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Abstract—Computing nodes in Edge Computing environments
share unlimited data. Such data are exploited to locally build Ma-
chine Learning (ML) models for applications such as predictive
analytics, exploratory analysis, and smart applications. This edge
node-centric local learning reduces the need for data transfer
and centralization, which is affected by different factors such as
data privacy, data size, communication overhead, and computing
resource limitations. Therefore, a collaborative learning fashion
at the network edge has appeared as a promising paradigm that
enables multiple distributed (edge) nodes to train and deploy
ML models cooperatively without infringement of data privacy.
Nevertheless, the variety, distribution and quality of data vary
between edge nodes. Hence, selecting unsuitable edge nodes can
have a negative impact on the ML model performances. We
have devised (i) an intelligent node selection mechanism per
analytics query based on the range of the availability of required
training data at the edge and (ii) variants of collaborative
learning processes engaging the most suitable nodes for models
training and inference. We evaluate the efficiency of our selection
mechanism and collaborative learning and provide a comparative
assessment with other methods found in the literature using
real data. The results showcase that our mechanism significantly
outperforms baseline approaches and existing node selection
mechanisms in distributed computing environments.

Index Terms—Query-driven node selection, Distributed learn-
ing, Data overlapping.

I. INTRODUCTION

Machine Learning (ML) and Deep Learning (DL) models
are typically trained using centralized data. This means that all
necessary training data should be available on a central data
server. However, bringing all of these data into a centralized
server is no longer practical due to concerns about data privacy
and data volume. On the one hand, in several application
domains such as healthcare sector systems (e.g., medicine
records/data in hospitals, electronic health record (EHR), and
disease-specific or products-specific registries) and banking
sectors (e.g., customers information/data), data privacy is
regarded as a top priority. These data are not shareable because
of ethical, legal, logistical, and administrative barriers [1].
On the other hand, computing resource constraints exist. In
particular, when dealing with a large-scale model, we require
a huge amount of data to train this model efficiently, and in
many scenarios, the organization might lack the computing
power to process this data locally [2]. Meanwhile, the quality
of ML models depends heavily on the training data volume,
quality, and availability [3]. For example, if the data is less

than what the model requires, we face the challenge of the
model’s limited generalization. This implies that the model
will perform well when it is presented with new data that
are similar to the data that was trained on. In our context, the
model performance will worsen when it is presented with new
data from other nodes. To overcome this problem, a distributed
learning framework has been proposed to facilitate access to
the data by training a single ML model over disjoint data space
by leveraging clients’ data and computing resources. The ob-
jective is to alleviate concerns about client data privacy while
reducing the load on centralized devices and communication
bandwidth [4]. In distributed learning context, to make an
ML model learn efficiently and become more generalized, we
must train it over a set of distributed edge nodes, hereinafter
referred to as participants. However, in such a setting, not
all participants play the same role as evidenced in [5]. This
is determined by the amount of data in each participant, the
quality of the data, and the rate of data overlap between the
query (required task) and what the participant already has [4].
As a result, an important challenge in distributed learning is
how to select the most important subset of participants
from all participants to be engaged per issued query.

In addition, large-scale models and distributed learning
models are more likely to forget what they have learned from
previous participants when they move to new participants
with different data distributions. To reduce the impact of this
problem on the quality of results and accuracy, we should pay
more attention to establish a participants selection mechanism,
i.e., which participants are most appropriate to execute
a collaborative learning process according to analytic
task requirements? Furthermore, ML and DL models need
a specific amount of data to be trained. Less data could
cause an under-fitting problem, and more data could cause
an over-fitting problem. To avoid this problem, we also must
ensure that the model only picks and trains on the required
data. Hence, the third critical question is how can we select
only the required data from each chosen participant,
especially when we have limited access to the data?
Inspired by these three challenging questions, in this paper,
we propose an edge node selection mechanism for distributed
learning environments per issued analytics query. The purpose
of performing such kind of edge selection mechanism is to
improve the global model performance and reduce the model



drift and model forgetting chances that could happen due
to training the model on irrelevant data. The main goal of
implementing such kind of edge selection mechanism is to
improve the global model performance and reduce the model
drift and model forgetting that could happen due to training
the model on irrelevant data. Our technical contributions are:

• We introduce a mechanism to determine the partici-
pation of nodes per query. Nodes might have similar
data patterns, thus, the model only needs to train on
enough data. In this case, selecting participants at random
may be faster and produce the same results as using a
participant selection mechanism. In other cases, however,
participants hold disjoint data spaces. We need a selection
mechanism to specify which scenario we deal with.

