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1 Introduction

Schinzel’s Hypothesis (H) [53] has very strong implications for the local-
to-global principles for rational points on conic bundles, as demonstrated by
Colliot-Thélene and Sansuc in [17]. There have been many subsequent devel-
opments and applications to more general varieties by Serre, Colliot-Thélene,
Swinnerton-Dyer and others. We call P(¢) € Z[t] a Bouniakowsky polynomial
if the leading coefficient of P (¢) is positive and for every prime £ the reduction
of P(¢) modulo ¢ is not a multiple of 7 —¢. It is not hard to prove that an explicit
positive proportion of polynomials of given degree are Bouniakowsky polyno-
mials (Corollary 2.10 below). A conjecture stated by Bouniakowsky in 1854
[7, p- 328], now a particular case of Schinzel’s Hypothesis (H), says thatif P (z)
is an irreducible Bouniakowsky polynomial, then there are infinitely many nat-
ural numbers n such that P (n) is prime. Bouniakowsky added this remark: “/l
est a présumer que la démonstration rigoureuse du théoreme énoncé sur les
progressions arithmétiques des ordres supérieurs conduirait, dans I’ état actuel
de la théorie des nombres, a des difficultés insurmontables ; néanmoins, sa
réalité ne peut pas étre révoquée en doute”.

The inaccessibility of Schinzel’s hypothesis and its quantitative version, the
Bateman—Horn conjecture [6], in degrees greater than 1 or for more than one
polynomial motivates a search for more accessible replacements. In the case of
several multivariate polynomials of degree 1 such a replacement is provided
by work of Green, Tao and Ziegler in additive combinatorics (see [32] and
references there, and [11,33,34] for applications to rational points).

In this paper we study rational points on varieties in families, with the aim
of proving that a positive proportion of varieties in a given family have rational
points. To apply the method of Colliot-Théléne and Sansuc in this situation,
one does not need the full strength of Bouniakowsky’s conjecture, namely that
everyirreducible Bouniakowsky polynomial represents infinitely many primes:
it is enough to know that most polynomials satisfying the obvious necessary
condition represent at least one prime. We propose the following replacement
for Bouniakowsky’s conjecture. The height of a polynomial P(t) € Z[t] is
defined as the maximum of the absolute values of its coefficients.

Theorem 1.1 Let d be a positive integer. When ordered by height, for 100%
of Bouniakowsky polynomials P(t) of degree d there exists a natural number
m such that P(m) is prime.

This improves on previous work of Filaseta [26] who showed that a positive
proportion of Bouniakowksy polynomials represent a prime. Note that stating
Schinzel’s Hypothesis for infinitely many primes is trivially equivalent to stat-
ing it for at least one prime [53, p. 188], but this is no longer so if we are only
concerned with 100% of polynomials.
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Schinzel Hypothesis on average and rational points 675

Theorem 1.1 is a particular case of a more general result for n poly-
nomials, where certain congruence conditions are allowed. We denote the
height of P(t) € Z][t] by |P|. The height of an n-tuple of polynomials
P = (Pi(t),..., P,(t)) € (Z[t])" is defined as |[P| = max;=1,_,(|P]).
We call P a Schinzel n-tuple if for every prime ¢ the reduction modulo £ of the
product Py (¢) ... P,(t) is not divisible by t* — ¢, and the leading coefficient of
each P;(t) is positive.

Theorem 1.2 Let dy, ..., d, be positive integers. Fix integers ng and M.
Assume we are given Q1(t), ..., Q,(t) in Z[t] such that ]—[?:1 Qi(ng) and M
are coprime, and deg(Q;(t)) < d; fori =1, ..., n. When ordered by height,
for 100% of Schinzel n-tuples (P1(t), ..., P,(t)) such that deg(P;(t)) = d;

and P;i(t) — Q;i(t) € MZ[t] for eachi = 1,...,n, there exists a natural
number m = ng (mod M) such that P1(m), ..., P,(m) are pairwise different
primes.

The special case M = 1 shows that, with probability 100%, an n-tuple of
integer polynomials satisfying the necessary local conditions simultaneously
represent primes. Theorem 1.1 is the special case for n = 1. The proof of The-
orem 1.2 occupies most of the paper; we give more details about the strategy
of proof later in this introduction.

In this paper we apply our analytic results to rational points on varieties
in families, where the parameter space is the space of coefficients of generic
polynomials of fixed degrees. Among many potential applications we choose
to consider generalised Chatelet varieties (1.1) and diagonal conic bundles
(1.2). Using Theorem 1.2 we obtain a weaker version of the Hasse principle
for equations

Nk/(z) = P(t) #0, (1.1)

where K is a fixed cyclic extension of Q and N (z) is the associated norm
form, for 100% of Bouniakowsky polynomials P (¢) of given degree, see The-
orem 5.3. (See also Theorem 5.8 for the case when P (¢) is a product of generic
Bouniakowsky polynomials.) It implies

Theorem 1.3 Let d be a positive integer. For a positive proportion of polyno-
mials P(t) € Z[t] of degree d ordered by height, the affine variety given by
(1.1) has a Q-point.

Explicit estimates in the case K = Q/—1) are given in Sect. 7. If K is
a totally imaginary abelian extension of QQ of class number 1, then the same
statement holds, with the following easy proof. By the Kronecker—Weber theo-
rem we have K C Q(¢yy) for some M > 1. Hence all primes in the arithmetic
progression 1 (mod M) split in K. Theorem 1.2 implies that a random Bou-
niakowsky polynomial of degree d congruent to the constant polynomial 1
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676 A. N. Skorobogatov, E. Sofos

modulo M represents a prime. This prime p is the norm of a principal integral
ideal (x) C K. Since K is totally imaginary, we have p = Nk q(x). (See
Theorem 5.7 for a more general statement.) Here, at the expense of the con-
dition on the class number of K, we do not require K to be cyclic over Q and
we find an integral (and not just rational) solution of (1.1).

A stronger version of Theorem 1.2, where we require primes represented by
polynomials to satisfy additional conditions in terms of quadratic residues, is
obtained by incorporating into our technique an estimate for certain character
sums due to Heath-Brown [35, Cor. 4]. This leads to the following result,
proved in Sect. 6.4 as a consequence of Theorem 6.1.

Theorem 1.4 Letny, ny, n3 be integers suchthatn; > 0,n, > 0, andnsz > 0,
and let n = ny + ny + n3. Let ay, ay, a3 be non-zero integers, and let d;;
be natural numbers fori = 1,2,3 and j = 1,...,n;. Then for a positive
proportion of n-tuples (P;;) € Z[t]" withdeg(P;;(t)) = d;;, ordered by height,
the following conic bundle surface has a Q-point contained in a smooth fibre:

ni n2 n3
a[[P+a]]Pa@®y* +as][ [Py =0.  (1.2)
j=1 k=1 I=1

By [8, Thm. 1.4] (see also [46, Thm. 1.3]) in a dominant, everywhere locally
solvable family of quasi-projective varieties over an affine space such that the
fibres at the points of codimension 1 are split and enough real fibres have real
points, a positive proportion of rational fibres are everywhere locally solvable.
Thus, the results of Theorems 1.3 and 1.4 are expected consequences of a con-
jecture of Colliot-Thélene which predicts that the Hasse principle for rational
points on smooth, projective, geometrically rational varieties is controlled by
the Brauer—Manin obstruction, and generic triviality of the Brauer group in our
families. (Note that in these cases Colliot-Thélene’s conjecture follows from
Schinzel’s Hypothesis (H), see [20, Thm. 14.2.4].) A known non-trivial case
of this conjecture for conic bundles (1.2) is when the total degrees of coeffi-
cients are (2, 2, 0); natural smooth projective models of such surfaces are del
Pezzo surfaces of degree 4 for which the result is due to Colliot-Thélene [15].
The question is open already in the case of total degrees (2, 2, 2), which corre-
sponds to a particular kind of del Pezzo surfaces of degree 2 (cf. [11, Prop. 5.2]).
The conjecture for smooth projective varieties birationally equivalent to (1.1)
is known when deg(P(¢)) < 4 (and in some cases when deg(P(t)) = 6)
and [K : Q] = 2 (Colliot-Thélene, Sansuc and Swinnerton-Dyer [18], [56],
see [55, §7.2, §7.4]), deg(P(t)) < 3 and [K : Q] = 3 (Colliot-Théléne and
Salberger [16]), deg(P(¢)) < 2 and [K : Q] arbitrary [10,19,25,36]. There
seem to be no known unconditional results about the Hasse principle when the
number of degenerate fibres is greater than 6. In contrast, for our statistical
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Schinzel Hypothesis on average and rational points 677

approach to the existence of rational points the number of degenerate fibres is
immaterial.

In the rest of the introduction we give more details about our main analytic
results; for this we need to introduce some more notation. We write P > 0
to denote that the leading coefficient of P () is positive. For a prime ¢ and a
polynomial P(¢) € Fy[t] we define

Zp() :=t{seFy: P(s) =0}.

In particular, P is a Schinzel n-tuple if and only if Zp, _p, (£) # £ for all primes
£ and P; > Oforeachi =1, ..., n. Fix integers ng and M, and polynomials
Qi(t) € Z[t] of degree at most d; fori = 1, ..., n such that ]_[f-’:1 Q;(no) and
M are coprime. For H > 1 define

Poly(H) :={P € (Z[t])" : |P| < H,deg(P;) =d;, P > 0,
P, = Q;(mod M) fori =1,...,n}.

The least prime represented by a polynomial

For C > 0 define

Sc®P):={meN:m< (10g|P|)C, m = ng (mod M), P;(m) is prime fori =1, ..., nj.

Theorem 1.2 is an immediate consequence of the following more precise quan-
titative result.

Theorem 1.5 Fix A > 0. In the assumptions of Theorem 1.2 for all H > 3
we have

#{P € Poly(H) : PisSchinzel, 1S,,4(P) > (log [P|)4/3}
g{P € Poly(H) : P is Schinzel}
140 (logloglog H)4~"
Jloglog H

where d = dy + ...+ dy. The implied constant depends on d, A and M, but
not on H.

(1.3)

Recall that Linnik’s constant is the smallest L > 0 such that every primitive
degree 1 polynomial P(x) = gx + a with 0 < a < g represents a prime of
size < g = | P|F. This subject has rich history, see [39, §18], for example.
GRH implies that L < 2 + ¢ for every ¢ > 0 and it is known that L < 5, see
[60]. Furthermore, one cannot have L < 1, see [44] for accurate lower bounds.
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678 A. N. Skorobogatov, E. Sofos

Theorem 1.5 shows that the analogue of the Linnik constant for polynomials
of given degree is at most 1 4 ¢ for every ¢ > 0.

Corollary 1.6 Let ¢ > 0 and fix d, no, M € N. For 100% of Bouniakowsky
polynomials P of degree d with gcd(P (ng), M) = 1, there exists a natural
number m < (log [P such that m = no (mod M) and P(m) is a prime
bounded by | P|(log | P|)4+e.

Indeed, Theorem 1.5 withn = 1 and A = ¢/(2d) shows the existence of a
natural number m < (log | P|)1+e/Cd) guch that P(m) is prime; furthermore,
we have

P(m) < (d+ 1)|Plm? < (d + 1)|P|(log | P])1+¢/GdDd
< |P|(log |P)¥+/2 < |P|(log | P .

These bounds are intimately related to the efficacy of algorithms for factorisa-
tion of polynomials, see the work of Adleman and Odlyzko [1], and for finding
efficient cryptographic parameters as in the work of Freeman, Scott and Teske
[28, § 2.1]. McCurley [47] has shown that for certain polynomials the least
representable prime has to be rather large. The case d = 2 of Corollary 1.6 is
closely related to hard questions on the size of class numbers that go all the
way back to Euler; see the survey of Mollin [49].

Smallest height of a rational point

Bounding the least height of a Q-point on a variety V over Q is a hard problem
whose solution implies Hilbert’s 10th Problem for Q. Amongst the Fano vari-
eties it is only for quadrics that the known bound is essentially best possible,
which is due to Cassels [12]. Tschinkel gave a conjecture for the size of the
smallest Q-point [57, Section 4.16]. In this direction we have the following
result.

Corollary 1.7 Lete > 0,a € Z, a # 0, and d € N. For a positive proportion
of polynomials P(t) € Z[t] of degree d, the equation x> — ay> = P(t)z* has
a solution (x, y, z,t) € N* with

max{x, y, z, 1} < lal'/|P|'/(log | P)!/>**.

To prove this we first note that the density of Bouniakowsky polynomials
P(t) of degree d with P(¢) = 1 (mod 8a) exists and is positive; this is a spe-
cial case of Corollary 2.9. Since these P(t) satisfy gcd(P(0), 8a) = 1, we
use Corollary 1.6 with np = 0 and M = 8a to see that for 100% of Bouni-
akowsky polynomials P (¢) of degree d with P(¢) = 1 (mod 8a) there exists
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Schinzel Hypothesis on average and rational points 679

a natural number m < (log |P|)!*¢ such that P(m) is a prime p satisfying
p < |P|(log|P|)d+£ and p = P(0) = 1 (mod 8a). Holzer’s theorem [37]
states that if f1, f>, f3 are square-free pairwise coprime integers, not all of the
same sign and such that — f; f; is a quadratic residue modulo f; for all per-
mutations {i, j, k} = {1, 2, 3}, then there exists (x1, x2, X3) € z3 \ {(0, 0, 0)}
such that 21-3:1 fix? = 0and |x;| < /fj fil. Writing a = agb?, where ag is
square-free, we can apply Holzer’s theorem for fi = —1, f>» = ag, f3 = p.
Indeed, if ayp = s2"w, where s € {£1}, m € {0, 1}, and w is a positive odd
integer, then the quadratic Jacobi symbols satisfy

(5)-()-()-
p p w ’
due to p = 1 (mod8) and p = 1(mod w). Thus ag is a square mod-
ulo p. Clearly, p is a square modulo ag. By Holzer’s theorem the equation
given by x> — agy? = pz* has a non-zero integer solution (xo, yo, zo) With

max{|xol, Yo, 1zo]} < (lao|p)'/?. Then (x1, y1, z1) = (bxo, Yo, bzo) is anon-
zero solution of x> — ay? = pz? that satisfies

max{|x1], [y1], |z11} < b(lao|p)"/* = (la|p)'/* < |a|'?|P|"/* (log | P)¥/*F¢.

