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Abstract We resolve Schinzel’s Hypothesis (H) for 100% of polynomials
of arbitrary degrees. We deduce that a positive proportion of diagonal conic
bundles over Q with any given number of degenerate fibres have a rational
point, and obtain similar results for generalised Châtelet equations.
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674 A. N. Skorobogatov, E. Sofos

1 Introduction

Schinzel’s Hypothesis (H) [53] has very strong implications for the local-
to-global principles for rational points on conic bundles, as demonstrated by
Colliot-Thélène and Sansuc in [17]. There have been many subsequent devel-
opments and applications to more general varieties by Serre, Colliot-Thélène,
Swinnerton-Dyer and others.We call P(t) ∈ Z[t] aBouniakowsky polynomial
if the leading coefficient of P(t) is positive and for every prime � the reduction
of P(t)modulo � is not amultiple of t�−t . It is not hard to prove that an explicit
positive proportion of polynomials of given degree are Bouniakowsky polyno-
mials (Corollary 2.10 below). A conjecture stated by Bouniakowsky in 1854
[7, p. 328], now a particular case of Schinzel’s Hypothesis (H), says that if P(t)
is an irreducible Bouniakowsky polynomial, then there are infinitelymany nat-
ural numbers n such that P(n) is prime. Bouniakowsky added this remark: “Il
est à présumer que la démonstration rigoureuse du théorème énoncé sur les
progressions arithmétiques des ordres supérieurs conduirait, dans l’état actuel
de la théorie des nombres, à des difficultés insurmontables ; néanmoins, sa
réalité ne peut pas être révoquée en doute”.

The inaccessibility of Schinzel’s hypothesis and its quantitative version, the
Bateman–Horn conjecture [6], in degrees greater than 1 or for more than one
polynomial motivates a search for more accessible replacements. In the case of
several multivariate polynomials of degree 1 such a replacement is provided
by work of Green, Tao and Ziegler in additive combinatorics (see [32] and
references there, and [11,33,34] for applications to rational points).

In this paper we study rational points on varieties in families, with the aim
of proving that a positive proportion of varieties in a given family have rational
points. To apply the method of Colliot-Thélène and Sansuc in this situation,
one does not need the full strength of Bouniakowsky’s conjecture, namely that
every irreducibleBouniakowsky polynomial represents infinitely many primes:
it is enough to know that most polynomials satisfying the obvious necessary
condition represent at least one prime. We propose the following replacement
for Bouniakowsky’s conjecture. The height of a polynomial P(t) ∈ Z[t] is
defined as the maximum of the absolute values of its coefficients.

Theorem 1.1 Let d be a positive integer. When ordered by height, for 100%
of Bouniakowsky polynomials P(t) of degree d there exists a natural number
m such that P(m) is prime.

This improves on previous work of Filaseta [26] who showed that a positive
proportion of Bouniakowksy polynomials represent a prime. Note that stating
Schinzel’s Hypothesis for infinitely many primes is trivially equivalent to stat-
ing it for at least one prime [53, p. 188], but this is no longer so if we are only
concerned with 100% of polynomials.
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Schinzel Hypothesis on average and rational points 675

Theorem 1.1 is a particular case of a more general result for n poly-
nomials, where certain congruence conditions are allowed. We denote the
height of P(t) ∈ Z[t] by |P|. The height of an n-tuple of polynomials
P = (P1(t), . . . , Pn(t)) ∈ (Z[t])n is defined as |P| = maxi=1,...,n(|Pi |).
We call P a Schinzel n-tuple if for every prime � the reduction modulo � of the
product P1(t) . . . Pn(t) is not divisible by t� − t , and the leading coefficient of
each Pi (t) is positive.

Theorem 1.2 Let d1, . . . , dn be positive integers. Fix integers n0 and M.
Assume we are given Q1(t), . . . , Qn(t) in Z[t] such that

∏n
i=1 Qi (n0) and M

are coprime, and deg(Qi (t)) � di for i = 1, . . . , n. When ordered by height,
for 100% of Schinzel n-tuples (P1(t), . . . , Pn(t)) such that deg(Pi (t)) = di
and Pi (t) − Qi (t) ∈ MZ[t] for each i = 1, . . . , n, there exists a natural
number m ≡ n0 (mod M) such that P1(m), . . . , Pn(m) are pairwise different
primes.

The special case M = 1 shows that, with probability 100%, an n-tuple of
integer polynomials satisfying the necessary local conditions simultaneously
represent primes. Theorem 1.1 is the special case for n = 1. The proof of The-
orem 1.2 occupies most of the paper; we give more details about the strategy
of proof later in this introduction.

In this paper we apply our analytic results to rational points on varieties
in families, where the parameter space is the space of coefficients of generic
polynomials of fixed degrees. Among many potential applications we choose
to consider generalised Châtelet varieties (1.1) and diagonal conic bundles
(1.2). Using Theorem 1.2 we obtain a weaker version of the Hasse principle
for equations

NK/Q(z) = P(t) �= 0, (1.1)

where K is a fixed cyclic extension of Q and NK/Q(z) is the associated norm
form, for 100% of Bouniakowsky polynomials P(t) of given degree, see The-
orem 5.3. (See also Theorem 5.8 for the case when P(t) is a product of generic
Bouniakowsky polynomials.) It implies

Theorem 1.3 Let d be a positive integer. For a positive proportion of polyno-
mials P(t) ∈ Z[t] of degree d ordered by height, the affine variety given by
(1.1) has a Q-point.

Explicit estimates in the case K = Q(
√−1) are given in Sect. 7. If K is

a totally imaginary abelian extension of Q of class number 1, then the same
statement holds, with the following easy proof. By the Kronecker–Weber theo-
rem we have K ⊂ Q(ζM) for some M � 1. Hence all primes in the arithmetic
progression 1 (mod M) split in K . Theorem 1.2 implies that a random Bou-
niakowsky polynomial of degree d congruent to the constant polynomial 1
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676 A. N. Skorobogatov, E. Sofos

modulo M represents a prime. This prime p is the norm of a principal integral
ideal (x) ⊂ K . Since K is totally imaginary, we have p = NK/Q(x). (See
Theorem 5.7 for a more general statement.) Here, at the expense of the con-
dition on the class number of K , we do not require K to be cyclic over Q and
we find an integral (and not just rational) solution of (1.1).

A stronger version of Theorem 1.2, where we require primes represented by
polynomials to satisfy additional conditions in terms of quadratic residues, is
obtained by incorporating into our technique an estimate for certain character
sums due to Heath-Brown [35, Cor. 4]. This leads to the following result,
proved in Sect. 6.4 as a consequence of Theorem 6.1.

Theorem 1.4 Let n1, n2, n3 be integers such that n1 > 0, n2 > 0, and n3 � 0,
and let n = n1 + n2 + n3. Let a1, a2, a3 be non-zero integers, and let di j
be natural numbers for i = 1, 2, 3 and j = 1, . . . , ni . Then for a positive
proportion of n-tuples (Pi j ) ∈ Z[t]n with deg(Pi j (t)) = di j , ordered by height,
the following conic bundle surface has a Q-point contained in a smooth fibre:

a1

n1∏

j=1

P1, j (t) x2 + a2

n2∏

k=1

P2,k(t) y2 + a3

n3∏

l=1

P3,l(t) z2 = 0. (1.2)

By [8, Thm. 1.4] (see also [46, Thm. 1.3]) in a dominant, everywhere locally
solvable family of quasi-projective varieties over an affine space such that the
fibres at the points of codimension 1 are split and enough real fibres have real
points, a positive proportion of rational fibres are everywhere locally solvable.
Thus, the results of Theorems 1.3 and 1.4 are expected consequences of a con-
jecture of Colliot-Thélène which predicts that the Hasse principle for rational
points on smooth, projective, geometrically rational varieties is controlled by
the Brauer–Manin obstruction, and generic triviality of the Brauer group in our
families. (Note that in these cases Colliot-Thélène’s conjecture follows from
Schinzel’s Hypothesis (H), see [20, Thm. 14.2.4].) A known non-trivial case
of this conjecture for conic bundles (1.2) is when the total degrees of coeffi-
cients are (2, 2, 0); natural smooth projective models of such surfaces are del
Pezzo surfaces of degree 4 for which the result is due to Colliot-Thélène [15].
The question is open already in the case of total degrees (2, 2, 2), which corre-
sponds to a particular kind of del Pezzo surfaces of degree 2 (cf. [11, Prop. 5.2]).
The conjecture for smooth projective varieties birationally equivalent to (1.1)
is known when deg(P(t)) � 4 (and in some cases when deg(P(t)) = 6)
and [K : Q] = 2 (Colliot-Thélène, Sansuc and Swinnerton-Dyer [18], [56],
see [55, §7.2, §7.4]), deg(P(t)) � 3 and [K : Q] = 3 (Colliot-Thélène and
Salberger [16]), deg(P(t)) � 2 and [K : Q] arbitrary [10,19,25,36]. There
seem to be no known unconditional results about the Hasse principle when the
number of degenerate fibres is greater than 6. In contrast, for our statistical
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Schinzel Hypothesis on average and rational points 677

approach to the existence of rational points the number of degenerate fibres is
immaterial.

In the rest of the introduction we give more details about our main analytic
results; for this we need to introduce some more notation. We write P > 0
to denote that the leading coefficient of P(t) is positive. For a prime � and a
polynomial P(t) ∈ F�[t] we define

Z P(�) := � {s ∈ F� : P(s) = 0} .

In particular,P is a Schinzel n-tuple if and only if Z P1...Pn (�) �= � for all primes
� and Pi > 0 for each i = 1, . . . , n. Fix integers n0 and M , and polynomials
Qi (t) ∈ Z[t] of degree at most di for i = 1, . . . , n such that

∏n
i=1 Qi (n0) and

M are coprime. For H � 1 define

Poly(H) := {
P ∈ (Z[t])n : |P| � H, deg(Pi ) = di , Pi > 0,

Pi ≡ Qi (mod M) for i = 1, . . . , n} .

The least prime represented by a polynomial

For C > 0 define

SC (P) := {m ∈ N : m � (log |P|)C , m ≡ n0 (mod M) , Pi (m) is prime for i = 1, . . . , n}.

Theorem 1.2 is an immediate consequence of the followingmore precise quan-
titative result.

Theorem 1.5 Fix A > 0. In the assumptions of Theorem 1.2 for all H � 3
we have

�{P ∈ Poly(H) : P is Schinzel, �Sn+A(P) � (log |P|)A/3}
�{P ∈ Poly(H) : P is Schinzel}

= 1 + O

(
(log log log H)d−n

√
log log H

)

, (1.3)

where d = d1 + . . . + dn. The implied constant depends on d, A and M, but
not on H.

Recall that Linnik’s constant is the smallest L > 0 such that every primitive
degree 1 polynomial P(x) = qx + a with 0 < a < q represents a prime of
size � q L = |P|L . This subject has rich history, see [39, §18], for example.
GRH implies that L � 2 + ε for every ε > 0 and it is known that L � 5, see
[60]. Furthermore, one cannot have L < 1, see [44] for accurate lower bounds.
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678 A. N. Skorobogatov, E. Sofos

Theorem 1.5 shows that the analogue of the Linnik constant for polynomials
of given degree is at most 1 + ε for every ε > 0.

Corollary 1.6 Let ε > 0 and fix d, n0, M ∈ N. For 100% of Bouniakowsky
polynomials P of degree d with gcd(P(n0), M) = 1, there exists a natural
number m � (log |P|)1+ε such that m ≡ n0 (mod M) and P(m) is a prime
bounded by |P|(log |P|)d+ε.

Indeed, Theorem 1.5 with n = 1 and A = ε/(2d) shows the existence of a
natural number m � (log |P|)1+ε/(2d) such that P(m) is prime; furthermore,
we have

P(m) � (d + 1)|P|md � (d + 1)|P|(log |P|)(1+ε/(2d))d

� |P|(log |P|)d+ε/2 � |P|(log |P|)d+ε.

These bounds are intimately related to the efficacy of algorithms for factorisa-
tion of polynomials, see the work of Adleman and Odlyzko [1], and for finding
efficient cryptographic parameters as in the work of Freeman, Scott and Teske
[28, § 2.1]. McCurley [47] has shown that for certain polynomials the least
representable prime has to be rather large. The case d = 2 of Corollary 1.6 is
closely related to hard questions on the size of class numbers that go all the
way back to Euler; see the survey of Mollin [49].

Smallest height of a rational point

Bounding the least height of aQ-point on a variety V overQ is a hard problem
whose solution implies Hilbert’s 10th Problem for Q. Amongst the Fano vari-
eties it is only for quadrics that the known bound is essentially best possible,
which is due to Cassels [12]. Tschinkel gave a conjecture for the size of the
smallest Q-point [57, Section 4.16]. In this direction we have the following
result.

Corollary 1.7 Let ε > 0, a ∈ Z, a �= 0, and d ∈ N. For a positive proportion
of polynomials P(t) ∈ Z[t] of degree d, the equation x2 − ay2 = P(t)z2 has
a solution (x, y, z, t) ∈ N4 with

max{x, y, z, t} � |a|1/2|P|1/2(log |P|)d/2+ε.

To prove this we first note that the density of Bouniakowsky polynomials
P(t) of degree d with P(t) ≡ 1 (mod 8a) exists and is positive; this is a spe-
cial case of Corollary 2.9. Since these P(t) satisfy gcd(P(0), 8a) = 1, we
use Corollary 1.6 with n0 = 0 and M = 8a to see that for 100% of Bouni-
akowsky polynomials P(t) of degree d with P(t) ≡ 1 (mod 8a) there exists

123



Schinzel Hypothesis on average and rational points 679

a natural number m � (log |P|)1+ε such that P(m) is a prime p satisfying
p � |P|(log |P|)d+ε and p ≡ P(0) ≡ 1 (mod 8a). Holzer’s theorem [37]
states that if f1, f2, f3 are square-free pairwise coprime integers, not all of the
same sign and such that − fi f j is a quadratic residue modulo fk for all per-
mutations {i, j, k} = {1, 2, 3}, then there exists (x1, x2, x3) ∈ Z3 \ {(0, 0, 0)}
such that

∑3
i=1 fi x2i = 0 and |xi | �

√| f j fk |. Writing a = a0b2, where a0 is
square-free, we can apply Holzer’s theorem for f1 = −1, f2 = a0, f3 = p.
Indeed, if a0 = s2πw, where s ∈ {±1}, π ∈ {0, 1}, and w is a positive odd
integer, then the quadratic Jacobi symbols satisfy

(
a0
p

)

=
(

w

p

)

=
(

p

w

)

= 1,

due to p ≡ 1 (mod 8) and p ≡ 1 (mod w). Thus a0 is a square mod-
ulo p. Clearly, p is a square modulo a0. By Holzer’s theorem the equation
given by x2 − a0y2 = pz2 has a non-zero integer solution (x0, y0, z0) with
max{|x0|, |y0|, |z0|} � (|a0|p)1/2. Then (x1, y1, z1) = (bx0, y0, bz0) is a non-
zero solution of x2 − ay2 = pz2 that satisfies

max{|x1|, |y1|, |z1|} � b(|a0|p)1/2 = (|a|p)1/2 � |a|1/2|P|1/2(log |P|)d/2+ε.

The Bateman–Horn conjecture

Theorem 1.5 is a corollary of Theorem 1.9 below. To state it we introduce a
prime counting function and a truncated singular series.

Definition 1.8 Let P ∈ (Z[t])n , Pi > 0, let n0 ∈ Z, and let M ∈ N. For x � 1
define the functions

θP(x) =
∑

m∈N∩[1,x]
m≡n0(mod M)

Pi (m) prime for i=1,...,n

n∏

i=1

log Pi (m), (1.4)

SP(x) = 1(gcd(M,
∏n

i=1 Pi (n0)) = 1)

ϕ(M)n M1−n

∏

� prime, � � M
� � log x

1 − �−1Z P1...Pn (�)(
1 − �−1

)n .