• Our participant selection mechanism is based on data
clustering for each participant. We take into account the
data representatives (clusters) in each participant that
satisfy the query boundaries. Then, based on a novel
overlapping rate according to the clusters and amount
of data needed per cluster, we contribute with a ranking
method, which determines the nodes to be selected.

• Our mechanism suggests the model be trained only on
clusters that satisfy the query boundaries over the selected
nodes. We contribute with model averaging methods
across selected nodes and compare our results with re-
lated work in [6] and [7] over real datasets.

II. RELATED WORK & RATIONALE

The quality of distributed models’ performance is based
mainly on the quality of selected participants. However, few
works have been conducted on the participants’ selection
mechanisms. In [6], the number of images, image quality, and
the number of computation resources in each participant were
the criteria to select each participant. In [7], the participant
selection criteria are based on selecting participants having
different data compared to what the models have learned
before to make models more generalized. In [8], participant
selection criteria are data quality score, computation score,
and communication score to quantify the capabilities of the
participant device, while [9],is based on a reward value,
which is the sum of this information, battery status, amount
of computation, and communication situation. In [10], they
proposed Federated Trace to trace the model training and
the data distribution on a random set of participants. In [11],
the participant selection mechanism based on measuring each
participant’s contribution in the previous round, contribution
here points to the accuracy of the global model before and after
aggregating with this participant. Finally in [12], participant
selection mechanism based on fairness of selection. Which
means each participant had the the same chance to get involved
during the training process. Most of the previous works do at
least one model training round before applying the participant
selection mechanism. This could be time and resource wasting
while the server node will drop any participant’s model
affecting the global model performance negatively.

One of the main challenges that can affect the models’
performance in distributed learning is the heterogeneity of
participants [6]. Each participant can have different data pat-
terns, ranges, and distributions. Also, data patterns and ranges
can be similar or correlated in a set of participants, e.g.,
edge devices have been used to collect weather data from
a specific area. In this case, any set of nodes can lead to a
trained model with similar quality. Hence, we do not need
to consider which participant to select. In more complicated
scenarios, for example, we can find a regression between the
required variables in two participants, but it is negative in one
participant and positive in the other. This is clear evidence that
data patterns differ between nodes. Hence, a node selection
mechanism is required to determine which node could improve
the model performance and which can lead to a model that can
forget what it has learned. Unfortunately, upon any incoming
analytics query [13], we do not have full access to data of
all participants; thus, we cannot extract the data space and
patterns. In order to extract this knowledge per incoming
query, it is deemed appropriate to define a pre-test mechanism
to check if participants have a similar or different data patterns
and relevant to the current query or not.

Following a previous effort in [7], we devised a rather
similar pre-test mechanism. The mechanism begins by initial-
izing a leader participant (i.e., the node who wants to build
an ML model given an incoming query) as an independent
federation. This leader participant will build a global model
based on the data that it has locally. This data could form a
small part compared to what the model needs to reach the
required accuracy and the requested data as specified by the
incoming query. In this case, the model will seek to federate
with other networked participants by engaging all the available
participants. The compatibility study is based on testing the
resulting model of the leader node against all the available
participants. In this situation, we have two scenarios, firstly,
all participants give almost similar results to the global model.
This means that participants have almost similar data distri-
bution and patterns. Hence, accordingly, selecting participants
randomly will provide a baseline solution. As it can be seen
in Figure 1, the participant in Fig. 1a has higher priority to
be selected compared to the participant that has been selected
randomly in Fig. 1b. However, taking into account the model
accuracy results in Table I, we expect that both of these
participants have similar data, thus, the models built proceed
with similar performances, even before looking at Fig. 1 that
proof this fact.

TABLE I: Expected loss (prediction error measured) from
selecting a participant according to an all-participant selection
mechanism and random participant selection mechanism.

Model All-node selection Random selection
LR 24.45 24.70

Secondly, when nodes’ models result in different losses,
that denotes that nodes have very different data distribution
and patterns compared to the global model and against each



(a) Participant selected based on
all-node selection mechanism.

(b) Participant has been selected
randomly.

Fig. 1: Similar participants due to similar data patterns and
distributions.