The Bateman-Horn conjecture

Theorem 1.5 is a corollary of Theorem 1.9 below. To state it we introduce a
prime counting function and a truncated singular series.

Definition 1.8 LetP € (Z[t])", P; > 0,letng € Z,andlet M € N.Forx > 1
define the functions

n
Op (x) = > [ Jlog Piom), (1.4)
meNN[1,x] i=1
m=ngo(mod M)

P;(m) prime fori=l1,...,n

_ I(ged(M, [TiZ; Pi(no)) = 1) I 1—¢'Zp, _p,(0)
- (M) M~ — 1)

Sp(x)

1
¢ prime, £{ M (
€ < logx

(1.5)

The function Gp(x) is a truncated version of the Hardy-Littlewood
singular series associated to Schinzel’s Hypothesis for the polynomials
Pi(ng+ Mt), ..., P,(no+ Mt), see [6]. The reason for considering P;(ng +
M?t) instead of P; () is because Op (x) involves the condition m = ng (mod M).
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680 A. N. Skorobogatov, E. Sofos

A standard argument based on the prime number theorem for number fields
shows that for a fixed P the product Gp(x) converges as x — oo. However,
the convergence is absolute only when each P; is linear. Since we treat gen-
eral polynomials, we have chosen to work with the truncated version to avoid
problems related to the lack of absolute convergence.

The Bateman—Horn conjecture states that

Op(x) — Gp(x)x = o(x).

Our next result shows that the estimate

X
Op(x) — Gp(x)x = O (@>

holds for 100% of P € (Z[t])" in a certain range for x. Let

B(x, H) op(0) = Sp x|

1
~ fPoly(H) 2

Pepoly(H)

be the average over all n-tuples P of the error terms in the Bateman—Horn
conjecture.

Theorem 1.9 Let n,d,, ..., d,, M be positive integers. Let ny € Z and let
Q = (Q;(@)) € (Z[tD". Fix arbitrary Ay, A € Rwithn < A < Aj. Then
forall H > 3 and all x > 3 with

(log H)A' < x < (log H)*?

we have

R(x,H) K

X
JIogx’
where the implied constant depends only on dy, ..., d,, M, ngy, Q, Ay, As.

The necessity of A; > n is addressed in Remark 4.2; one cannot expect
typical polynomials to represent primes when the input is not large compared
to the coefficients, and m = (log |P|)" seems to be a natural barrier.

From Theorem 1.9 and Markov’s inequality one immediately deduces a
form of the Bateman—Horn conjecture valid for almost all polynomials. For
simplicity we state this result only in the case n = M = ng = 1.

Corollary 1.10 Let d be a positive integer. Fix any ¢ € R with0 < ¢ < 1/2
and any A1,Ay € R with 1 < Ay < Aj. Then for all irreducible
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Schinzel Hypothesis on average and rational points 681

P e Z[t], P > 0, with deg(P) = d and all x with (log|P|)A1 < x <
(log | P|)A2 we have

1—¢71Zp ) X
log P(m) = _— o ,
Z og (m) 1_[ 1 —¢-1 X+ ((logx)c
meNN[1,x] £ prime
P (m) prime {<log x

with the exception of at most O (H?* ! (loglog H)“~1/2) of polynomials P such
that |P| < H.

The asymptotic is meaningful, since Sp(x) > (loglogx)!~? as long as
Gp(x) #0,see Lemma 4.11.

Comparison with the literature

Our main result, Theorem 1.9, is a vast generalisation of the well-known
Barban—Davenport—Halberstam theorem on primes in arithmetic progressions,
which gives a bound on

2

S| X eer-

1<q<0 | prime p<x 0(q)
ae(Z/qZ)* \p=a(mod q)

To bring it to a form comparable to Theorem 1.9 we write H = 0, x = X/Q
and P(t) = a + gt, from which it becomes evident that the left hand side is
essentially equal to

2

Z Z log P(m) — Gp(x)x

PeZ[t]: deg(P)=1 m<x
|P|<H P (m) prime

While the Barban—Davenport—Halberstam theorem concerns a single linear
polynomial, our work covers an arbitrary number of polynomials, each of
arbitrary degree. Prior to our paper there has been a number of results on
averaged forms of Bateman—Horn for special polynomials.

The work of Friedlander—Granville [30] has special interest in connection to
our work as it shows that there are unexpectedly large fluctuations in the error
term of the Bateman—Horn asymptotic; it would be interesting to understand
analogous questions in the setting of Corollary 1.10. Furthermore, it would be
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682 A. N. Skorobogatov, E. Sofos

n Pi(t), ..., Py(t) Authors

> 1 t+b1,....t+by Lavrik [43]

2 t,t+b Lavrik [42], Mikawa [48], Wolke [59]
1 at +b Barban [5], Davenport—Halberstam [23]
>1 ait +by,...,ant + by Balog [4]

1 4+ ar+b Friedlander-Granville [30]

1 +t+bandr?+b Granville-Mollin [31]

1 2+b Baier-Zhao [2,3]

1 B +b Foo—Zhao [27]

1 *+b Yau [61]

1 4+ b Zhou [63]

interesting to investigate the case where one ranges over degree d polynomials
with a fixed coefficient; this corresponds to work of Friedlander—Goldston [29]
where this is investigated for linear polynomials with fixed leading coefficient.

Method of proof

Theorem 1.9 is a generalisation of Montgomery’s proof of the Barban—
Davenport—Halberstam theorem, which corresponds to the case n = 1 and
d; = 1 of Theorem 1.9. By Cauchy—Schwarz we have

1
R, H? <V, H) = —— Op(x) — & 2, 1.6
(x, H) (v H) = s PEPOZMH)< p(x) — Gp(x)x) (1.6)

which is the kind of second moment function studied in the BDH theorem.
The original proof of the BDH theorem is a direct application of the large
sieve; such an approach only applies to polynomials of very special shape, see
[2,27]. The initial arguments in our paper are in fact closer to Montgomery’s
proof of the BDH theorem [50], which does not rely on the large sieve.

First, we open up the square in ¥ (x, H) to get three terms: the second
moments fp (x)? and x2Sp(x)2, and the correlation xSp(x)0p(x). The hard-
est term is Op(x)% and here Montgomery’s approach relies exclusively on
Lavrik’s result on twin primes [42,43]. Lavrik’s argument makes heavy use
of the Hardy—Littlewood circle method and Vinogradov’s estimates of expo-
nential sums. In our work we need a suitable generalisation of Lavrik’s result;
this is provided by our Theorem 3.1. It produces an asymptotic for simul-
taneous prime values of two linear polynomials in an arbitrary number of
variables, where the error term is uniform in the size of the coefficients. The
difference between our work and that of Montgomery and Lavrik is that to
prove Theorem 3.1 we do not use the circle method and we instead employ the
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Schinzel Hypothesis on average and rational points 683

Mobius randomness law, see Sect. 3. This approach in the area of the averaged
Bateman—Horn conjecture is new.

Next, we show that the three principal terms cancel out by construct-
ing a probability space that models the behaviour of functions involving Z,
see Sect. 2. This task inevitably leads to new complications of combinato-
rial nature, compared to the aforementioned papers on special polynomials
where the Bateman—Horn singular series has a useful expression in terms of
L-functions (see [2,27], for example). The final stages of the proof of Theo-
rem 1.9 can be found in Sect. 4.4 and that of Theorem 1.5 in §4.5.

Applications to rational points, including the proofs of Theorems 1.3 and
1.4, can be found in Sects. 5 and 6.

Notation

The quantities Ay, Aa, 81, 82, 1, dy, ..., dy, Q, ng, M, will be considered con-
stant throughout. In particular, the dependence of implied constants in the big O
notation on these quantities will not be recorded. Any other dependencies of the
implied constants on further parameters will be explicitly specified via the use
of a subscript. Whenever we use iterated logarithm functions logz, loglogt,
etc., we assume that ¢ is large enough to make the iterated logarithm well-
defined.

2 Bernoulli models of Euler factors

In this section we study the ¢-factor 1 — ¢z p,...p,(£) of the Euler prod-
uct (1.5). We prove that if Py, ..., P, are random polynomials of bounded
degree in [Fy[7], this factor is modelled by the arithmetic mean of £ pairwise
independent, identically distributed Bernoulli random variables defined on a
product of probability spaces. The results of this section are used in Sect. 4 to
prove cancellation of principal terms. Proposition 2.8 is used to prove Theo-
rem 1.5 in Sect. 4.5.

2.1 Bernoulli model
Let ¢ be a prime. Consider the probability space (2(d), IP), where

Q) :={P e Fylt] : deg(P) < d}
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684 A. N. Skorobogatov, E. Sofos

and PP is the uniform discrete probability. For every m € [F; we define the
Bernoulli random variable Y, : Q(d) — {0, 1} by

1, if P(m) # 0in Fy,

Ym = .
0, otherwise.

We have Y,,, = x (P(m)), where x is the principal Dirichlet character on F,.

Lemma 2.1 Let 7 C Fy be a subset of cardinality s < d + 1. Then the
variables Y, form € ¢ are independent, and we have

Eow [ Yu= ] Ee@¥n =1 —-¢7"".
me g me ¢

Proof 1t is enough to prove that

Eow [] 0-Yw)
me_J

PeIE‘g[t]:deg(P)gd,P(m)=Oifme/}=i. (2.1)

1
= pd+1 t[{ s

By the non-vanishing of the Vandermonde determinant this condition describes
an [Fy-vector subspace of €2(d) of codimension s, hence the result. |

Letn e Nandletd,...,d, € N. Consider 2 = Q(dy) x ... x Q(d,) as
a Cartesian probability space equipped with the product measure

P(A; x ... x Ap) :=P1(A1)...Py(A,), forall A; € Q(d;), (2.2)

where each IP; is the uniform discrete probability on 2 (d;). Form € F, define
the Bernoulli random variable X,, : 2 — {0, 1} by

1, if l—[,r'lzl P,-(m) ;é 0in Fz,

Xm - .
0, otherwise.

It is clear that

Xi4...+Xe=10—Zp,_p, (L) (2.3)

Lemma 2.2 Forall m € F; we have EqgX,, = (1 — ¢~ )"

Proof This is immediate from Lemma 2.1. O
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Schinzel Hypothesis on average and rational points 685

Lemma 2.3 Forall k # m € Fy the random variables Xy and X,, are inde-
pendent.

Proof Since Xj and X,,, are Bernoulli random variables, it suffices to show
that they are uncorrelated. Using Lemma 2.2 we write the covariance of Xy
and X,, as

Eo (l_[x@i(m))—(l—ﬁ‘l)”) [Tx@itn - (=)'

i=1 j=1
which equals

Eq [Hx(Pi(m))x(Pi(k))} — (1=

i=1

= (1_[ Eq ;) [x(P(m))x(P(k))]> —(1- 6_1)2n

i=l

by (2.2). Since d; > 1foralli =1, ..., n, we conclude the proof by applying
Lemma 2.1. O

Ford, s € Z>( define
—(s\_ (=1
Geld,s) = Z ()W (2.4)
r=0
Lemma 2.4 For a subset ¢ C Fy of cardinality s we have
n
Eo [ Xm=]]Ge@. 9.
me ¢ k=1

Proof By multiplicativity of the principal Dirichlet character y we have

me=ﬂx<ﬁPk<m>>=f[x [T Py .

me_ ¢ me_ ¢ k=1 k=1 me_ ¢

hence

Eo [] Xm=[]Eaw [] xPm).

me_ ¢ k=1 me_ ¢

@ Springer



686 A. N. Skorobogatov, E. Sofos

For a fixed k we have

Eowy || x(Pm) =FEawy [] Yn
me ¢ me_g

—Z( D* 3" Eawy [ A=Y

dC I meg/

From the definition of the random variables Y, we get

Eowy [ 1= Y

mes/

= ¢~ WD (P e Fylr] : deg(P) < di, P(m) =0if m € o/}

If f.o7 < di + 1, this equals i by (2.1). If 497 > dy + 1, then P has more
than deg(P) roots in [Fy, hence P is identically zero and the quantity above is
£=@+D Thus

Eo @ 1—[ (1 — Y,,) = ¢~ min{te/ dit1}
meg/

This implies the lemma. O

Lemma 2.5 (Joint distribution of Bernoulli variables) Foryy, ..., ye € {0, 1}
we have

P[Xm =ymforallm=1,...,¢]

= (=DHT=0 N ()R T Getdr, 17).
j CF@ k=1
i¢ f=y=0

Proof The event X, = y,, for y,, = 0 (respectively, y;,, = 1) is detected by
the function 1 — X, (respectively, X,,). Therefore, writing g; = 1 — y; we
obtain

l
P[Xpm =y forallm =1,....£] = (=D "=VEq [T (X — Bu)-

m=1

The mean in the right hand side equals

ST |Be [ xi= D] D W]"[Gz(czk e )] B

S CFe \i¢ J ie g J CF, i¢ 7
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due to Lemma 2.4. In view of §; € {0, 1} this proves the lemma. O

2.2 Consequences of the Bernoulli model

For n € N and any prime £ define

En—l
€ —nm

1
() :=1— 7 + (2.5)

Lemma 2.6 We have

_ Zp,..p, () 2 1\
(d+n) Z Py...Py _ -
¢ (1 V4 ) = () (1 E) '

PrelFe[t], deg(P)<dq
Py €Fglr], deg(Py)<dy

Proof We write the left hand side as E_ZEQ[(X 1+...+X ()2], open up the
square and use Lemmas 2.2 and 2.3. O

By considering ¢ 'EpcalX| + ...+ X;] instead we obtain

—(d+m) ) (1 _ ZPl...Pn(f)> _ (1 _ 1)"_
12 12

PieFy[t], deg(P1)<d;
P, €Fy[r], deg(Py)<dy

Lemma 2.7 Fix any m € N. We have

—(d+n) _ ZP]...P,L(E)) _ ( _ 1)2n
¢ > (1 === ) =mo(1-5)

PieF[t], deg(P)<dy, P1(m)#0
Py €Fy[t], deg(P,)<dp, Py (m)#0

Proof By (2.3) and Lemma 2.3 the left hand side in our lemma equals

Xi+...+X Eq[Xn] Eql[Xn]
EgKf)Xm]: ot l;nEg[xi].