(1.5)

The function SP(x) is a truncated version of the Hardy–Littlewood
singular series associated to Schinzel’s Hypothesis for the polynomials
P1(n0 + Mt), . . . , Pn(n0 + Mt), see [6]. The reason for considering Pi (n0 +
Mt) instead of Pi (t) is because θP(x) involves the conditionm ≡ n0 (mod M).
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680 A. N. Skorobogatov, E. Sofos

A standard argument based on the prime number theorem for number fields
shows that for a fixed P the product SP(x) converges as x → ∞. However,
the convergence is absolute only when each Pi is linear. Since we treat gen-
eral polynomials, we have chosen to work with the truncated version to avoid
problems related to the lack of absolute convergence.

The Bateman–Horn conjecture states that

θP(x) − SP(x)x = o(x).

Our next result shows that the estimate

θP(x) − SP(x)x = O

(
x√
log x

)

holds for 100% of P ∈ (Z[t])n in a certain range for x . Let

R(x, H) = 1

�Poly(H)

∑

P∈Poly(H)

∣
∣
∣θP(x) − SP(x)x

∣
∣
∣

be the average over all n-tuples P of the error terms in the Bateman–Horn
conjecture.

Theorem 1.9 Let n, d1, . . . , dn, M be positive integers. Let n0 ∈ Z and let
Q = (Qi (t)) ∈ (Z[t])n. Fix arbitrary A1, A2 ∈ R with n < A1 < A2. Then
for all H � 3 and all x � 3 with

(log H)A1 < x � (log H)A2

we have

R(x, H) � x√
log x

,

where the implied constant depends only on d1, . . . , dn, M, n0,Q, A1, A2.

The necessity of A1 > n is addressed in Remark 4.2; one cannot expect
typical polynomials to represent primes when the input is not large compared
to the coefficients, and m ≈ (log |P|)n seems to be a natural barrier.

From Theorem 1.9 and Markov’s inequality one immediately deduces a
form of the Bateman–Horn conjecture valid for almost all polynomials. For
simplicity we state this result only in the case n = M = n0 = 1.

Corollary 1.10 Let d be a positive integer. Fix any c ∈ R with 0 < c < 1/2
and any A1, A2 ∈ R with 1 < A1 < A2. Then for all irreducible
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Schinzel Hypothesis on average and rational points 681

P ∈ Z[t], P > 0, with deg(P) = d and all x with (log |P|)A1 < x �
(log |P|)A2 we have

∑

m∈N∩[1,x]
P(m) prime

log P(m) =

⎛

⎜
⎜
⎝

∏

� prime
��log x

1 − �−1Z P(�)

1 − �−1

⎞

⎟
⎟
⎠ x + O

(
x

(log x)c

)

,

with the exception of at most O(Hd+1(log log H)c−1/2) of polynomials P such
that |P| � H.

The asymptotic is meaningful, since SP(x) � (log log x)1−d as long as
SP(x) �= 0, see Lemma 4.11.

Comparison with the literature

Our main result, Theorem 1.9, is a vast generalisation of the well-known
Barban–Davenport–Halberstam theoremon primes in arithmetic progressions,
which gives a bound on

∑

1�q�Q
a∈(Z/qZ)∗

⎛

⎜
⎜
⎝

∑

prime p�X
p≡a(mod q)

log p − X

ϕ(q)

⎞

⎟
⎟
⎠

2

.

To bring it to a form comparable to Theorem 1.9 we write H = Q, x = X/Q
and P(t) = a + qt , from which it becomes evident that the left hand side is
essentially equal to

∑

P∈Z[t]: deg(P)=1
|P|�H

⎛

⎜
⎜
⎝

∑

m�x
P(m) prime

log P(m) − SP(x)x

⎞

⎟
⎟
⎠

2

.

While the Barban–Davenport–Halberstam theorem concerns a single linear
polynomial, our work covers an arbitrary number of polynomials, each of
arbitrary degree. Prior to our paper there has been a number of results on
averaged forms of Bateman–Horn for special polynomials.

The work of Friedlander–Granville [30] has special interest in connection to
our work as it shows that there are unexpectedly large fluctuations in the error
term of the Bateman–Horn asymptotic; it would be interesting to understand
analogous questions in the setting of Corollary 1.10. Furthermore, it would be
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682 A. N. Skorobogatov, E. Sofos

n P1(t), . . . , Pn(t) Authors

� 1 t + b1, . . . , t + bn Lavrik [43]
2 t, t + b Lavrik [42], Mikawa [48], Wolke [59]
1 at + b Barban [5], Davenport–Halberstam [23]
� 1 a1t + b1, . . . , ant + bn Balog [4]
1 td + at + b Friedlander–Granville [30]
1 t2 + t + b and t2 + b Granville–Mollin [31]
1 t2 + b Baier–Zhao [2,3]
1 t3 + b Foo–Zhao [27]
1 t4 + b Yau [61]
1 td + b Zhou [63]

interesting to investigate the case where one ranges over degree d polynomials
with a fixed coefficient; this corresponds to work of Friedlander–Goldston [29]
where this is investigated for linear polynomials with fixed leading coefficient.

Method of proof

Theorem 1.9 is a generalisation of Montgomery’s proof of the Barban–
Davenport–Halberstam theorem, which corresponds to the case n = 1 and
d1 = 1 of Theorem 1.9. By Cauchy–Schwarz we have

R(x, H)2 � V (x, H) := 1

�Poly(H)

∑

P∈Poly(H)

(θP(x) − SP(x)x)2 , (1.6)

which is the kind of second moment function studied in the BDH theorem.
The original proof of the BDH theorem is a direct application of the large
sieve; such an approach only applies to polynomials of very special shape, see
[2,27]. The initial arguments in our paper are in fact closer to Montgomery’s
proof of the BDH theorem [50], which does not rely on the large sieve.

First, we open up the square in V (x, H) to get three terms: the second
moments θP(x)2 and x2SP(x)2, and the correlation xSP(x)θP(x). The hard-
est term is θP(x)2 and here Montgomery’s approach relies exclusively on
Lavrik’s result on twin primes [42,43]. Lavrik’s argument makes heavy use
of the Hardy–Littlewood circle method and Vinogradov’s estimates of expo-
nential sums. In our work we need a suitable generalisation of Lavrik’s result;
this is provided by our Theorem 3.1. It produces an asymptotic for simul-
taneous prime values of two linear polynomials in an arbitrary number of
variables, where the error term is uniform in the size of the coefficients. The
difference between our work and that of Montgomery and Lavrik is that to
prove Theorem 3.1 we do not use the circle method and we instead employ the
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Schinzel Hypothesis on average and rational points 683

Möbius randomness law, see Sect. 3. This approach in the area of the averaged
Bateman–Horn conjecture is new.

Next, we show that the three principal terms cancel out by construct-
ing a probability space that models the behaviour of functions involving Z ,
see Sect. 2. This task inevitably leads to new complications of combinato-
rial nature, compared to the aforementioned papers on special polynomials
where the Bateman–Horn singular series has a useful expression in terms of
L-functions (see [2,27], for example). The final stages of the proof of Theo-
rem 1.9 can be found in Sect. 4.4 and that of Theorem 1.5 in §4.5.

Applications to rational points, including the proofs of Theorems 1.3 and
1.4 , can be found in Sects. 5 and 6.

Notation

The quantities A1, A2, δ1, δ2, n, d1, . . . , dn,Q, n0, M,will be considered con-
stant throughout. In particular, the dependenceof implied constants in the big O
notation on these quantitieswill not be recorded.Any other dependencies of the
implied constants on further parameters will be explicitly specified via the use
of a subscript. Whenever we use iterated logarithm functions log t, log log t ,
etc., we assume that t is large enough to make the iterated logarithm well-
defined.

2 Bernoulli models of Euler factors

In this section we study the �-factor 1 − �−1Z P1...Pn (�) of the Euler prod-
uct (1.5). We prove that if P1, . . . , Pn are random polynomials of bounded
degree in F�[t], this factor is modelled by the arithmetic mean of � pairwise
independent, identically distributed Bernoulli random variables defined on a
product of probability spaces. The results of this section are used in Sect. 4 to
prove cancellation of principal terms. Proposition 2.8 is used to prove Theo-
rem 1.5 in Sect. 4.5.

2.1 Bernoulli model

Let � be a prime. Consider the probability space (
(d), P), where


(d) := {P ∈ F�[t] : deg(P) � d}
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684 A. N. Skorobogatov, E. Sofos

and P is the uniform discrete probability. For every m ∈ F� we define the
Bernoulli random variable Ym : 
(d) → {0, 1} by

Ym =
{
1, if P(m) �= 0 in F�,

0, otherwise.

We have Ym = χ(P(m)), where χ is the principal Dirichlet character on F�.

Lemma 2.1 Let J ⊂ F� be a subset of cardinality s � d + 1. Then the
variables Ym for m ∈ J are independent, and we have

E
(d)

∏

m∈J
Ym =

∏

m∈J
E
(d)Ym = (1 − �−1)s .

Proof It is enough to prove that

E
(d)

∏

m∈J
(1 − Ym)

= 1

�d+1
�
{

P ∈ F�[t] : deg(P) � d, P(m) = 0 if m ∈ J
} = 1

�s . (2.1)

By the non-vanishing of theVandermonde determinant this condition describes
an F�-vector subspace of 
(d) of codimension s, hence the result.

Let n ∈ N and let d1, . . . , dn ∈ N. Consider 
 = 
(d1) × . . . × 
(dn) as
a Cartesian probability space equipped with the product measure

P(A1 × . . . × An) := P1(A1) . . . Pn(An), for all Ai ⊆ 
(di ), (2.2)

where each Pi is the uniform discrete probability on
(di ). For m ∈ F� define
the Bernoulli random variable Xm : 
 → {0, 1} by

Xm =
{
1, if

∏n
i=1 Pi (m) �= 0 in F�,

0, otherwise.

It is clear that

X1 + . . . + X� = � − Z P1...Pn (�). (2.3)

Lemma 2.2 For all m ∈ F� we have E
Xm = (1 − �−1)n.

Proof This is immediate from Lemma 2.1.
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Schinzel Hypothesis on average and rational points 685

Lemma 2.3 For all k �= m ∈ F� the random variables Xk and Xm are inde-
pendent.

Proof Since Xk and Xm are Bernoulli random variables, it suffices to show
that they are uncorrelated. Using Lemma 2.2 we write the covariance of Xk
and Xm as

E


⎡

⎣

(
n∏

i=1

χ(Pi (m)) − (
1 − �−1)n

)⎛

⎝
n∏

j=1

χ(Pj (k)) − (
1 − �−1)n

⎞

⎠

⎤

⎦ ,

which equals

E


[
n∏

i=1

χ(Pi (m))χ(Pi (k))

]

− (
1 − �−1)2n

=
(

n∏

i=1

E
(di ) [χ(P(m))χ(P(k))]

)

− (
1 − �−1)2n

by (2.2). Since di � 1 for all i = 1, . . . , n, we conclude the proof by applying
Lemma 2.1.

For d, s ∈ Z�0 define

G�(d, s) :=
s∑

r=0

(
s

r

)
(−1)r

�min{r,1+d} . (2.4)

Lemma 2.4 For a subset J ⊂ F� of cardinality s we have

E


∏

m∈J
Xm =

n∏

k=1

G�(dk, s).

Proof By multiplicativity of the principal Dirichlet character χ we have

∏

m∈J
Xm =

∏

m∈J
χ

(
n∏

k=1

Pk(m)

)

=
n∏

k=1

χ

⎛

⎝
∏

m∈J
Pk(m)

⎞

⎠ ,

hence

E


∏

m∈J
Xm =

n∏

k=1

E
(dk)

∏

m∈J
χ(P(m)).
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686 A. N. Skorobogatov, E. Sofos

For a fixed k we have

E
(dk)

∏

m∈J
χ(P(m)) = E
(dk)

∏

m∈J
Ym

=
s∑

r=0

(−1)�A
∑

A ⊂J

E
(dk)

∏

m∈A
(1 − Ym).

From the definition of the random variables Ym we get

E
(dk)

∏

m∈A
(1 − Ym)

= �−(dk+1)� {P ∈ F�[t] : deg(P) � dk, P(m) = 0 if m ∈ A } .

If �A � dk + 1, this equals �−�A by (2.1). If �A � dk + 1, then P has more
than deg(P) roots in F�, hence P is identically zero and the quantity above is
�−(dk+1). Thus

E
(dk)

∏

m∈A
(1 − Ym) = �−min{�A ,dk+1}.

This implies the lemma.

Lemma 2.5 (Joint distribution of Bernoulli variables) For γ1, . . . , γ� ∈ {0, 1}
we have

P
[
Xm = γm for all m = 1, . . . , �

]

= (−1)�{i :γi =0} ∑

J ⊂ F�

i /∈ J ⇒ γi = 0

(−1)�−�J
n∏

k=1

G�(dk, �J ).

Proof The event Xm = γm for γm = 0 (respectively, γm = 1) is detected by
the function 1 − Xm (respectively, Xm). Therefore, writing βi = 1 − γi we
obtain

P
[
Xm = γm for all m = 1, . . . , �

] = (−1)�{i : γi =0}E


�∏

m=1

(Xm − βm).

The mean in the right hand side equals

∑

J⊂F�

⎛

⎝
∏

i /∈J
(−βi )

⎞

⎠E


∏

i∈J
Xi =

∑

J⊂F�

(−1)�−�J
n∏

k=1

G�(dk, �J )
∏

i /∈J
βi
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due to Lemma 2.4. In view of βi ∈ {0, 1} this proves the lemma.

2.2 Consequences of the Bernoulli model

For n ∈ N and any prime � define

γn(�) := 1 − 1

�
+ �n−1

(� − 1)n
. (2.5)

Lemma 2.6 We have

�−(d+n)
∑

P1∈F�[t], deg(P1)�d1
...

Pn∈F�[t], deg(Pn)�dn

(

1 − Z P1...Pn (�)

�

)2

= γn(�)

(

1 − 1

�

)2n

.

Proof We write the left hand side as �−2E
[(X1 + . . . + X�)
2], open up the

square and use Lemmas 2.2 and 2.3.

By considering �−1EP∈
[X1 + . . . + X�] instead we obtain

�−(d+n)
∑

P1∈F�[t], deg(P1)�d1
...

Pn∈F�[t], deg(Pn)�dn

(

1 − Z P1...Pn (�)

�

)

=
(

1 − 1

�

)n

.

Lemma 2.7 Fix any m ∈ N. We have

�−(d+n)
∑

P1∈F�[t], deg(P1)�d1,P1(m)�=0
...

Pn∈F�[t], deg(Pn)�dn,Pn(m)�=0

(

1 − Z P1...Pn (�)

�

)

= γn(�)

(

1 − 1

�

)2n

.

Proof By (2.3) and Lemma 2.3 the left hand side in our lemma equals

E


[(
X1 + . . . + X�

�

)

Xm

]

= E
 [Xm]

�
+ E
 [Xm]

�

∑

i �=m

E
 [Xi ] .

The proof now concludes by using Lemma 2.2.
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2.3 Density of Schinzel n-tuples

For a prime � define the set

T� := {P ∈ (F�[t])n : Z P1...Pn (�) �= �, deg(Pi ) � di for all i = 1, . . . , n}.

By Lemma 2.5 with all γi = 0 we have �T� = (1 − c�)�
d+n , where

c� :=
∑

J⊂F�

(−1)�J
n∏

k=1

G�(dk, �J ). (2.6)

When � > d it is easy to see that �T� = ∏n
i=1(�

di +1 − 1), hence 1 − c� =
∏n

i=1(1 − �−(di +1)).

Proposition 2.8 For any M ∈ N we have

�{P ∈ Poly(H) : Z P1...Pn (�) �= � for all � � M}

= 2d

⎛

⎝
∏

prime ��M

(1 − c�)

⎞

⎠
(

H

M

)d+n

+ O

(
Hd+n

log H

)

.

The infinite product converges absolutely to a positive real number. In partic-
ular, the set of Schinzel n-tuples of given degrees has positive density in the
set of all n-tuples of integer polynomials of the same degrees.

Proof Let W be the product of all primes � < 1
10 log H such that � � M .

Define

K (H) = �
{
P ∈ Poly(H) : Z P1...Pn (�) �= � for all primes �|W }

.

The counting function in the proposition is K (H) + O(Hd+n(log H)−1).