(a) Participant selected based on
all-node selection mechanism.

(b) Participant has been selected
randomly.

Fig. 2: Heterogeneous (dissimilar) participants due to different
data patterns and distributions.

other. As evidenced in Fig. 2a, this node has almost a similar
data pattern to the global model, and the expected loss in
Table II proves this. In contrast, the node in Fig. 2b has very
different data compared to the global model, and the loss in
Table II proves this fact as well. In this case, we need to
introduce a node selection mechanism to decide which node
should the global model considers and which one should the
global model avoids. If the model selects the first one, it will
be trained on data coming from the distribution. Otherwise,
the model would be trained on unrelated and different data,
thus, decreasing its predicting capability. In this case, the node
selection mechanism should focus more on the nodes that are
expected to give a high degree of data overlapping extracted by
the underlying data distribution and exclude nodes that have
a low degree of data overlapping. And, this reasoning should
be taken intro account for each issued analytics query. There-
fore, we introduce a query-driven node selection mechanism
elaborated in the following sections.

TABLE II: Expected loss from selecting heterogeneous nodes.

Model All-node selection Random selection
LR 9.70 178.10

III. SYSTEM MODEL

A. Overview

In this work, we consider a general framework for dis-
tributed learning in an edge computing environment per ana-
lytics query. Specifically, our framework has two components:

• Leader node: In the distributed learning procedure, an
elected leader node serves as the organizer for handling
the selection of those nodes deemed appropriate for
engagement given a query. It receives queries from appli-
cations (e.g., predictive analytical tasks selected over data
[14]), selects the best nodes (participants) for each query,
collects the trained local models from the participants,
and performs model aggregation [6].

• Participant nodes: Edge computing nodes are forming
groups of nodes that act as participants, which can be
chosen to participate in distributed learning per analytics
query. Each node ni has access to its local data and
sources, e.g., equipped with a set of built-in sensors used
for different purposes (e.g., weather data collected, or
photos), has storage capacity for the collected data, and
communicate with neighboring networked participants
and its assigned leader node.

The interaction process between leader and participants is
happening according to the principles of federated learning
in [6], [15] and [16]. However, the fundamental difference
in our context is that the leader node based on the query
data-ranges/boundaries determines the node ranking per query.
That is, node ranking is used by the node selection mecha-
nism which is introduced in Section III-C. According to our
node selection mechanism, we seek a subset of ni ∈ N
nodes/participants that their data satisfy the query require-
ments based on query boundaries. This set will adapt to the
distributed learning process as we elaborate in Section IV-B.

B. Problem Fundamentals

Distributed learning builds a model M on a dataset D
to get a function f = h(w,X ), where w is the model’s
weight/parameters and X is the model’s inputs. Fundamen-
tally, the difference here is that D is not centralized; it
is distributed among N edges nodes, denoted as N =
{n1, n2, . . . , nN}, where each nk ∈ N has its own computing
capacity C = {c1, c2, . . . , cN}. These computing capacities
can be used to train an ML model locally. In addition, each
nk ∈ N has its own local dataset Dk consisting of m training
data samples. Each sample point is represented as ξ = (x, y),
where x ∈ X is the input to the ML model and y ∈ Y is
the desired outputs (e.g., class label). Each Dk is represented
as Dk = {ξ1, . . . , ξm}. This Dk represents a subset of the
whole needed training dataset D = ∪{Dk}Nk=1. Additionally,
we assume that all N edges utilize similar datasets in terms of
features, e.g., weather data (humidity, temperature, and pres-
sure) with different data varieties, distributions and patterns.
As we mentioned, each edge nk ∈ N has different data
amounts and diversity, i.e., different data space. These data
could be used to train a distributed model M with more data
variety without transmitting them over the network. Training
a model M on one edge node nk will produce a local/weak
model f . Therefore, a model M needs to pass through a set
of edge nodes nk ∈ N to become a global model. However,
some edges nk have a low amount of the required data or
different distribution compared to what the model M needs



based on the incoming query. As a result, involving these
edge nodes in the training process cannot significantly improve
the model M, and may potentially have negative effects.
Therefore, selecting the right participating edge nodes nk with
the required range is an important factor in our distributed
learning framework as follows in the remainder.

