna is designed on a 100 mm × 100 mm FR-4 substrate with a
dielectric constant of 4.4, a loss tangent of 0.02, and a thickness of 1.52 mm. The pro-
posed antenna system integrates a circularly polarized wideband antenna for sensing and
two reconfigurable narrowband antennas for communication.

2.1. Wideband Antenna

The sensing antenna is a semi-hexagonal-shaped slot antenna with a perimeter ≈
o f 0.85 λg at the center of the required band (0.7 GHz). The loaded capacitor at the middle
of the slot’s baseline with a value of 0.38 pF (see Figure 2) results in the slot’s small physical
length and improves the impedance-matching bandwidth. The width of the slot is 3 mm.
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Figure 2. The antenna system structure (all dimensions in mm). (a) Top view and (b) bottom view.

Figure 3 shows that the sensing antenna operates from 1.3 GHz to 1.62 GHz before
loading the capacitor, while it is reduced to cover a band from 0.57 GHz to 0.95 GHz in case
of loading the capacitor. The slot is fed by two tapered transmission lines, the left feed (P-1)
excites LHCP, and the right feed (P-2) excites RHCP. The axial ratio of the proposed antenna
has been presented versus frequency at different capacitor values in Figure 4. The axial
ratio with a capacitor value of 0.38 pF confirms the circular polarization of the antenna.
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To better understand the CP generation in the left- and right-hand sense, the surface
current distributions are provided in Figure 5. When P-1 is excited, the current distributions
are plotted at angles of 0◦, 45◦, 90◦, and 180◦ at 0.6 GHz using High-Frequency Structured
Simulator (HFSS), as depicted in Figure 5a. It is observed that the current distribution varies
in the clockwise direction, which produces left-handed circular polarization. Similarly,
when the antenna is excited from P-2, the current directions vary in the counterclockwise
direction (see Figure 5b), demonstrating the antenna’s ability to radiate as right-handed
circular polarization.
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2.2. Narrowband Reconfigurable Antenna

The narrowband antenna is a semi-ellipse-meander-shaped slot antenna; the meander
shape is employed to reduce the antenna’s physical size. Similar to the sensing antenna, the
NB antenna is loaded with various capacitance values from 0.84 pF to 5.08 pF. A varactor
diode is connected to the antenna to reconfigure its operating frequency based on the bias
voltage value, which changes the capacitor value. The proposed slot antenna has a total
length of 86 mm and a width of 32 mm. Two NB antennas are printed on the same view
with the sensing antenna. They are printed in two different directions to achieve pattern
diversity. Five capacitance values (0.84, 0.9, 1.24, 2.09, and 5.08 pF) are used to tune the
antenna’s resonant frequency over the wide frequency band. Figure 6 depicts the reflection
coefficients of different capacitance values for NB P-3 and NB P-4. The results show a good
match in all cases, and the resonant frequency decreases with increasing the capacitance
value. High isolations between the NB P-3/NB P-4, NB P-3/WB-P1, and NB P-4/WB-P1
have been achieved thanks to the different orientations of the antennas (see Figure 7).
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The biasing circuitry of the reconfigurable antenna, as shown in Figure 2, consisted of
the varactor diode, RF choke (L1, L2 = 1 µH), and current-limiting resistor (R1, R2 = 2.1 KΩ).
The varactor diode (SMV 1233) is connected to the biasing circuitry through shorting posts.
RF chokes are used to separate the radiating structure from the DC power source while
the reverse-biased varactor diode serves as a DC blocking capacitor to ensure that the DC
biasing component and the RF radiating structure are well isolated.

3. Antenna Fabrication and Discussion of Results

Figure 8 illustrates the fabricated prototype of the proposed antenna system with
four ports. The fabrication was done using chemical etching which is a popular method
to remove excess copper from the surface of a copper-coated substrate. This technique
involves coating the copper surface with a photosensitive material called “resist”, exposing
it to light through a mask to create a circuit pattern, and then developing the resist to create
an image of the circuit pattern.
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Next, the board is placed in an etchant solution that selectively dissolves the unpro-
tected copper areas, leaving behind the desired circuit pattern. The etchant solution usually
contains chemicals such as ferric chloride, ammonium persulfate, or cupric chloride, which
react with copper to dissolve it. Once the required amount of copper has been removed,
the board is rinsed with water to eliminate any residual etchant solution, and the resist
is removed, revealing the final circuit pattern on the copper-coated substrate. Chemical
etching is a highly reliable and widely used method that enables the production of high-
quality PCBs with precise circuit features. The proposed antenna was measured for its
S-parameters and radiation characteristics.