Indeed, the number of P ∈ Poly(H) such that for some j = 1, . . . , n there
is a prime � > 1

10 log H for which Pj is identically zero on F� is

�
∑

prime �> 1
10 log H

⎛

⎜
⎜
⎝

n∏

i=1
i �= j

H1+di

⎞

⎟
⎟
⎠ (H/�)1+d j

� Hd+n
∑

prime �> 1
10 log H

�−2 � Hd+n(log H)−1.
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Schinzel Hypothesis on average and rational points 689

We have

K (H) =
∑

P∈Poly(H)

∏

prime �|W
1T� (P) = 2−n

(
2H

W M
+ O(1)

)d+n ∏

prime �|W
�T�,

by the Chinese remainder theorem applied to the coefficients of the polyno-
mials Pi . Taking into account that �T� = (1 − c�)�

d+n we rewrite this as

K (H) = 2d
(

H

M
+ O(1)W

)d+n ∏

prime �|W
(1 − c�).

Note that logW �
∑

��(log H)/10 log � � (log H)/2 for all sufficiently large

H by the prime number theorem. Hence W � H1/2, which implies

K (H) = 2d
(

H

M

)n+d ∏

prime �|W
(1 − c�) + O(Hd+n−1/2).

The estimate
∏

prime �> 1
10 log H

(
1 − �−(di +1)

) = 1+ O((log H)−di ) concludes
the proof.

The product converges absolutely because for all � > d we have

1 − c� =
n∏

i=1

(1 − �−(di +1)) = 1 + O(�−2).

Since T� �= ∅ we have �T� = (1 − c�)�
d+n > 0, so the infinite product is

positive.

Corollary 2.9 Fix d, M ∈ N. Let Q(t) ∈ Z[t] be a polynomial of degree at
most d. The number of degree d polynomials f (t) ∈ Z[t] with positive leading
coefficient and height at most H such that f ≡ Q (mod M) and Z f (�) �= �

for each prime � � M is

2d

⎛

⎝
∏

prime ��M

(1 − �−min{�,d+1})

⎞

⎠ Hd+1

Md+1 + O

(
Hd+1

log H

)

.

Proof We apply Proposition 2.8 in the case n = 1. For � > d + 1 we have
c� = �−(d+1). If s � d + 1 then (2.4) becomes G�(d, s) = (1− 1/�)s . Hence
for � � d + 1, (2.6) gives c� = �−�.

The case M = 1ofCorollary 2.9 is particularly useful and isworth recording
separately:
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690 A. N. Skorobogatov, E. Sofos

Corollary 2.10 The number of degree d Bouniakowsky polynomials of height
at most H is

2d

⎛

⎝
∏

prime �

(1 − �−min{�,d+1})

⎞

⎠ Hd+1 + O

(
Hd+1

log H

)

.

3 Möbius randomness law

For any d, k, m ∈ N and H � 1 we let

Gk,m(H ; d) :=
∑

P∈Z[t], deg(P)=d
|P|�H, P>0

�(P(k))�(P(m)), (3.1)

where �(n) is the von Mangoldt function. The main result of this section is
the following asymptotic for Gk,m(H ; d) as H → ∞ that exhibits an effective
dependence on k and m.

Theorem 3.1 Fix any d ∈ N and δ > 0. Then for all H � 1, A > 0, and all
natural numbers k, m � (log H)δ , k �= m, we have

Gk,m(H ; d) = 2d Hd+1
∏

p prime
p|k−m

p

p − 1
+ OA

(
Hd+1(log H)−A

)
,

where the implied constant is independent of k, m and H.

3.1 Using Möbius randomness law

As usual,μ(r) is theMöbius function. In broad terms, theMöbius randomness
law is a general principle which states that long sums containing the Möbius
function should exhibit cancellation. An early example is the following result
of Davenport, whose proof is based on bilinear sums techniques.

Lemma 3.2 (Davenport) Fix A > 0. Then for all y � 1 we have

sup
α∈R

∣
∣
∣
∣
∣
∣

∑

r∈N∩[1,y]
μ(r)eirα

∣
∣
∣
∣
∣
∣
� y(log y)−A,

where the implied constant depends only on A.

Proof See [22] or [39, Thm. 13.10].
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Recall that for r ∈ N we have �(r) = −∑
d|r μ(d) log d. We define the

truncated von Mangoldt function

�z(r) := −
∑

d�z, d|r
μ(d) log d, where z � 1,

which will give rise to the main term in Theorem 3.1 for suitably large z. The
remainder

Ez(r) := �(r) − �z(r)

will contribute to the error term. When taking the sum over r , the variable d in
Ez(r) = −∑

z<d,d|r μ(d) log d runs over a long segment, so the presence of
μ(d) will give rise to cancellations. In particular, �z(r) is a good approxima-
tion to �(r) for suitably large z and when one sums over r . The advantage of
this is that one can easily take care of various error terms in averages involving
�z(r), due to truncation.

We shall use the following corollary of Lemma 3.2.

Corollary 3.3 Fix A > 0. Then for all y, z � 1 we have

sup
α∈R

∣
∣
∣
∣
∣
∣

∑

r∈N∩[1,y]
Ez(r)eirα

∣
∣
∣
∣
∣
∣
�A y(log y)(log z)−A,

where the implied constant depends only on A.

Proof See [39, Eq. (19.17)].

For a function F : Z → R we denote

SF (α) :=
∑

c∈Z
|c|�(d+1)M d H

F(c)eicα,

where M = max{k, m}. Recall that for t ∈ R, H ∈ [1, ∞) the Dirichlet
kernel is defined as

DH (t) :=
∑

|c|�H

eict .

We will also use D+
H (t) := ∑

0<c�H eict .
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Lemma 3.4 For any integers k, m and any functions f, g : Z → R we have
∑

P ∈ Z[t], P > 0
|P| � H, deg(P) = d

f (P(k))g(P(m))

= 1

4π2

∫

(−π,π ]2
S f (α1)Sg(α2)D+

H (kdα1 + mdα2)

×
d−1∏

j=0

DH (k jα1 + m jα2) dα.

Proof. Firstly, we write
∑

|P| � H
P > 0

f (P(k))g(P(m))

=
∑

|k1|,|k2|�(d+1)M d H

f (k1)g(k2)
∑

|P| � H
P > 0

1(k1 = P(k))1(k2 = P(m)).

The following identity holds for all integers r and s:

1(r = s) = 1

2π

∫ π

−π

ei(r−s)αdα.

Using it twice turns the sum into

1

4π2

∫ π

−π

∫ π

−π

∑

|k1|�(d+1)M d H

f (k1)e
−ik1α1

∑

|k2|�(d+1)M d H

g(k2)e
−ik2α2

×
∑

|P|�H
P>0

ei(P(k)α1+P(m)α2)dα1dα2.

The sums over k1 and k2 are equal to S f (α1) and Sg(α2), respectively. To
analyse the sum over P we write P(t) = ∑d

j=0 c j t j and recall that we have
cd ∈ (0, H ]. We obtain

∑

|P| � H
P > 0

ei(P(k)α1+P(m)α2) = D+
H (kdα1 + mdα2)

d−1∏

j=0

DH (k jα1 + m jα2).
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Before proceeding we recall a well-known result of Lebesgue [62,
Eq. (12.1), p. 67],

∫ π

−π

|DH (t)|dt = O(log H). (3.2)

Lemma 3.5 For any integers k �= m and any functions f, g : Z → R we
have

∑

|P|�H
P>0

f (P(k))g(P(m)) � ‖S f ‖∞S|g|(0)Hd−1M (log H)2

|k − m| ,

where ‖S f ‖∞ := max{|S f (α)| : α ∈ R}, and the implied constant depends at
most on d.

Proof The bounds |Sg(α)| � S|g|(0), |D+
H (α)| � H, |DH (α)| � 1+ 2H and

Lemma 3.4 give

∑

|P|�H
P>0

f (P(k))g(P(m))

� ‖S f ‖∞S|g|(0)Hd−1
∫

(−π,π ]2
|DH (α1 + α2)||DH (kα1 + mα2)|dα.

The change of variables t1 = α1 +α2, t2 = kα1 + mα2 shows that the integral
is at most

1

|k − m|
∫ 2π

−2π

∫ 2πM

−2πM
|DH (t1)||DH (t2)|dt.

The Dirichlet kernel DH (t) is an even and 2π -periodic function of t , thus

∫ 2π

−2π

∫ 2πM

−2πM
|DH (t1)||DH (t2)|dt = 4M

∫ π

−π

∫ π

−π

|DH (t1)||DH (t2)|dt.

The proof concludes by invoking Lebesgue’s result (3.2).

Remark 3.6 The proof of Lemma 3.5 makes clear that in order to prove The-
orem 3.1 one needs to range over only two random coefficients and we are
allowed to have the remaining d − 1 coefficients fixed.
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Remark 3.7 It would be interesting to study the N -th moment
∑

P (θP(x)−
SP(x)x)N in (1.6) for N � 3. The proof of Lemma 3.5 can be adapted for
this problem as long as d is not too small compared to N . For example, when
n = 1 one would need to take d � N − 1.

Proposition 3.8 Fix any d � 1, A > 0, and δ1, δ2 > 0 with δ1 < 1. Then
for all z, H � 1 such that H δ1 � z � H and all natural numbers k �= m
satisfying

k, m � (log H)δ2

we have

Gk,m(H ; d) =
∑

P∈Z[t], deg(P)=d
|P|�H, P>0

�z(P(k))�z(P(m)) + OA

(
Hd+1

(log H)A

)

,

where the implied constant does not depend on k, m, H and z.

Proof For both choices f = Ez and f = �z we have | f (t)| �
∑

m|t logm �
(log t)τ (t), where τ is the divisor function. In particular,we get

∑
t�y | f (t)| �

y(log y)2, which shows that

S| f |(0) � H(log H)2M d � H(log H)2+dδ2 .

Furthermore, by Corollary 3.3 we have

‖SEz‖∞ �C M d H(log H)(log z)−C �δ1 H(log H)1+dδ2−C (3.3)

for every C > 0. Therefore, by Lemmas 3.4 and 3.5 we obtain

∣
∣
∣
∣
∣
∣

∑

|P|�H,P>0

Ez(P(k))Ez(P(m))

∣
∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣
∣

∑

|P|�H,P>0

Ez(P(k))�z(P(m))

∣
∣
∣
∣
∣
∣

� M Hd+1

(log H)C−2dδ2−5
.

UsingM � (log H)δ2 and letting A = C − (2d + 1)δ2 − 5 gives the required
error term. The proof now concludes by recalling that � = �z + Ez .

For later usewe need a version of this result for one polynomial value instead
of two but with the additional condition that the polynomial is in an arithmetic
progression.
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Lemma 3.9 Fix d � 1 and δ1, δ2 > 0with δ1 < 1. Then for all z, H � 1, A > 0,
all natural numbers k, 
, and all R ∈ (Z/
)[t] of degree at most d such that

k � (log H)δ2, H δ1 � z � H, 
 � H

we have

∑

|P| � H, P > 0
deg(P) = d

P ≡ R (mod 
)

�(P(k)) −
∑

|P| � H, P > 0
deg(P) = d

P ≡ R (mod 
)

�z(P(k)) = OA

(
Hd+1

(log H)A

)

,

where the implied constant does not depend on k, m, H, R, 
 and z.

The crucial point is that the estimate is uniform in the progression.

Proof Using that � − �z = Ez turns the left hand side into

( ∑

0 < cd � H
cd ≡ rd (mod 
)

eicd kdα1

) d−1∏

j=0

( ∑

|c j | � H
c j ≡ r j (mod 
)

eic j k j α1

)

.

Writing P(t) = ∑d
j=0 c j t j and choosing integers 0 � r j < 
 such that

R(t) ≡ ∑d
j=0 r j t j (mod 
), converts the right hand sum over P into

( ∑

0<cd�H
cd≡rd (mod 
)

eicd kdα1

) d−1∏

j=0

( ∑

|c j |�H
c j ≡r j (mod 
)

eic j k j α1

)

.

For each j �= 0 we bound the sum over c j trivially by O(H). Using (3.3) to
bound SEz gives

∑

|P|�H, P>0
deg(P)=d

P≡R(mod 
)

Ez(P(k)) �δ1 H(log H)1+dδ2−C Hd
∫ π

−π

∣
∣
∣
∣

∑

|c0|�H
c0≡r0(mod 
)

eic0α1

∣
∣
∣
∣dα1.

It suffices to prove that the integral is O(log H), since taking C large enough
compared to dδ2 will complete the proof.

Letting c0 = b
 + r0 makes the sum over c0 equal to

eir0α1
∑

|b+r0/
|�H/


eib
α1 .
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Since |r0| � 
, the terms in the sum over b that do not satisfy |b| � H/
 are
at most O(1) with an absolute implied constant. Hence,

∫ π

−π

∣
∣
∣
∣

∑

|c0| � H
c0 ≡ r0 (mod 
)

eic0α1

∣
∣
∣
∣dα1

� 1 +
∫ π

−π

∣
∣
∣
∣

∑

|b| � H/


eib
α1

∣
∣
∣
∣dα1 = 1 + 1




∫ π


−π


|DH/
(t)|dt.

Since |DH/
(t)| is even and has period 2π we can bound the integral by
� ∫ π

−π
|DH/
(t)|dt . Alluding to Lebesgue’s result (3.2) is now sufficient to

finish the proof.

3.2 The main term

It now remains to estimate the sum involving �z in Proposition 3.8. This will
be straightforward but somewhat involved because we need to keep track of
the dependence of the error term on the parameters k and m.

Lemma 3.10 For all z, H � 1 with z2 � H and all distinct k, m ∈ N we
have

∑

P∈Z[t]
|P|�H, P>0
deg(P)=d

�z(P(k))�z(P(m))

= 2d Hd+1
∑

c,l0∈N
cl0�z

gcd(c,l0)=1

μ(c)μ(l0)2 gcd(l0, k − m)

(cl0)2

⎛

⎜
⎜
⎜
⎜
⎝

∑

t∈N
cl0t�z

gcd(t,cl0)=1

μ(t) log(cl0t)

t

⎞

⎟
⎟
⎟
⎟
⎠

2

+ O(Hd z3),

where the implied constant depends only on d.

Proof Write c = (c0, . . . , cd) and P(t) = Pc(t) = ∑d
i=0 ci t i . The left hand

side becomes

∑

k1,k2�z

μ(k1)μ(k2) log(k1) log(k2)
∑

c∈(Z∩[−H,H ])d+1, cd>0
k1|Pc(k), k2|Pc(m)

1. (3.4)
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We only need to consider the terms corresponding to square-free k1 and k2.
Then l0 = gcd(k1, k2), l1 = k1/ l0, l2 = k2/ l0 are square-free and pairwise
coprime. The simultaneous conditions k1 | Pc(k), k2 | Pc(m) can be written
equivalently as

Pc(k) ≡ Pc(m) ≡ 0 (mod l0) , l1 | Pc(k), l2 | Pc(m).

Then splitting the summation over each ci in arithmetic progressions modulo
l0l1l2 turns the sum over c into

∑

b∈(Z∩[0,l0l1l2))d+1

Pb(k)≡Pb(m)≡0(mod l0)
l1|Pb(k), l2|Pb(m)

�
{
c ∈ (Z ∩ [−H, H ])d+1 : cd > 0, c ≡ b (mod l0l1l2)

}
.

Since z2 � H we have l0l1l2 � k1k2 � z2 � H . Therefore, the summand
�{c} is

1

2

(
2H

l0l1l2

)d+1

+ O

((
H

l0l1l2

)d
)

.

By the Chinese Remainder Theorem, the number of terms in the sum over b is

∏

p prime
p|l0

�{b ∈ Fd+1
p : Pb(k) = Pb(m) = 0}

∏

p prime
p|l1

�{b ∈ Fd+1
p : Pb(k) = 0}

×
∏

p prime
p|l2

�{b ∈ Fd+1
p : Pb(m) = 0},

where we used that each li is square-free and that gcd(li , l j ) = 1 for all i �= j .
Fixing all bi except b0 shows that

�{b ∈ Fd+1
p : Pb(k) = 0} = �{b ∈ Fd+1

p : Pb(m) = 0} = pd .

