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Simple Summary: Prostate cancer is the most frequent cancer type and one of the leading causes
of death in men globally. Multiple biomarkers analyzed in urine have been proposed for detecting
prostate cancer, in an effort to reduce unnecessary and invasive biopsies. Nevertheless, these biomark-
ers are based on sampling after prior digital rectal examination and/or prostate massage. Considering
the need for more convenient urine sampling, in this study, we investigated endogenous urinary
peptides in patients with prostate cancer compared to those with non- malignant (non- cancerous)
prostatic diseases. A multidimensional biomarker model was developed based on 181 significant
peptides that can detect whether a patient has high probability to bear a tumor in the prostate. Based
on the results, the biomarker model including 181 biomarkers showed good accuracy in detecting
prostate cancer and has the potential to improve clinical management of men with a suspicion of
prostate cancer, by reducing the need for invasive biopsies.

Abstract: (1) Background: Prostate cancer (PCa) is the most frequently diagnosed cancer in men.
Wide application of prostate specific antigen test has historically led to over-treatment, starting
from excessive biopsies. Risk calculators based on molecular and clinical variables can be of value
to determine the risk of PCa and as such, reduce unnecessary and invasive biopsies. Urinary
molecular studies have been mostly focusing on sampling after initial intervention (digital rectal
examination and/or prostate massage). (2) Methods: Building on previous proteomics studies, in this
manuscript, we aimed at developing a biomarker model for PCa detection based on urine sampling
without prior intervention. Capillary electrophoresis coupled to mass spectrometry was applied
to acquire proteomics profiles from 970 patients from two different clinical centers. (3) Results: A
case-control comparison was performed in a training set of 413 patients and 181 significant peptides
were subsequently combined by a support vector machine algorithm. Independent validation was
initially performed in 272 negative for PCa and 138 biopsy-confirmed PCa, resulting in an AUC of
0.81, outperforming current standards, while a second validation phase included 147 PCa patients.
(4) Conclusions: This multi-dimensional biomarker model holds promise to improve the current
diagnosis of PCa, by guiding invasive biopsies.

Keywords: biomarkers; machine learning; omics; prostate cancer; proteomics; urine

Cancers 2023, 15, 1166. https://doi.org/10.3390/cancers15041166 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers15041166
https://doi.org/10.3390/cancers15041166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-0415-0316
https://orcid.org/0000-0003-1517-5746
https://orcid.org/0000-0002-4511-1578
https://orcid.org/0000-0002-0063-3559
https://orcid.org/0000-0003-3284-5713
https://orcid.org/0000-0002-4360-4352
https://doi.org/10.3390/cancers15041166
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15041166?type=check_update&version=1


Cancers 2023, 15, 1166 2 of 23

1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed cancer among men, with
approximately 1.5 million newly diagnosed cases worldwide [1], also showing particularly
high incidence rates in Europe and Northern America [2]. These high incidence rates are
largely attributed to the wide application of prostate-specific antigen (PSA) testing and the
aging population [3]. Moreover, although this malignancy is diagnosed in about one out of
five men during their lifetime, 78% survive PCa for ten or more years [4], with many men
presenting with low-risk indolent disease, which is not likely to rapidly progress to lethal
disease.

Diagnosis of PCa is confirmed based on the histopathological verification of tumor
presence in prostate biopsies, after a positive result of digital rectal examination (DRE),
or after elevated PSA levels and more recently, after a positive or suspicious result of
multiparametric magnetic resonance (mpMRI) [3]. Nevertheless, PSA is not accurate
enough (as specificity is low), with only less than half (~40%) of all patients with elevated
PSA serum levels (≥4 ng/mL) ending up positively confirmed with PCa after biopsy [5].
At the same time, DRE has been reported to be subjective, while suspicious findings that
are found during DRE can later disappear [6]. Additionally, mpMRI’s low specificity [7]
results in high number of false-positive indications that will have to undergo biopsy, while
altogether there is a large degree of inter-reader variation [8], with the interpretation
performance found to be highly dependent on the radiologist’s prior experience [9]. Better
guidance of invasive biopsies through non-invasive means is thus necessary to reduce
over-diagnosis and over-treatment [10–13], particularly for low-risk indolent PCa.

Several single- or few-biomarker assays based on urinary analysis, such as prostate
cancer antigen-3 (PCA3) [14], SelectMDx [15], Mi-Prostate Score [16] and ExoDx [17] have
been commercially available for detection of PCa, but have not yet been integrated into
clinical guidelines or implemented in healthcare systems [3]. These tests are based on
sampling procedures after prior DRE (or prostate massage), building on the principle that
the prostate, as a secretory organ, excretes cells, extracellular vesicles, and other molecules in
the urethra in the form of prostatic secretions. In an effort to reduce discomfort and increase
convenience of the sampling procedure, in this study we propose the transition of biomarker
investigations to urine samples that have been collected without prior intervention (i.e.,
DRE or prostate massage). The clinical goal is to discover and validate urinary biomarkers,
which in combination have the potential to improve PCa detection.

Following the above sampling hypothesis, a proof of principle study was previously
published focusing, however, on biomarkers to discriminate significant PCa through the
application of Capillary Electrophoresis coupled to Mass Spectrometry (CE-MS) [18]. CE-
MS has appeared in recent years as a promising hybrid technology that is based on the
application of capillary electrophoresis (CE) instead of liquid chromatography allow-
ing for sensitive (up to 1 fmol) and high-resolution low molecular weight protein (up
to 20 kilodalton) and peptide separation, before mass spectrometry analysis (MS) [19].
Through the application of CE-MS, high resolution low-molecular weight protein/peptide
profiles from >800 patients had been previously investigated for biomarker features related
to significant PCa (Gleason score, GS ≥ 7) compared to low grade PCa (GS 6). Based on the
previously published data, 19 peptide biomarkers were integrated in a machine learning
model that was developed to discriminate significant PCa. The 19-biomarker model was
further validated in an independent clinical cohort [20] resulting in an accuracy of 81%.