3.1. Scattering Parameters

Figure 9 shows a good agreement between the simulated and measured reflection
coefficients of the wideband antenna. The results confirm that the antenna operates from
0.59 GHz to 0.95 GHz numerically and experimentally with a good matching over the wide
band. Figure 10 presents the measured reflection coefficients of narrowband antennas at
the corresponding voltages of the above-mentioned capacitors values. The bias voltages
of 15, 10, 5, 2.5, 1, and 0 V are applied consecutively to the varactor diode for both NB
antennas, resulting in the resonant frequency’s reconfigurability from 0.6 GHz to 1 GHz.
All the reconfigurable cases have good matching. In addition, high isolations between the
WB antenna and NB antennas have been validated in Figure 11a,b, with an isolation factor
of more than 15 dB in all cases. The high isolation between NB-P3 and NB-P4 has been
validated in Figure 11c.
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3.2. Radiation Characteristics

The far-field radiation pattern characteristics were also performed for the proposed
MIMO antenna. To calculate the antenna’s performance, the peak gain and radiation
efficiency values (%η) are determined for each element of the antenna. To conduct the
measurement for any port, the rest of the MIMO antenna ports were terminated with a 50 Ω
load to avoid any reflected power. For sensing and frequency reconfigurable antennas, the
peak gain values were 1.079 dBi and 0.86 dBi, respectively, while %η varied from 80~85%
to 73~78%, respectively. Figures 12 and 13 show the simulated and measured peak gain
and %η curves for both sensing and frequency reconfigurable NB antennas.
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Figure 14 shows the plots for the antenna gain of port-1 and port-2 in terms of left-hand
circular polarization (LHCP) and right-hand circular polarization (RHCP). In port-1, the
antenna’s RHCP gain is higher than its LHCP gain, and it can reach a maximum value
of 1.079 decibels relative to an isotropic radiator (dBi) within the antenna’s operational
frequency band. Similarly, for port-2, the LHCP gain is greater than the RHCP gain, with a
maximum value of 1.078 dBi achieved.
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The measured and simulated radiation patterns for the UWB antenna and narrow-
band reconfigurable antenna are shown in Figures 15 and 16, respectively. The far-field
measurement setup is shown in Figure 16c. The proposed antenna was characterized by its
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far-field measurements in an anechoic chamber. An anechoic far-field measurement setup
typically includes the following components:

1. Anechoic chamber: The chamber is large enough to accommodate the antenna under
test and other required testing equipment. The walls, ceiling, and floor of the chamber
are covered with radiation-absorbing material to prevent reflections and create an
environment free of external interference.

2. Antenna positioning system: The antenna positioning system is used to precisely
control the position and orientation of the antenna under test. This system typically
includes a rotation stage and one or more translation stages, which allow the antenna
to be positioned at various distances and angles from the measurement equipment.

3. Signal generator: The signal generator is used to generate the RF signal that excites
the antenna under test. The frequency and power level of the signal can be adjusted
as needed.

4. RF receiver: The RF receiver is used to measure the signal received by the antenna
under test. The receiver is typically connected to an antenna or probe that is positioned
at a fixed distance and angle from the antenna under test.

5. Data acquisition system: The data acquisition system is used to collect and store the
measurement data. This system includes a computer, software, and any necessary
interfaces for controlling the measurement equipment and recording the data.