Fixing all bi except b0 and b1 shows that �{b ∈ Fd+1
p : Pb(k) = Pb(m) = 0}

equals pd−1 if p � k − m and pd if p | k − m. Hence, the number of terms in
the sum over b is

(l1l2)
d

∏

prime p|l0
p|k−m

pd
∏

prime p|l0
p�k−m

pd−1 = (l1l2)
dld−1

0 gcd(l0, k − m).
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698 A. N. Skorobogatov, E. Sofos

Hence, (3.4) becomes

2d Hd+1
∑

l0,l1,l2∈N
gcd(li ,l j )=1 for i �= j

l0l1, l0l2�z

μ(l0)
2μ(l1)μ(l2) log(l0l1) log(l0l2)

gcd(l0, k − m)

l20l1l2

up to a quantity whose modulus is

� Hd
∑

l0,l1,l2∈N
gcd(li ,l j )=1 for i �= j

l0l1, l0l2�z

μ(l0)
2μ(l1)

2μ(l2)
2 log(l0l1) log(l0l2)

gcd(l0, k − m)

l0
.

(3.5)

The condition gcd(l1, l2) = 1 has indicator function given by

∑

c∈N
c|gcd(l1,l2)

μ(c) =
∑

c,t1,t2∈N
l1=ct1, l2=ct2

μ(c),

hence the sum over l0, l1, l2 in the main term can be written as

∑

c,l0,t1,t2∈N
gcd(l0,ct1t2)=1
l0ct1, l0ct2�z

μ(l0)
2μ(c)μ(ct1)μ(ct2) log(l0ct1) log(l0ct2)

gcd(l0, k − m)

l20c2t1t2

=
∑

c∈N∩[1,z]

μ(c)

c2
∑

l0,t1,t2∈N
gcd(l0,ct1t2)=1
gcd(c,t1t2)=1
l0ct1, l0ct2�z

μ(l0)
2μ(t1)μ(t2) log(l0ct1) log(l0ct2)

× gcd(l0, k − m)

l20 t1t2
,

where we used that the presence of μ(ct1)μ(ct2) forces gcd(c, t1t2) = 1 and
μ(ct1)μ(ct2) = μ(c)2μ(t1)μ(t2). The variables t1, t2 in the last sum are now
independent hence we get the sum in the lemma. Turning to (3.5), we use
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Schinzel Hypothesis on average and rational points 699

gcd(l0, k − m) � l0 to bound it by

� Hd
∑

l0,l1,l2∈N
l0l1, l0l2�z

μ(l0)
2μ(l1)

2μ(l2)
2 log(l0l1) log(l0l2)

� Hd(log z)2

⎛

⎜
⎜
⎝

∑

l0,l1∈N
l0l1�z

1

⎞

⎟
⎟
⎠

2

� Hd z2(log z)4,

which completes the proof.

Our aim is now to prove asymptotics for the sum over t in the right hand
side of the equation in Lemma 3.10. We need the following lemma.

Lemma 3.11 Fix any A > 0. Then for all T � 1 and q ∈ N ∩ [1, T 1/2] we
have

∑

t�T/q
gcd(t,q)=1

μ(t) log(qt)

t
= − q

ϕ(q)
+ OA((log T )−A),

where the implied constants depend only on A.

Proof This can be deduced directly from

∑

t�T
gcd(t,q)=1

μ(t) log t

t
= − q

ϕ(q)
+ OA((log T )−A) and

∑

t�T
gcd(t,q)=1

μ(t)

t
= OA((log T )−A), (3.6)

which are consequences of the prime number theorem, see [51, Ex. 17, p. 185].

Recall the following standard bounds from [51, Thm. 2.9, Thm. 2.11]:

1

ϕ(n)
� log log n

n
, τ (n) � nO( 1

log log n )
. (3.7)
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700 A. N. Skorobogatov, E. Sofos

Lemma 3.12 Keep the setting of Lemma 3.10 and fix an arbitrary positive
constant A. Then the sum over the c, l0 in Lemma 3.10 equals

∏

prime p|k−m

p

p − 1
+ OA

( |k − m|
(log z)A

)

,

where the implied constant does not depend on k, m, z and H.

Proof To apply Lemma 3.11 we must have cl0 � z1/2. Using the bound∑
n�z 1/n � log z we see that the contribution of the terms failing this con-

dition is in modulus at most

∑

c,l0∈N

cl0>z1/2

|k − m|
(cl0)2

⎛

⎝
∑

t�z

log z

t

⎞

⎠

2

� |k − m|(log z)4
∑

s>z1/2

τ(s)

s2
,

where we write s = cl0. By (3.7) the sum over s is � ∑
s>

√
z s−3/2 � z−1/4,

which is satisfactory. By Lemma 3.11 the remaining terms make the following
contribution:

∑

c,l0∈N

cl0�z1/2
gcd(c,l0)=1

μ(c)μ(l0)2 gcd(l0, k − m)

(cl0)2

(
(cl0)2

ϕ(cl0)2
+ OA

(
1

(log z)A

))2

.

The error term is

� 1

(log z)A

∑

c,l0∈N

|k − m|
(cl0)2

� |k − m|
(log z)A

.

The main term equals

∑

c,l0∈N

cl0�z1/2
gcd(c,l0)=1

μ(c)μ(l0)2 gcd(l0, k − m)

ϕ(cl0)2

=
∑

c,l0∈N
gcd(c,l0)=1

μ(c)μ(l0)2 gcd(l0, k − m)

ϕ(cl0)2
+ O

⎛

⎜
⎜
⎝

∑

c,l0∈N

cl0>z1/2

|k − m|
ϕ(cl0)2

⎞

⎟
⎟
⎠ .

123



Schinzel Hypothesis on average and rational points 701

By (3.7) we have

∑

c,l0∈N

cl0>z1/2

1

ϕ(cl0)2
=

∑

s>z1/2

τ(s)

ϕ(s)2
�

∑

s>z1/2

s−3/2 � z−1/4.

The main term has Euler product

∑

c,l0∈N
gcd(c,l0)=1

μ(c)μ(l0)2 gcd(l0, k − m)

ϕ(cl0)2

=
∏

p prime

(

1 − 1

(p − 1)2
+ gcd(p, k − m)

(p − 1)2

)

.

Only the primes dividing k − m contribute. In particular, we get the product

∏

prime p|k−m

(

1 + 1

p − 1

)

=
∏

prime p|k−m

p

p − 1
,

which concludes the proof.

Using Lemmas 3.10 and 3.12 with z = H1/8 we obtain

Lemma 3.13 Fix any δ > 0. Then for all H � 1, A > 0, and all pairs of
distinct natural numbers k, m � (log H)δ we have

∑

P∈Z[t], deg(P)=d
|P|�H, P>0

�z(P(k))�z(P(m))

= 2d Hd+1
∏

prime p|k−m

p

p − 1
+ OA

(
Hd+1(log H)−A

)
,

where z = H1/8 and the implied constant does not depend on k, m, z and H.

Combining Proposition 3.8 with Lemma 3.13 proves Theorem 3.1.

3.3 A variant

We shall also need the following variant of Theorem 3.1.

Lemma 3.14 Fix any d � 1 and δ > 0. Then for all H � 1, A > 0, all
natural numbers k, 
, and all R ∈ (Z/
)[t] such that k � (log H)δ and
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 � H we have
∑

|P|�H, P>0, deg(P)=d
P(k) prime,P≡R(mod
)

log P(k)

= 2d Hd+1


dϕ(
)
1(gcd(R(k), 
) = 1) + OA

(
Hd+1

(log H)A

)

,

where the implied constant does not depend on k, H, R and 
.

Proof If gcd(R(k), 
) �= 1, then P(k) is a prime divisor of 
. Since there are
O(Hd) polynomials P(t) of degree d with |P| � H such that P(k) is equal
to a given integer, the sum in the lemma is � �{� prime : � | 
}Hd log H .
The number of prime divisors is � log
 � log H , thus the proof is complete
when gcd(R(k), 
) �= 1.

Let us now assume that gcd(R(k), 
) = 1. We first transition to the von
Mangoldt function by noting that

∑

|P|�H, P>0
deg(P)=d

P≡R(mod 
)

�(P(k)) −
∑

|P|�H, P>0, deg(P)=d
P(k) prime

P≡R(mod 
)

log P(k)

�
∑

2�α�log H

∑

� prime
�α�(d+1)Hkd

(log �)
∑

|P|�H
deg(P)=d
P(k)=�α

1.

The last sum over P is O(Hd), thus the error term is� (log H)2Hd(Hkd)1/2,
which is acceptable. To conclude the proof it therefore suffices to consider∑

P �(P(k)). Define z = H1/4. By Lemma 3.9 it is enough to estimate

∑

|P|�H, P>0
deg(P)=d, P≡R(mod 
)

�z(P(k))

= −
∑

k1�z
gcd(k1,
)=1

μ(k1)(log k1)
∑

|P|�H, P>0
k1|P(k), P≡R(mod 
)

1,

where gcd(k1, 
) = 1 follows from gcd(R(k), 
) = 1. Hence the sum over
P is

2d

(
Hd+1

kd+1
1 
d+1

+ O

(

1 + Hd

kd
1
d

))

� {P ∈ (Z/k1)[t] : deg(P) � d,

P(k) ≡ 0 (mod k1)}.
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Since �{P} = kd
1 and k1 � z � H , the above becomes

2d Hd+1


d+1

1

k1
+ O(Hd).

The error term contribution is

� Hd
∑

k1�z

log k1 � Hd z log z � Hd+1/2.

The main term contribution is

−2d Hd+1


d+1

∑

k1�z
gcd(k1,
)=1

μ(k1) log k1
k1

= 2d Hd+1


dϕ(
)
+ OA

(
Hd+1

logA z

)

,

where we used (3.6).

4 Dispersion

Recall that V (x, H)was defined in (1.6). In this section we prove V (x, H) �
x2/(log x)−1 via Linnik’s dispersion method [45]. Theorem 1.9 then follows
by the Cauchy–Schwarz inequality R(x, H)2 � V (x, H). Removing the
condition Pi ≡ Qi (mod M) can only increase �Poly(H)V (x, H), thus

�Poly(H)V (x, H)

�
∑

P ∈ Z[t]n , |P| � H
deg(Pi ) = di , Pi > 0

θP(x)2 − 2x
∑

P ∈ Z[t]n , |P| � H
deg(Pi ) = di , Pi > 0

SP(x)θP(x)

+x2
∑

P ∈ Z[t]n , |P| � H
deg(Pi ) = di , Pi > 0

SP(x)2. (4.1)

The term
∑

P θP(x)2 is studied in §4.1 using Theorem 3.1. The terms∑
P SP(x)2 and

∑
P SP(x)θP(x) are estimated in §4.2 and §4.3, respectively.

Throughout this section d = d1 + . . . + dn . We write Pi (t) = ∑di
j=0 ci j t j

for each i = 1, . . . , n.

4.1 The term
∑

P θP(x)2

Recall that Gk,m(H ; di ) is defined in (3.1).
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Lemma 4.1 Fix any δ > 0. For all x, H with 1 � x � (log H)δ we have

∑

P ∈ Z[t]n , |P| � H
deg(Pi ) = di , Pi > 0

θP(x)2

= 2
∑

1 � m < k � x
k ≡ m ≡ n0 (mod M)

n∏

i=1

Gk,m(H ; di ) + O
(

x Hd+n(log H)n
)

,

where the implied constant depends only on δ and di .

Proof First, note that for all j ∈ N we have 1primes( j) log j � �( j), where
� is the von Mangoldt function. Therefore, the sum over the Pi in our lemma
is at most

∑

P1, . . . , Pn
|Pi | � H, Pi > 0

⎛

⎜
⎜
⎜
⎝

∑

m � x
m ≡ n0 (mod M)

�(P1(m)) . . . �(Pn(m))

⎞

⎟
⎟
⎟
⎠

2

=
∑

1 � k, m � x
k ≡ m ≡ n0 (mod M)

n∏

i=1

Gk,m(H ; di ).

The contribution of the diagonal terms k = m is at most

∑

1�m�x

n∏

i=1

∑

|Pi |�H, Pi >0
deg(Pi )=di

�(Pi (m))2.

Using 0 � �(h) � log h gives the bound

� (log H)n
∑

1�m�x

n∏

i=1

∑

|Pi |�H, Pi >0
deg(Pi )=di

�(Pi (m)).

We can now apply Lemma 3.14 with 
 = 1 and d = di . It shows that the sum
over the Pi is O(H1+di ), hence

(log H)n
∑

1�m�x

n∏

i=1

∑

|Pi |�H, Pi >0
deg(Pi )=di

�(Pi (m)) � (log H)nx Hd+n,
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which is sufficient for the proof.

Remark 4.2 Lemma 4.1 shows why we need to have x/(log H)n → +∞:
if x is not this large compared to the typical size of the coefficients of the
polynomials, then the diagonal terms in the second moment dominate; using
Lemmas 4.4, 4.7, 4.9 it is then easy to see that the three principal terms do not
cancel. In particular, one has

V (x, H) � x(log H)n � x2,

which is not sufficient for proving Theorem 1.5.

Our next step is to use Theorem 3.1 to estimate the sum over m, k in
Lemma 4.1. This will give rise to an average of the multiplicative function

∏

prime p|t

(

1 + 1

p − 1

)n

.

For this we need the following lemma.

Lemma 4.3 Fix any n ∈ N and c > 0. Let f be a function defined on the
primes such that | f (p)| � c/p for all p. Then for all x, T � 1 we have

∑

t∈N
t�x

∏

prime p|t
(1 + f (p))n = O(x)

and

∫ T

0

∑

t∈N
t�x

∏

prime p|t
(1 + f (p))ndx = T 2

2

∏

prime p

(

1 + (1 + f (p))n − 1

p

)

+ O(T 3/2),

where the implied constants depend only on n and c.

Proof Wintner’s theorem(as generalisedby Iwaniec–Kowalski [39,Eq. (1.72)])
states that for any arithmetic function g and any monotonic and bounded
h : [0, ∞) → R, one has

∑

t�x

(g ∗ h)(t) =
∫ x

0

⎛

⎝
∑

t�y

g(t)

t
h
( y

t

)
⎞

⎠ dy + O

⎛

⎝
∑

t�x

|g(t)|
⎞

⎠ (4.2)
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for all x � 1. Here g ∗ h is the Dirichlet convolution. Letting h = 1 and

g(t) = |μ(t)|
∏

prime p|t

(
(1 + f (p))n − 1

)

gives (g ∗ h)(t) = ∏
p|t (1 + f (p))n , hence, by (4.2), we obtain

∑

t∈N
t�x

∏

prime p|t
(1 + f (p))n =

∫ x

0

∑

t�y

g(t)

t
dy + O

⎛

⎝
∑

t�x

|g(t)|
⎞

⎠ . (4.3)

For a prime p we have

|g(p)| =
∣
∣
∣
∣
∣
∣

n∑

j=1

(
n

j

)

f (p) j

∣
∣
∣
∣
∣
∣
�

n∑

j=1

(
n

j

)
c j

p j
� 2α

p

for some positive constant α that depends only on n and c. Therefore, by (3.7)
we obtain

t |g(t)| � |μ(t)|τ(t)α = O(t1/2).

This implies that for all x, y � 1 one has

∑

t�x

|g(t)| �
∑

t�x

t−1/2 � x1/2 and
∑

t>y

|g(t)|
t

�
∑

t>y

t−3/2 � y−1/2.

Therefore,

∑

t�y

g(t)

t
=
∑

t∈N

g(t)

t
+ O(y−1/2) =

∏

p

(

1 + g(p)

p

)

+ O(y−1/2).

Using 1+ g(p) = (1+ f (p))n in the product and alluding to (4.3), we obtain

∑

t∈N
t�x

∏

prime p|t
(1 + f (p))n = x

∏

prime p

(

1 + (1 + f (p))n − 1

p

)

+ O(x1/2).

Clearly this is O(x), which proves the first claim in the lemma. The second
claim follows by integrating over the range 0 � x � T .

Recall that γn(�) was defined in (2.5).
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Lemma 4.4 Fix any δ > 0. For all x, H with 1 � x � (log H)δ we have

∑

P ∈ Z[t]n , |P| � H
deg(Pi ) = di , Pi > 0

θP(x)2 = x2Mn−2

ϕ(M)n
2d Hd+n

∏

prime ��M

γn(�)

+ O
(

x Hd+n(log H)n + x3/2Hd+n
)

,

where the implied constant depends only on δ, n, M and di .