Following these first published results [18,20], in the present study we expand the
investigation of the low-molecular weight proteome (peptidome) to molecularly map
differences in the urinary profiles between PCa patients with different disease stages and
those with non-PCa etiologies with the aim to better understand the disease background
and also propose biomarkers to more accurately guide PCa detection without the need of
prior DRE.
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2. Materials and Methods
2.1. Patient Population and Characteristics

This study was performed in line with the REMARK Reporting Recommendations [21]
and the recommendations for biomarker identification and reporting for clinical pro-
teomics [22]. Development cohort (Discovery and 1st validation phase): A case-control
study was performed on patients with a clinical suspicion of PCa that were scheduled
for a transrectal ultrasound (TRUS)-guided biopsy of the prostate during the period from
2013 until 2015 at University Reina Sofia in Cordoba. An ethical approval was granted
by the Reina Sofia Hospital Research Ethics Committee (protocol code 30/1992), while
informed consent was obtained from all participants of this study. The clinical group
consisted of patients recommended for a TRUS-guided biopsy of the prostate, in line with
the clinical guidelines and as previously reported [23]. In brief, patients at risk for PCa
included: a) those with suspicious findings upon DRE, b) those with PSA serum levels of
>10 ng/mL, or c) with PSA 3–10 ng/mL (with concomitant free PSA ratio <25–30%), and
d) those patients that underwent previous biopsies and showed a persistent suspicion of
PCa. During TRUS-guided prostate biopsy, 12 cores in patients undergoing the first biopsy
procedure, and a minimum of 16 biopsy cores for those who had a previous biopsy were
obtained. In total, 823 patients were included, for which clinical and biochemical data for
all main variables (such as PSA, DRE, number of previous biopsies and treatment) were
available. The patient cohort characteristics are summarized in Table 1 and the full clinical
and laboratory data were collected and are presented in the Supplementary Table S1. 2nd
validation cohort: Additional validation was performed in 147 patients that attended Inns-
bruck Medical University and were scheduled for a TRUS-guided biopsy of the prostate,
following a suspicion for PCa presence based on prior suspicious DRE results, high PSA
levels and/or persistent suspicion of PCa after previous biopsies, according to previously
described criteria [24]. Patient recruitment took place during the period between 2005 and
2012, when mpMRI had not yet been recommended at routine practice. An ethical approval
was granted by the local ethics committee at Innsbruck Medical University (protocol code
11438/2017) and informed consent was obtained from all participants of this study. During
TRUS-guided prostate biopsy, 15 biopsy cores were obtained. The biopsy tissue specimens
were evaluated by a uro-pathologist according to International Society of Urological Pathol-
ogy 2005 modified criteria [25]. D’Amico classification utilizing Gleason Score (GS), PSA
criteria [3,26] and T-stage were applied to classify the PCa patients into risk groups (low,
intermediate and high). The patient cohort characteristics are summarized in Table 1 and
the full clinical and laboratory data are presented in Supplementary Table S2. A compara-
tive analysis for the clinical and biochemical variables between the PCa patients and the
non-PCa groups, including patients with non- malignant prostatic diseases such as benign
prostatic hyperplasia (BPH), those presenting with prostatic intraepithelial neoplasia (PIN)
and/or atypical small acinar proliferation (ASAP) is provided in Table 2.

Table 1. Summary characteristics for the main clinical and biochemical variables for the development
cohort (Cordoba Cohort) grouped into a discovery and a validation group, along with the 2nd
validation cohort (Innsbruck cohort).

Baseline Characteristics Discovery Phase
(n = 413)

1st Validation Phase
(n = 410)

p-Value
(1st Validation
vs. Discovery)

2nd Validation
Phase
(n = 147)

p-Value
(2nd
Validation vs.
Discovery)

Median age (95% CI; yr) 64.0 (63.4–64.8) 64.0 (63.0–65.0) 0.6488 ¥ 66.0 (64.2–67.0) 0.3414 ¥

PSA median (95% CI;
ng/mL) 5.4 (5.1–5.8) 5.1 (4.8–5.4) 0.6537 ¥ 5.2 (4.5–5.9) 0.6298 ¥

Digital Rectal Examination
(normal/suspicious/NA) 339/74 340/70 0.7676 * 90/20/37 0.3534 *
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Table 1. Cont.

Baseline Characteristics Discovery Phase
(n = 413)

1st Validation Phase
(n = 410)

p-Value
(1st Validation
vs. Discovery)

2nd Validation
Phase
(n = 147)

p-Value
(2nd
Validation vs.
Discovery)

Previous biopsies (Y/N) 109/304 99/311 0.5258 * 0.8033 *
Prostate volume (95% CI;
mL) 36.0 (34–39;

mboxemphn = 364) 35.0 (34–37;
n = 357) 0.4416 ¥ 40.0 (35–45;

n = 135) 0.0305 ¥

PSA density (95% CI;
ng/mL2) 0.14 (0.13–0.15;

mboxemphn = 364) 0.14 (0.13–0.15;
n = 357) 0.9379 ¥ 0.14 (0.12–0.15;

n = 135) 0.5568 ¥

Median urinary creatinine
(95% CI; mmol/L) 8.0 (7.3–8.3) 7.8 (7.3–8.3) 0.3696 ¥ 8.8 (7.6–10.3) 0.1163 ¥

Disease pathology
� GS 6 65 (46.8%) 66 (47.8%) 0.9132 * 99 (67.4%) 0.1838 *
� GS 3 + 4/

GS 4 + 3

49 (35.3%)/
14 (10.0%)

46 (33.3%)/
15 (10.9%)

31 (21.1%)
4 (2.7%)

� GS 8 6 (4.3%) 8 (5.9%) 8 (2.7%)
� GS ≥ 9 5 (3.6%) 3 (2.2%) 5 (5.4%)
Non-PCa aetiologies
� Benign prostatic

hyperplasia; BPH 241 (88.0%) 241 (88.6%) 0.1515 * -

� Prostatic
intraepithelial
neoplasia; PIN

18 (6.6%) 16 (5.9%) -

� Atypical small
acinar proliferation;
ASAP

15 (5.4%) 15 (5.5%) -

¥ Mann–Whitney test; * Chi-squared test; Abbreviations: CI—Confidence Interval, GS—Gleason Score; N—No;
Y—Yes; yr—Years; PSA—Prostatic Specific Antigen.

Table 2. Summary characteristics for the main clinical and biochemical variables for the PCa patients
in comparison with the non-PCa group, including patients with non-malignant prostatic diseases.

Baseline Characteristics Group 1:
Non-PCa

Group 2:
PCa

p-Value
Group 1 vs.