6. Calibration equipment: The calibration equipment is used to calibrate the measure-
ment system and ensure accurate results.
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The patterns show omnidirectional radiation patterns in both planes for wideband
antenna, indicating they are useful for UHF band communication applications. The NB
antennas have omnidirectional radiation and wide-beam directive patterns, alternating in
both planes which makes them useful for sensing behavior. The simulated and measured
results show good agreement for both antennas in both XZ and YZ planes.
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3.3. MIMO Diversity (ECC)

The diversity of the MIMO antenna in terms of envelope correlation coefficient (ECC)
is calculated to show how much antenna elements are independent in their performance.
The values are found to be very low, less than 0.02, ideal for the MIMO operation. ECC
values are calculated based on the radiation patterns of antenna elements as given below:

ECCij =

∣∣∣∣s 4π
0

[→
Ei(θ, ϕ)×

→
Ej(θ, ϕ)

]
dΩ

∣∣∣∣2
s 4π

0

∣∣∣∣→Ei(θ, ϕ)

∣∣∣∣2dΩ
s 4π

0

∣∣∣∣→Ej(θ, ϕ)

∣∣∣∣2dΩ

(1)

where
→
Ei(θ, ϕ) is the radiation pattern of the ith antenna element. Figure 17 shows the ECC

curves for both sensing and frequency reconfigurable antenna elements. It is evident that
both antenna elements are performing well over the desired bands of operation.
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3.4. Comparison

The proposed antenna features the benefits of sensing and communication integrated
antenna, compatibility with unity CubeSat size, low profile, dual CP sensing, communica-
tion diversity, frequency reconfigurability, and UHF support. Table 1 lists a comparison
between the proposed antenna and the referenced CubeSat antennas. It is easy to notice
that pattern diversity has been achieved in [35,44] based on complicated 3D structures. The
dual polarization has been achieved in [8] as CP and in [46] as LP without pattern diversity
and reconfigurability based on slot antenna and shared aperture antenna, respectively. On
the other hand, the antennas in [3,8,38,40,47,48] achieved CP with a complicated structure.
Therefore, the proposed antenna is a good candidate for future CR-IOST applications.

Table 1. Comparison between reported antennas and the proposed antenna.

Ref. Size
(
mm3) f (GHz) Reconfigurability Low Profile Support

UHF
Pattern
Diversity Polarization Remarks

[3] 87× 87× 27.5 1.575 No No No No CP Helix

[8] 60× 60× 1.52 0.4 No Yes Yes No Dual CP Slot antenna

[35] 100× 100× 100 0.45 No No Yes Yes LP Folded slot
antenna

[38] 100× 100× 25 0.9/5.8 No No No No CP

Microstrip
antenna with
shaped ground +
Fabry Perot

[40] 100× 100× 7.2 2.5 No Yes No No CP 2 Substrate + 2
foam layers

[44] 100× 100× 100 6 Yes No No Yes LP 3D structure

[47] 110× 110× 3.18 1.575/2.2 No Yes No No CP
Stacked patch
antenna of
three layers

[46] 100× 100× 1.6 3.2/9.3 No Yes No No Dual LP Shared aperture
antenna

[48] 100× 100× 5.5 1.69/2.45 No Yes No No CP Conical shape
spiral antenna

[49] NA (1.5 U) 0.48 No Yes Yes No LP Slot antenna on
solar panel

[50] 159× 152× 3.25 2.4 Manual Yes No No LP Patch/monopole
antenna

Proposed 100× 100× 1.52 0.55 Yes Yes Yes Yes Dual CP

Sensing antenna
+ two
communication
antennas

LP: linear polarization. CP: circular polarization.

4. Conclusions

This work presents a low-profile WB and NB frequency reconfigurable antenna for
IoST applications. The proposed antenna consists of a circularly polarized WB semi-
hexagonal slot and two NB frequency reconfigurable loop slots integrated on the same
substrate board. The semi-hexagonal-shaped slot antenna is excited by two orthogonal
±45o tapered feed lines and loaded by a capacitor in order to achieve left/right-handed
circular polarization in a wide bandwidth from 0.57 GHz to 0.95 GHz. The frequency
reconfigurable antenna operates over a wide band from 0.6 GHz to 1.05 GH using a single
varactor diode per antenna element. The two NB antennas are designed as meander loops
to miniaturize the physical length and reactive loading, which further optimized it to be
operated in sub-GHz bands. The antenna system is fabricated on FR-4 substrate with a
dimension of 100 × 100 × 0.76 mm3. The measured results verified the simulated results
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and both are in good agreement. The proposed antenna design is well suited for IoST
CubeSat applications.
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