Proof Taking sufficiently large A in Theorem 3.1 and using Lemma 4.1 yields

∑

P1,...,Pn|Pi |�H, Pi >0

θP(x)2 = 2d+1Hd+n T0(x) + OA

(
x Hd+n(log H)n + Hd+n(log H)−A

)
,

where

T0(x) :=
∑

1�m<k�x
k≡m≡n0(mod M)

∏

prime p|k−m

pn

(p − 1)n
.

We have k − m = t M for some integer t . Hence, T0(x) equals

∑

t∈N
1<t M�x

⎛

⎝
∏

p|t M

pn

(p − 1)n

⎞

⎠
∑

m∈N
m<x−t M

m≡n0(mod M)

1

=
∑

t∈N
1<t M�x

⎛

⎝
∏

p|t M

pn

(p − 1)n

⎞

⎠
( x

M
− t + O(1)

)
. (4.4)

Define a function f on the primes such that f (p) = 1/(p − 1) if p � M , and
f (p) = 0 if p | M . Then

∏

prime p|t M

pn

(p − 1)n
= Mn

ϕ(M)n

∏

prime p|t
(1 + f (p))n,

hence the right hand side of (4.4) is

Mn

ϕ(M)n

∑

t�x/M

⎛

⎝
∏

prime p|t
(1 + f (p))n

⎞

⎠
( x

M
− t

)
+ O(x),
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708 A. N. Skorobogatov, E. Sofos

where we used the first part of Lemma 4.3 to bound the contribution of the
O(1) term. Using

∫ x/M
t 1dy = x/M − t we can write the sum over t as

∫ x/M

0

∑

t�y

∏

p|t
(1 + f (p))ndy.

Invoking the second part of Lemma 4.3 shows that this is

x2

2M2

∏

prime p�M

γn(p) + O(x3/2),

which concludes the proof.

It is convenient to truncate the product over � in Lemma 4.4 now, as it will
make it easier to compare

∑
P θP(x)2 to

∑
P θP(x)SP(x) and

∑
P SP(x)2.

Lemma 4.5 Fix n ∈ N. Then for all x � 1 we have

∏

prime �>log x

γn(�) = 1 + O

(
1

log x

)

.

Proof. The bound (1+ ψ)n � 1+ nψ + n2nψ2, valid for all 0 < ψ < 1, can
be used for ψ = 1/(� − 1) to show that

γn(�) = 1 − 1

�
+ 1

�

(

1 + 1

� − 1

)n

� 1 − 1

�
+ 1

�

(

1 + n

� − 1
+ n2n

(� − 1)2

)

� 1 + n2n+1

�(� − 1)
.

In particular, log γn(�) � n2n+1

�(�−1) . We obtain

log

⎛

⎜
⎜
⎝

∏

prime �
�>log x

γn(�)

⎞

⎟
⎟
⎠ �

∑

prime �
�>log x

n2n+1

�(� − 1)
� n2n+1

∑

k∈N
k>log x

1

k(k − 1)

� n2n+1

−1 + log x
.
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Exponentiating gives

∏

prime �

� > log x

γn(�) � exp

(
n2n+2

−1 + log x

)

= 1 + O

(
1

log x

)

.

Combining Lemma 4.5 with Lemma 4.4 gives

∑

P∈(Z[t])n,|P|�H
deg(Pi )=di ,Pi >0

θP(x)2 = x2Mn−2

ϕ(M)n
2d Hd+n

∏

��M
��log x

γn(�)

+ O

(
x2Hd+n

log x
+ x Hd+n(log H)n

)

.

(4.5)

4.2 The term
∑

P SP(x)2

Let

W =
∏

prime �
��M, ��log x

�.

The prime number theorem implies that

log W �
∑

prime ��log x

log � � 2 log x,

whence we obtain

W � x2. (4.6)

Lemma 4.6 For every square-free m ∈ N we have

∑

R1, . . . , Rn ∈ (Z/m)[t]
deg(Ri ) � di

∏

prime �|m

(
1 − �−1Z R1...Rn (�)

(1 − �−1)n

)2

= mn+d
∏

prime �|m
γn(�).
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710 A. N. Skorobogatov, E. Sofos

Proof A standard argument based on the Chinese remainder theorem shows
that the left hand side is a multiplicative function of m. Invoking Lemma 2.6
concludes the proof.

Lemma 4.7 For 1 � x � H1/4 we have

∑

P∈Z[t]n, |P|�H
deg(Pi )=di , Pi >0

SP(x)2 = 2d Hd+n Mn−2

ϕ(M)n

∏

prime ��M
��log x

γn(�) + O(Hd+n−1/2),

where the implied constant depends only on n, M and d1, . . . , dn.

Proof By (1.5) our sum can be rewritten as

M2n−2

ϕ(M)2n

∑

P∈(Z[t])n, |P|�H
deg(Pi )=di , Pi >0

gcd(M,
∏n

i=1 Pi (n0))=1

BP(x)2, where

BP(x) :=
∏

prime ��M
��log x

1 − �−1Z P1...Pn (�)(
1 − �−1

)n . (4.7)

If the coefficients of P and R in Z[t] are congruent modulo �, then Z P(�) =
Z R(�). Hence, denoting the reduction of Pi (t) in (Z/W )[t] by Ri (t), the sum
over the Pi in (4.7) becomes

∑

R1,...,Rn∈(Z/W )[t]
deg(Ri )�di

BR(x)2 �

⎧
⎪⎪⎨

⎪⎪⎩
P1, . . . , Pn ∈ Z[t] :

|Pi | � H, Pi > 0
deg(Pi ) = di ,

Pi ≡ Ri (mod W )

gcd(M, Pi (n0)) = 1

⎫
⎪⎪⎬

⎪⎪⎭
.

By Möbius inversion we have

∑

ki ∈N
ki |M, ki |Pi (n0)

μ(ki ) =
{
1, if gcd(M, Pi (n0)) = 1,

0, otherwise.
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Hence, denoting the reduction of Pi (t) in (Z/ki )[t] by Fi (t), we obtain

∑

R1, . . . , Rn ∈ (Z/W )[t]
BR(x)2

∑

k∈Nn, ki |M

(
n∏

i=1

μ(ki )

)

×
∑

F1 ∈ (Z/k1)[t], . . . , Fn ∈ (Z/kn)[t]
Fi (n0) ≡ 0 (mod ki )

∑

P1, . . . , Pn ∈ Z[t]
|Pi | � H, Pi > 0
Pi ≡ Ri (mod W )

Pi ≡ Fi (mod ki )

1,

where deg(Pi ) = di , max{deg(Ri ), deg(Fi )} � di . Viewing the sum over the
Pi as a sum over 1 + di integers in arithmetic progressions modulo ki W we
obtain

∑

R∈(Z/W )[t]n

deg(Ri )�di

BR(x)2
∑

k∈Nn, ki |M

(
n∏

i=1

μ(ki )

)

×
∑

Fi ∈(Z/ki )[t]
Fi (n0)≡0(mod ki )

deg(Fi )�di

n∏

i=1

(
2di H1+di

(ki W )1+di
+ O

(

1 + Hdi

W di

))

.

Nownote that W � H1/2 due to x � H1/4 and (4.6). The sumover F1, . . . , Fn

has
∏n

i=1 kdi
i terms because the condition Fi (n0) ≡ 0 (mod ki ) determines

uniquely the constant term of every Fi by n0 and the other coefficients of Fi .
This gives

∑

R∈(Z/W )[t]n

deg(Ri )�di

BR(x)2
∑

k∈Nn, ki |M

(
n∏

i=1

μ(ki )

ki

)
(
1 + O(H−1/2)

) 2d Hd+n

W d+n

and the identity
∑

k|M μ(k)k−1 = ϕ(M)M−1 shows that the sum over P
in (4.7) is

ϕ(M)n

Mn

2d Hd+n

W d+n

(
1 + O(H−1/2)

) ∑

R∈(Z/W )[t]n

deg(Ri )�di

∏

prime ��M
��log x

(
1 − �−1Z P1...Pn (�)(

1 − �−1
)n

)2

.
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712 A. N. Skorobogatov, E. Sofos

By Lemma 4.6 applied to W , the quantity in (4.7) becomes

2d Hd+n Mn−2

ϕ(M)n

(
1 + O(H−1/2)

) ∏

��M
��log x

γn(�)

= 2d Hd+n Mn−2

ϕ(M)n

∏

��M
��log x

γn(�) + O(Hd+n−1/2)

because
∏

� γn(�) converges.

Remark 4.8 It would be interesting to study moments higher than the second
moment in the setting of Lemma 4.7. This has been studied previously by
Kowalski [41].

4.3 The term
∑

P SP(x)θP(x)

Lemma 4.9 Fix any A2 > 0. Then for all x, H � 1 such that 1 � x �
(log H)A2 we have

∑

P∈(Z[t])n, |P|�H
deg(Pi )=di , Pi >0

SP(x)θP(x) = x2d Hd+n Mn−2

ϕ(M)n

∏

prime ��M
��log x

γn(�) + O
(

Hd+n
)

.

Proof. Using the definition of θP in (1.4) and changing the order of summation
turns the sum over P in our lemma into

∑

m∈N∩[1,x]
m≡n0(mod M)

∑

P∈(Z[t])n, |P|�H
deg(Pi )=di , Pi >0

Pi (m) prime for i=1,...,n

SP(x)

n∏

i=1

log Pi (m).

By (1.5) and (4.7) we can write this as

Mn−1

ϕ(M)n

∑

m∈N∩[1,x]
m≡n0(mod M)

∑

P∈(Z[t])n, |P|�H
deg(Pi )=di , Pi >0
gcd(M,Pi (n0))=1

Pi (m) prime for i=1,...,n

( n∏

i=1

log Pi (m)
)

BP(x).
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Schinzel Hypothesis on average and rational points 713

Letting Ri denote the reduction of Pi in (Z/W )[t] we note that BP(x) =
BR(x), hence we obtain

Mn−1

ϕ(M)n

∑

1�m�x
m≡n0(mod M)

∑

R∈(Z/W )[t]n

deg(Ri )�di

BR(x)

n∏

i=1

⎛

⎜
⎜
⎝

∑
*

|P|�H
P≡Ri (mod W )

log P(m)

⎞

⎟
⎟
⎠ ,

(4.8)

where
∑ * has the extra conditions deg(P) = di , gcd(P(n0), M) = 1, and

P(m) is prime. The polynomials P with gcd(P(n0), M) �= 1 contribute
O(Hdi log H) towards

∑ * because P(m) must be a prime divisor of M .
Hence, ignoring the condition gcd(P(n0), M) = 1, brings

∑ * to a shape
suitable for the application of Lemma 3.14. Thus for all A > 0 we have

∑
*

|P|�H
P≡R(mod W )

log P(m) = 2di Hdi +1

W di ϕ(W )
1(gcd(Ri (m), W ) = 1)

+ OA

(
Hdi +1

(log H)A

)

.

To study the contribution of the error term towards (4.8) we bound every other∑ * trivially by O(H1+di log H), hence we obtain

� Hd+n

(log H)A−n
x

∑

R∈(Z/W )[t]n

deg(Ri )�di

BR(x) � Hd+n

(log H)A−n
xW d+n(log log x)n,

where we used

BR(x) =
∏

prime ��M
��log x

1 − �−1Z R1...Rn (�)(
1 − �−1

)n �
∏

��log x

(
1 − �−1)−n � (log log x)n

which follows fromMertens’ theorem.Using (4.6), x � (log H)A2 and enlarg-
ing A we see that the contribution towards (4.8) is O(Hd+n(log H)−A). The
main term is

2d Hd+n

W d+nϕ(W )n

Mn−1

ϕ(M)n

∑

1�m�x
m≡n0(mod M)

∑

R∈(Z/W )[t]n, deg(Ri )�di
gcd(Ri (m),W )=1

BR(x).
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714 A. N. Skorobogatov, E. Sofos

By Lemma 2.7 and a factorisation argument this becomes

2d Hd+n Mn−1

ϕ(M)n (x/M + O(1))
∏

�|W
γn(�)

= 2d Hd+n x Mn−2

ϕ(M)n

∏

�|W
γn(�) + O

(
Hd+n

)
.

4.4 The proof of Theorem 1.9

Recall that A1, A2 are fixed constantswith n < A1 < A2 and that (log H)A1 <

x � (log H)A2 . Then (4.5), together with Lemmas 4.7 and 4.9 , shows that
the right hand side of (4.1) is � x2Hd+n(log x)−1. The reason behind this is
that the main terms compensate each other. Since Hd+n � �Poly(H), this
concludes the proof of Theorem 1.9.

4.5 The proof of Theorem 1.5

To study the numerator in the left hand side of (1.3) we use Theorem 1.9 to
see that for almost all Schinzel n-tuples P the prime counting function θP(x)

is closely approximated by SP(x)x .

Lemma 4.10 Let ε : R → (0, ∞) be a function. Fix any A1, A2 with n <

A1 < A2. Then for any x, H � 2 such that (log H)A1 < x < (log H)A2 we
have

�{P ∈ Poly(H) : P is Schinzel, |θP(x) − SP(x)x | � ε(x)x}
�{P ∈ Poly(H) : P is Schinzel}

= 1 + O

(
1

ε(x)(log x)1/2

)

.

Proof It is enough to show that

�{P ∈ Poly(H) : P is Schinzel, |θP(x) − SP(x)x | > ε(x)x}
�{P ∈ Poly(H) : P is Schinzel}

� 1

ε(x)(log x)1/2
. (4.9)

The values of the function |θP(x)−SP(x)x |ε(x)−1x−1 are non-negative, and
greater than 1when |θP(x)−SP(x)x | > ε(x)x . Thus the left hand side of (4.9)
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Schinzel Hypothesis on average and rational points 715

is at most

1

�{P ∈ Poly(H) : P is Schinzel}
∑

P∈Poly(H)
P is Schinzel

|θP(x) − SP(x)x |
ε(x)x

.

Using Theorem 1.9 we see that this is

� �Poly(H)

�{P ∈ Poly(H) : P is Schinzel}ε(x)−1(log x)−1/2.

An application of Proposition 2.8 concludes the proof.

We next show that if P is Schinzel, thenSP(x) stays at a safe distance from
zero. Thus, SP(x) may be thought of as a ‘detector’ of Schinzel n-tuples.

Lemma 4.11 Let P be a Schinzel n-tuple such that
∏n

i=1 Pi (n0) and M are
coprime. Then there exists a positive constant β0 = β0(n, n0, M, d1, . . . , dn)

such that for all sufficiently large x we have SP(x) > β0(log log x)n−d .

Proof Our assumption implies that

SP(x) �
∏

prime ��M
��d

1 − �−1Z P1...Pn (�)(
1 − �−1

)n

∏

prime ��M
d<��log x

1 − �−1Z P1...Pn (�)(
1 − �−1

)n .

To deal with the product over � � d, we note that Z P1...Pn (�) �= � gives
Z P1...Pn (�) � � − 1. In particular,

∏

prime ��M
��d

1 − �−1Z P1...Pn (�)(
1 − �−1

)n �
∏

prime ��M
��d

�−1

(
1 − �−1

)n � 1.

To deal with the product over � > d we observe that Z P1...Pn (�) �= � implies
that P1 . . . Pn is not identically zero in F�, thus Z P1...Pn (�) � d. This shows
that

∏

prime ��M
d<��log x

1 − �−1Z P1...Pn (�)(
1 − �−1

)n �
∏

prime ��M
d<��log x

1 − d�−1

(
1 − �−1

)n �
∏

d<��log x

1 − d�−1

(
1 − �−1

)n .

For each fixed d ∈ N we have

lim
ψ→0

ψ−2
(

1 − dψ

(1 − ψ)d
− 1

)

= −d(d − 1)

2
.
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716 A. N. Skorobogatov, E. Sofos

In particular, for each d, n ∈ N there exist constantsψd,n > 0, Kd,n > 0, such
that

1 − dψ

(1 − ψ)n
� (1 − ψ)d−n (1 − Kd,nψ

2)

for all ψ ∈ (0, ψd,n). We obtain

∏

d<��log x

1 − d�−1

(
1 − �−1

)n �d,n

∏

max{d,ψ−1
d,n,Kd,n}<��log x

1 − d�−1

(
1 − �−1

)n

�
∏

max{d,ψ−1
d,n,Kd,n}<��log x

(
1 − �−1)d−n (

1 − Kd,n�
−2) .

By Mertens’ estimate this is �d,n (log log x)−n+d .