C. Edge Nodes Selection Mechanism

In the considered setting, let us assume a set of analytics
queries Q = {q1, q2, . . . , qM}, each query in Q represents an
analytic task that needs a specific amount of d dimensional
data to be executed. These required data by query qk are
not centralized, i.e., they are distributed across multiple edge
nodes. Unfortunately, due to data privacy concerns, nodes
are unwilling to share their data with others or a central
server, e.g., Cloud. Meanwhile, all nodes in N are willing
to collaborate and benefit from the other nodes’ data variety.
Also, the nodes N are heterogeneous in terms of data distribu-
tions and spaces. Selecting the not appropriate nodes given a
query, however, could degrade the effectiveness of distributed
learning process. In order to define the most suitable nodes for
each query, we explore the data overlapping ranking between
each node’s data and query. The data overlapping indicates an
estimation of the percentage of data (out of the whole dataset
Di) required for executing a query qk. We notate the data
overlapping between node ni and query qk by hik. Specifically,
to quantify hik, each node has quantized its own data space
Di, e.g., using the k-means algorithm [17], into K clusters. In
order to obtain the set of K clusters K, the node minimizes
the following quantization loss over the local samples:

min
{u1,...,uK}

K∑
k=1

m∑
j=1

∥ξj − uk∥2. (1)

Each cluster representative is represented by the d-dimensional
vector uk and m is the number of samples in the local dataset.
The main goal of this step is to find the number of clusters (out
of K) that have a high overlapping degree with a given query
q. The node has almost the same pattern of the required data
by the query, which it is expected to increase the chance of the
node being selected as a participant in the learning process.

In the following, we exploit the boundaries of each cluster
across all the data dimensions (i.e., taking the minimum and
maximum values for each dimension per cluster) and the
cluster representatives themselves. This will be included in
calculating the overlapping rate between each clusters and
the current query. Specifically, for each cluster, we find the
maximum and the minimum value for each dimension, thus,
obtaining the vector k = [kmin

1 , kmax
1 , . . . , kmin

d , kmax
d ] across

all the dimensions d. This means that we have the associated
boundaries/rectangle for each cluster.

Furthermore, we obtain the corresponding query q bound-
aries/rectangle to measure the overlapping between the query’s
rectangle and each cluster’s rectangle at each dimension.
This is done locally in each node. In order to determine
the number of clusters that have a high overlapping degree

with the query q, we need to match the query boundaries
with each cluster’s boundaries. Specifically, the analytics
query is expressed as the following vector denoting the data
boundaries/regions of data requested by the application, i.e.,
q = [qmin

1 , qmax
1 , . . . , qmin

d , qmax
d ]. Given this representation,

we can obtain the corresponding query q (hyper)rectangle
and the (hyper)rectangle for each cluster. Based on these two
hyper-rectangles, data overlapping rate hik can be estimated
focusing on the overlapping of the lengths of each dimension
in each cluster k with these of the query at node ni.

We can identify five overlapping cases between cluster and
query per dimension. In the first case, both query boundaries
(qmin

d , qmax
d ) are lower than cluster’s boundaries (kmin

d , kmax
d ),

i.e., (kmin
d < qmin

d AND qmax
d < kmax

d ). Fig. 3a demonstrates
that both of the query boundaries for a specific dimension
are located inside the cluster’s boundaries for that dimen-
sion. Hence, the overlapping is represented by the ratio
hdik =

qmax
d −qmin

d

kmax
d −kmin

d

. In the second case, only the minimum

(a) Both of the query boundaries belong inside
the cluster boundaries.

(b) Only the minimum boundary of the query
boundaries belongs to cluster boundaries.

(c) Only the maximum boundary of query belongs
to Cluster boundaries.

Fig. 3: Different levels of overlapping for three different cases.

boundary of query belongs to the cluster boundaries, i.e.,
(qmin

d < kmax
d ). In this case, the cluster includes data range

between {qmin
d , kmax

d } as shown in Fig. 3b. That is, the
overlapping is the ratio hdik =

kmax
d −qmin

d

qmax
d −kmin

d

. In contrast, in the
third case, only the maximum boundary of the query belongs
to the cluster boundaries. In this case, data availability will
be in the range {kmin

d , qmax
d } as shown in Fig. 3c. The

corresponding overlapping is then hdik =
qmax
d −kmin

d

kmax
d −qmin

d

. In the
fourth case, there exists zero overlapping, hdik = 0, when both
of the query’s boundaries are completely outside the cluster’s
boundaries. This could happen when {qmin

d > kmax
d } as in

Fig. 4a or {qmax
d < kmin

d } as in Fig 4b, thus, no overlapping.
Based on these five cases, the data overlapping hik between
cluster k and query q in node ni for all the dimensions is:

hik =
1

d

∑
d

hdik. (2)



Given that for each cluster k in node ni we have calculated
the corresponding data overlapping across all dimensions, hik,
we select the cluster k if and only if the hik ≥ ϵ, given a pre-
defined overlapping threshold ϵ > 0.