The proof now concludes by using Lemma 2.2. O
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2.3 Density of Schinzel n-tuples
For a prime ¢ define the set
Te :={P e (Felt])" : Zp,..p,(£) # £, deg(P;) < d; forall i=1,...,n}.
By Lemma 2.5 with all y; = 0 we have T, = (1 — cz)ﬁd”’, where
n
coi= Y (=D []Getdr,2.2). (2.6)
Z CFy k=1

When ¢ > d it is easy to see that T, = ]_[?:1(5‘1”Jrl —1),hence 1 — ¢, =
[Ty (1 — ¢,

Proposition 2.8 For any M € N we have
4P € Poly(H) : Zp,..p,(0) # ¢ for all £ { M)

L B E d+n Hd+n
=2 ]_[ (A —¢p) <M> +0(10gH .

prime ¢tM

The infinite product converges absolutely to a positive real number. In partic-
ular, the set of Schinzel n-tuples of given degrees has positive density in the
set of all n-tuples of integer polynomials of the same degrees.

Proof Let # be the product of all primes £ < % log H such that £ t M.
Define

K(H) ={P € Poly(H) : Zp,..p,(£) # € for all primes £|#'} .

The counting function in the proposition is K(H) + O(H dn (logH )~ h.
Indeed, the number of P € Poly(H) such that for some j = 1, ..., n there
is a prime ¢ > % log H for which P; is identically zero on [Fy is

< Z ﬁHl+d,- (H /) +4

rime > log 7 | =1
P 10 18 i#]

< Hd+n Z E—Z & Hd+l1(10g H)_l.

prime £> l]—o log H
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We have

2H d+n
KH)= > [ tre@=27" <W+O(1)> [T e

PePoly(H) prime ¢|# prime £| %

by the Chinese remainder theorem applied to the coefficients of the polyno-
mials P;. Taking into account that T, = (1 — co) 041" we rewrite this as

d+n
K(H) =24 <%+0(1)7/) ]_[ (1 = ¢p).
prime £|#

Note that log 7" < ), (og Hy/10 102 £ < (log H) /2 for all sufficiently large
H by the prime number theorem. Hence # < H'/?, which implies

n+d
K(H) =24 (%) 1_[ (1 —cp) + O(HH1/2),

prime £| %

The estimate | |

the proof.
The product converges absolutely because for all £ > d we have

—d,' 1 _ _di
prime€>%logH (1 -4 @i+ )) = 1+0((10g H)™%) concludes

n
l—c=[Ja-e4D)=1400?.

i=I

Since Ty # & we have Ty = (1 — co) 04t = 0, so the infinite product is
positive. O

Corollary 2.9 Fixd, M € N. Let Q(t) € Z[t] be a polynomial of degree at
most d. The number of degree d polynomials f(t) € Z[t] with positive leading
coefficient and height at most H such that f = Q (mod M) and Zy(£) # £
for each prime € 4 M is

d+1 d+1
2d 1_[ (1 _ E—min{@,d-‘rl}) H + 0 <H ) .

_ Mda+1 log H
prime ¢4M

Proof We apply Proposition 2.8 in the case n = 1. For £ > d 4+ 1 we have
ce = 79D If s < d + 1 then (2.4) becomes G¢(d, s) = (1 — 1/£)*. Hence
for¢ <d+1, (2.6) gives ¢, = £~ O

The case M = 1 of Corollary 2.9 is particularly useful and is worth recording
separately:
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Corollary 2.10 The number of degree d Bouniakowsky polynomials of height
at most H is

d in{e,d+1) d+1 HIT!
2 1 — ¢~ mmis, H o .
I ¢ ) + <10gH)

prime ¢

3 Mobius randomness law

Foranyd,k,m e Nand H > 1 we let

Gem(H; d) = > A(P(k))A(P(m)), (3.1

PeZ[t], deg(P)=d
|P|<H, P>0

where A (n) is the von Mangoldt function. The main result of this section is
the following asymptotic for % ,, (H; d) as H — oo that exhibits an effective
dependence on k and m.

Theorem 3.1 Fixanyd € Nand § > 0. Then forall H > 1, A > 0, and all

natural numbers k, m < (log H)‘S, k #= m, we have

Gm(H: d) =21 TT L 0, (H 0g 1) 74),
p—1

p prime
plk—m

where the implied constant is independent of k, m and H.

3.1 Using Mobius randomness law

Asusual, () is the Mobius function. In broad terms, the Mobius randomness
law is a general principle which states that long sums containing the Mdbius
function should exhibit cancellation. An early example is the following result
of Davenport, whose proof is based on bilinear sums techniques.

Lemma 3.2 (Davenport) Fix A > 0. Then for all y > 1 we have

sup | D (e < ylogy) T,
a€R | N1,y
where the implied constant depends only on A.

Proof See [22] or [39, Thm. 13.10]. O
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Recall that for r € N we have A(r) = — Zdlr w(d)logd. We define the
truncated von Mangoldt function

A(r):=— > p(dlogd, where z>1,

d<z,d|r

which will give rise to the main term in Theorem 3.1 for suitably large z. The
remainder

&x(r) == A(r) — A (r)

will contribute to the error term. When taking the sum over r, the variable d in
&) = — Zz<d,d|r u(d)logd runs over a long segment, so the presence of
w(d) will give rise to cancellations. In particular, A, (r) is a good approxima-
tion to A (r) for suitably large z and when one sums over r. The advantage of
this is that one can easily take care of various error terms in averages involving
A, (r), due to truncation.

We shall use the following corollary of Lemma 3.2.

Corollary 3.3 Fix A > 0. Then forall y,z > 1 we have

sup [ Y £(r)e™| <4 y(log y)(logz) A,
acR reNN[1,y]

where the implied constant depends only on A.
Proof See [39, Eq. (19.17)]. O

For a function F : Z — R we denote

Sp(a) := § F(c)e'“®,
ceZ
lel<(d+ ). H

where .# = max{k, m}. Recall that for t € R, H € [1, 00) the Dirichlet
kernel is defined as

Dy () = Z el

lcl<H

We will also use D} () == Y g _.<p e’
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Lemma 3.4 For any integers k, m and any functions f, g : Z — R we have

> f(P(K))g(P(m))
PeZ[t], P>0
|P| < H, deg(P) =d
— # / Sp(a1)Sg(a) Dy (kay + meas)
(—m.7]?
d—1
X 1_[ DH(kjozl + m-/az) de.
j=0

Proof. Firstly, we write

> F(PK)g(P(m))

|PI<H
P=>0
= Y fegk) Y Lk = P()1ka = P(m)).
k11, ko | <(d+1).#9H IP|<H

P=>0

The following identity holds for all integers r and s:

1 T
1r=5)=1 / el gq,
-

Using it twice turns the sum into

1 T T . .
ye3 / / Yo fhpeThe T glkgerew

k<@ D). H ks |<(d+1). 4 H

% Z ei(P(k)a1+P(m)a2)da1dot2.

|P|I<H
P>0

The sums over k; and k, are equal to S¢(ay) and S, (a2), respectively. To

analyse the sum over P we write P(t) = Z?:o c jtj and recall that we have
cq € (0, H]. We obtain

d—1
> fPOatPmD) = pEkeay +mla) [ Duklen +m/a).
|PI|<H j=0

P>0
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Before proceeding we recall a well-known result of Lebesgue [62,
Eq. (12.1), p. 67],

/n |Dg(t)|dt = O(log H). 3.2)

-7

Lemma 3.5 For any integers k #= m and any functions f,g : Z — R we

have
A (log H)?
S FPERP) < I8y lncSig @ H T IEET
|PI<H Ik —m)|
P>0

where ||S7 o := max{|Ss(a)| : @ € R}, and the implied constant depends at
most on d.

Proof The bounds | S, (a)| < Sjg(0), IDZ(a)l < H,|Dg(a)] <14+ 2H and
Lemma 3.4 give

Y [(PK)E(P(m))

|PI<H
P>0
< ||Sf||ooS|g|(0)Hd_1f Dy (a1 + a2)|| Dy (kay + may)|de.
(—m,7]

The change of variables 1| = a1 + «p, t2 = kay + mop shows that the integral
is at most

1 2 2w M
/ | Dy (11)[| Dy (22)|dt.
lk—m| J_2n J2n.u

The Dirichlet kernel Dy (¢) is an even and 2w -periodic function of ¢, thus

27 /A T T
/ DR IID )t = 4//// / Dy ()| D ()]dt.
27 J—=27. —7 J—7

The proof concludes by invoking Lebesgue’s result (3.2). O

Remark 3.6 The proof of Lemma 3.5 makes clear that in order to prove The-
orem 3.1 one needs to range over only two random coefficients and we are
allowed to have the remaining d — 1 coefficients fixed.
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Remark 3.7 It would be interesting to study the N-th moment ) p (fp(x)—
GP(x)x)N in (1.6) for N > 3. The proof of Lemma 3.5 can be adapted for
this problem as long as d is not too small compared to N. For example, when
n = 1 one would need totaked > N — 1.

Proposition 3.8 Fixanyd > 1, A > 0, and 51,8, > 0 with 61 < 1. Then
forall z, H > 1 such that H% < 7 < H and all natural numbers k “m
satisfying

k,m < (log H)*

we have
Hd+1
G (H:d) = A(P(k)A,(P Oa| ——).
i (H: d) > (PR A (P(m)) + A((IOgH)A>
PeZ[t], deg(P)=d
|PI<H, P>0

where the implied constant does not depend on k, m, H and z.

Proof For both choices f = &, and f = A, we have | f(1)| < Zmlt logm <
(log 1)t (), where 7 is the divisor function. In particular, we get Zt< y [f()] K
y(log y)?, which shows that

S;71(0) < H(log H)>.#* <« H(log H)**%,
Furthermore, by Corollary 3.3 we have
1S6. oo < 4 H(log H)(log2) ™€ <, H(log H)!*~C  (3.3)
for every C > 0. Therefore, by Lemmas 3.4 and 3.5 we obtain

Y aPmEPm)|.| Y EPER)A(Pm)

|P|I<H,P>0 |P|<H,P>0
%Hd+1
< (log H)C—2d62—5 '

Using .# < (log H)® and letting A = C — (2d 4 1)8, — 5 gives the required
error term. The proof now concludes by recalling that A = A, + &;. O

For later use we need a version of this result for one polynomial value instead
of two but with the additional condition that the polynomial is in an arithmetic
progression.
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Lemma 3.9 Fixd > 1anddy, 82 > 0withé; < 1. Thenforallz, H>1, A >0,
all natural numbers k, 2, and all R € (Z,/ Q)[t] of degree at most d such that

k< (ogH)?, H" <z<H, Q<H

we have
Hd+1
A(P(k)) — A (Pk) =04 | — ),
> (P(k)) > (P (k) A((logH)A)
[PI<H, P>0 |[PI<H, P>0
deg(P) =d deg(P) =d
P = R (mod 2) P = R (mod Q)

where the implied constant does not depend on k, m, H, R, Q and z.
The crucial point is that the estimate is uniform in the progression.

Proof Using that A — A, = &, turns the left hand side into

d—1

. d . .
< Z elCdk oq) 1_[ ( § : ezcijm)‘
0<cg<H Jj=0 |Cj\<H
cq = rg (mod ) cj =rj (mod )

Writing P(t) = Z?:O lej and choosing integers 0 < r; < € such that
R() = Z?:o r jtj (mod 2), converts the right hand sum over P into

d—1 .
( Z eicdkdm) 1—[ ( Z eicjkfal)
O<cqg<H j=0 lejI<H
cq=rq(mod ) cj=rj(mod )

For each j # 0 we bound the sum over c; trivially by O (H). Using (3.3) to
bound Sg, gives

T
Y. EP(K) <5 Hlog H)“d‘”‘CH"/ 3 eion|da,
|P|<H, P>0 — lcol<H
deg(P)=d co=ro(mod €2)
P=R(mod )

It suffices to prove that the integral is O (log H), since taking C large enough
compared to d§> will complete the proof.
Letting co = b2 + ro makes the sum over cg equal to

el 2 : eleal )

lb+ro/QI<H/ S
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Since |rg| < €2, the terms in the sum over b that do not satisfy |b| < H/Q are
at most O (1) with an absolute implied constant. Hence,

T
/ Z elcol
T lel<H
co = ro (mod )
T
<1+ /
7T
Since |Dp/q(t)] is even and has period 27 we can bound the integral by

Z eianl
|b| < H/ S

< ffﬂ |Dp/q(t)|dt. Alluding to Lebesgue’s result (3.2) is now sufficient to

finish the proof. O

doy

1 T
do; =14+ — |DH/Q(Z)|dl‘.
QJ ra

—TT

3.2 The main term

It now remains to estimate the sum involving A in Proposition 3.8. This will
be straightforward but somewhat involved because we need to keep track of
the dependence of the error term on the parameters k and m.

Lemma 3.10 For all z, H > 1 with z2 < H and all distinct k, m € N we
have

> AUPKR)AL(P(m))
PeZ[t]
|P|<H, P>0
deg(P)=d

— od ppd+1 Z n(e)ulo)? ged(lo, k — m) Z w(t)log(clot)

c.loeN (clo)? teN !
clo<z clot<z
ged(c,lo)=1 ged(t,clp)=1
+ O(HYZ),

where the implied constant depends only on d.

Proof Write ¢ = (co, ..., cq) and P(t) = Pe(t) = Y c;t'. The left hand
side becomes

Y ko) log(ky) log(ka) > L (34

ki,ko<z ce(ZN[—H,HD*!, cy>0
k1| Pe(k), ko| Pe(m)
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We only need to consider the terms corresponding to square-free ki and k5.
Then lo = ged(ky, k2), 11 = k1/ly, lo = ka/ly are square-free and pairwise
coprime. The simultaneous conditions k; | P¢(k), k2 | P.(m) can be written
equivalently as

Pe(k) = Pe(m) =0 (mod lp), Iy | Pe(k), I | Pe(m).