End of proof of Theorem 1.5. Take A1 = n + A/2, A2 = n + 3A/4 and let
x, H, ε(x) be as in Lemma 4.10. By Lemma 4.11, |θP(x)−SP(x)x | � ε(x)x
implies

θP(x) � SP(x)x − ε(x)x � β0(log log x)n−d x − ε(x)x .

Hence Lemma 4.10 gives

�{P ∈ Poly(H) : P is Schinzel, θP(x) � (β0(log log x)n−d − ε(x))x}
�{P ∈ Poly(H) : P is Schinzel}

= 1 + O

(
1

ε(x)(log x)1/2

)

.

The choice ε(x) = 1
2β0(log log x)n−d gives

�{P ∈ Poly(H) : P is Schinzel, θP(x) � β0
2 (log log x)n−d x}

�{P ∈ Poly(H) : P is Schinzel}
= 1 + O

(
(log log x)d−n

√
log x

)

.
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Since (log H)A1 < x � (log H)A2 , the error term is � (log log log H)d−n ×
(log log H)−1/2, thus,

�
{
P ∈ Poly(H) : P is Schinzel, θP(x) � β0x

2(log log x)d−n

}

�{P ∈ Poly(H) : P is Schinzel}
= 1 + O

(
(log log log H)d−n

√
log log H

)

. (4.10)

It remains to find a lower bound for �Sn+A(P). Observing that for all, except
O(Hn+d−1/2), n-tuples P with |P| � H one has |P| > H1/2, we see that
x � (log H)A2 � (log |P|)A2 � (log |P|)n+A, hence

θP(x) =
∑

m∈N∩[1,x], m≡n0(mod M)
Pi (m) prime for i=1,...,n

n∏

i=1

log Pi (m)

� �Sn+A(P)

n∏

i=1

log((di + 1)H xdi )

due to m � x and |P| � H . From x � (log H)A2 we obtain θP(x) �
�Sn+A(P)(log H)n . By (4.10) all, except

O(Hn+d(log log log H)d−n(log log H)−1/2)

Schinzel n-tuples P ∈ Poly(H) fulfil θP(x) � β0
2 (log log x)n−d x . For these

P we use the upper and the lower bound for θP(x) in conjunction with x �
(log H)A1 to get the following when H �d,n,A 1:

(log H)n+A/3 � (log H)A1

(log log log H)n−d
� β0x

2(log log x)n−d

� θP(x) � �Sn+A(P)(log H)n.

Together with |P| > H1/2, this gives �Sn+A(P) � (log |P|)A/3.

5 Random Châtelet varieties

5.1 Irreducible polynomials

Let K be a finite field extension ofQ of degree r = [K : Q]. Let NK/Q : K →
Q be the norm. Choose a Z-basis ω1, . . . , ωr of the ring of integers OK ⊂ K .
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718 A. N. Skorobogatov, E. Sofos

For z = (z1, . . . , zr ) we define a norm form

NK/Q(z) = NK/Q(z1ω1 + . . . + zrωr ).

For a positive integer d consider the affine Z-space Ad+2
Z

= A1
Z

× Ad+1
Z

,
where Ad+1

Z
= Spec(Z[x0, . . . , xd ]) and A1

Z
= Spec(Z[t]). Let V be the open

subscheme of Ad+2
Z

given by

P(t, x) := xdtd + xd−1td−1 + . . . + x1t + x0 �= 0,

where x = (x0, . . . , xd). Let U be the affine scheme given by

P(t, x) = NK/Q(z) �= 0,

and let f : U → V be the natural morphism. Note that UQ is smooth over VQ

with geometrically integral fibres. Let g : U → A1
Z
be the projection to the

variable t , and let h : U → Ad+1
Z

be the projection to the variable x.
For a ring R and a point m = (m0, . . . , md) ∈ Rd+1 of Ad+1

Z
define

Um = h−1(m). Then g : Um → A1
R \ {P(t,m) = 0} is a morphism given by

coordinate t . For ν ∈ R we define Uν,m = f −1(ν,m).
For a prime p, a point (ν,m) ∈ Zd+2

p belongs to V (Zp) if and only if
P(ν,m) ∈ Z∗

p. Similarly,U (Zp) inZd+2
p ×(OK ⊗Zp) is given by P(ν,m) =

NK/Q(z) ∈ Z∗
p.

Lemma 5.1 Let S be the set of primes where K/Q is ramified. Then for any
p /∈ S and any (ν,m) ∈ V (Zp) the fibre Uν,m has a Zp-point.

Proof This follows from the fact that for any finite unramified extensionQp ⊂
Kv any element of Z∗

p is the norm of an integer in Kv , see [13, Ch. 1, §7].

Lemma 5.2 Let p be a prime and let N ∈ U (Qp). There is a positive integer
M such that if ν ∈ Qp and m ∈ (Qp)

d+1 satisfy

max
(|ν − g(N )|p, |m − h(N )|p

)
� p−M ,

then Uν,m(Qp) �= ∅.

Proof We note that UQ is smooth, so every Qp-point of UQ has an open
neighbourhood U homeomorphic to an open p-adic ball. Since f : UQ →
VQ, VQ → A1

Q
and VQ → Ad+1

Q
are smooth morphisms, g and h are also

smooth. This implies that the maps of topological spaces g : U (Qp) → Qp
and h : U (Qp) → (Qp)

d+1 are open, cf. [21, p. 80]. Thus there exist open
p-adic ballsU1 ⊂ Qp with centre g(N ) andU2 ⊂ (Qp)

d+1 with centre h(N )

such that U1 × U2 ⊂ f (U ).
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Theorem 5.3 Let K be a cyclic extension of Q and let S be the set of primes
where K/Q is ramified. Let P be the set of m ∈ Zd+1 such that P(t,m) is a
Bouniakowsky polynomial. LetM be the set ofm ∈ P such that Um(Zp) �= ∅

for each p ∈ S. When P is ordered by height, there is a subset M ′ ⊂ M of
density 1 such that Um(Q) �= ∅ for every m ∈ M ′. The set M ′ has positive
density in Zd+1 ordered by height.

Remark 5.4 (1) TheBouniakowsky condition at p /∈ S implies thatUm(Zp) �=
∅. Indeed, for m ∈ P the reduction of P(t,m) modulo p is a non-zero
function Fp → Fp. Hence we can find a tp ∈ Zp such that P(tp,m) ∈
Z∗

p and apply Lemma 5.1. Likewise, the positivity of the leading term of
P(t,m), which is the ‘Bouniakowsky condition at infinity’, implies that Um
has real points over large real values of t . Thus in our setting the condition that
Um(Zp) �= ∅ for each p ∈ S implies that Um is everywhere locally soluble.

(2) The existence of a subset M ′ ⊂ M of density 1 can be linked to
the triviality of the unramified Brauer group of Um when K/Q is cyclic and
P(t,m) is an irreducible polynomial, as follows from [19, Cor. 2.6 (c)], see
also [58, Prop. 2.2 (b), (d)].

Proof Since Z∗
p is closed in Zp and P(t, x) is a continuous function, V (Zp)

is closed in Zd+2
p , hence compact. For the same reason U (Zp) is compact,

thus h(U (Zp)) is compact as a continuous image of a compact set. Therefore,∏
p∈S h(U (Zp)) is compact.
Take any (Np) ∈ ∏

p∈S U (Zp). For each p ∈ S there is a positive integer

Mp such that the p-adic ball BNp ⊂ Zd+1
p of radius p−Mp around h(Np)

satisfies the conclusion of Lemma 5.2. Thus the open sets
∏

p∈S BNp , where
(Np) ∈ ∏

p∈S U (Zp), cover
∏

p∈S h(U (Zp)). By compactness, there exist

finitely many points (N (i)
p ) ∈ ∏

p∈S U (Zp), i = 1, . . . , n, such that the cor-
responding open sets

∏
p∈S BN (i)

p
cover

∏
p∈S h(U (Zp)).

It follows that M = ∪n
i=1Mi , where Mi = M ∩ ∏

p∈S BN (i)
p

for all i .

Thus it is enough to prove that for 100% ofm ∈ Mi we have Um(Q) �= ∅.
In the rest of proof we writeM = Mi and Np = N (i)

p , where p ∈ S. Write
n p = g(Np) and mp = h(Np), where p ∈ S. Note that P(n p,mp) ∈ Z∗

p

for each p ∈ S. Write M = ∏
p∈S pMp . By the Chinese remainder theorem

we can find n0 ∈ Z and m0 ∈ Zd+1 such that n0 ≡ n p (mod pMp) and
m0 ≡ mp (mod pMp) for each p ∈ S. Our new set M consists of all m ∈ P
such that m ≡ m0 (mod M). Since P(n p,mp) ∈ Z∗

p for each p ∈ S, we
obtain that P(n0,m0) is coprime to M .

Thuswe can applyTheorem1.2 to ourn0, M ,with Q(t) = P(t,m0). It gives
that for 100% ofm ∈ M , ordered by height, one can choose ν ≡ n0 (mod M)

such that P(ν,m) is a prime. Call this prime q.
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720 A. N. Skorobogatov, E. Sofos

We claim that q = NK/Q(ξ) for some ξ ∈ K ∗, so that Uν,m(Q) �= ∅.
Since K is a cyclic extension of Q, it is enough to show that for all places
v of Q, except possibly the place corresponding to the prime q, we have
Uν,m(Qv) �= ∅, see, e.g., [20, Cor. 13.1.10] and references there. Indeed, the
prime q is a local norm atQv = R, since any positive real number is a norm for
any finite extension. Next, q is a local norm at Qp for p ∈ S, by the definition
of M and Lemma 5.2. Finally, q is a local norm at Qp for p /∈ S, p �= q,
since q ∈ Z∗

p implies (ν,m) ∈ V (Zp), so we can apply Lemma 5.1.
Proving that M ′ has positive density in Zd+1 is equivalent to proving the

same for M . We have M = ∪n
i=1Mi , where each Mi consists of all Bouni-

akowsky polynomials P(t) of degree d satisfying P(t) ≡ Q(t) (mod M)with
(Q(n0), M) = 1. Corollary 2.9 implies that any such set has positive density.
Similarly, any non-empty intersection of some of the setsMi also has positive
density. By inclusion-exclusionM has positive density in Zd+1.

Remark 5.5 It is not clear to us if Uν,m(Z) �= ∅.

Example 5.6 Let K = Q(
√−1). Then S = {2}. Fix a positive integer m � 2.

Let s = |(Z/2m)∗| = 2m−1. Consider

P(t) = 3 + (2m − 3)t s + 2m+2Q(t), where Q(t) ∈ Z[t].

If n ∈ Z is even, then P(n) ≡ 3 (mod 4) so P(n) is not a sum of two squares
in Q2. If n is odd, then ns ≡ 1 (mod 2m), hence P(n) is divisible by 2m . Since
P(1) = 2m(1+4k) is a sum of two squares inZ2, our equation x2+ y2 = P(t)
is solvable in Z2, but for any 2-adic solution the 2-adic valuation of the right
hand side is divisible by 2m . This example shows that the set of m ∈ Zd+1

such that Um(Z2) = ∅ while Um(Q2) �= ∅ has positive density.

Let us now give a simpler version of Theorem 5.3 applicable to some non-
cyclic abelian extensions K/Q. Let K (1) be the Hilbert class field of K and
let K (+) be the extended Hilbert class field of K , see [40, p. 241] (it is also
called the strict Hilbert class field [14, Def. 15.32]). By definition, K (+) is the
ray class field whose modulus is the union of all real places of K . Thus K (+)

is a maximal abelian extension of K unramified at all the finite places of K ,
so that K (1) ⊂ K (+). By class field theory a prime p of K splits in K (+) if
and only if p = (x) is a principal prime ideal with a totally positive generator
x ∈ K .

Theorem 5.7 Let d be a positive integer. Let K be a finite abelian extension
of Q such that K (+) is abelian over Q. Then for a positive proportion of
polynomials P(t) ∈ Z[t] of degree d ordered by height the equation (1.1) is
soluble in Z.
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Proof Since K (+) is abelian over Q, by the Kronecker–Weber theorem there
is a positive integer M such that K (+) ⊂ Q(ζM). Thus if a prime number p is
1 (mod M) then p splits in K (+). This implies that p splits in K so that every
prime p of K over p has norm p; moreover, p splits in K (+) and so p = (x)

where x ∈ OK is totally positive. Then the ideal (p) ⊂ Z is the norm of the
ideal (x) ⊂ OK , hence (p) = (NK/Q(x)). Since x is totally positive, we have
NK/Q(x) > 0, so p = NK/Q(x).

A positive proportion of polynomials of degree d are Bouniakowsky poly-
nomials, and a positive proportion of these are congruent to the constant
polynomial Q(t) = 1 modulo M , by Proposition 2.8. Taking n0 = 0 in
Theorem 1.2 we see that for 100 % of such polynomials P(t) there is an inte-
ger m such that P(m) is a prime number p ≡ 1 (mod M). Then p = NK/Q(x)

for some x ∈ OK .

If K is a totally imaginary abelian extension of Q of class number 1, then
K = K (1) = K (+) so that Theorem 5.7 can be applied. For example, this
holds for K = Q(

√−1,
√
2), which is one of 47 biquadratic extensions of Q

with class number 1, see [9]. If K is an imaginary quadratic field, then K (1)

is abelian over Q if and only if the class group of K is an elementary 2-group
[40, Cor. VI.3.4].

5.2 Reducible polynomials

Let d1, . . . , dn be positive integers. In this section we let U be the affine Z-
scheme given by

n∏

i=1

Pi (t, xi ) = NK/Q(z) �= 0, (5.1)

where xi = (xi,0, . . . , xi,di ) and

Pi (t, xi ) = xi,di t
di + xi,di −1tdi −1 + . . . + xi,1t + xi,0, i = 1, . . . , n.

Write d = d1 + . . . + dn and x = (x1, . . . , xn). Consider the affine space
Ad+n+1

Z
with coordinates t and xi j for all pairs (i, j), where 1 � i � n

and 0 � j � di . Define V as the open subscheme of Ad+n+1
Z

given by∏n
i=1 Pi (t, xi ) �= 0. Themorphism f : U → V is the product of themorphism

g (the projection to t) and the morphisms hi (the projection to xi ), for i =
1, . . . , n.
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722 A. N. Skorobogatov, E. Sofos

Theorem 5.8 Let K be a cyclic extension of Q of degree r = [K : Q] with
character

χ : Gal(Q/Q) −→ Z/r.

Let S be the set of primes where K/Q ramifies. Let P be the set of m =
(m1, . . . ,mn) ∈ Zd+n such that P1(t,m1), . . . , Pn(t,mn) is a Schinzel n-
tuple. Let M ⊂ P be the subset whose elements m satisfy the following
condition:

for each p ∈ S there is a point (tp, zp) ∈ Um(Zp) such that for each i =
1, . . . , n we have

∑

p∈S

invp(χ, Pi (tp,mi )) = 0. (5.2)

Then there is a subset M ′ ⊂ M of density 1 such that Um(Q) �= ∅ for every
m ∈ M ′. The set M ′ has positive density in Zd+n ordered by height.

Let us explain the notation used in this statement. For a place v of Q and
a ∈ Q∗

v we denote by (χ, av) the element of the Brauer group Br(Qv) which
is the class of the cyclic algebra over Qv of degree r defined by χ and av , see
[20, §1.3.4]. We have (χ, av) = 0 if and only if av is a local norm for the
extension K/Q. The local invariant invv is an injective homomorphism

invv : Br(Qv) → Q/Z,

which is surjective if v is a finite place, and has image 1
2Z/Z if Qv = R. The

sum of maps invv for all places v of Q fits into the exact sequence

0−→Br(Q)−→ ⊕v Br(Qv)−→Q/Z−→0, (5.3)

where each map Br(Q) → Br(Qv) is the natural restriction, see [20, §13.1.2].

Remark 5.9 (1) For n = 1 condition (5.2) is automatically satisfied, so we
recover Theorem 5.3 as a particular case of Theorem 5.8.