Group 2

� Median age (IQR; yr) 63.0 (57–69) 66.0 (61–71) <0.0001 ¥
� PSA median (IQR;

ng/mL) 5.1 (3.8–6.9) 5.7 (4.0–8.0) 0.0023 ¥

� Digital Rectal
Examination (Pos/Neg) 60/486 84/193 0.0249 *

� Previous biopsies (Y/N) 159/387 49/228 0.8646 *
� Prostate volume (IQR;

mL) 38.0 (29–52; n = 476) 30.0 (22.9–43.1; n = 245) <0.0001 ¥

� PSA density (IQR;
ng/mL2) 0.13 (0.09–0.18; n = 476) 0.18 (0.13–0.26; n = 245) <0.0001 ¥

� Median urinary
creatinine (IQR;
mmol/L)

7.7 (5.5–10.3) 8.0 (5.8–10.6) 0.3636 ¥

¥ Mann–Whitney test; * Chi-squared test; Abbreviations: IQR—Interquartile Range; N—No; Neg—Negative;
PCa—Prostate Cancer; Pos—Positive; Y—Yes; yr—Years.
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2.2. Sample Collection and Processing

Patients donated urine before undergoing a prostate biopsy and it was stored at
−80 ◦C until further processing. There was no DRE or prostate massage performed before
urine sampling. Urine preparation and peptide extraction prior to mass spectrometry was
performed, according to previously published standard operating protocols for sample
preparation and data acquisition, described in detail in [27].

For assessing reproducibility of the CE-MS technique, a standard human urine sample
was analyzed as previously described in detail [28]. The standard urine sample was
created as a result of pooling multiple midstream morning urine collections donated by
eight female healthy volunteers. Morning urine collections were conducted without any
requirements relating to specific diet or relevant to menstrual cycle timepoints. Only
absence of menstruation was required by the volunteers. The urine collection protocol is in
agreement with a “standard protocol for urine collection” developed by the Human Urine
and Kidney Proteome Project and European Kidney and Urine Proteomics COST Action
(EuroKUP) network [28]. No further additives such as protease or phosphatase inhibitors
were included and there was no adjustment of the pH.

The extraction of peptides from the urine samples was conducted by diluting 700 µL
urine aliquots with an equal volume (700 µL) of alkaline buffer containing 2 M urea, 10 mM
NH4OH and 0.02% SDS (pH 10.5), as previously reported [18]. Details of the protocol
have been provided before [18], with main steps including first an ultracentrifugation
by Centrisart filters (20 kDa MWCO; Sartorius, Göttingen, Germany) to isolate naturally
occurring peptides and small proteins <20kilodalton and to eliminate urea, electrolytes,
salts and other urine matrix effects. Subsequently, 1.1 mL of the filtrate was applied on
PD-10 columns (GE Healthcare, Munich, Germany) after being equilibrated with 0.01%
NH4OH in high-performance liquid chromatography (HPLC)-grade H2O (Roth, Germany).
After a rinsing step with 1.9 mL of 0.01% NH4OH in H2O, 2 mL of HPLC-grade H2O was
applied, and the resulting eluate was lyophilized and stored until further processing as
previously described [29].

2.3. Mass Spectrometry Analysis and Post-Acquisition Data Processing

CE-MS analysis and data processing was performed according to ISO13485 [30]. Pep-
tide separation was performed through a P/ACE MDQ capillary electrophoresis system
(Beckman Coulter, Fullerton, CA, USA) coupled with a Micro-TOF MS (Bruker Daltonic,
Bremen, Germany). In detail, the resuspended peptide extracts (250 nL) were injected
hydrodynamically at 2.0 psi for 99 s. Separation of the peptides through the silica capillary
was performed under application of reverse polarity at 25 kV for the first 30 min, and with
increasing pressure (up to 0.5 psi) for another 34 min [29]. Details regarding the protocol
for CE analysis and the composition of the acetonitrile-based running buffer were reported
previously [29]. Regarding the coupling interface, an electrospray ionization interface from
Agilent Technologies (Palo Alto, CA, USA) was set to a potential of −4.0 to −4.5 kV. Spectra
were collected every three seconds and the recordings included an m/z range between
350 and 3000 [29]. Deconvolution of mass spectrometry ion peaks presenting at different
charge states was performed through the proprietary software MosaiquesVisu [30,31]. A
mass spectrometry peak list for each sample was defined by the molecular mass (kDa),
normalized migration time (min) and normalized signal intensity (AU) per identified
peptide [31]. Normalization of the relative peptide intensity was performed on the basis
of twenty nine collagen fragments that are stably detected in urine independently of the
disease or health status [32]. The list of the twenty nine collagen fragments that serve as
internal standards is provided in Supplementary Table S3. The peptide lists along with their
normalized intensities were saved at an internal database developed based on Microsoft
SQL principles [19]. Transformation of the data (log-transformation) was performed prior
to the statistical analysis as previously described [33].
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2.4. Peptide Sequence Assignment

Sequencing of the endogenous peptide fragments is based on matching of the ion
peaks obtained with the peptide sequences obtained by liquid chromatography-mass
spectrometry analysis (LC-MS/MS) on the basis of the correlation of mass between the two
instruments. Further validation of the obtained peptide identifications was based on the
assessment of the peptide charge and the CE-migration time results, as reported in detail
in [30]. The amino acid sequences were obtained by performing MS/MS analysis using
either a PACE CE or a Dionex Ultimate 3000 RSLS nanoflow system (Dionex, Camberley,
UK) coupled to an Orbitrap Velos instrument (Thermo Fisher Scientific Inc., Boston, MA,
USA), as previously described [34]. The mass spectrometer was operated in MS/MS mode
scanning from 350 to 1500 amu. The fragmentation method was HCD at 40% collision
energy. Details on the selection of the multiply charged ions for CE and LC-MS/MS as
well as the detection limit thresholds have been provided previously [35]. Sequencing
was based on database search against Uniprot human non-redundant database (fasta file
version from 20 June 2019) using Proteome Discoverer 2.4 (activation type: HCD; precursor
mass tolerance: 5 ppm; fragment mass tolerance: 0.05 Da) without enzyme specificity. No
fixed modification was selected. Oxidation of proline and methionine (indicated with ‘p’
and ‘m’) as well as deamidation (indicated with ‘q’) were set as variable modifications.
Confidence levels based on Xcorr and ranking are detailed in [36].