Then splitting the summation over each ¢; in arithmetic progressions modulo
lol11 turns the sum over ¢ into

> ¢ {c € (ZN[—H, H)*' : ¢; > 0,¢ = b (mod 101112)} .

be(ZN[0,lpl112))4H!
Py (k)= Py (m)=0(mod Io)
11| Pp(k), I2| Py (m)

Since z> < H we have lpl1l» < kikr < z2 < H. Therefore, the summand

t{c} is
1 'H d+1 o H d
5 (101112) + <101112) ‘

By the Chinese Remainder Theorem, the number of terms in the sum over b is

[T sbeFt A = Pom) =0} T 2tb e FH': Py) = 0)

p prime p prime
pllo plh
< [T #beFd: Pyom) =0,
p prime
pll2

where we used that each /; is square-free and that ged(/;, [;) = 1 foralli # j.
Fixing all b; except by shows that

4(b e F4H : Py(k) = 0} = 2fb € FUH! 2 Py(m) = 0) = p.

Fixing all b; except by and by shows that £{b € F4™! : Py (k) = Py(m) = 0}
equals p9=1if p {k —m and p@if p | k — m. Hence, the number of terms in
the sum over b is

Gy T " T P = )15~ geddo, k —m).
prime p|lp prime p|lo
plk—m ptk—m
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Hence, (3.4) becomes

cd(lo, k —m)
2 i Y u(lo)zu(ll)u(lz)IOg(loll)log(lol”gT
ot1i2

lo,ll,lzeN
ged(l;,lj)=1fori#j
lol1, loh<z

up to a quantity whose modulus is

cd(lg, k —m)
<H! Y M(lo)zﬂ(ll)zl/«(lz)Z10g(loll)10g(lolz)gOT.

lo,l1,[,eN
ged(l;,lj)=1fori#j
lol1, lola<z

(3.5)

The condition ged(/q, [>) = 1 has indicator function given by

Yoo ou@= Y u,

ceN c,t1,heN
clged(ly,l2) li=cty, h=cty

hence the sum over [y, /1, /> in the main term can be written as

2 gcd(lp, k — m)
> o) m@uenpien) loglocn) loglloct) =— 55—
o¢ 12

c.lp,ty,1eN
ged(lp,ctitp)=1
lpcty, lpctr <z

u(c)
= Y = > ulo)u(t)pu(n)logloch)loglocty)
ceNN[1,z] lo,t1,t10eN
ged(lp,ctitr)=1
ged(e,t1tr)=1
locty, loetr <z

ng(ZOv k — m)
X —
BBtity

where we used that the presence of wu(cty)u(cty) forces ged(c, t1£,) = 1 and
u(ctp)u(ctr) = ;L(c)z,u(tl),u(tz). The variables t1, #; in the last sum are now
independent hence we get the sum in the lemma. Turning to (3.5), we use
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gcd(lo, k — m) < [y to bound it by

< HT Y pllo)* n(l)* u(lz)* log(lol) log(lol)

lo,l1,heN
lol1, loh<z

2

< H'(log2)* | > 1| < HZ*(log2)*,

l(),l] eN
loh<z

which completes the proof. O

Our aim is now to prove asymptotics for the sum over ¢ in the right hand
side of the equation in Lemma 3.10. We need the following lemma.

Lemma 3.11 Fixany A > 0. Then forall T > 1 and g € NN [1,T'?] we
have

y MOl 9 o, (tog 7)),
J ¢(q)

t<T/q
ged(r,q)=1

where the implied constants depend only on A.

Proof This can be deduced directly from

Y HORE 46 (og Ty ) and

= t ¢(q)
ng(va)Zl
p(1) _
Y. = 0allogD)™, (3.6)
t<T
ged(r,g)=1

which are consequences of the prime number theorem, see [51, Ex. 17, p. 185].
O

Recall the following standard bounds from [51, Thm. 2.9, Thm. 2.11]:

1 loglogn
<<gg

1
(n) . 1(n) < nO e (3.7)
@(n n
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Lemma 3.12 Keep the setting of Lemma 3.10 and fix an arbitrary positive
constant A. Then the sum over the c, ly in Lemma 3.10 equals

P |k — m]|
[1 p—1 0 ((logz)A>’

prime plk—m

where the implied constant does not depend on k, m, z and H.

Proof To apply Lemma 3.11 we must have clg < z!/?. Using the bound
> n<: 1/n K logz we see that the contribution of the terms failing this con-
dition is in modulus at most

2
|k — m]| log z 4 7(s)
2 e (| KWemmitogd® 3 5
c,loell\/lz 1<z s>z1/2
clo>z

where we write s = clg. By (3.7) the sum over s is < 23>ﬁ s & 7VA,
which is satisfactory. By Lemma 3.11 the remaining terms make the following
contribution:

5 M(C)M(lo)ngd(lo,k—in)((610)2 . 0( 1 ))2
(clo)? o(cl)? " *\logn)A)) -

c,lpeN
clp<z!/?
ged(c,lp)=1

The error term is

Ik — m| |k m|
(IOgZ)A %: (clp)? (IOgZ)A'

The main term equals

3 p(e)pdlo)? ged(lo, k — m)
elnel @(cly)?

clo<z!?
ged(c,lp)=1

Auly)? ged(ly, k — m k—m

_ Z u( )M(O)go(%:lo)(zo )+0 Z | (c10)2|
c,lpeN c,lpeN
ged(c,lg)=1 clo>z1/2
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By (3.7) we have

1 T(s) _ _

c,lpeN s>z1/2 s>z1/2
clo>zl/2

The main term has Euler product

3 n(e)n(lo)? ged(lo, k — m)

clnel @(cly)?

ged(c.lo)=1

- 11 (1_ ! +gcd(p,k—m)>
= 12 12 :
» prime (p—1 (p—1

Only the primes dividing kK — m contribute. In particular, we get the product

I (1+L>= [ Ll,

prime plk—m p—1 prime plk—m P
which concludes the proof. O

Using Lemmas 3.10 and 3.12 with z = H'/8 we obtain

Lemma 3.13 Fix any 6 > 0. Then for all H > 1, A > 0, and all pairs of
distinct natural numbers k, m < (log H )0 we have

Yo AUPK)A(P(m))

PeZ[t], deg(P)=d
|P|I<H, P>0

— 2de+1 l_[ Ll + OA (Hd+l(10g H)_A> ,

prime plk—m
where 7 = H'Y/8 and the implied constant does not depend on k, m, z and H.
Combining Proposition 3.8 with Lemma 3.13 proves Theorem 3.1.
3.3 A variant

We shall also need the following variant of Theorem 3.1.

Lemma 3.14 Fix anyd > 1 and § > 0. Then forall H > 1,A > 0, all
natural numbers k, Q, and all R € (Z/2)[t] such that k < (log H)? and
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702 A. N. Skorobogatov, E. Sofos

Q < H we have

> log P (k)

|PI<H, P>0,deg(P)=d
P (k) prime, P=R(mod 2)
2de+1

d+1
= mﬂ(gcd(R(k), Q)=1)+ 04 (—) ,

(log H)A
where the implied constant does not depend on k, H, R and S2.

Proof 1f gcd(R(k), ) # 1, then P (k) is a prime divisor of €2. Since there are
O (H?) polynomials P(r) of degree d with |P| < H such that P (k) is equal
to a given integer, the sum in the lemma is < #{¢ prime : £ | Q}H¢log H.
The number of prime divisors is < log < log H, thus the proof is complete
when gcd(R(k), Q) # 1.

Let us now assume that gcd(R(k), 2) = 1. We first transition to the von
Mangoldt function by noting that

> APK) - > log P (k)
|PI<H, P>0 |P|<H, P>0,deg(P)=d
deg(P)=d P (k) prime
P=R(mod 2) P=R(mod 2)
< ) Y ogty Y oL
2<aklog H ¢ prime |P|I<H
L (d+1)Hk? deg(P)=d
P (k)=

The last sum over P is O (H?), thus the error term is < (log H)>HY(Hk/2,
which is acceptable. To conclude the proof it therefore suffices to consider
> p A(P(k)). Define z = H'* By Lemma 3.9 it is enough to estimate

E A (P(k))
|P|I<H, P>0
deg(P)=d, P=R(mod Q)

=— ) nkdogk) > L,

ki<z |PI<H, P>0
ged(ky,2)=1 k1| P(k), P=R(mod Q)

where ged(ky, ) = 1 follows from gcd(R(k), 2) = 1. Hence the sum over
Pis

Hd-H Hd
24 (— +0 (1 + )) 8 {P e (Z/k)t] : deg(P) < d,

d+1 d
k1+ Qd+1 kl Qd

P(k) = 0 (mod k;)}.
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Since #{P} = kf and k| < z < H, the above becomes

Zde+1 1 4
Wk—l + O(H?).

The error term contribution is

<« HY Z logk; <« Hzlogz « HIT1/2,

k1<z

The main term contribution is

ded—I—l M(kl)logkl B 2de+1 N <Hd+1)
ot o ke l@ " T Nloghs)”
ged(ky, =1
where we used (3.6). |

4 Dispersion

Recall that ¥ (x, H) was defined in (1.6). In this section we prove ¥ (x, H) <
x2 /(log x)~! via Linnik’s dispersion method [45]. Theorem 1.9 then follows
by the Cauchy—Schwarz inequality Z(x, H)> < ¥ (x, H). Removing the
condition P; = Q; (mod M) can only increase §Poly(H) ¥ (x, H), thus

tPoly(H)Y (x, H)
< Yo ) —2x Y. Ge(0)be()

PeZt]", |P|< H PeZ[1]", |P|<H
deg(P,-) = div Pi >0 deg(Pl-) = div Pi >0
+x? > Gp(x)*. (4.1)

PeZ[t]", |P|< H
deg(P;) =d;, P; >0

The term ) p6p (x)? is studied in §4.1 using Theorem 3.1. The terms
dp 6p(x)2 and ) p Gp(x)0p(x) are estimated in §4.2 and §4.3, respectively.

Throughout this sectiond = dj + ... 4+ d,. We write P;(t) = Z?:o c,-jtj
foreachi =1, ..., n. '

4.1 Theterm ) Op(x)*

Recall that % ,, (H; d;) is defined in (3.1).
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704 A. N. Skorobogatov, E. Sofos

Lemma 4.1 Fixany § > 0. For all x, H with 1 < x < (log H)® we have

> Op(x)

PeZt]", IPI<H
deg(P,-) = dl‘, Pi >0

n
=2 Z Hgk,m(HQdi)+ (0] (de+”(logH)”),
1<m<k<x i=1
k =m = ng (mod M)
where the implied constant depends only on § and d;.

Proof First, note that for all j € N we have 1primes(j) log j < A(j), where
A is the von Mangoldt function. Therefore, the sum over the P; in our lemma
is at most

2

> Do AP A(Py(m)
Pr,..., Py m < x
|P;| < H, P; >0 \ m=ng(mod M)

= > [ [%m(H: o).

1<k, m<x i=l1
k=m = ngy(mod M)

The contribution of the diagonal terms k = m is at most
n
2 11 2 awoeny
I<m<x i=1|P;|<H, P;>0
deg(P;)=d;

Using 0 < A(h) < logh gives the bound

<OogI)" Y T D APimy).

1<m<xi=1|P;|<H, P;>0
deg(P;)=d;

We can now apply Lemma 3.14 with Q = 1 and d = d,. It shows that the sum
over the P; is O (H'*4), hence

n
Gfogt)" Y [] D Am) < (ogHY'xH!™,
I<m<xi=1|P;|I<H, Pi>0
deg(P;)=d;
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which is sufficient for the proof. O

Remark 4.2 Lemma 4.1 shows why we need to have x/(log H)" — 4-o00:
if x is not this large compared to the typical size of the coefficients of the
polynomials, then the diagonal terms in the second moment dominate; using
Lemmas 4.4, 4.7, 4.9 it is then easy to see that the three principal terms do not
cancel. In particular, one has

¥ (x, H) =< x(log H)" > x2,
which is not sufficient for proving Theorem 1.5.

Our next step is to use Theorem 3.1 to estimate the sum over m, k in
Lemma 4.1. This will give rise to an average of the multiplicative function

1 n
] <1 + —1> :
prime p|t p

For this we need the following lemma.

Lemma 4.3 Fix anyn € N and ¢ > 0. Let [ be a function defined on the
primes such that | f(p)| < c¢/p forall p. Then forall x, T > 1 we have

Yo I a+rent=0w

;g}? prime p|t
and
1+ n_
/ > 11 (1+f(p))"dx—_ I (1+< f(p)) )
teN prime p|t prime p p

+O(T3?,

where the implied constants depend only on n and c.

Proof Wintner’s theorem (as generalised by Iwaniec—Kowalski [39, Eq. (1.72)])
states that for any arithmetic function g and any monotonic and bounded
h : [0, 00) — R, one has

Z(g*h)(z)=/ Zg“) n(Z)|ay+o | Xisor] @2

t<x t<y 1<x
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for all x > 1. Here g * h is the Dirichlet convolution. Letting # = 1 and

gty =luml J] (A+f@)"-1)

prime p|t

gives (g x h)(t) = ]_[p“(l + f(p))", hence, by (4.2), we obtain

S I (1+f(p>>"=/ > %0 o [ Yison]. @3

teN prime p|t <y 1<x

1<x

For a prime p we have

8P = Z( )f(p)f < Z(") < x

Jj=1 p

for some positive constant « that depends only on n and c. Therefore, by (3.7)
we obtain

tlg()] < lplT () = 0@'?).

This implies that for all x, y > 1 one has

t
Dol < YT < and YT 8O S 32 12

1<x 1<x t>y t>y
Therefore,
(1) (1) _ (p) _
Y EE =Y oo ) =T (1+ 55 ) + 007,
<y teN 14 p

Using 1 +g(p) = (14 f(p))" in the product and alluding to (4.3), we obtain

Yo I a+rey=x [] (1+(1+f(5))n_1>+0(x”2).

teN prime p|t prime p
1<x

Clearly this is O(x), which proves the first claim in the lemma. The second
claim follows by integrating over the range 0 < x < 7. O

Recall that y,,(£) was defined in (2.5).
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Lemma 4.4 Fixany § > 0. Forall x, H with 1 < x < (log H)? we have

2agn—2
x°M
> Op(x)* = T ——2H T %®
PecZ[t], PI<H prime £4M

deg(P,') = di, Pi >0
+ 0 <de+l’l(log H)n +X3/2Hd+n) ’
where the implied constant depends only on 8, n, M and d;.