(2) Since each Pi (t,mi ) is a Bouniakowsky polynomial, for each p /∈ S we
can find a tp ∈ Zp such that Pi (tp,mi ) ∈ Z∗

p and hence invp(χ, Pi (tp,mi )) =
0. Taking the product over i = 1, . . . , n we see that Um has a Zp-point over
tp. Similarly, each Pi (t,mi ) takes positive values when t0 ∈ R is large, so
invR(χ, Pi (t0,mi )) = 0. Thus Um has a real point over t0. Thus (5.2) implies
that Um has Zp-points (tp, zp) for all p and a real point (t0, z0) such that

∑
invp(χ, Pi (tp,mi )) = 0
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for i = 1, . . . , n, where the sum is over all places of Q. Since K/Q is cyclic,
from [19, Cor. 2.6 (c)] we know that the unramified Brauer group of Um is
contained in the subgroup of Br(Q(Um)) generated by Br(Q) and the classes
(χ, Pi (t,mi )), for i = 1, . . . , n. We conclude that when each Pi (t,mi ) is
irreducible, for any smooth and proper model X of Um, the Brauer group
Br(X) does not obstruct the Hasse principle on X .

Proof We follow the proof of Theorem 5.3 with necessary adjustments. The
analogue of Lemma 5.2 says that for p ∈ S and Np ∈ U (Qp) there is a positive
integer Mp such that if ν ∈ Qp andm ∈ (Qp)

d+n satisfy

max
(|ν − g(Np)|p, |mi − hi (Np)|p

)
� p−Mp , for i = 1, . . . , n, (5.4)

then invp(χ, Pi (ν,mi )) is constant and equal to invp(χ, Pi (g(Np), hi (Np))).
This implies

invp(χ,

n∏

i=1

Pi (ν,mi )) =
n∑

i=1

invp(χ, Pi (ν,mi ))

= invp(χ,

n∏

i=1

Pi (g(Np), hi (Np))) = 0, (5.5)

in particular, Uν,m(Qp) �= ∅.
Let Z ⊂ ∏

p∈S U (Zp) be the subset consisting of the points (Np) subject
to the condition

∑

p∈S

invp(χ, Pi (g(Np), hi (Np))) = 0, for i = 1, . . . , n. (5.6)

The left hand side of (5.6), for a fixed i , takes values in Z/r and each level set
is open, hence also closed. We know that

∏
p∈S U (Zp) is compact, hence Z

is compact. Thus f (Z) is compact, so f (Z) can be covered by finitely many
open subsets given by congruence conditions on ν andm as in (5.4) such that
(5.6) holds.

The condition (5.2) in the theorem implies that M ⊂ h(Z). As a conse-
quence, using theChinese remainder theorem,we representM as a finite union
of subsetsM j , each of which consists of all Schinzel n-tuples satisfying a con-
gruence condition of the formm ≡ m0 (mod M), wherem0 ∈ Zd+n and M =∏

p∈S pMp . Moreover, there exists an n0 ∈ Z with (
∏n

i=1 Pi (n0,m0,i ), M) =
1 such that the following holds: if ν ≡ n0 (mod M), then for all m ∈ M j we
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have

∑

p∈S

invp(χ, Pi (ν,mi )) = 0, for i = 1, . . . , n, (5.7)

and

n∑

i=1

invp(χ, Pi (ν,mi )) = 0, for p ∈ S, (5.8)

which follow from (5.6) and (5.5), respectively. It is enough to prove that for
100% of m ∈ M j we have Um(Q) �= ∅.

We apply Theorem 1.2 to our n0 and M , with Qi (t) = Pi (t,m0,i ). It
gives that for 100% of m there is an integer ν ≡ n0 (mod M) such that each
qi = Pi (ν,mi ) is a prime. We have

invp(χ, qi ) = invp(χ, Pi (ν,mi )) = 0 (5.9)

for every prime p /∈ S ∪ {qi } and also for the real place. The real condition
trivially holds since qi > 0. A prime p /∈ S ∪ {qi } does not divide qi and
is unramified in K , so the condition holds for such p. Therefore, by global
reciprocity we have

invqi (χ, qi ) = −
∑

p �=qi

invp(χ, qi )

= −
∑

p∈S

invp(χ, qi ) = 0, for i = 1, . . . , n, (5.10)

where the last equality follows from (5.7). We claim that

invp(χ, q1 . . . qn) = 0

for every prime p (and also for the real place). This is clear for p /∈ S ∪
{q1, . . . , qn} and for the real place, but this is also clear for p = qi by (5.10)
and (5.9). Using (5.8) we obtain the vanishing for p ∈ S, thus proving the
claim.

The class (χ, q1 . . . qn) ∈ Br(Q)[r ] has all local invariants equal to 0, so
it is zero due to the exactness of (5.3). Thus

∏n
i=1 P(ν,mi ) = q1 . . . qn is a

global norm for the extension K/Q, so Uν,m(Q) �= ∅.
The last statement of the theorem is proved in the same way as the last

statement of Theorem 5.3, using Proposition 2.8.
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6 Random conic bundles

The classification of Enriques–Manin–Iskovskikh [38, Thm. 1] states that
smooth projective geometrically rational surfaces over a field, up to birational
equivalence, fall into finitely many exceptional families (del Pezzo surfaces
of degree 1 � d � 9) and infinitely many families of conic bundles X → P1.
The generic fibre of a conic bundle over Q is a projective conic over the field
Q(t) which can be described as the zero set of a diagonal quadratic form of
rank 3. We consider the equation

a1

n1∏

j=1

P1, j (t) x2 + a2

n2∏

k=1

P2,k(t) y2 + a3

n3∏

l=1

P3,l(t) z2 = 0, (6.1)

where a1, a2, a3 are fixed non-zero integers and Pi j ∈ Z[t] is a polynomial
of fixed degree di j , for i = 1, 2, 3 and j = 1, . . . , ni , where n1 > 0, n2 > 0
and n3 � 0. Let d = ∑

i, j di j . We write Pi j (t,mi j ) for the polynomial of

degree di j with coefficients mi j ∈ Zdi j +1, and write m = (mi j ) ∈ Zd+n .
Let Um ⊂ P2

Z
× A1

Z
be the scheme given by equation (6.1) together with the

condition
∏

i, j Pi j (t,mi j ) �= 0. The proof of the following theorem is given
in §6.3.

Theorem 6.1 Let n1, n2, n3 be integers such that n1 > 0, n2 > 0, and n3 � 0,
and let n = n1 + n2 + n3. Let a1, a2, a3 be non-zero integers not all of the
same sign and such that a1a2a3 is square-free. Let S be the set of prime factors
of 2a1a2a3. Let di j be natural numbers, for i = 1, 2, 3 and j = 1, . . . , ni ,
and let d = ∑

i, j di j . Let P be the set of m = (mi j ) ∈ Zd+n such that
the n-tuple (Pi j (t,mi j )) is Schinzel. Let M be the set of m ∈ P such that
Um(Zp) �= ∅ for each p ∈ S. Then there is a subset M ′ ⊂ M of density 1
such that Um(Q) �= ∅ for every m ∈ M ′. The set M ′ has positive density in
Zd+n ordered by height.

Remark 6.2 Let x = (xi j ), for i = 1, 2, 3 and j = 1, . . . , ni , be independent
variables. We expect that for the generic polynomials (Pi j (t, xi j )) the unrami-
fied Brauer group of the conic bundle (6.1) over Q(x) is reduced to Br(Q(x)).
This explains the absence of extra conditions like (5.2) in Theorem 6.1.

6.1 Correlations between prime values of polynomials and quadratic
characters

When a and b are integers such that b > 0 we write
(a

b

)
for the Legendre–

Jacobi quadratic symbol. We allow b to be even, so that
(a
2

)
is 0 or 1 when a

is even and odd, respectively.
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A new analytic input in this section is the following result of Heath-Brown.

Lemma 6.3 (Heath-Brown) Let (ak)k∈N and (bl)l∈N be sequences of complex
numbers such that ak = 0 for k > K and bl = 0 for l > L. Then for any
ε > 0 we have

∑

primes k,l

akbl

(
k

l

)

�ε max{|ak |}max{|bl |}
(
(K L)1+ε (min{K , L})−1/2 + K

)
,

where the implied constant depends only on ε.

Proof We write the sum as

∑

k,l∈N
l odd

(
ak1primes(k)

) (
bl1primes(l)

)
(

k

l

)

+
∑

k prime

akb2

(
k

2

)

.

By [35,Cor. 4] thefirst sum is� max{|ak |}max{|bl |}(K L)1+ε (min{K , L})−1/2

The second sum is trivially bounded by max{|ak |}|b2|K , which is enough.

The following definition introduces a class of character sums to which
Heath-Brown’s estimate will be applied.

Definition 6.4 Let n � 2. Let F1,F2,G be functions

F1,F2 : Zn−1 → {z ∈ C : |z| � 1}, G : Zn−2 → {z ∈ C : |z| � 1},
where G is the constant function 1 when n = 2. Let P = (Pi ) ∈ (Z[t])n be
an n-tuple such that each Pi has positive leading coefficient. For any integers
h �= k such that 1 � h, k � n and any n0 ∈ N, M ∈ N, we define

ηP(x; h, k):=
∑

m∈N∩[1,x]
m≡n0(mod M)

Pi (m) prime, i=1,...,n

(
n∏

i=1

log Pi (m)

)(
Ph(m)

Pk(m)

)

×F1(Pa(m)a �=k)F2(Pb(m)b �=h)G (Pc(m)c �=h
c �=k

).

Here the functionsF1,F2, G are applied to P1(m), . . . , Pn(m), where Pk(m)

is omitted in F1, Ph(m) is omitted in F2, and Ph(m) and Pk(m) are omitted
in G .

Our work in previous sections shows that θP(x) is typically of size x . We
now prove that for 100% of P ∈ (Z[t])n one has ηP(x; h, k) = O(xδ) for
some constant δ < 1.
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Proposition 6.5 Let n, d1, . . . , dn, M be positive integers and let
F1,F2,G , h, k be as in Definition 6.4. Let n0 ∈ N and Q ∈ (Z[t])n be
such that gcd(Qi (n0), M) = 1 for all i = 1, . . . , n. Fix A1, A2 ∈ R with
n < A1 < A2. Then for all H � 3 and all x with (log H)A1 < x � (log H)A2

we have

1

�Poly(H)

∑

P∈Poly(H)

|ηP(x; h, k)| � x
1
2+ n

2A1 ,

where the implied constant depends only on d1, . . . , dn, M, n0,Q, A1, A2.

Proof By the Cauchy–Schwarz inequality it is enough to prove

1

�Poly(H)

∑

P ∈ Poly(H)

|ηP(x; h, k)|2 � x
1+ n

A1 . (6.2)

Without loss of generality we assume that h = 1, k = 2 and write ηP(x) for
ηP(x; 1, 2). Using |ηP(x)|2 = ηP(x)ηP(x) and changing the order of summa-
tion we write

∑
P∈Poly(H) |ηP(x)|2 as

∑

m1, m2 ∈ N ∩ [1, x]
m1, m2 ≡ n0 (mod M)

∑

P ∈ Poly(H)

Pi (m j ) prime for i = 1, . . . , n, j = 1, 2

(
P1(m1)

P2(m1)

)(
P1(m2)

P2(m2)

)

×
⎛

⎝
∏

1�i�n

log Pi (m1) log Pi (m2)

⎞

⎠

× F1(Pi (m1)i �=2)F2(Pi (m1)i �=1)G (Pi (m1)i /∈{1,2})
× F1(Pi (m2)i �=2) F2(Pi (m2)i �=1) G (Pi (m2)i /∈{1,2}).

Ignoring the congruence conditions modulo M and using |Fi |, |G | � 1 we
see that the modulus of the contribution of the diagonal terms m1 = m2 is at
most

∑

1�m1�x

n∏

i=1

∑

|Pi |�H, Pi >0

�(Pi (m1))
2,

which is � x Hd+n(log H)n as in the proof of Lemma 4.1. This is sufficient
because

x Hd+n(log H)n = x Hd+n((log H)A1)n/A1

� x Hd+nxn/A1 � �Poly(H)x1+n/A1 .
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To study the remaining terms we introduce the variables

k1 := P1(m1), k2 := P2(m1) and l1 := P1(m2), l2 := P2(m2)

and sum over all values of li , ki . Take any ε > 0. For any integer polynomial
P of degree at most di satisfying |P| � H and for any m � x with Pi (m)

prime one has log Pi (m) = Oε,di (H ε). Using this we bound the modulus of
the remaining sum by O(�), where

� :=
∑

l1, l2 ∈ N

1 � m1 �= m2 � x

(log l1)(log l2)

×
∑

P3, . . . , Pn ∈ Z[t]
Pi > 0, deg(Pi ) = di , |Pi | � H

× H ε

∣
∣
∣
∣
∣
∣

∑

k1, k2 primes

(
k1
k2

)

F1(k1, l1)F2(k2, l2)

∣
∣
∣
∣
∣
∣
,

where for i = 1, 2 and k, l ∈ N we let

Fi (k, l) := (log k)Ni (k, l)Fi (k, (Pj (m1)) j /∈{1,2})Fi (l, (Pj (m2)) j /∈{1,2}),

and denote by Ni (k, l) the number

�{P ∈ Z[t] : P > 0, deg(P) = di , |P| � H,

P ≡ Qi (mod M) , P(m1) = k, P(m2) = l}.

To complete the proof of (6.2) it is now sufficient to prove

� � Poly(H) x
1+ n

A1 . (6.3)

The conditions P(m1) = k, P(m2) = l define an affine subspace of codimen-
sion2 in the vector space of polynomials of degreedi , hence Ni (k, l) � Hdi −1.
(This uses m1 �= m2, which explains the precursory manoeuvre of sepa-
rating the diagonal terms m1 = m2.) We obtain the estimate Fi (k, l) �
(log H)Hdi −1 with an implied constant depending only on n and di . Since
we have |Pi (m1)| � (1 + di )H xdi , we can see that Ni (k, l) = 0 unless
k, l � (1 + di )H xdi , so we can apply Lemma 6.3 with K = (1 + d1)H xd1

and L = (1 + d2)H xd2 . Hence the sum over k1, k2 in the definition of � is
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� Hd1+d2−1/2+ε, where we used that x � (log H)A2 � H ε. Therefore,

� � Hd1+d2−1/2+ε
∑

l1�K ,l2�L
1�m1 �=m2�x

(log l1)(log l2)
∑

P3,...,Pn∈Z[t]
Pi >0, deg(Pi )=di , |Pi |�H

H ε.

The number of terms in the sum over the Pi is � Hd+n−d1−d2−2 and the sum
over l1, l2, m1, m2 is � K Lx2(log K )(log L) � H2+ε. This proves that

� � Hd+n−1/2+3ε � �Poly(H)H−1/2+3ε,

which immediately implies (6.3) by choosing ε = 1/6.

6.2 Indicator function of solvable conics

Recall that for a, b, c ∈ Q∗
p the projective conic

ax2 + by2 + cz2 = 0

has a Qp-point if and only if the Hilbert symbol (−ac, −bc)p is 1. We refer
to [54, Ch. III, §1] for the standard formulae for the calculation of the Hilbert
symbol.