2.5. Statistical Analysis

Statistical analysis by performing a case-control comparison was conducted in the
discovery group of 413 patients. This included 139 men with confirmed PCa and a control
group including 274 patients with non-PCa etiologies. This approach has been previously
reported in other biomarker studies [37]. 410 patients were further grouped in the 1st
validation group. Discovery and validation grouping was based on a random split to
ensure that each group is properly represented in all patient groups. An additional 2nd

validation was performed in 147 PCa patients. Potential interfering clinical variables and
clinical bias was assessed within discovery and validation sets and also between the PCa
case and non-PCa groups, by Mann–Whitney non-parametric test and Chi-squared test
for numerical and categorical variables, respectively (Tables 1 and 2). The CE-MS urine
profiles were compared for differences in peptide abundance between PCa and non-PCa
groups in the discovery set by applying the Wilcoxon rank sum test [33]. A frequency
threshold of 90% in at least one of the two groups was applied. Statistical correction of
the estimated p values for multivariate testing was performed based on the Benjamini–
Hochberg method [38]. In parallel, correlation analysis using Spearman rank correlation
test was performed in the development cohort of 823 patients with PCa, and non-PCa
patients. The analysis is built on the hypothesis that cancer progresses as a continuum,
and the features that are truly associated with this process are gradually and consistently
changed. Therefore, Spearman rank correlation test was applied to define molecular
features of which abundance is significantly associated with progression, as represented
by increased GS. A p-value <0.05 was considered statistically significant. Visual depiction
of the compiled urinary polypeptide spectra for PCa patients and the corresponding non-
PCa group was performed for each peptide by plotting this based on the normalized
migration time (10–55 min) against the molecular mass (0.8–15 kDa). The signal intensity is
represented by the height of the peak and corresponds to the mean values of each peptide
within the given clinical group.

2.6. Machine Learning Model Construction and Optimization

A machine learning model based on the significant peptide biomarkers as derived
based on the statistical analysis in the discovery set, was developed by MosaCluster
propriatery software (version 1.7.0), which is based on support vector machine (SVM)
principles. The biomarker model was optimized in the discovery set, by projecting each
biomarker in multidimensional parameter space [31]. In the 1st validation set, the sensitivity
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and specificity estimates for the SVM-based biomarker model, were calculated based on
the number of patients correctly classified as PCa or non-PCa. The optimal cut-off was
estimated based on the Youden index statistical test. During the 2nd validation phase,
sensitivity estimates were calculated, as the cohort included only PCa patients. The receiver
operating characteristic (ROC) plots and the respective confidence intervals (95% CI) were
based on exact binomial calculations and were calculated in MedCalc 12.7.5.0 (Mariakerke,
Belgium). AUC values were then compared using DeLong tests. Statistical comparisons of
the classification scores in the validation cohorts were performed by the Kruskal–Wallis
rank sum test using MedCalc. For the assessment of the net benefit for the application
of the biomarker model, a decision curve analysis (DCA) was performed, as proposed
by Vickers and Elkin [39]. The net benefit was calculated based on the decision threshold
at which a person would consider undergoing biopsy. For the AUC and DCA analyses
MedCalc 12.7.5.0 (Mariakerke, Belgium) and R version 3.2.3 were used, respectively.

As comparator models, the European Randomised Study of Screening for Prostate
Cancer (ERSPC) risk calculator was applied to calculate the risk for PCa detection via: (http:
//www.prostatecancer-riskcalculator.com/seven-prostate-cancer-riskcalculators, accessed
on 1 August 2022), as previously described [23]. The study design, including the different
study phases is depicted in Figure 1.
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2.7. In Silico Protease Prediction and Bioinformatics Analysis

Investigation of protease activity was performed in silico, through the Proteasix
(www.proteasix.org, accessed on 1 September 2022) online tool on the basis of prote-
olytic events that are involved in the generation of the endogenous peptides in urine [40].
In particular, Proteasix analysis was applied to predict the protease activity for the pep-
tides for which sequence information is available and that were identified as significantly
associated with PCa progression. The observed proteases that are leading to the cleav-
age of N- or C-terminus of a peptide were retrieved from CutDB database available at
www.cutdb.burnham.org (accessed on 10 September 2022) [41]. Protease/cleavage site
associations were retrieved based on matching against the cleavage sites as reported in
the literature as well as the probability of a protease cleavage event, based on MEROPS
specificity matrices. Activation status of the proteases was calculated as described previ-
ously [31]. Gene Ontology terms (biological process, molecular function, cellular compart-
ment), Molecular Signatures Database (MSigDB) hallmark gene set collection associations,
and subcellular localization, were retrieved using Metascape [42]. Protein Class was allo-
cated based on the Panther Classification System (http://www.pantherdb.org/ (accessed
on 30 September 2022) [43]), while information on protein function was extracted by
Uniprot Database. Additional evidence supporting the protein presence was retrieved from
NextProt Database [44]. Subsequently, functional enrichment analysis was conducted using
Metascape [42], following the default settings. Briefly, terms with p < 0.01 (Hypergeometric
test), a minimum count of three and an enrichment factor > 1.5 (calculated as the ratio
between the observed and the randomly expected counts) were grouped. The protein
interaction network was created using STRING v. 9.1 (http://string-db.org/, accessed on
10 October 2022) [45].