(a) Zero overlapping: both of cluster boundaries
are lower than the query boundaries.

(b) (Opposite) Zero overlapping: both of the
query boundaries are lower than cluster boulders.

Fig. 4: Zero overlapping between query and cluster per di-
mension.

Then, for each node ni, we define the corresponding poten-
tial pi according to the number of supporting clusters K ′ ≤ K,
whose hik ≥ ϵ, k = 1, . . . ,K ′, as follows:

pi =

K′∑
k=1

hik. (3)

Given the potential of a node ni and the number of supporting
clusters K ′ ≤ K, we define the ranking for a node ni for the
incoming query q as:

ri(q) = pi
K ′

K
(4)

The nodes are sorted w.r.t. their rankings {r1, . . . , rN}, thus,
the leader node can now select the subset of these nodes, i.e,
the top-ℓ nodes (ℓ ≤ N ) to be acting as the participants for the
incoming query q. Note that the number ℓ of the top ranked
nodes can be also determined by selecting those node whose
ranking exceeds an application-defined threshold ψ > 0, i.e.,
ℓ = |N ′(q)| with

N ′(q) = {ni ∈ N : ri(q) ≥ ψ}, (5)

and |N | denotes the cardinality of the set N . Any node
ni having a relatively high ranking will be involved in the
learning process. The leader node can determine the list of
the best participants given a query with negligible calculations
and communication. The nodes just send to the leader the
boundaries of their clusters and the number of the clusters per
node, yielding O(1) communication complexity. The leader
then can locally determine the list of participants based on the
query boundaries, which is of O(d) complexity.

IV. DATA SELECTIVITY & DISTRIBUTED LEARNING
MECHANISMS

A. Query-driven Data Selectivity Mechanism

After the leader node determines the most suitable partic-
ipants given a query, it is noteworthy to mention that not

all the data in one selected node could be helpful to the
global model. Many models target a specific range of of values
over their data, e.g., learning the relation between age range
having children with the chance of getting a specific kind of
cancer does not require all value ranges about all patients in
a hospital; just those with age e.g., between 20 to 50 with
children. According to most of the studies, they consider all
data in one selected node to build a model. However, in many
scenarios, this is not efficient. If we have considered all the
data in each selected node, we could get an inaccurate model
due to over-fitting factors. To avoid these issues, we need to
be specific about the amount of requested data in each node
for building a model given a query.

Assume that we have set of selected nodes (participants)
nk ∈ N ′(q) according to our nodes selection mechanism given
a query q. These nodes nk have different ranking according
to the number of clusters that satisfies the threshold condition
≥ ϵ. As we have produced in (4), nodes’ ranking depends on
the number of the supporting clusters out of all clusters. In this
part, we build a model over only those supporting clusters that
gave a node ni high potential to be selected. When the model
M is to be trained on participant ni that has a high ranking
ri, the node has already clustered its own data as discussed in
Section III-C and shown in Fig. 5. The model will be trained
only over those data belonging to clusters k with hik ≥ ϵ.
Accordingly, we will obtain a model M which has been
trained on supporting clusters’ data rather than the whole data
of node ni. This (training) data selectivity reduces the over-
fitting problem especially when the amount of data in each
node is huge and increases the expected model accuracy since
these selected data are explicitly requested by the incoming
query (as inferred by the data overlapping metric), as it will
be evidenced in our experiments.

Remark: A question now is raised: why should we have
more than one cluster per node for potential selection? If we
had only one cluster, the cluster boundaries could be expanded
and included many unrelated data points given a query. This
would lead to a data size similar to the whole node’s data size.
Note, the model M is trained in an incremental way inside
the node ni. This means that it works as the mini-batch way
across clusters: each cluster represents a mini-batch. Hence,
each node produces only one model including all the training
obtained by the K ′ supporting clusters.