Proof Taking sufficiently large A in Theorem 3.1 and using Lemma 4.1 yields

S e =2 HI () + 04 (xH‘H'"(log H)" + H M (log H)—A) ,

Pi,.... Py
|Pi|<H, P;>0

where

To(x) := 3 I1 (p’i—nl)n.

1<m<k<x prime plk—m
k=m=ngy(mod M)

We have k — m = t M for some integer ¢. Hence, Tp(x) equals

> N5 =

teN pitM meN
I<tM<x m<x—tM
m=ng(mod M)
-y (12 (5 -1+ 0W) (4.4)
(p—D" | \M ' '
teN pltM
l<tM<x

Define a function f on the primes such that f(p) = 1/(p — 1) if p{ M, and
f(p) =0if p | M. Then

p" "
I1 (p_m—(p( i [ a+rey.

prime p|tM prime p|t

hence the right hand side of (4.4) is

(pg;)n o TT a+ren|(5-1)+ow.

t<x/M \prime p|t
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where we used the first part of Lemma 4.3 to bound the contribution of the
O (1) term. Using fzx/M 1dy = x/M — t we can write the sum over ¢ as

/ ST+ £y,

1<y plt

Invoking the second part of Lemma 4.3 shows that this is

2
X
o 11 m+0aY),
prime ptM
which concludes the proof. O

It is convenient to truncate the product over £ in Lemma 4.4 now, as it will
make it easier to compare ) p Op(x)? to Y pp(x)Sp(x) and ) p Sp(x)2.

Lemma 4.5 Fixn € N. Then for all x > 1 we have

I1 yn(£)=1+0< ! )
log x

prime £>log x

Proof. The bound (1 4+ ¥)" < 14 ny +n2"y2, valid forall 0 < ¢ < 1, can
be used for ¥ = 1/(€ — 1) to show that

O=1-1y 1Y
W =1=0 Ty (—1

<1 1+1 - n n n2"

= L ¢ 0—1 (=12
n2n+1

+z(z—1)‘

In particular, log v, (£) < E(é 1) We obtain

2n+l

n 1
lo 0| < < n2tl -
el [ mo]< X -1 S" 2 Kk—1)
prime ¢ prime ¢ keN
£>log x {>log x k>log x
n2"tl
<—F.
—1+logx
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Exponentiating gives

n2n+2 1
£) < ——— =140 .
1_[ yn(®) eXp<—1+logx> * <logx)

prime ¢
£ > log x

O
Combining Lemma 4.5 with Lemma 4.4 gives
szn—
Yo )= ——2 " T a0
Pe(zlr))", [PI<H P oM
deg(P;)=d;,P;>0 {<logx
x2 d+n
+0 (— + xH%* " (log H)”) .
log x
4.5)
4.2 The term ) p Gp(x)?
Let
w= J] ¢
prime £
UM, €<logx
The prime number theorem implies that
logW < Z log¢ < 2logx,
prime £<log x
whence we obtain
W < X2 (4.6)

Lemma 4.6 For every square-free m € N we have

2
1 =071 Zg, g, (0)
Z l_[ ( (11— g—ll)n = mn+d 1_[ Vn(0).
Ry,..., Ry € (Z/m)[t] prime £|m prime £|m
deg(R;) < d;
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Proof A standard argument based on the Chinese remainder theorem shows
that the left hand side is a multiplicative function of m. Invoking Lemma 2.6
concludes the proof. O

Lemma 4.7 For 1 < x < HY* we have

od grd+n prn—2 -
Yoo e = — ] m@+o@,
Pzl (M) ‘
eZ[t]", |IP|I<H prime ¢tM
deg(P;)=d;, P;>0 £<log x
where the implied constant depends only onn, M and d;, ..., d,.

Proof By (1.5) our sum can be rewritten as

MZn—Z )
W Z BP(X) y where
Pe(ZI1])", IP|<H
deg(P,-):d,—, Pi>0
ged(M, TP, Pi(no))=1

1—07'Zp p,(0)
Bp(x) := 1‘[ i E_ll)n . 4.7
prime ¢M
{<log x

If the coefficients of P and R in Z[t] are congruent modulo ¢, then Zp (£) =
Zr(£). Hence, denoting the reduction of P;(¢) in (Z/ W)[t] by R;(t), the sum
over the P; in (4.7) becomes

|Pil < H, P; >0

2 . deg(P) = di,
) RZZ . BR)?E) Proooos P € ZUT: 0
Ry t
by 1 ged(M, Pi(ng)) = 1
By Mobius inversion we have
1, if ged(M, Pi(no)) =1,
> mky =g
= , otherwise.
ki|M, k;| P; (no)
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Hence, denoting the reduction of P;(¢) in (Z/k;)[t] by F;(t), we obtain

> Br(x)* > (HM(M)

Ri,..., Ry € (Z)W)[1) keN", k;|M

X > >
Fy e @Z/kDIt], ..., Fy € (Z/kn)lt] Py, ..., Py € ZI1]
Fi(np) = 0 (mod k;) |P;| < H, P, >0

P; = R; (mod W)
P; = F; (mod k;)

where deg(P;) = d;, max{deg(R;), deg(F;)} < d;. Viewing the sum over the
P; as a sum over 1 + d; integers in arithmetic progressions modulo k; W we
obtain

Y Br&) D] (ﬁu(k»)

Re(Z/W)[t]" KeN" k;j|M \i=1
deg(R;)<d;
2d; g 1+d; Hdi
X Z l_[((k W)H'd 0(1+ Wdi))'
FieZ/k)lt] i=1
F,' (}’lo)EO(mOd k,‘)
deg(F;)<d;
Now note that W < H'2 duetox < H'/*and (4.6). The sumover Fy, ..., F,

has ]_[l’-':1 k?i terms because the condition F;(ng) = 0 (mod k;) determines
uniquely the constant term of every F; by ng and the other coefficients of F;.
This gives

n d yyd+n
2 :u’(kl) ~1/2 24 H
> B ) (]_[—k (1+0H%) e
Re(Z/W)[t]" keN" k; M \i=1 '
deg(R;)<d;

and the identity Zk| M wk)k—! = o(M)M —! shows that the sum over P
in (4.7) is

2
p(M)" 21 H" “in L—¢'Zp,_p,(0)
Mn Wd+n (1 + O(H )) Z 1_[ (1 _ g—l)”
Re(Z/W)[t]" prime ¢4M
deg(R)<d; ¢<logx
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By Lemma 4.6 applied to W, the quantity in (4.7) becomes

2d Hd+n Mn—2

SO0 (1+oH') [T m®

uM
{<logx

2de+nMn72

p(M)" 1_[ Yu(0) + O(HIT=1/2)

UM
{<log x

because [ [, . (¢) converges. O
Remark 4.8 1t would be interesting to study moments higher than the second
moment in the setting of Lemma 4.7. This has been studied previously by
Kowalski [41].

4.3 The term ), Sp(x)0p(x)

Lemma 4.9 Fix any Ay > 0. Then for all x, H > 1 such that 1 < x <
(log H)A2 we have

n—2

M

Y St =x2H = Ty +0 (H‘””) .
Pe(zln)", IP|<H P e et
deg(P))=d;, P;>0 £<log x

Proof. Using the definition of Op in (1.4) and changing the order of summation
turns the sum over P in our lemma into

> > Sp(x) [ [ log Pi(m).

meNN[1,x] Pe(Z[t])", IPI<H i=1
m=ngy(mod M) deg(P;)=d;, P;>0
P;(m) prime fori=1,...,n

By (1.5) and (4.7) we can write this as

n—1 n
ZM)" 2 > (]_[ log P; (m)) Bp(x).

meNN[1,x] Pe(Z[t])", |P|I<H i=1
m=ng(mod M)  deg(P;)=d;, P;>0
ged(M, P (no))=1
P;(m) prime fori=1,....n
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Letting R; denote the reduction of P; in (Z/W)[t] we note that Bp(x) =
Br(x), hence we obtain

n—1 n
;‘?M}” > S B[] DT logPm|.

I<m<x  Re(Z/W)[t]" i=l1 |PI<H
mEno(mod M) deg(Rl«)gdi PER,’ (mod W)

4.8)

where ) * has the extra conditions deg(P) = d;, gcd(P(ng), M) = 1, and
P(m) is prime. The polynomials P with gcd(P(ng), M) # 1 contribute
O(H% log H) towards ) " because P(m) must be a prime divisor of M.
Hence, ignoring the condition gcd(P(ng), M) = 1, brings 3 " to a shape
suitable for the application of Lemma 3.14. Thus for all A > 0 we have

) 2d,~ di+1
Z log P(m) = Wﬂ(gcd(& (m), W) = 1)
|P|<H
P=R(mod W)

Hd'+1
04 ((1 H)A)

To study the contribution of the error term towards (4.8) we bound every other
3" " trivially by O (H'*% log H), hence we obtain

Hd+n Hd+n d+n n
_ B —xW log lo ,
< (log H)A_ane(Z;;V)[t]n RO < (log H)A_"x (loglog x)
deg(R;)<d;

where we used

1—¢'z 14 -
Br(x) = 1_[ " ERI Ry ) < l_[ _1 " « (loglogx)"
prime £4M ( o {<logx
{<log x

which follows from Mertens’ theorem. Using (4.6), x < (log H)*? and enlarg-
ing A we see that the contribution towards (4.8) is O (H d+n (log H )~4). The
main term is

Zde+” Mn—l
Br(x).
WG (WYT o (M)" szq . 2 W
<m< €(Z/W)[t]", deg(R;)<d;
m=no(mod M)  gcd(R;(m),W)=1
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By Lemma 2.7 and a factorisation argument this becomes

2 pye+ MM _ (/M + 0() [T rmc®)
o (V) .

d d+n* d+n
— 2d g+ (M)nell_v[vyn(Z)+0<H+).

4.4 The proof of Theorem 1.9

Recall that A, A; are fixed constants withn < A; < Aj and that (log H )A1 <
x < (log H)A2. Then (4.5), together with Lemmas 4.7 and 4.9 , shows that
the right hand side of (4.1) is <« x2H?*"(logx)~!. The reason behind this is
that the main terms compensate each other. Since H d+n « 4poly(H ), this
concludes the proof of Theorem 1.9.

4.5 The proof of Theorem 1.5

To study the numerator in the left hand side of (1.3) we use Theorem 1.9 to
see that for almost all Schinzel n-tuples P the prime counting function dp(x)
is closely approximated by Gp(x)x.

Lemma 4.10 Let ¢ : R — (0, 00) be a function. Fix any A, Ay with n <
A1 < Aj. Then for any x, H > 2 such that (log H)A < x < (log H)A2 we
have

g{P € Poly(H) : P is Schinzel, |fp(x) — Gp(x)x| < e(x)x}
t#{P € Poly(H) : P is Schinzel}

1
=1+o (e(x)(logxﬂﬂ)‘

Proof 1t is enough to show that

i{P € Poly(H) : Pis Schinzel, [fp(x) — Gp(x)x| > e(x)x}
g{P € Poly(H) : P is Schinzel}

1

< e oz 7 @

The values of the function |0p(x) — Gp(x)x|e(x) " 'x~! are non-negative, and
greater than 1 when |0p(x) —Sp(x)x| > e(x)x. Thus the left hand side of (4.9)
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is at most

1 Z |Op(x) — Gp(x)x|

#{P € Poly(H) : P is Schinzel} PeroTv() e(x)x
P is Schinzel

Using Theorem 1.9 we see that this is

fPoly(H) . i
< g{P € Poly(H) : Pis Schinzel}g(x) (logx)™ /.

An application of Proposition 2.8 concludes the proof. O

We next show that if P is Schinzel, then Gp(x) stays at a safe distance from
zero. Thus, Gp(x) may be thought of as a ‘detector’ of Schinzel n-tuples.

Lemma 4.11 Let P be a Schinzel n-tuple such that [|;_, Pi(no) and M are
coprime. Then there exists a positive constant o = Bo(n, no, M, d1, ..., dy,)

such that for all sufficiently large x we have Gp(x) > Bo(loglogx)"~¢.

Proof Our assumption implies that

1—-¢7'z 14 1—-¢'z 14
Sp(x) > l—[ 1 E}E.l.f’;,l( ) 1—[ 1 E}E.l.f’;n( ).
prime £4M ( B ) prime £4M ( B )
<d d<t<logx

To deal with the product over £ < d, we note that Zp, p (£) # £ gives
Zp,..p,(£) < £ — 1. In particular,

I 1—ﬂ*zamﬂw>> I ¢! o

prime (M (1 B K_l)n prime M (1 N E_l)
t<d t<d

To deal with the product over £ > d we observe that Zp, _p, (£) # € implies
that Py ... P, is not identically zero in [Fy, thus Zp, p,(¢) < d. This shows
that

-1 a1 a1
I L= Zp.n, (O I 1—de ST L—de'

—1\" _ _1\n
prime ¢tM (1 —¢ l) prime &M ( —¢ l) d<{<logx (1 -t 1)
d<t<logx d<t<logx

For each fixed d € N we have

o, (1=dy N\ dd—1
oY (a—wﬂ 1)_ 2
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In particular, for each d, n € N there exist constants ¥4 , > 0, K4, > 0, such
that

1—-dy

> (1 — d—nl_an
G 2 A= (= Kap?)

for all ¥ € (0, ¥4,,). We obtain

1 —de! 1 —de!
T RO | S ey
d<t<log x max{d,WCZ:,,Kd,;l}<E<10gx

> I1 (1= )" (1= Kyat™?).

max{d,gl/d_,:l,Kd,n}<€<10gx

By Mertens’ estimate this is >4, (loglog x)—n+d. 0

End of proof of Theorem 1.5. Take Ay =n+ A/2, A =n +3A/4 and let
x, H, e(x) be asin Lemma 4.10. By Lemma4.11, [0p(x) — Gp(x)x| < e(x)x
implies

Op(x) = Gp(x)x —e(x)x = Po(log logx)”_dx —&e(x)x.
Hence Lemma 4.10 gives

g{P € Poly(H) : P is Schinzel, p(x) > (Bo(log logx)”_d —e(x))x}
#{P € Poly(H) : P is Schinzel}

1
=1+o (s(x)(logx)l/z)'

The choice e(x) = % Bo(loglog x)"—d gives

i{P € Poly(H) : P is Schinzel, 6p(x) > %(log logx)"_dx}
#{P € Poly(H) : P is Schinzel}

140 ((loglogx)d_”) .
J/log x
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Since (log H)4' < x < (log H)“2, the error term is < (logloglog H)?™" x
(loglog H)~ '/, thus,

2P e Poly(H) : Pis Schinzel, 0p () > 5ot |

log x)d—n
#{P € Poly(H) : P is Schinzel}
(loglog log H)4—™"
()

It remains to find a lower bound for 5,4+ 4 (P). Observing that for all, except
O(H"T4=1/2) p-tuples P with |P| < H one has |P| > H'/2, we see that
x < (log H)* < (log |[P])*> < (log [P|)"*4, hence

Op (x) = > [ Jtog Pi(m)

meNN[1,x], m=ng(mod M) i=1
P;(m) prime fori=l1,...,n

=140 (4.10)

< 88014 (®) [ [log((di + DHx)

i=1

due tom < x and |P| < H. From x < (log H)*2 we obtain Op(x) <
8S,+4(P)(log H)". By (4.10) all, except

O(H"*(logloglog H)? " (loglog H)~'/?)