3. Results
3.1. Discovery of Peptides with Significantly Altered Abundance in Urine for PCa

For detecting biomarker peptides specific to PCa, a case-control comparison was
performed considering the CE-MS datasets in the discovery set of 413 patients, as visually
depicted in Figure 1. The comparison enabled the identification of 181 peptides that
demonstrated statistically significant differences (p < 0.05, Benjamini Hochberg test; 90%
frequency threshold), in their distribution between patients with PCa compared to non-
PCa groups (Supplementary Table S3). The schematic representation of the biomarker
signature, based on the compiled urinary datasets is comparatively presented in Figure 2.
Molecular mass (0.1–12 kDa) is presented on a logarithmic scale and is plotted against
normalized migration time (10–55 min), while the peak height depicts the peak intensities
based on the average normalized peptide abundance in the compiled patient datasets from
the discovery sets. Among the 181 peptide biomarkers, sequences could be matched for
80 peptides, corresponding to 33 unique parental proteins. Most peptide sequences derived
from collagen parental proteins. Peptide fragments originating from alpha-1 collagen
of types I, II, III, V, VII, XXV, XVI, XXIV, XI, XVII, XXIII, alpha-2 types I, IV, XI, IX and
alpha-3 type IV, were most common, while fragments of collagen type (VIII) chain were also
detected. Almost all the collagen peptide fragments are of increased abundance by a factor
of 1.2 and above in the PCa cases, apart from collagen alpha-1(I) and collagen alpha-1(II).
Interestingly, similar to a previous CE-MS study within the collagen peptide sequences, a
repetitive motif (pGP) was very frequent [18]. Other peptide sequences were proteolytic
products of protein phosphatase 1 regulatory subunit 3A, fractalkine or chemokine (C-X3-C
motif) ligand 1, protein S100-A9, uromodulin, albumin, fibrinogen alpha, alpha-1-acid
glycoprotein 1, mucin-2, xylosyltransferase 1, polymeric immunoglobulin receptor, matrix
Gla protein, beta-2-syntrophin. All peptide fragments from the above proteins were found
at higher abundance in urine from PCa patients compared non-PCa group. In contrast,
peptides at decreased abundance in urine from PCa patients compared to the non-PCa
group, originated from gelsolin, prostaglandin-h2 D-isomerase and insulin-like growth
factor II.

www.proteasix.org
www.cutdb.burnham.org
http://www.pantherdb.org/
http://string-db.org/
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3.2. Development and Validation of a Biomarker Model Based on CE-MS Significant Peptides
for PCa

Using the 181 peptides that were identified with statistically significant differences at
their abundance in urine between PCa and non-PCa groups, a machine learning algorithm
based on SVM, was adopted and optimized to develop a multidimensional biomarker
model. After optimization of the SVM-based biomarker model, the optimal parameters
were SVM-C: 16 and SVM-gamma: 0.01. Based on these parameters, the estimated AUC
value was 0.86 after cross-validation analysis within the discovery set of 413 patients
(Figure 3A). Subsequent first validation of the 181-biomarker model in the 1st validation set
(n = 410), as proposed in the recommendations for biomarker identification and reporting
in clinical proteomics [33], resulted in an overall AUC value of 0.81 (range from 0.77 to 0.85;
95% CI; p < 0.0001). Figure 3B presents the ROC curve, which at the pre-defined cut-off of
0.007 resulted in sensitivity levels of 93% (87–96; 95% CI;) and specificity of 69% (63–74; 95%
CI), respectively. Considering a prevalence rate of 40% for PCa in this particular clinical
cohort, negative predictive value (NPV) was 93.7% while positive predictive value (PPV)
was 63.7%. Additional statistical analysis was performed, by application of a post-hoc
rank sum test to compare the scores between the PCa case and non-PCa control groups.
As depicted in Supplementary Figure S1, the classification of each group differs at the
significance level of p < 0.000001. Average rank levels were 163.48 and 289.27 for the
non-PCa controls and PCa cases, respectively (Supplementary Figure S1).

A second independent validation was performed in 147 patients with PCa recruited at
the second clinical center (Innsbruck cohort). The 181 Biomarker model correctly classified
123 of 147 cases, whereas 24 cases were missed. Among the missed PCa cases, there were
none from a high-risk group, 7 had intermediate-risk PCa and the remaining 17 had a low-
risk tumor. Along these lines, the SVM-based classification score of 181 Biomarker panel
was significantly higher in patients with high risk PCa compared to low and intermediate
risk (Figure 4; p < 0.05; Kruskal–Wallis H-test).
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Analytical validation of the 181 Biomarker model was additionally performed by
investigating the reproducibility of the classification scores in 50 different CE-MS datasets
of the standard urine sample over the course of several days. Negative classification scores
in the range between −2 and −0.2 were reported distributed normally, as shown in Figure 5.
Very low variation was additionally observed (coefficient of variation was estimated at 3%).
The classification scores along with the details on the number of identified peptides and
the mean intensity are described in Supplementary Table S4.
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3.3. Comparator Models and Added Value over Clinical Standards

A direct comparison of the 181 Biomarker model with clinical standards, such as
PSA, PSA density and the score based on the ERSPC calculator, was performed in the
validation set, as per availability of the underlaying data (i.e., prostate volume). Of note,
out of 410 patients, eight patients who had received previous treatment with 5-alpha-
reductase inhibitors were excluded from the analysis as the medication may affect PSA
levels. Moreover, as information on prostate volume was not available for all PCa patients,
the comparison was possible in the validation set including 347 patients. As depicted in
Figure 6A, the 181 Biomarker model significantly outperformed the PSA, PSA density and
ERSPC, with AUC values at 0.82, 0.54, 0.65 and 0.65, respectively (p < 0.0001). Added value
of the combination of the comparator models into an integrative diagnostic nomogram,
including the 181 Biomarker model was additionally investigated. Logistic regression
analysis was performed, including clinical, demographical and omics (CE-MS peptide
markers) parameters such as age, 181 Biomarker model, PSA density and ERSCP. Based
on the statistical comparison, a significant contribution to the outcome is revealed for
age (p = 0.006), PSA density (p = 0.01), ERSPC (p = 0.04) and the 181 Biomarker model
(p = 0.0001). Combination of these significant variables resulted in an improved AUC
value of 0.86, statistically significant (p = 0.0027) compared to the 181 Biomarker model.
Interestingly, also combination of just the PSA density, age and the CE-based biomarkers
(in the form of the 181 Biomarker model score) resulted also in a statistically significant
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superior performance (AUC of 0.85) than that of the 181 Biomarker model alone (p = 0.0058).
The latter integrative diagnostic nomogram, because of its simpler construction is more
likely to be practical for calculations. The performance characteristics for different threshold
points are summarized in Table 3.
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Figure 6. (A) Comparative ROC analysis for the main comparator models including the 181 Biomarker
model (based on CE-MS), PSA (ng/mL), PSAD (ng/mL2), ERSPC and an integrative diagnostic
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Table 3. Performance characteristics for the proteomics and the clinical comparators at different
thresholds.