B. Distributed Learning Mechanism

This section shows how the leader node updates the global
model according to the selected ℓ ≤ N participants in N ′(q)
given a query q. First the leader node sends the initial global
model w to each ni ∈ N ′(q). Each ni trains w locally
and incrementally only over each supporting cluster’s data.
Specifically, after E rounds of local iterations on each sup-
porting cluster, the model considers the data from the second
supporting clusters until the last supporting cluster’s data. Then
ni updates w to get a local model wE

i . At the end of this step,
the leader receives the local model wE

i from each participant
ni ∈ N ′(q). Then, we consider two types of aggregation in the



Fig. 5: Representation of the query q space projected onto a
participant’s data space.

leader node. Model Averaging. The leader node aggregates
the prediction outcome ŷi(q) from each received local model
wE

i equally given the query q:

ŷ(q) =
1

ℓ

ℓ∑
i=1

ŷi(q). (6)

However, nodes could have different data distributions and
ranges. Hence, some models can perform better or worse than
other models. It could be unfair to aggregate then the models
equally. Accordingly, we propose a weighted average over the
predicted outcomes that takes into account the contribution
of the models based on the ranking determined given the
incoming query. This is the Weighted Averaging such that
the prediction outcome ŷi(q) from each received local model
is weighted with the relative ranking given the query q:

ŷ(q) =

ℓ∑
i=1

λiŷi(q). (7)

where λi = ri∑ℓ
k=1 rk

∈ (0, 1) represents the weight for each

model w.r.t. ranking with
∑ℓ

i=1 λi = 1.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We assess the performance and efficiency of our mecha-
nisms by conducting our experiment implemented in Python.
To set up a realistic environment, we used the publicly
available real dataset from the ML Repository (Beijing Multi-
Site Air-Quality Data Data Set)1. From the dataset, we selected
10 data files; each file contains data collected from different
geographical regions with assigned nodes collecting data lo-
cally. The number of edge edges N in our experiment is 10.
Each data file represents a local dataset for an edge node. For
each node, we focused on one import feature and labels to
make it easy to track the models’ performance when we apply
our node selection mechanism. Since our goal in this work is to
measure the data impact on models’ performance, not improve

1https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-
Quality+Data

models. Then, each node quantizes its data using the k-means
clustering algorithm. We set up the number of clusters K = 5
for all nodes to avoid biases. According to these clusters, we
can then obtain node ranking per query. We mainly focus on
high-ranking nodes to participate in model construction. In
our experiments, we used the Keras library to train models
incrementally within each node over the supporting clusters’
data for each of the 200 queries issued. Each query has
been randomly created over the whole data space based
on the dynamic query workload method described in [18].
Accordingly, each query needs a specific range of numerical
data to build a prediction model. Some of these queries may
have a high rate of overlapping with a large number of nodes,
while others may have a high rate of overlapping with a small
number of nodes. Meanwhile, the overlapping rate has a high
impact on model performance. Fig 6 shows the amount of
data needed by a query q, and its availability in 3 different
nodes: nodes 1 and 3 have several supporting clusters, while
node 2 has all its own clusters as supporting clusters for the
considered query. One can observe from Fig 6a, that all the
data that should be involved in the training process if we had
not considered the data clustering. Whereas, Fig 6b shows the
amount of data that are actually needed to be involved in the
training process from three different nodes if we consider the
clusters and query boundaries.

(a) The query space projected onto the available data
spaces of 3 nodes.

(b) The actual data required by the query projected over
the whole data space of the 3 nodes.

Fig. 6: The data required by a query compared to the whole
available data.

B. Distributed Learning Experiment

We do not target the models themselves; our goal is to
set up a suitable environment for models requested to be
built over the data subspaces as specified by the incoming
queries. That is, we assess how we correctly select the nodes
that need to be engaged per query to build models over the



right data. Therefore, we are targeting the needed data by
models, and how we can improve these models performance
by selecting the most appropriate participants with their most
supporting clusters’ data in each node. Upon our proposed
nodes selection mechanism, we need to see how this could
affect Machine Learning model’s performance. In this work,
we experiment with the Linear Regression (LR) and Neural
Network (NN) models in order to get an insight of how our
node selection mechanism can be appropriately adopted in
distributed learning environments. The models’ tuned hyper-
parameters are provided in Table III.