Schinzel n-tuples P € Poly(H) fulfil 6p(x) > @(log log x)"~4x. For these
P we use the upper and the lower bound for 6p(x) in conjunction with x >
(log H)4! to get the following when H >Sanal:

(log H)A1 Box
(logloglog H)"=4 ™ 2(loglog x)"—4
< Op(x) K 8Sp4a(P)(log H)".

(10g H)n+A/3 <

Together with |P| > H!/?, this gives 15,4 (P) > (log [P|)4/3. O

5 Random Chatelet varieties
5.1 Irreducible polynomials

Let K be a finite field extension of Q of degree r = [K : Q]. LetNg,g : K —
Q be the norm. Choose a Z-basis wy, . . ., @, of the ring of integers O C K.
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718 A. N. Skorobogatov, E. Sofos

Forz = (z1, ..., z) we define a norm form
Nk,0(z) = Nk o(ziw1 + ... + z,op).

For a positive integer d consider the affine Z-space A%H = AIZ X AdZH,
where A%“ = Spec(Z[xg, ..., x4]) and A% = Spec(Z[t]). Let V be the open
subscheme of A%Jrz given by

1

P(t,x) := xdtd —i—xd_]td_ + ...+ x1t+x90 #0,

where X = (xq, ..., xg). Let U be the affine scheme given by

P(1,x) = Ng/q(2) # 0,

andlet f : U — V be the natural morphism. Note that Ug is smooth over Vg
with geometrically integral fibres. Let g : U — AIZ be the projection to the
variable ¢, and leth : U — AdZH be the projection to the variable x.

For a ring R and a point m = (mg,...,mg) € RAFL of A%H define
Um = h~'(m). Then g :Unp— A}e \ {P(t, m) = 0} is a morphism given by
coordinate ¢. For v € R we define U, m = f‘l(v, m).

For a prime p, a point (v, m) € Z‘Ilfr2 belongs to V(Z,) if and only if
P(v,m) € Z. Similarly, U(Z,) in Z4"2 x (Ox ®Zy) is given by P (v, m) =
Nk /(@) € Zj,.

Lemma 5.1 Let S be the set of primes where K /Q is ramified. Then for any
p & S and any (v, m) € V(Zy) the fibre U, y has a Z,-point.

Proof This follows from the fact that for any finite unramified extension Q, C
K, any element of Z; is the norm of an integer in K, see [13, Ch. 1, §7]. O

Lemma 5.2 Let p be a prime and let N € U(Q)). There is a positive integer
M such thatif v € Q) and m € ((@p)‘”‘1 satisfy

max (|v — g(N)|,, Im —h(N)|p) < p~™,

then U, m(Qp) # @.

Proof We note that Ug is smooth, so every Q,-point of Ugp has an open
neighbourhood % homeomorphic to an open p-adic ball. Since f: Ug —
Vo, Vo — A(l@ and Vo — AL are smooth morphisms, g and / are also
smooth. This implies that the maps of topological spaces g: U(Q,) — Q,
and h: U(Qp) — (Qp)d+1 are open, cf. [21, p. 80]. Thus there exist open
p-adic balls %1 C Q, with centre g(N) and %, C (@p)d+l with centre 2(N)
such that 21 x % C f(%). O
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Theorem 5.3 Let K be a cyclic extension of Q and let S be the set of primes
where K /Q is ramified. Let & be the set of m € Z4+ such that P(t, m) is a
Bouniakowsky polynomial. Let .# be the set of m € &2 suchthat Uw(Z)) # &
for each p € S. When & is ordered by height, there is a subset #' C M of
density 1 such that Uy (Q) # @ for everym € .#'. The set .#' has positive
density in 79" ordered by height.

Remark 5.4 (1) The Bouniakowsky conditionat p ¢ S implies that Uy, (Z)) #
@. Indeed, for m € & the reduction of P (¢, m) modulo p is a non-zero
function F,, — F,. Hence we can find a 1, € Z, such that P(z,, m) €
Z; and apply Lemma 5.1. Likewise, the positivity of the leading term of
P(t, m), which is the ‘Bouniakowsky condition at infinity’, implies that Uy,
has real points over large real values of #. Thus in our setting the condition that
Um(Zp) # @ for each p € S implies that Uy, is everywhere locally soluble.

(2) The existence of a subset .’ C .# of density 1 can be linked to
the triviality of the unramified Brauer group of Uy, when K /Q is cyclic and
P(¢, m) is an irreducible polynomial, as follows from [19, Cor. 2.6 (c)], see
also [58, Prop. 2.2 (b), (d)].

Proof Since Z; is closed in Z, and P(z, x) is a continuous function, V(Z,)

is closed in Z‘;,’Lz, hence compact. For the same reason U(Z)) is compact,
thus (U (Z))) is compact as a continuous image of a compact set. Therefore,
HpES h(U(Zp)) is compact.

Take any (Np) € [],c5 U(Z)). For each p € S there is a positive integer
M), such that the p-adic ball By, C Z‘;“ of radius p~™r around h(N,)
satisfies the conclusion of Lemma 5.2. Thus the open sets [ | pes %’NP, where
(Np) € ]_[pes U(Zp), cover ]_[pes h(U(Zp)). By compactness, there exist
finitely many points (N,(,i)) € ]_[pes U(Zp),i =1, ..., n, such that the cor-
responding open sets ]—[pes %’Nl(p cover ]—[pes h(U(Zp)).

It follows that .# = U/_,.#;, where #; = 4 N [],cs Q%’NS-) for all i.
Thus it is enough to prove that for 100% of m € .#; we have Un(Q) # @.

In the rest of proof we write .# = .#; and N, = N ,(,i) , where p € S. Write
n, = g(Np) and m, = h(Np), where p € S. Note that P(n,,m,) € Z;‘?
foreach p € S. Write M =[] pes pMr. By the Chinese remainder theorem
we can find ngp € Z and mg € Z4*! such that ng = n, (mod pMP) and
my = m, (mod pMr) for each p € S. Our new set .# consists of all m € &
such that m = mg (mod M). Since P(n,,m,) € Z; for each p € §, we
obtain that P (ng, mg) is coprime to M.

Thus we can apply Theorem 1.2 to our ng, M, with Q(¢) = P (¢, mg). It gives

that for 100% of m € .# , ordered by height, one can choose v = ng (mod M)
such that P (v, m) is a prime. Call this prime g.
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We claim that ¢ = Ng (&) for some & € K*, so that U, m(Q) # 9.
Since K is a cyclic extension of Q, it is enough to show that for all places
v of @, except possibly the place corresponding to the prime ¢, we have
U, m(Qy) # 9, see, e.g., [20, Cor. 13.1.10] and references there. Indeed, the
prime ¢ is alocal norm at , = R, since any positive real number is a norm for
any finite extension. Next, g is a local norm at Q, for p € §, by the definition
of .# and Lemma 5.2. Finally, ¢ is a local norm at Q, for p ¢ S, p # ¢,
since ¢ € Zj, implies (v, m) € V(Zp), so we can apply Lemma 5.1.

Proving that .#’ has positive density in Z¢*! is equivalent to proving the
same for .7 . We have .# = U!_,| . #;, where each .#; consists of all Bouni-
akowsky polynomials P () of degree d satisfying P(t) = Q(¢) (mod M) with
(Q(np), M) = 1. Corollary 2.9 implies that any such set has positive density.
Similarly, any non-empty intersection of some of the sets .#; also has positive
density. By inclusion-exclusion ./ has positive density in Z4+!. O

Remark 5.5 It is not clear to us if Uy m(Z) # @.

Example 5.6 Let K = Q(+/—1). Then S = {2}. Fix a positive integer m > 2.
Lets = [(Z/2™)*| = 2", Consider

P() =3+ Q" =3)' +2"20(t), where Q) € Z[1].

If n € Z is even, then P(n) = 3 (mod4) so P(n) is not a sum of two squares
in Q2. If n is odd, then n* = 1 (mod 2™), hence P (n) is divisible by 2. Since
P(1) = 2™ (1+44k) is asum of two squares in Z,, our equation x2 +y2 = P(1)
is solvable in Z,, but for any 2-adic solution the 2-adic valuation of the right
hand side is divisible by 2. This example shows that the set of m € Z4+!
such that Uy (Zy) = @ while U (Q3) # @ has positive density.

Let us now give a simpler version of Theorem 5.3 applicable to some non-
cyclic abelian extensions K /Q. Let K1) be the Hilbert class field of K and
let K™ be the extended Hilbert class field of K, see [40, p. 241] (it is also
called the strict Hilbert class field [14, Def. 15.32]). By definition, K ) is the
ray class field whose modulus is the union of all real places of K. Thus K )
is a maximal abelian extension of K unramified at all the finite places of K,
so that KV < K. By class field theory a prime p of K splits in K if
and only if p = (x) is a principal prime ideal with a totally positive generator
x e kK.

Theorem 5.7 Let d be a positive integer. Let K be a finite abelian extension
of Q such that KV is abelian over Q. Then for a positive proportion of
polynomials P(t) € Z[t] of degree d ordered by height the equation (1.1) is
soluble in 7.
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Proof Since K™ is abelian over Q, by the Kronecker—Weber theorem there
is a positive integer M such that K*) ¢ Q(¢)). Thus if a prime number p is
1 (mod M) then p splits in K. This implies that p splits in K so that every
prime p of K over p has norm p; moreover, p splits in K™ and so p = (x)
where x € O is totally positive. Then the ideal (p) C Z is the norm of the
ideal (x) C Ok, hence (p) = (Ng,@(x)). Since x is totally positive, we have
Nk ,o(x) > 0,50 p = Ng,q(x).

A positive proportion of polynomials of degree d are Bouniakowsky poly-
nomials, and a positive proportion of these are congruent to the constant
polynomial Q(t) = 1 modulo M, by Proposition 2.8. Taking np = 0 in
Theorem 1.2 we see that for 100 % of such polynomials P (¢) there is an inte-
ger m such that P (m) is a prime number p = 1 (mod M). Then p = Nk ,o(x)
for some x € Ok. O

If K is a totally imaginary abelian extension of QQ of class number 1, then
K = K = K™ 5o that Theorem 5.7 can be applied. For example, this
holds for K = Q(+/—1, \/i), which is one of 47 biquadratic extensions of Q
with class number 1, see [9]. If K is an imaginary quadratic field, then K (1)
is abelian over Q if and only if the class group of K is an elementary 2-group
[40, Cor. VL.3.4].

5.2 Reducible polynomials

Let dy, ..., d, be positive integers. In this section we let U be the affine Z-
scheme given by

n
[ ] P xi) =Nk @ #0. (5.1)
i=1
where x; = (x; 0, ..., X;,4;) and
X ) — d; di—1 -
Pl(taxl)_xi,d[t +xi,d[—1t +---+xi,1t+xi,07 l —1,...,”.

Writed = dy + ... +d, and x = (Xq, ..., X,). Consider the affine space
A%JF"H with coordinates ¢ and x;; for all pairs (i, j), where 1 < i < n
and 0 < j < d;. Define V as the open subscheme of A”ZH”H given by
H?:l P;(t,x;) # 0.The morphism f : U — V is the product of the morphism
g (the projection to ) and the morphisms /; (the projection to x;), for i =
1,...,n.
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Theorem 5.8 Let K be a cyclic extension of Q of degree r = [K : Q] with
character

x : Gal(Q/Q) —> Z/r.

Let S be the set of primes where K /Q ramifies. Let & be the set of m =
(my,...,my,) € Z9 such that P(t,my), ..., P,(t,m,) is a Schinzel n-
tuple. Let M C & be the subset whose elements m satisfy the following
condition:

for each p € § there is a point (¢,,2,) € Umn(Z),) such that for each i =
1,...,n we have

> inv,(x, Pi(ty, m)) = 0. (5.2)
pesS

Then there is a subset #' C M of density 1 such that Uy (Q) # & for every
m € /. The set /' has positive density in Z" ordered by height.

Let us explain the notation used in this statement. For a place v of Q and
a € Q) we denote by (x, a,) the element of the Brauer group Br(Q,) which
is the class of the cyclic algebra over QQ, of degree r defined by x and a,, see
[20, §1.3.4]. We have (x, ay) = 0 if and only if a, is a local norm for the
extension K /Q. The local invariant inv, is an injective homomorphism

inv,: Br(Q,) — Q/Z,

which is surjective if v is a finite place, and has image %Z/ Zif Q, = R. The
sum of maps inv, for all places v of Q fits into the exact sequence

0—Br(Q)— &, Br(Q,)—Q/Z—0, (5.3)

where each map Br(Q) — Br(Q,) is the natural restriction, see [20, §13.1.2].

Remark 5.9 (1) For n = 1 condition (5.2) is automatically satisfied, so we
recover Theorem 5.3 as a particular case of Theorem 5.8.