181 Biomarker Model PSAD ERSPC Diagnostic Nomogram

Sensitivity
Thresholds Specificity 95% CI Specificity 95% CI Specificity 95% CI Specificity 95% CI

80.0 71.4 65.1–76.6 37.1 23.4–56.0 40.7 28.2–57.8 72.8 65.4–78.2

90.0 70.4 58.4–77.0 19.2 8.33–34.7 23.0 11.9–37.2 67.5 56.4–74.9

95.0 55.5 32.4–74.1 7.9 3.6–15.6 12.9 2.8–22.5 56.0 40.5–66.7

97.5 31.5 1.2–54.6 4.9 1.6–10.1 4.1 0.7–15.9 45.3 14.0–58.6

For accessing the clinical utility of the 181 Biomarker model, we have additionally
performed a decision curve analysis (DCA), as shown in Figure 6B. The DCA analysis
showed a high net benefit of the 181 Biomarker model particularly in the lower range of
risk thresholds (<50%), compared to clinical variables such as PSA, PSAD and ERSPC. In
this case, application of DCA is used to determine whether the 181 Biomarker model can
be used as a predictor to make clinical decisions such as performing a biopsy.
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3.4. Correlation of the Peptide Profiling Data with PCa Progression

To investigate the association of urinary peptides with PCa progression, correlation
analysis was performed for the full cohort of 823 patients from the development phase.
The statistical analysis revealed 270 sequenced peptides that were significantly correlated
with the PCa Gleason score (Supplementary Table S5). When further considering a fre-
quency threshold of at least 30%, 91 peptides were shortlisted. When limiting to parental
proteins represented by consistently regulated peptides (≥75%) (Table 4), fragments de-
rived from collagen alpha-1(V) chain and collagen alpha-1(XXII) chain were shown to be
positively correlated with disease progression, while negative correlation was observed for
collagen alpha-1(I) and collagen alpha-1 (II) chain fragments, confirming the observations
from the case- control statistical comparison. Further peptides that were included in the
181 Biomarker model and were also associated with disease progression originated from
C-X-C motif chemokine 16 protein, protein S100-A9, matrix Gla Protein, fibrinogen alpha
and fractalkine, confirmed with same trend of expression (i.e., elevated in PCa, or as dis-
ease progresses). Similarly, gelsolin, collagen alpha-1(III), collagen alpha-1(II) chain were
inversely correlated with disease progression and were also included in the 181 Biomarker
model as they were found with decreased abundance in urine from patients with PCa
compared to the non-PCa group.

Table 4. Shortlisted urinary peptides significantly associated with PCa progression. Spearman rank
correlation analysis was applied to define molecular features of which abundance is significantly
associated with progression, as represented by increased GS.

Mass [Da] CE-Time [min] Peptide Sequence Protein Name p-Value Spearman’s Rho

1353.66 25.88 PVGpSGKDGANGIpG Collagen
alpha-1(II) 0.0051 −0.098

3718.72 32.42
SGPPGRAGEPGLQ-

GPAGPpGEKGEPGDDGp-
SGAEGPpGPQG

Collagen alpha-
1(II) 0.0100 −0.090

2280.97 26.16 ADGQpGAKGEQG-
EAGQKGDAGApGP

Collagen alpha-
1(II) 0.0116 −0.088

2412.11 27.18 RGGAGPPGpEGGKGA-
AGPpGpPGAAGTpG

Collagen
alpha-1(III) 0.0377 0.072

1873.83 31.95 PPGpTGPGGD-
KGDTGPpGPQG

Collagen
alpha-1(III) 0.0341 0.074

1141.51 26.28 EpGRDGVpGGpG Collagen
alpha-1(III) 0.0341 0.074

2130.97 32.98 GpTGpIGPpGpAG-
QPGDKGEGGAP

Collagen
alpha-1(III) 0.0335 0.074

2507.13 22.82 ApGQNGEPGGkGER-
GAPGEkGEGGPpG

Collagen
alpha-1(III) 0.0322 0.075

2663.21 23.57 NRGERGSEGSPGH-
pGQpGPPGpPGApGP

Collagen
alpha-1(III) 0.0302 0.076

1794.80 24.01 GNDGApGKNGERGGpGGpGP Collagen
alpha-1(III) 0.0285 0.076
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Table 4. Cont.

Mass [Da] CE-Time [min] Peptide Sequence Protein Name p-Value Spearman’s Rho

1531.68 39.25 GLpGPpGSNGNpGPpGP Collagen
alpha-1(III) 0.0271 0.077

1796.84 21.01 ApGPQGpRGDKGETGERG Collagen
alpha-1(III) 0.0243 0.079

883.41 23.48 PpGENGKpG Collagen
alpha-1(III) 0.0144 0.085

2264.05 22.67 KGDAGApGApGG-
KGDAGApGERGpPG

Collagen
alpha-1(III) 0.0085 0.092

2135.96 25.80 GDAGApGApGGK-
GDAGApGERGPpG

Collagen
alpha-1(III) 0.0080 0.092

1594.73 23.13 ApGGKGDAGApGERGpPG Collagen
alpha-1(III) 0.0029 0.104

2679.19 23.56 PGMPGADGpPGHP-
GKEGppGEKGGQGpPG

Collagen
alpha-1(V) 0.0244 0.078

1522.73 22.99 KGDpGpAGLpGKDGpP Collagen
alpha-1(V) 0.0158 0.084

1176.56 26.86 KPGTDVFmGpP Collagen
alpha-1(XV) 0.0053 0.097

2226.96 33.46 GNSGEKGDQGF-
QGQPGFPGPpGP

Collagen
alpha-1(XVI) 0.0046 0.099

3023.39 24.65
ppGAKGQEG-

AHGAPGAAGNPGAP-
GHVGAPGPSGpP

Collagen
alpha-1(XXII) 0.0382 0.072

1540.74 39.81 GPpGVPGpPGpGGSPGLP Collagen
alpha-1(XXII) 0.0344 0.074

1536.72 19.91 KDGPnGPpGpPGTKGE Collagen
alpha-1(XXII) 0.0328 0.074

935.45 23.82 GRpGPpGPpG Collagen
alpha-1(XXVI) 0.0326 −0.075

1240.54 27.23 ApGEDGRpGPpGS Collagen
alpha-2(V) 0.0425 0.071

2480.21 23.24 EAGENQKQPEK-
NAGPTARTSATVP

C-X-C chemokine
16 0.0361 0.073

1728.76 36.62 ESVVLEPEAT Fractalkine 0.0011 0.114

2272.24 23.91 SETAPAAPAAPA-
PAEKTPVKKKA Histone H1.4 0.0070 0.094
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Table 4. Cont.