TABLE III: Model Hyper-parameters

Model LR NN
Dense 1 64
epochs 100 100

validation split 0.2 0.2
Learning rate 0.03 0.001

activation relu relu
Loss MSE MSE

C. Models Under Comparison

In this work, we use the mechanisms of Model Averaging
and Weighted Averaging to assess our selection mechanism
against two models found in the literature: Random selection,
where ℓ nodes are selected randomly as in [6] and the Game
Theory (GT) selection [7]. In GT, each node builds its own
independent local model in advance according to its local
dataset. In GT, it is assumed that each node could exchange its
model with the other nodes in the same environment. When a
node nk receives the trained model from the leader, it tests the
model’s performance locally against its data and returns the
results to the leader. The leader node targets those nodes that
obtained accuracy lower than a threshold. The rationale behind
this is that this node could have data with different patterns
than the data of the leader node. Therefore, the leader node
selects those nodes nk that have models with low accuracy in
order to make the model more general.

D. Evaluation Results

The number of nodes selected per query depends on the
underlying data over the nodes, the query boundaries, and
the number of supporting clusters. In our experiments, we
take the average of the performance metrics across all the
issued queries and selected nodes. When we try to measure
a distributed model’s performance, we look for three main
criteria: loss, the time needed to train a model given a query,
and the amount of data used for each query. In terms of loss
and model accuracy, the Average and Weighted models are
aggregation mechanisms that have been used to aggregate
models selected according to our mechanism. As we can
observe from Figure 7, our proposed mechanism outperforms
the Random and GT methods in terms of error rate since
they focus on selecting participants according to the matching
between participants’ data and data needed by the queries. The
Random selection is the fastest node selection mechanism.
However, in terms of accuracy, it is the worst because it

does not take into account the query-specified requested data
spaces. Hence, its performance gets worse by increasing the
participants’ heterogeneity. Therefore, it is the highest loss rate
compared to the other mechanisms. The GT mechanism is the
slowest since it needs to build models on each participant
before applying its node selection mechanism. In terms of
accuracy, the GT is not introducing a high accuracy when
dealing with queries. This is due to the fact that its mechanism
on selecting participants takes into account almost the entirely
different data spaces compared to what models has seen
before, regardless of whether all this variety of data is needed
or not by the queries.

Fig. 7: Average loss of all the models: GT, Random, Averag-
ing, and Weighted.

Regarding the model training time, our node selection
mechanism produces models that take less training time over
the selected participants. This is attributed to the fact that we
only focus on training models on specific supporting clusters
in each participant rather than the whole participant’s dataset.
Therefore, models will no longer need to be trained on all the
data during the training process as specified by the incoming
queries. As a result, the training time decreases as well. In
Fig.8, the green line refers to the required time to train models
according to our mechanism, while the blue one represents
the time required to train models on the whole participants’
datasets, i.e., without taking into account the query (for
legibility reasons, only the results of a stream of 20 sequential
queries are plotted). Finally, Figure 9 shows the percentage of
data needed by each query from all participants when we apply
our query-driven mechanism (green bars). In contrast, the gray
bars show the amount of data used by each query if we do not
consider the queries (for legibility reasons, only the results of a
stream of 20 sequential queries are plotted). It is evidenced that
the query-driven mechanism is efficient in terms of selecting
the most appropriate nodes to build the model per query and,
in turn, the node considers appropriate data sub-space to be
involved in the model training phase ensuring higher model
accuracy. The proposed data selectivity and node selectivity
mechanisms yield our mechanism applicable to distributed
learning environments.



Fig. 8: Required model building time w/wo considering the
incoming queries.

Fig. 9: Percentage of data needed to build models w/wo
considering the incoming queries.

VI. CONCLUSIONS

We propose a query-driven node selection mechanism in
distributed learning environments. We contributed with a
mechanism to determine whether participants are heteroge-
neous since this plays a significant role in identifying the most
appropriate set of nodes to be engaged in a model building
per analytics query. We studied the data overlapping between
each cluster in each participant and the query. This yields
information about the most relevant data to be involved in
training models in a distributed way by also selecting the most
suitable nodes. According to a computationally and communi-
cation efficient ranking framework, the model training process
is obtained by highly ranked participants per query. Our
mechanism minimizes the data needed by each participant to
train the model only over the query-driven supporting clusters’
data. Our experimental results and comparative assessment
showcase that our selection mechanism is deemed appropriate
in distributed edge learning environments.
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