(2) Since each P; (¢, m;) is a Bouniakowsky polynomial, for each p ¢ S we
canfindat, € Z, suchthat P;(t,, m;) € Zj; and henceinv,(x, P;(t,, m;)) =
0. Taking the product over i = 1, ..., n we see that Uy, has a Z,-point over
tp. Similarly, each P; (¢, m;) takes positive values when 7y € R is large, so
invr(x, Pi(tp, m;)) = 0. Thus Uy, has a real point over #y. Thus (5.2) implies
that Up, has Z,-points (), z,,) for all p and a real point (#, zy) such that

> inv,(x. Pi(tp.m)) =0
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fori = 1,..., n, where the sum is over all places of Q. Since K/Q is cyclic,
from [19, Cor. 2.6 (c)] we know that the unramified Brauer group of Uy, is
contained in the subgroup of Br(Q(Uy,)) generated by Br(Q) and the classes
(x, Pi(t,m;)), fori = 1,...,n. We conclude that when each P;(¢, m;) is
irreducible, for any smooth and proper model X of Uy, the Brauer group
Br(X) does not obstruct the Hasse principle on X.

Proof We follow the proof of Theorem 5.3 with necessary adjustments. The
analogue of Lemma 5.2 says that for p € Sand N, € U(Q)) there s a positive
integer M, such thatif v € Q, andm € (Q p)d+” satisfy

max (|v —8g(Np)lp, Im; —hi(Np)|p) < p_Ml’, fori=1,...,n, (54)

theninv, (x, P;(v, m;)) is constant and equal to inv,(x, P;(g(Np), hi(Np))).
This implies

inv, G [ [ Piv, m)) =) i, (x, Pi(v, my))

i=1 i=1

= inv, (x, [ [ Pi(e(Np), hi(N)) =0, (5.5)

i=l

in particular, U, m(Q)) # 2.
Let Z C ] pes U(Z)) be the subset consisting of the points (N,) subject
to the condition

> v, (x. Pi(g(Np). hi(Np) =0, fori =1,....n.  (5.6)
peS

The left hand side of (5.6), for a fixed i, takes values in Z/r and each level set
is open, hence also closed. We know that [ | pes U(Z)) is compact, hence Z
is compact. Thus f(Z) is compact, so f(Z) can be covered by finitely many
open subsets given by congruence conditions on v and m as in (5.4) such that
(5.6) holds.

The condition (5.2) in the theorem implies that .# C h(Z). As a conse-
quence, using the Chinese remainder theorem, we represent ./ as a finite union
of subsets .#;, each of which consists of all Schinzel n-tuples satisfying a con-
gruence condition of the form m = mg (mod M), where mg € Z4tm and M =
HPGS pMr . Moreover, there exists an ng € Z with ([T=; Pi(no, mo;), M) =
1 such that the following holds: if v = ng (mod M), then for all m € .#; we
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have

> inv,(x, Pi(v,my)) =0, fori =1,....n, (5.7)
pES

and

n
> inv,(x, Pi(v,my)) =0, for p €S, (5.8)
i=1

which follow from (5.6) and (5.5), respectively. It is enough to prove that for
100% of m € .#; we have U (Q) # @.

We apply Theorem 1.2 to our ng and M, with Q;(t) = P;(t,mp;). It
gives that for 100% of m there is an integer v = ng (mod M) such that each
gi = Pi(v, m;) is a prime. We have

v, (x, gi) =mv,(x, Pi(v,m;)) =0 (5.9)

for every prime p ¢ S U {g;} and also for the real place. The real condition
trivially holds since ¢; > 0. A prime p ¢ S U {g;} does not divide ¢g; and
is unramified in K, so the condition holds for such p. Therefore, by global
reciprocity we have

invg, O, i) = — D v, (s 4i)
P#4i

== invy(x,q) =0, fori=1,....n,  (5.10)
peS

where the last equality follows from (5.7). We claim that

ian(X’ qi---qn) =0

for every prime p (and also for the real place). This is clear for p ¢ S U
{q1, ..., qn} and for the real place, but this is also clear for p = g; by (5.10)
and (5.9). Using (5.8) we obtain the vanishing for p € S, thus proving the
claim.

The class (x, g1 ...qn,) € Br(Q)[r] has all local invariants equal to 0, so
it is zero due to the exactness of (5.3). Thus ]_[?:1 Pvm;) =¢q...qyisa
global norm for the extension K /Q, so U, m(Q) # @.

The last statement of the theorem is proved in the same way as the last
statement of Theorem 5.3, using Proposition 2.8. O

@ Springer



Schinzel Hypothesis on average and rational points 725

6 Random conic bundles

The classification of Enriques—Manin—Iskovskikh [38, Thm. 1] states that
smooth projective geometrically rational surfaces over a field, up to birational
equivalence, fall into finitely many exceptional families (del Pezzo surfaces
of degree 1 < d < 9) and infinitely many families of conic bundles X — P!.
The generic fibre of a conic bundle over Q is a projective conic over the field
Q(#) which can be described as the zero set of a diagonal quadratic form of
rank 3. We consider the equation

ni na n3
a [P0 +a ][] Pa@y* +as[[ Py =0, (6.1)
j=1 k=1 I=1

where ay, az, a3 are fixed non-zero integers and P;; € Z[t] is a polynomial
of fixed degree d;;, fori = 1,2,3and j = 1,...,n;, whereny > 0,n2 > 0
and n3 > 0. Letd = Zi’j d;j. We write P;j(t, m;;) for the polynomial of
degree d;; with coefficients m;; € Z% "1 and write m = (m;;) € Z4.
Let Uy C ]P’% X Alz be the scheme given by equation (6.1) together with the
condition Hi, j Pij(t,mj;) # 0. The proof of the following theorem is given
in §6.3.

Theorem 6.1 Letny, ny, n3 be integers suchthatny > 0,ny > 0, andnz = 0,
and let n = ny + ny + n3. Let a1, az, az be non-zero integers not all of the
same sign and such that a1asas is square-free. Let S be the set of prime factors
of 2ayazas. Let d;j be natural numbers, fori = 1,2,3 and j = 1,...,n,,
and let d = Zi,j d;ij. Let & be the set of m = (m;;) € Z4H" such that
the n-tuple (P;j(t,m;;)) is Schinzel. Let ./ be the set of m € & such that
Un(Zp) # @ for each p € S. Then there is a subset #' C M of density 1
such that Uy (Q) # & for everym € 4. The set .#' has positive density in
74+ ordered by height.

Remark 6.2 Letx = (x;;),fori =1,2,3and j =1, ..., n;, be independent
variables. We expect that for the generic polynomials (P;; (¢, X;;)) the unrami-
fied Brauer group of the conic bundle (6.1) over Q(x) is reduced to Br(Q(x)).
This explains the absence of extra conditions like (5.2) in Theorem 6.1.

6.1 Correlations between prime values of polynomials and quadratic
characters

When a and b are integers such that b > 0 we write (%) for the Legendre—

Jacobi quadratic symbol. We allow b to be even, so that (%) is O or 1 when a
is even and odd, respectively.
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A new analytic input in this section is the following result of Heath-Brown.

Lemma 6.3 (Heath-Brown) Let (ay)ren and (by)en be sequences of complex
numbers such that ap = 0 for k > K and b; = 0 for | > L. Then for any
& > 0 we have

Y ab (?) e max{|ag|} max{|by]} (KL)'** (min{K, L})~'? + K),

primes k,/

where the implied constant depends only on ¢.
Proof We write the sum as

k k
Z (ak]lprimes(k)) (bl]lprimes(l)) <7) + Z arb (5) .

k,leN k prime
[ odd

By [35, Cor. 4] the first sum is < max{|ax|} max{|b;|}(K L)' *¢ (min{K, L})~'/?
The second sum is trivially bounded by max{|ax|}|b2| K, which is enough. O

The following definition introduces a class of character sums to which
Heath-Brown’s estimate will be applied.

Definition 6.4 Letn > 2. Let %1, %>, 4 be functions
F1, T TN S zeCilzI<1), 9:72"2 > {zeC: |zl < 1),
where ¢ is the constant function 1 whenn = 2. Let P = (P;) € (Z[t])" be

an n-tuple such that each P; has positive leading coefficient. For any integers
h # k suchthat 1 < h, k < nandany ng € N, M € N, we define

- P
o b= Y (l‘[logmm))(P’;EZ;)

meNN[1,x] \i=1
m=ngy(mod M)
P;(m) prime,i=1,..., n
X F1(Pa(m)q2k) F2(Po(m)p£n) G (Pe(m)eth ).
cF#k
Here the functions .%1, .%,, ¢ are applied to P;(m), ..., P,(m), where Py(m)

is omitted in .71, P, (m) is omitted in .%,, and P, (m) and Py (m) are omitted
in¥.

Our work in previous sections shows that dp(x) is typically of size x. We
now prove that for 100% of P € (Z[¢])" one has np(x; h, k) = O (x%) for
some constant § < 1.
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Proposition 6.5 Let n,dy,...,d,, M be positive integers and let
F1, F2,9,h, k be as in Definition 6.4. Let ngo € N and Q € (Z[t])" be
such that gcd(Qi(ng), M) = 1 foralli = 1,...,n. Fix A1, A> € R with
n < Ay < As. Then forall H > 3 and all x with (log H)A < x < (log H)A2
we have

1 1+L
R — E sh,k 202,
TPoly(H) [P (x )| < x

Pepoly(H)

where the implied constant depends only ondy, ...,d,, M, ng, Q, Ay, Aj.

Proof By the Cauchy—Schwarz inequality it is enough to prove

1 T

— ) s h kI AT, 6.2

TPoly(H) e (x )< x (6.2)
P € Poly(H)

Without loss of generality we assume that & = 1, kK = 2 and write np(x) for
np(x; 1,2). Using |77p(x)|2 = np(x)np(x) and changing the order of summa-

tion we Write Y pepo1y ) Inp(x)]* as

Z Z (Pl(m1)> <P1(M2))
Py(my) ) \ Pr(m2)

my,my € NN[1,x] P € Poly(H)
my,my =ng(mod M) P;(m;)primefori=1,...,n, j=1,2
x| J] logPitmy)log P;(mo)
1<i<n

X F(Pi(m1)i£2) F2(Pi(m1)i£1)9 (P (m1)ig(1,2))
X F1(P;(m2)ix2) Fo(Pi(m2)ix1) G(Pi(m2)ig(1,2))-

Ignoring the congruence conditions modulo M and using |.%;[, [¢] < 1 we
see that the modulus of the contribution of the diagonal terms m| = my is at
most

Yo I0 Do  awmy?

1<m <x i=1|Pj|<H, P;>0

which is <« x H4t"(log H)" as in the proof of Lemma 4.1. This is sufficient
because

xH¥ " (log HY" = x H " ((log H)A1)"/A1
< xH XA « #poly(H)x T AL,
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To study the remaining terms we introduce the variables
ki := Pi(m1),ky := Py(my) and [{ := P1(my), lr := P>(my)

and sum over all values of /;, k;. Take any ¢ > 0. For any integer polynomial
P of degree at most d; satisfying |P| < H and for any m < x with P;(m)
prime one has log P;(m) = O 4,(H®). Using this we bound the modulus of
the remaining sum by O (E), where

E:= ) (ogl(logh)

l1,lp eN
1<my #my <x

x 2
P, ..., Py € Z[t]
P; >0, deg(P;) =d;, |P;{| < H

& kl
<H| ) () Atk Fate. ).

k1, ko primes

where fori = 1,2 and k,/ € N we let

Fi(k, 1) := (logk)N;(k,1)Fi(k, (Pj(m1))je1,2) Fi (L, (Pj(m2)) jeq1,2)),
and denote by N; (k, [) the number

g{P € Z[t] : P > 0,deg(P) =d;, |P| < H,
P=0Q;,(mod M), P(m) =k, P(my) =1}.

To complete the proof of (6.2) it is now sufficient to prove

E « Poly(H)x' 771, (6.3)

The conditions P(m) = k, P(m2) = [ define an affine subspace of codimen-
sion 2 in the vector space of polynomials of degree d;, hence Nj (k, 1) <« H% 1.
(This uses m; # my, which explains the precursory manoeuvre of sepa-
rating the diagonal terms m|; = mj.) We obtain the estimate F;(k,[l) <
(log H)H%~" with an implied constant depending only on n and d;. Since
we have |P;(m1)| < (1 + d;)Hx%, we can see that N;(k,l) = O unless
k.l < (1 +d;)Hx%, so we can apply Lemma 6.3 with K = (1 + di)Hx%
and L = (1 +dy))H x% . Hence the sum over kj, k» in the definition of Z is

@ Springer



Schinzel Hypothesis on average and rational points 729

& HO+=1/24¢ \where we used that x < (log H)A? « H¢. Therefore,

E < HOTETI2HE N (logly)(log ) > He.
L <K,[h<L P3,..., P,eZ[t]
I<m1#Fma<x P;>0, deg(P;)=d;, |Pi|<H

The number of terms in the sum over the P; is < H9t"~41=42=2 gp{ the sum

overly,lr, mi, my is < K Lx*(log K)(log L) < H?**¢. This proves that
E << Hd+n—1/2+3£ << ﬁPOly(H)H_1/2+38,

which immediately implies (6.3) by choosing ¢ = 1/6. O

6.2 Indicator function of solvable conics

Recall that for a, b, c € Q’; the projective conic
ax’> + by’ +¢z> =0

has a Q,-point if and only if the Hilbert symbol (—ac, —bc), is 1. We refer
to [54, Ch. III, §1] for the standard formulae for the calculation of the Hilbert
symbol.

Let ay, a2, a3 be non-zero integers. Let p;;, where i = 1,2,3 and j =
1, ..., n;j, be distinct primes not dividing 2ajaza3. (If n3 = 0, theni =1, 2.)
For k € N write [k] = {1, ..., k}. Let §; be a subset of [n;]. Define 7 (S;) =
]_[jeSi pij and abbreviate 7 ([n;]) to 7r;. We denote by S7 = [n;] \ S; the
complement to S; in [n;]. Let

R « [(—mazmony (—aiazmins) ((—ajaxmim
0=2"|2+ ), < 25D )( 2(52) )( 2(53) > ’

S1,52,83

where the sumis over all subsets S; C [n;],i = 1, 2, 3, suchthat (Sy, $2, S3) #
(9,9, @) and (81, $2, 83) # ([n1], [n2], [n3]).