Let a1, a2, a3 be non-zero integers. Let pi j , where i = 1, 2, 3 and j =
1, . . . , ni , be distinct primes not dividing 2a1a2a3. (If n3 = 0, then i = 1, 2.)
For k ∈ N write [k] = {1, . . . , k}. Let Si be a subset of [ni ]. Define π(Si ) =∏

j∈Si
pi j and abbreviate π([ni ]) to πi . We denote by Sc

i = [ni ] \ Si the
complement to Si in [ni ]. Let

Q = 2−n

⎛

⎝2 +
∑

S1,S2,S3

∗
(−a2a3π2π3

π(S1)

)(−a1a3π1π3

π(S2)

)(−a1a2π1π2

π(S3)

)
⎞

⎠ ,

where the sum is over all subsets Si ⊂ [ni ], i = 1, 2, 3, such that (S1, S2, S3) �=
(∅, ∅, ∅) and (S1, S2, S3) �= ([n1], [n2], [n3]).
Lemma 6.6 Let n1, n2, n3 be integers such that n1 > 0, n2 > 0, n3 � 0.
Let a1, a2, a3 be non-zero integers not all of the same sign such that a1a2a3 is
square-free. Suppose that pi j , for i = 1, 2, 3 and j = 1, . . . , ni , are distinct
primes not dividing 2a1a2a3 such that the conic C given by

a1π1x2 + a2π2y2 + a3π3z2 = 0, (6.4)

has a Qp-point for all p|2a1a2a3. Then C(Q) �= ∅ if and only if Q = 1,
otherwise Q = 0.
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Proof The condition concerning the signs of the ai guarantees thatC(R) �= ∅.
Therefore, C(Q) �= ∅ if and only if for every i, j we have

(−ai ′ai ′′πi ′πi ′′

pi j

)

= 1,

where {i, i ′, i ′′} = {1, 2, 3}. Thus the following is 2n when C(Q) �= ∅, and 0
when C(Q) = ∅:

3∏

i=1

ni∏

j=1

(

1 +
(−ai ′ai ′′πi ′πi ′′

pi j

))

=
∑

S1,S2,S3

(−a2a3π2π3

π(S1)

)(−a1a3π1π3

π(S2)

)(−a1a2π1π2

π(S3)

)

,

where the sum is over all subsets Si ⊂ {1, . . . , ni }, i = 1, 2, 3. We separate
the term 1 corresponding to the case when Si = ∅ for i = 1, 2, 3. The term
corresponding to the case when Si = [ni ] for i = 1, 2, 3 is

R(x, H)2 � V (x, H) := 1

�Poly(H)

∑

P ∈ Poly(H)

(θP(x) − SP(x)x)2 ,

This equals (−1)r , where r is the number of pairs (i, j) such thatC(Qpi j ) = ∅.
Since C is locally soluble everywhere except, perhaps, at the primes pi j , the
product formula for the Hilbert symbol implies that r is even. Hence the above
term is 1.

Proposition 6.7 Let n1, n2, n3 be integers such that n1 > 0, n2 > 0, n3 � 0,
and let n = n1+n2+n3. Let a1, a2, a3 be non-zero integers not all of the same
sign such that a1a2a3 is square-free. Let M be a multiple of 8a1a2a3. Let n0 be
an integer. Let Qi j (t) ∈ Z[t] be a polynomial of degree at most di j such that
(Qi j (n0), M) = 1, for i = 1, 2, 3 and j = 1, . . . , ni , satisfying the following
condition: for any integer m ≡ n0 (mod M) and any n-tuple of polynomials
P = (Pi j (t)) ∈ (Z[t])n with deg Pi j = di j such thatP ≡ Q (mod M) the conic
(6.1) with t = m has a Qp-point, for any p|M. Then for 100% of Schinzel
n-tuples P ≡ Q (mod M) with deg Pi j = di j , ordered by height, the conic
bundle surface (6.1) has a Q-point.
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Proof For P ∈ (Z[t])n such that P ≡ Q (mod M) define the following count-
ing function

CP(x) :=
∑

m∈N∩[1,x]
m≡n0(mod M)

Pi j (m) prime for all i, j
Pi j (m)�=Prs(m) if (i, j)�=(r,s)

⎛

⎝
3∏

i=1

ni∏

j=1

log Pi j (m)

⎞

⎠1(m),

where 1 is the indicator function of those m for which the conic (6.1) with
t = m has a Q-point. Define

θ̃P(x) =
∑

m ∈ N ∩ [1, x]
m ≡ n0 (mod M)

Pi (m) prime for i = 1, . . . , n
Pi j (m) �= Prs (m) if (i, j) �= (r, s)

3∏

i=1

ni∏

j=1

log Pi j (m).

By the condition in the proposition and Lemma 6.6 we have

CP(x) = 1

2n−1 θ̃P(x) + 1

2n

∑
*

S

TS,P(x). (6.5)

Here
∑ * is the sum over S = (S1, S2, S3), where Si ⊂ [ni ] for i = 1, 2, 3

are such that at least one Si is non-empty and at least one complement Sc
j =

[n j ] \ S j is non-empty, and

TS,P(x) :=
∑

m ∈ N ∩ [1, x]
m ≡ n0 (mod M)

Pi j (m) prime for all i, j
Pi j (m) �= Prs (m) if (i, j) �= (r, s)

×
3∏

i=1

(
−ai ′ai ′′

∏
k Pi ′k(m)

∏
l Pi ′′l(m)

∏
j∈Si

Pi j (m)

) ni∏

j=1

log Pi j (m), (6.6)

where {i, i ′, i ′′} = {1, 2, 3}. The bound Pi j (m) = Odi j (H xdi j ) yields
log Pi j (m) = Odi j (log(H x)), hence

0 � θP(x) − θ̃P(x) �n,di j (log(H x))n. (6.7)

123



732 A. N. Skorobogatov, E. Sofos

We claim that for all x and H � 3 with (log H)2n < x � (log H)3n and all
S as above we have

1

�Poly(H)

∑

P∈Poly(H)

|TS,P(x)| � x3/4. (6.8)

Assuming this, we see from (6.5) and (6.7) that

1

�Poly(H)

∑

P∈Poly(H)

|CP(x) − 2−n+1θP(x)| � x3/4 + (log H)n � x3/4

due to (log H)n � x1/2. Therefore,

�{P ∈ Poly(H) : |CP(x) − 2−n+1θP(x)| > x4/5}
�Poly(H)

� 1

�Poly(H)

∑

P∈Poly(H)

|CP(x) − 2−n+1θP(x)|
x4/5

,

is � x−1/20 � (log H)−2n/20. Schinzel n-tuples P ≡ Q (mod M) have pos-
itive density within Poly(H) by Proposition 2.8, hence, for 100% of them
one has

CP(x) � 2−n+1θP(x) − x4/5 � 2−n+1 β0x

2(log log x)d−n
− x4/5,

wherewe used (4.10) in the second inequality. (The constantβ0 was introduced
in Lemma 4.11.) Since x � (log H)n , we see that for all sufficiently large H
one has CP(x) > 0.

To verify (6.8) we check that TS,P(x) is a particular case of the sum intro-
duced in Definition 6.4. (This crucially uses the assumptions n1 > 0 and
n2 > 0.) Using quadratic reciprocity and the identities πi = π(Si )π(Sc

i ),
i = 1, 2, 3,we rewrite each summand in (6.6) as the product of

∏
i, j log Pi j (m)

and
(−a2a3π(Sc

2)π(Sc
3)

π(S1)

)(−a1a3π(Sc
1)π(Sc

3)

π(S2)

)(−a1a2π(Sc
1)π(Sc

2)

π(S3)

)

multiplied by the product of (−1)(p−1)(q−1)/4 for all primes p ∈ Si andq ∈ Si ′ ,
where i �= i ′. Without loss of generality we can assume that S1 �= ∅. Take any
k ∈ S1. If Sc

2 or Sc
3 is non-empty, say Sc

2 �= ∅, choose any h ∈ Sc
2 and separate

the term (
Ph(m)
Pk(m)

) in the first quadratic symbol above. If Sc
2 or Sc

3 are both empty,
then Sc

1 �= ∅ and S2 �= ∅. Hence there exist h ∈ Sc
1 and k ∈ S2 so that we
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can separate the term (
Ph(m)
Pk(m)

) in the second quadratic symbol above. Let F1

be the product of all the terms involving h but not k, let F2 be the product of
all the terms involving k but not h, and let G be the product of all the terms
that depend neither on k nor on h. We conclude by applying Proposition 6.5
with A1 = 2n so that n

2A1
= 1

4 .

6.3 Proof of Theorem 6.1

Recall thatmi j ∈ Zdi j +1 are the coefficients of the polynomial Pi j (t) ∈ Z[t] of
degree di j , where i = 1, 2, 3 and j = 1, . . . , ni . Let xi j = (xi, j,0, . . . , xi, j,di j )

be variables and let Pi j (t, xi j ) = ∑di j
k=0 xi jk tk be the generic polynomial of

degree di j . Let V be the open subscheme of Ad+n+1
Z

given by the condition
∏

i, j Pi j (t, xi j ) �= 0. Let U be the subscheme of P2
Z

× Ad+n+1
Z

given by (6.1)

and
∏

i, j Pi j (t, xi j ) �= 0. Assigning the value mi j ∈ Zdi j +1 to the variable

xi j we obtain a conic bundle Um ⊂ P2
Z

× A1
Z
given by (6.1) together with the

condition
∏

i, j Pi j (t,mi j ) �= 0.
Let f : U → V be the projection to the coordinates t and x. As in Sect. 5 we

denote by g (respectively, by h) the projection to the coordinate t (respectively,
to the coordinate x).

We follow the scheme of proof of Theorem 5.3. Let S be the set of prime
factors of 2a1a2a3. The analogue of Lemma 5.1 says that the fibre of the
projective morphism f : U → V at any Zp-point of V has a Qp-point when
p /∈ S. Indeed, this fibre is a conic with good reduction.
Since f : U → V is proper, the inducedmap f : U (Qp) → V (Qp) is topo-

logically proper [21, p. 79]. As V (Qp) is locally compact and Hausdorff, f :
U (Qp) → V (Qp) is a closedmap.Wehave f (U (Zp)) = f (U (Qp))∩V (Zp),
hence f (U (Zp)) is closed in V (Zp). Since V (Zp) is compact, f (U (Zp)) and
h(U (Zp)) are compact too. Thus

∏
p∈S h(U (Zp)) is compact.

Lemma5.2 only uses the smoothness of g : UQ → A1
Q
and h : UQ → Ad+n

Q
,

so it also holds in our case. It implies that for p ∈ S and Np ∈ U (Zp) there is
a positive integer Mp such that if ν ∈ Zp andm ∈ (Zp)

d+n satisfy

max
(|ν − g(Np)|p, |m − h(Np)|p

)
� p−Mp , (6.9)

then Uν,m(Zp) �= ∅. Let BNp ⊂ Zd+n
p be the p-adic ball of radius p−Mp

around h(Np). The open sets
∏

p∈S BNp , where (Np) ∈ ∏
p∈S U (Zp),

cover
∏

p∈S h(U (Zp)). By compactness, finitely many such open sets cover
∏

p∈S h(U (Zp)). Hence M = ∪n
i=1Mi , where Mi = M ∩ ∏

p∈S BNp for
one of these finitely many choices of (Np) ∈ ∏

p∈S U (Zp). Thus it is enough
to prove that for 100% of m ∈ Mi we have Um(Q) �= ∅.
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734 A. N. Skorobogatov, E. Sofos

In the rest of proof we write M = Mi . Write n p = g(Np) and mp =
h(Np), where p ∈ S. Note that Np ∈ U (Zp) implies Pi j (n p,mp) ∈ Z∗

p

for each p ∈ S. Write M = ∏
p∈S pMp . By the Chinese remainder theorem

we can find n0 ∈ Z and m0 ∈ Zd+1 such that n0 ≡ n p (mod pMp) and
m0 ≡ mp (mod pMp) for each p ∈ S. Our new set M consists of all m ∈ P
such thatm ≡ m0 (mod M). Since Pi j (n p,mp) ∈ Z∗

p for each p ∈ S, we see
that Pi j (n0,m0) is coprime to M .

Wenowapply Proposition 6.7 to our n0 and M , with Qi j (t) = Pi j (t,m0) for
all i and j . This is legitimate because Pi j (n0,m0) is coprime to M and for any
integer ν ≡ n0 (mod M) and any m ≡ m0 (mod M) we have Uν,m(Zp) �= ∅

whenever p ∈ S. Thus for 100% ofm ∈ M we have Um(Q) �= ∅.
The last statement of Theorem 6.1 is proved in the same way as in Theo-

rems 5.3 and 5.8 .

6.4 The proof of Theorem 1.4

We can ensure that a1, a2, a3 are not all of the same sign by replacing P1,1(x)

by −P1,1(x), if necessary. We can also ensure that a1a2a3 is square-free. (If
p is a prime such that p2|a1, we absorb p into x ; if p|a1 and p|a2, then we
multiply (6.1) by p and absorb p into x and y.) It remains to apply Theorem
6.1.

7 Explicit probabilities

In this section we obtain an explicit estimate for the probability that random
affine Châtelet surfaces have integer points, following the method of Theo-
rem 5.7. We prove that this probability exceeds 56% for a family that has
attracted much attention in the literature, namely,

x2 + y2 = f (t), (7.1)

where f is a polynomial of fixed degree d with positive leading coefficient.
V.A. Iskovskikh [38] gave a first counter-example to the Hasse principle with
d = 4; the density of such counterexamples was studied in [24] and [52]. Little
is known about the arithmetic of (7.1) when d > 6 and f (t) is irreducible.
Let

Pd(H) : = { f ∈ Z[t] : deg(d) = d, | f | � H, the leading coefficient

of f is positive}.
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Theorem 7.1 For all d � 2, ε > 0 and all sufficiently large H we have

�{ f ∈ Pd(H) : x2 + y2 = f (t) is soluble in Z}
�Pd(H)

� (1 − ε)
(38 + 1(d � 3))

64

∏

p�3

(

1 − 1

pmin{p,d+1}

)

.

The infinite product is a strictly increasing function of d. For d = 2 it equals
0.95 . . . and asd → ∞ the limit of the product is

∏
p�3(1−p−p) = 0.962 . . . .

Corollary 7.2 For every d � 2 and all sufficiently large H we have

�{ f ∈ Pd(H) : x2 + y2 = f (t) is soluble in Z}
�Pd(H)

>
56

100
.

To prove Theorem 7.1 we apply Theorem 1.2 with n = 1, M = 4, n0 ∈
{0, 1, 2, 3} and arbitrary Q1(t)of degree atmostd such that Q1(n0) is 1modulo
4. It shows that for 100% of Bouniakowsky polynomials f (t) of degree d such
that f (n0) is 1 modulo 4, there exists an integer m such that f (m) is a prime
congruent to 1 modulo 4. In this case (7.1) has an integer solution. Thus, for
all ε > 0 and all sufficiently large H we have

�{ f ∈ Pd(H) : x2 + y2 = f (t) is soluble in Z}
�Pd(H)

� Rd(H) − ε,

where

Rd (H) := �{ f ∈ Pd (H) : f is Bouniakowsky, ∃ n0 ∈ {0, 1, 2, 3} such that f (n0) ≡ 1 (mod 4)}
�Pd (H)

.

It is therefore sufficient to show that limH→∞ Rd(H) exists and find its value.
For this we partition the coefficients of f according to their values modulo 4
as follows:

Rd(H)�Pd(H)

=
∑

Q∈(Z/4Z)[t],deg(Q)�d
∃n0∈Z/4Z: Q(n0)≡1(mod 4)

�{ f ∈ Pd(H) : f ≡ Q (mod 4) , Z f (p) �= p, ∀p � 3}.
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736 A. N. Skorobogatov, E. Sofos

By Corollary 2.9 with M = 4 and the fact that �Pd(H) is asymptotic to
2d Hd+1 we obtain

lim
H→∞ Rd(H) = rd

∏

p�3

(

1 − 1

pmin{p,d+1}

)

,

where

rd := 1

4d+1 �{Q ∈ (Z/4Z)[t] : deg(Q) � d, ∃ n0 ∈ {0, 1, 2, 3}
such that Q(n0) ≡ 1 (mod 4)}.

A straightforward listing shows that r2 = 19/32. For the remaining case d � 3
we write f (t) = ∑d

i=0 ci t i , thus

1 − rd

= 1

4d+1

∑

(v0,v1,v2,v3)∈{0,2,3}4
�

{

c ∈ (Z/4Z)d+1 :
d∑

i=0

ci j i ≡ v j (mod 4) , ∀ j = 0, 1, 2, 3

}

.

The system of four equations corresponding to j = 0, 1, 2, 3 is equivalent to

c0 ≡ v0 (mod 4) , 2c1 ≡ v2 − v0 (mod 4) ,
∑

0�i�d

ci ≡ v1 (mod 4) ,

2
∑

0�i�d/2

c2i ≡ v1 + v3 (mod 4) .

This system has at least four unknowns ci due to d � 3. It is soluble if
and only if both v0 ≡ v2 (mod 2) and v1 ≡ v3 (mod 2) hold; this happens for
exactly 25 vectors (vi ) ∈ {0, 2, 3}4. For each of these vectors, the first equation
determines c0 uniquely and the second equation gives two values of c1. For
any such c0, c1 and any c4, c5, . . . , cd the last equation gives two values of c2.
The third equation determines c3 uniquely. Thus we obtain

1 − rd = 1

4d+1 × 25 × (1 × 2 × 1 × 2 × 4d+1−4) = 25

64
.
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