Mass [Da] CE-Time [min] Peptide Sequence Protein Name p-Value Spearman’s Rho

937.46 34.16 PVQGQQQGP Homeobox protein
cut-like 1 0.0080 0.092

1276.71 19.96 KVVAGVANALAHK Hemoglobin delta 0.0086 0.091

879.50 19.95 KLGHPDTL Protein S100-A9 0.0088 0.091

2567.13 34.83 ATPLYINI Protocadherin Fat
1 0.0131 0.086

2501.11 34.31 ASTAQASSSAASN-
NHQVGSGNDPWSA Sorting nexin-9 0.0378 0.072

1294.62 19.43 ADHEGTHSTKRG Fibrinogen alpha
chain 0.0378 0.072

1013.37 25.06 cDDYRLcE Matrix Gla Protein 0.0433 0.070

1159.61 26.41 SGSVIDQSRVL Uromodulin 0.0440 −0.070

1099.49 28.06 DGGGSPKGDVDP

Sodium/potassium-
transporting

ATPase subunit
gamma

0.0406 −0.071

1934.79 19.91 GSGGSSYGSGGGSY-
GSGGGGGGGRG

Keratin; type II
cytoskeletal 1 0.0335 −0.074

1732.78 28.30 WVGTGASEAEKTGAQEL Gelsolin 0.0126 −0.087

976.58 20.52 KELKFVTL Prostatic acid
phosphatase 0.0022 −0.107

3.5. Link to Pathophysiology and Dysregulation of Proteases

A link to PCa pathophysiology was attempted by investigating the altered activity of
proteases that were involved in the generation of the naturally occurring urinary peptide
biomarkers as defined based on the correlation analysis in the full development cohort of
823 patients. For this purpose, the Proteasix online tool [40] was applied to predict the
protease activity. Protease/cleavage site associations were retrieved based on matching
against cleavage site associations from the literature as well as probability of cleavage by
a protease based on MEROPS specificity matrices; the activation status of the proteases
was calculated as described previously [31] and also reported in detail in Supplementary
Table S6. The analysis resulted in prediction of 41 proteases based on at least 5 cleavage sites.
The 10 top-ranked proteases (based on the calculated Xcorr score) exhibiting an increased
or decreased activity are reported in Table 5. Positive association with disease progression
can be observed for matrix metalloproteinase-20, calpain-2 catalytic subunit, and calpain-2
catalytic subunit, while for cathepsin G and chymase a trend towards negative association
was predicted based on the in silico analysis.
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Table 5. List of the 10 most highly ranked proteases that predicted with increased or decreased
activity. Xcorr score is a correlation score which represents the predicted protease activity based on
the frequency and urinary abundance of potential protease target peptides in PCa; # CS—Number of
cleavage sites.

Protease Uniprot ID Symbol # CS Xcorr Score

Matrix metalloproteinase-20 O60882 MMP20 10 618.96

Matrix metalloproteinase-25 Q9NPA2 MMP25 73 283.10

Stromelysin-1 P08254 MMP3 93 260.70

Kallikrein-5 Q9Y337 KLK5 6 250.59

72 kDa type IV collagenase P08253 MMP2 53 233.08

Calpain-2 catalytic subunit P17655 CAPN2 146 231.49

Transmembrane protease serine 7 Q7RTY8 TMPRSS7 78 220.89

Caspase-1 P29466 CASP1 8 178.55

Macrophage metalloelastase P39900 MMP12 134 162.13

Calpain-1 catalytic subunit P07384 CAPN1 147 156.59

Cathepsin K P43235 CTSK 77 −66.68

Meprin A subunit alpha Q16819 MEP1A 109 −92.86

Kallikrein-4 Q9Y5K2 KLK4 18 −114.74

Prothrombin P00734 F2 5 −192.73

Granzyme A P12544 GZMA 13 −220.95

Plasminogen P00747 PLG 13 −220.95

Cathepsin G P08311 CTSG 36 −340.28

Serine protease hepsin P05981 HPN 15 −363.28

Chymase P23946 CMA1 5 −500.00

Tripeptidyl-peptidase 1 O14773 TPP1 5 −500.00

Subsequent bioinformatics analysis was performed to investigate protein-protein
interactions and gene ontology processes based on both the input from the urinary profiling
data, as well as the list of predicted proteases. Both gene ontology analyses based on the
urinary profiling data and the list of significantly predicted proteases revealed extracellular
matrix involvement after mapping of 20 out of 24 proteins based on the urinary profiling
data (p = 3.17 × 10−9; Figure 7A) and mapping of 27 out of 34 proteins based on the
Proteasix data (p = 2.00 × 10−17; Figure 7B), respectively.
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4. Discussion