Lemma 6.6 Let ny, ny, n3 be integers such that ny > 0, np, > 0, n3 > 0.
Let ay, ap, az be non-zero integers not all of the same sign such that ajaras is
square-free. Suppose that p;j, fori =1,2,3and j =1, ..., n;, are distinct
primes not dividing 2ayazaz such that the conic C given by

a1 x? + aymay? 4+ azmaz® = 0, (6.4)

has a Qp-point for all p|2ajaasz. Then C(Q) # @ if and only if Q = 1,
otherwise Q = 0.
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Proof The condition concerning the signs of the a; guarantees that C (R) # @.
Therefore, C(Q) # @ if and only if for every i, j we have

—a[/ai//n’i/j'[i//
) =1,
Pij

where {i,i’,i"} = {1, 2, 3}. Thus the following is 2" when C(Q) # &, and 0
when C(Q) = @:

AfI(- ()

i=1j=1 Pij
_ Z (—a2a3n2n3) (—a1a3n1n3) (—alazmnz)
§1-50.53 7 (S1) 7 (S2) 7 (83)
where the sum is over all subsets S; C {1,...,n;},i 1, , 3. We separate
the term 1 corresponding to the case when S =@ fori = 1,2, 3. The term

corresponding to the case when S; = [n;] fori =1, 2, 3 is

1

H(x. H) <V (x H) = oo Do e - Gpx)x)’,
P € Poly(H)

This equals (—1)", where r is the number of pairs (i, j) suchthat C(Q),;) = @

Since C is locally soluble everywhere except, perhaps, at the primes p;;, the
product formula for the Hilbert symbol implies that  is even. Hence the above
term is 1. O

Proposition 6.7 Let ny, ny, n3 be integers such that ny > 0, np > 0, n3 > 0,
andletn = ni+ny+n3. Letay, ar, az be non-zero integers not all of the same
sign such that ayaras is square-free. Let M be a multiple of 8ajasas. Let ng be
an integer. Let Q;;(t) € Z[t] be a polynomial of degree at most d;; such that
(Qij(ng), M) =1, fori =1,2,3and j =1, ..., n;, satisfying the following
condition: for any integer m = ng (mod M) and any n-tuple of polynomials
P = (P;;(t)) € (Z[t])" withdeg P;j = d;j suchthatP = Q (mod M) the conic
(6.1) with t = m has a Q-point, for any p|M. Then for 100% of Schinzel
n-tuples P = Q (mod M) with deg P;; = d;j, ordered by height, the conic
bundle surface (6.1) has a Q-point.
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Proof For P € (Z[t])" such that P = Q (mod M) define the following count-
ing function

3 n;
Cp(x) == > [T11tog Pijam) | 1Gm),

meNN[1,x] i=1 j=I
m=ngy(mod M)
P;j(m) prime for all , j

Pyj(m)#Prs (m)if (i, j) #(r.s)

where 1 is the indicator function of those m for which the conic (6.1) with
t = m has a Q-point. Define

3 n;
5P(x) = Z 1_[1_[10g P,-J-(m).

meNNTl, x] i=1j=1
m = ng (mod M)
P;(m) prime fori =1,..., n

Pij(m) # Prs(m)if (i, j) # (r,s)

By the condition in the proposition and Lemma 6.6 we have

1 ~ 1 .
Cp(x) = 50 () + 2, > " T p(x). (6.5)
S

Here ZK is the sum over S = (81, S», S3), where S; C [n;] fori =1,2,3
are such that at least one S; is non-empty and at least one complement S; =
[7;]\ §; is non-empty, and

Tsp(x) := >

me NNl x]
m = ng (mod M)
P; j (m) prime for alli, j

Pij(m) # Prs(m)if (i, j) # (. 5)

—apair [T Prx(m) [T, Pri(m) \
log P;; , (6.6
x 1‘{( Moy Py )ﬂ og P;j(m), (6.6)

i=1

where {i,i’,i"} = {1,2,3}. The bound P;j(m) = Odij(deiJ‘) yields
log P;j(m) = Og;; (log(Hx)), hence

0 < Op(x) — Op(x) n.a; (log(Hx))". (6.7)
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We claim that for all x and H > 3 with (log H)*"* < x < (log H)*" and all
S as above we have

1

fpoly(H) g R 6.8

fPoly(H) Z ITs.p(x)] < x (6.8)
Pepoly(H)

Assuming this, we see from (6.5) and (6.7) that

1
————— > Cp) =270 < ¥ + (log H)" <« X1
ﬂPO:LY(H) PePoly(H)

due to (log H)" < x'/2. Therefore,

#{P € Poly(H) : |Cp(x) — 27" 16p(x)| > x*/°)

fPoly(H)
_ 1 3 |Cp(x) — 27" 6p(x)|
~ 4/5 9
ﬁPOlY(H) Peproly(H) X

is « x V20 « (log H )=21/20 Schinzel n-tuples P = Q (mod M) have pos-
itive density within Poly(H) by Proposition 2.8, hence, for 100% of them
one has

X
,BO x4/5

C > 27n+10 _4/5 > 27n+1— _
p(0) p(x) = 2(loglog x)d—n

’

where we used (4.10) in the second inequality. (The constant Sy was introduced
in Lemma 4.11.) Since x > (log H)", we see that for all sufficiently large H
one has Cp(x) > 0.

To verify (6.8) we check that Tg p(x) is a particular case of the sum intro-
duced in Definition 6.4. (This crucially uses the assumptions n; > 0 and
ny > 0.) Using quadratic reciprocity and the identities 7; = 7 (S;)m(S;),
i = 1,2, 3, werewrite each summand in (6.6) as the product of | | i log P;j(m)
and

<—a2a3n(S§)n(S§)> (—a1a3n(Slc)n(S§)) (—alazn(Sf)n(Sg))
7(S1) 7(82) 7(S3)

multiplied by the product of (—1)(?~D@=D/4 forall primes p € S; andg € Sy,
where i # i’. Without loss of generality we can assume that S| # &. Take any
k € Sy.1If S5 or S5 is non-empty, say S5 # <, choose any i € S5 and separate
the term ( ﬁ’; EZ;) in the first quadratic symbol above. If S5 or 5 are both empty,

then S{ # @ and S, # @. Hence there exist 4 € S| and k € S, so that we
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can separate the term (ﬁ: EZ;) in the second quadratic symbol above. Let .%#;

be the product of all the terms involving % but not k, let .%, be the product of
all the terms involving k but not %, and let ¢ be the product of all the terms
that depend neither on k nor on 2. We conclude by applying Proposition 6.5

with A} = 27 so that 5= = . 0

6.3 Proof of Theorem 6.1

Recall thatm;; € Z4i 1 are the coefficients of the polynomial P;;(¢) € Z[t] of
degreed;j, wherei = 1,2,3and j = 1,...,n;.Letx;; = (x; jo0,..., x,-,j,dl.j)
be variables and let P;; (7, x;;) = ZZ’;O X; jktk be the generic polynomial of
degree d;;. Let V be the open subscheme of Adz+" +l given by the condition
]_[i’j P;j(t,x;;) # 0. Let U be the subscheme of IP% X AdZ+”+l given by (6.1)
and ]_[i’j P;j(t,x;j) # 0. Assigning the value m;; € Z4%i*1 to the variable
X;; we obtain a conic bundle Uy, C ]P’% X Alz given by (6.1) together with the
condition ]_[i’j P;j(t,m;;) # 0.

Let f : U — V be the projection to the coordinates ¢ and x. As in Sect. 5 we
denote by g (respectively, by i) the projection to the coordinate ¢ (respectively,
to the coordinate x).

We follow the scheme of proof of Theorem 5.3. Let S be the set of prime
factors of 2ajazas. The analogue of Lemma 5.1 says that the fibre of the
projective morphism f : U — V atany Z,-point of V has a Q,-point when
p ¢ S. Indeed, this fibre is a conic with good reduction.

Since f : U — V isproper, theinducedmap f : U(Q,) — V(Q,) is topo-
logically proper [21, p. 79]. As V(Q),) is locally compact and Hausdorff, f :
UQp) — V(Qp)isaclosedmap. Wehave f(U(Zp)) = f(U(Qp)NV(Z)),
hence f(U(Zp)) isclosedin V(Z)). Since V (Z,) is compact, f(U(Zp)) and
h(U(Zp)) are compact too. Thus HpES h(U(Zp)) is compact.

Lemma 5.2 only uses the smoothnessof g: Ugp — A}@ andh: Ugp —
so it also holds in our case. It implies that for p € S and N, € U(Z,,) there is
a positive integer M, such thatif v € Z, and m € (Z ,,)d+" satisfy

Ad +n

max ([v — g(Np)lp, [m — h(Np)|,) < p~™, (6.9)

then Uy m(Zp) # 9. Let By, C ZZJF" be the p-adic ball of radius p~M»
around h(Np). The open sets [],.g %n,, where (Np) € [],e5 U(Zp),
cover [ | pes H(U(Zp)). By compactness, finitely many such open sets cover
Hpesh(U(Zp))- Hence .# = U!_,.#;, where M; = ./# N HpES BN, for
one of these finitely many choices of (N,,) € [| pes U(Zp). Thus it is enough
to prove that for 100% of m € .#; we have Uy (Q) # @.
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In the rest of proof we write .# = .#;. Write n, = g(N,) and m, =
h(Np), where p € §. Note that N, € U(Zp,) implies P;j(n,, m,) € Z;
for each p € S. Write M = [] pes pMr. By the Chinese remainder theorem

we can find ng € Z and mg € Z4t! such that ng = n, (mod le’) and
my = m,, (mod pMr) for each p € S. Our new set .# consists of allm € &
such that m = mg (mod M). Since P;j(n,, my) € Z’; for each p € S, we see
that P;;(no, mg) is coprime to M.

We now apply Proposition 6.7 to our ng and M, with Q;;(t) = P;; (¢, mg) for
all i and j. This is legitimate because P;;(n, mg) is coprime to M and for any
integer v = ng (mod M) and any m = mg (mod M) we have U, m(Z,) # @
whenever p € S. Thus for 100% of m € .# we have U (Q) # .

The last statement of Theorem 6.1 is proved in the same way as in Theo-
rems 5.3 and 5.8 .

6.4 The proof of Theorem 1.4

We can ensure that aj, az, a3 are not all of the same sign by replacing P; 1(x)
by —P1,1(x), if necessary. We can also ensure that ajazas is square-free. (If
p is a prime such that p2|a1, we absorb p into x; if p|a; and plaz, then we
multiply (6.1) by p and absorb p into x and y.) It remains to apply Theorem
6.1.

7 Explicit probabilities

In this section we obtain an explicit estimate for the probability that random
affine Chatelet surfaces have integer points, following the method of Theo-
rem 5.7. We prove that this probability exceeds 56% for a family that has
attracted much attention in the literature, namely,

X +yr=f), (7.1)

where f is a polynomial of fixed degree d with positive leading coefficient.
V.A. Iskovskikh [38] gave a first counter-example to the Hasse principle with
d = 4; the density of such counterexamples was studied in [24] and [52]. Little
is known about the arithmetic of (7.1) when d > 6 and f(¢) is irreducible.
Let

Py(H) :={f € Z[t] : deg(d) = d, | f| < H, the leading coefficient
of f is positive}.
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Theorem 7.1 Foralld > 2, ¢ > 0 and all sufficiently large H we have

#{f € Py(H) : x*> + y* = f(¢t) is soluble in 7.}

8Pa(H)
(38 +1(d = 3)) 1
(1= 64 H(l—m)-

p=>3

The infinite product is a strictly increasing function of d. For d = 2 it equals
0.95...andasd — oothelimit of the product is ]_[p23 (1—-p~P)=0.962....

Corollary 7.2 For every d > 2 and all sufficiently large H we have

#{f € Py(H) : x>+ y> = f(t) is soluble in 7)) ﬁ
¢ Py(H) 7 100°

To prove Theorem 7.1 we apply Theorem 1.2 withn = 1, M = 4, ng €
{0, 1, 2, 3} and arbitrary Q1 (¢) of degree at most d such that Q1 (ng) is 1 modulo
4. It shows that for 100% of Bouniakowsky polynomials f (¢) of degree d such
that f(ng) is 1 modulo 4, there exists an integer m such that f(m) is a prime
congruent to 1 modulo 4. In this case (7.1) has an integer solution. Thus, for
all ¢ > 0 and all sufficiently large H we have

4{f € Py(H) : x> + y> = f(r) is soluble in Z}
g Pa(H)

2 Rd(H) — &,

where

g{f € Ps(H) : fis Bouniakowsky, 3 ng € {0, 1, 2, 3} such that f(n9) = 1 (mod 4)}
Rq4(H) := .
tPa(H)

It is therefore sufficient to show that lim gy _, oo R;(H) exists and find its value.
For this we partition the coefficients of f according to their values modulo 4
as follows:

Ra(H)8Pq(H)
= > 6(f € Pa(H): f = Q(mod4), Zy(p) # p, ¥p > 3).

Qe(Z/47)[t],deg(Q)<d
IngeZ/AZ: Q(no)=1(mod 4)
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By Corollary 2.9 with M = 4 and the fact that §P;(H) is asymptotic to
24 g4+ we obtain

lim Ry;(H) = 1 —1
H1—r>noo a( )_rd}:[?, _pmin{p,d-l—l} ’

where

1
rg = yrES) {0 € (Z/47Z)[t] : deg(Q) < d,3Tng € {0, 1, 2, 3}
such that Q(ng) = 1 (mod 4)}.

A straightforward listing shows that r, = 19/32. For the remaining case d > 3
we write f (1) = Z?:o c;t', thus

1—ryg
1 .
= 3T > tlee @/MAan™ Y eji =vj(mod4), Vj=0,1,2,3¢.
(vo,v1,v2,v3)€{0,2,3}4 i=0

The system of four equations corresponding to j = 0, 1, 2, 3 is equivalent to

co = vp (mod 4), 2¢; = vy — vy (mod 4) , Z ¢; = vy (mod 4),
0<i<d

2 Z Coi = v1 + v3 (mod 4) .
0<i<d/2

This system has at least four unknowns ¢; due to d > 3. It is soluble if
and only if both vy = v, (mod 2) and v; = v3 (mod 2) hold; this happens for
exactly 25 vectors (v;) € {0, 2, 3}4. For each of these vectors, the first equation
determines co uniquely and the second equation gives two values of c;. For
any such cg, ¢y and any c4, cs, ..., cg the last equation gives two values of ¢;.
The third equation determines c3 uniquely. Thus we obtain

1 4 25
l—rdsz25X(1X2X1X2X4d+l 4):6—4
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