Guiding invasive biopsies for detection of PCa through non-invasive means is an un-
met clinical need. Several studies focusing on urinary biomarkers have reported promising
biomarkers but are all based on urine collection after DRE or prostate massage [14,16].
Building upon our previous study [18], which aimed at the discrimination of significant PCa,
in this manuscript we focus on the exploitation of CE-MS profiling datasets towards the
development and independent validation of urinary biomarkers that can accurately detect
any type of PCa and also to investigate their potential role in PCa molecular pathogenesis.
Hence, in this study, a machine learning biomarker model based on 181 peptides was estab-
lished and validated in independent (validation) cohorts from two different clinical centers.
The 181 Biomarker model exhibited a good performance (AUC of 0.81), significantly su-
perior to that of the current clinical standards (PSA, PSA density and ERSPC) [23], while
integration of all models in a multiparametric diagnostic nomogram significantly improved
the performance (AUCs of 0.85–0.86). An integrative diagnostic nomogram including
the 181 Biomarker model, along with age and PSA density has great potential; given the
good accuracy (AUC of 0.85), it might be more practical than obtaining ERSPC estimates.
These results confirm earlier evidence that biomarker models based on a higher number
of biomarkers frequently result in increased stability and performance [33]. Similarly, the
fact that an integrative diagnostic nomogram based on different clinical, demographic
and omics traits led to significantly improved performance is in line with our previous
observations that high complementarity does occur between the different molecular and
biochemical biomarkers [20]. Analytical validation is an important aspect when aiming at
clinical applications. Regarding CE-MS, biomarker models that are developed based on
CE-MS derived peptides, are already used for diagnosis, prognosis and monitoring of com-
plex diseases, as well as for patient stratification in clinical trials [46–48]. CE-MS analytical
performance has been recently assessed with regards to its inter- and intra-patient repro-
ducibility, variability and efficiency in peptide detection [49]. Reproducibility, repeatability
and stability experiments were performed per run and per peptide, indicating CV estimates
of >2%. In the present study, reproducibility experiments for the 181 Biomarker model
were also performed using 50 repeated analyses of a well-established standard human
urine sample according to the standardized operating protocol (SOP) and quality control
steps for CE-MS analysis [28]. As expected, none of the measurements scored positive, as
the urine sample was derived from a healthy individual, not bearing prostate cancer. In
addition, very low variation was observed (CV was estimated at 3%). Compared to other
commercially available biomarker tests, the CE-MS based biomarkers resulted in similar
or better performance (published AUC estimates for other biomarker tests range between
0.70–0.80) [15,50]. However, the big advantage of this approach is that a prior intervention
(DRE or prostate massage) is not required prior to urine sampling. Such a non-invasive
diagnostic nomogram can have a potential as a stratification tool in the pathway prior to
mpMRI and subsequent biopsy procedure. Unfortunately, paired comparison with the
above biomarker tests was not possible, as well as side-by side comparison with mpMRI,
as at the time of patient recruitment and urine collection, mpMRI was not yet applied in
routine clinical practice. Nevertheless, comparison with mpMRI literature data indicates
that the AUC of 0.81 is comparable with the AUC of mpMRI and thus justifies further
validation for the biomarkers in a prospectively collected cohort, where paired proteomics
and mpMRI data can be acquired and evaluated in comparison and/or in combination. In
fact, such a study is currently being organized including Cordoba and Seville University
Hospitals (PI22/01769).

In terms of the biomarkers’ sequence and origin, fragments originating from different
collagen parental proteins were detected, the majority with increased abundance in the
urine from the patients with PCa compared to the non-PCa group. Only collagen alpha-1 (I)
and II chains were identified with decreased excretion levels. This result confirms previous
studies using the CE-MS platform. Compared to our previously studied biomarker model
for distinguishing significant PCa, nine of the 19 peptide biomarkers were significant
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in this study, following also the same regulation trend [18,20]. Among them were the
fragments from fractalkine, protein phosphatase 1 regulatory subunit 3A, collagen alpha-
1(I) chain, collagen alpha-1(XVI) chain, collagen alpha-1(XVII) chain, collagen alpha-1(XI)
chain, collagen alpha-2(I) chain. The above collagen fragments were also rich in pGP
motif, as previously reported [18,20], indicating once more the existence of neutrophil
activation in inflamed tissue, as a result of a chemokine binding to C-X-C motif binding
signaling [51]. The high abundance of specific collagen peptides is likely reflecting processes
of the extracellular matrix components, as a result of tumor invasion and progression. These
processes lead to proteolytic products, which are subsequently excreted in urine. This was
also supported by the gene ontology analysis upon the construction of the protein-protein
interaction networks.

Interestingly, correlation analysis revealed multiple peptide fragments also correlat-
ing with disease progression. Fibrinogen peptides (here positively correlating with PCa
progression) have been previously reported at high abundance in urine from patients
with high-grade PCa, in an integrative urinary investigation including peptidomics and
transcriptomics data [52]. Fibrinogen has been previously correlated with progression of
urological cancers, as an indicator of tumor related inflammation and angiogenesis [49].
Additionally, prostatic acid phosphatase here reported as inversely correlated with PCa
progression, is a phosphatase highly active in seminal plasma but also a known tumor sup-
pressor of PCa through dephosphorylation of ERB2 and deactivation of MAPK-mediated
signaling [53]. At the same time, the validity of the in silico prediction is also supported
by the existing literature. Many of the predicted proteases have been previously linked to
PCa including among others kallikrein-5 [54,55], 72 kDa type IV collagenase [56], calpain-2
catalytic subunit [57], caspase-1 [58], granzyme A [59], chymase [60].

Besides the solid biomarker data, this study is associated with certain limitations. In
the involved clinical cohorts, prostate pathology was determined by TRUS-guided biopsy,
which is expected to be associated with under- or over-grading compared to the results
at radical prostatectomy and is particularly liable to miss small tumors [61]. A second
limitation, as also addressed above, is that no paired mpMRI data was available for the
PCa groups included in this study as urine samples were collected before mpMPRU was in-
troduced to clinical practice. Yet, based on the literature evidence, while mpMRI can detect
over 95% of significant disease it does have a high false positive rate of ~50% [62]. With the
reported sensitivity estimates of the 181 Biomarker test, we foresee that combination with
mpMRI can reduce the number of biopsies engaged. These results are, therefore, a good
starting point for validation of the predicted clinical benefits of the CE-MS based model in
a prospective study, including paired mpMRI data (PI22/01769).

5. Conclusions

The combination of multiple peptides into a biomarker model based on machine
learning improves our ability to detect PCa using urine samples without the need for
prior digital rectal examination. The 181 Biomarker model demonstrated good accuracy in
detecting PCa and offers a potential for reducing invasive procedures in men that are being
scheduled for a biopsy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15041166/s1. Supplementary Table S1 lists the full clinical
and biochemical variables for the patients included in the development phase (n = 823). Supplemen-
tary Table S2 presents the list of the full clinical and biochemical variables for the patients included
in the 2nd validation phase recruited at Innsbruck University Hospital. Supplementary Table S3
presents the output of the statistical comparison in the case-control study and the list of biomarkers
that are integrated in the 181 Biomarker models. In addition, the list of twenty nine endogenous
collagen fragments that were employed for normalization of the peptide intensities is also provided.
Supplementary Table S4 presents the classification scores along with the details on the number of
identified peptides and the mean intensity for the 50 CE-MS analysis of the standard urine sample as
part of the reproducibility experiment. Supplementary Table S5 presents the output data as derived
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based on the correlation analysis in the development cohort of 823 patients. Supplementary Table
S6 presents the estimation formulas for in silico prediction of the protease activity following the
Proteasix analysis. Supplementary Figure S1 presents the distribution of the classification scores
based on the 181 Biomarker model between the PCa patients (n = 138) and the non-PCa controls
(n = 272) for the 1st validation set.
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