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OPTIMIZING VISION TRANSFORMERS FOR MEDICAL IMAGE SEGMENTATION

Qianying Liu1, Chaitanya Kaul1, Jun Wang2, Christos Anagnostopoulos1,
Roderick Murray-Smith1, Fani Deligianni1

1School of Computing Science, University of Glasgow 2University of Warwick

ABSTRACT

For medical image semantic segmentation (MISS), Vision Trans-
formers have emerged as strong alternatives to convolutional neu-
ral networks thanks to their inherent ability to capture long-range
correlations. However, existing research uses off-the-shelf vision
Transformer blocks based on linear projections and feature process-
ing which lack spatial and local context to refine organ boundaries.
Furthermore, Transformers do not generalize well on small med-
ical imaging datasets and rely on large-scale pre-training due to
limited inductive biases. To address these problems, we demon-
strate the design of a compact and accurate Transformer network
for MISS, CS-Unet, which introduces convolutions in a multi-stage
design for hierarchically enhancing spatial and local modeling abil-
ity of Transformers. This is mainly achieved by our well-designed
Convolutional Swin Transformer (CST) block which merges con-
volutions with Multi-Head Self-Attention and Feed-Forward Net-
works for providing inherent localized spatial context and inductive
biases. Experiments demonstrate CS-Unet without pre-training out-
performs other counterparts by large margins on multi-organ and
cardiac datasets with fewer parameters and achieves state-of-the-art
performance. Our code is available at Github1.

Index Terms— Medical Image Segmentation, Semantic Seg-
mentation, Vision Transformer, Convolutions

1. INTRODUCTION

Medical image semantic segmentation (MISS), which classifies im-
age pixels with semantic organ labels (e.g. Kidney and Liver) for
various imaging modalities, is considered as one of the most funda-
mental problems in medical imaging. However, compared to nat-
ural scene images, MISS requires overcoming more challenges to
create robust models. For instance, common benchmark datasets in
MISS suffer from large deformation of organs under different im-
age acquisition processes. In addition, shortage of costly pixel-level
annotations is another problem leading to a performance gap. To
achieve efficient and effective segmentation, models are not only re-
quired to have a better understanding of their local semantic features
to capture more subtle organ structures, but also of global feature
dependencies to capture the relationships among multiple organs.

UNet [1] and its variants [2][3][4][5][6] with Convolutional
Neural Networks (CNNs) as the backbone have found huge suc-
cess in MISS as they are good at modelling local attributes inside
their receptive field. However, the inherent locality of convolu-
tion operations restricts their ability to model long-range semantic
dependencies within the image, and as a result the challenging
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boundaries of the whole organ may not be effectively segmented.
Attention mechanisms alleviate this issue, but these tend to be ’sin-
gle head’ mechanisms that only calculate pixel-level similarities,
and not ’multi head’ with the ability to capture patch-level patterns.

For alleviating the inherent flaws of CNNs, there’s a recent shift
in the choice of architectures from CNNs to Vision Transformers
(ViTs) due to their ability to model long range semantic attributes
among input tokens (embeddings of image patches) via a linearly
projected Multi-Head Self-Attention (MHSA) operation and a Feed-
Forward Network (FFN). Most early works [7][8][9] treat CNNs
as a backbone and exploit the Transformer’s desirable characteris-
tics in their encoder. They tend to have high complexity as they
stack bulky Transformer blocks on top of convolutional feature ex-
tractors (large pretrained CNNs, e.g. ResNet). Recent research
[10][11][12][13][14][15][16][17] has moved towards using Trans-
formers as the main stem for building the entire segmentation archi-
tecture. Swin-UNet [12] is regarded as the first pure Transformer
model. It keeps the familiar U-shape and adds hierarchical feature
extraction using shifted windows proposed by the Swin Transformer
[18]. This drastically reduces the quadratic complexity of traditional
self-attention while achieving better performance.

However, most of these Transformers for MISS use off-the-
shelf Transformer blocks from Computer Vision community and
only model and extract linear semantic relations via MHSA and
FFN, leading to the challenge of precisely delineating organ bound-
aries due to the lack of spatial and local information as shown in
Figure 1.(d), although showing small influence on detection and
classification tasks. Besides, these methods require a large dataset
to compensate the lack of inductive biases such as translation equiv-
ariance [19], which may be defected or even lost when fine-tuning
on downstream tasks, showing less robustness on small datasets.

Keeping the current state of the literature in mind, our paper
highlights issues that today’s Transformers in MISS face, followed
by our contribution that helps alleviate those drawbacks. Most cur-
rent Transformers are bulky and rely on pre-training weights from
classical vision tasks to be adapted for MISS. To the best of our
knowledge, no existing study explores the effects of adding spa-
tial locality inside Transformer blocks via convolutions for medical
imaging. To this end, we first propose an empirical analysis to show
the need for spatial locality in pure Transformer based MISS. Our
insights show the effects of introducing convolutions to Transformer
blocks and multi-stage design of networks on segmentation perfor-
mance. We call the final model resulting from our experiments, Con-
volutional Swin-Unet (CS-Unet), which is based on purely convolu-
tional Transformer blocks created to make Transformers model lo-
cal information better, segment organ boundaries more accurately,
while maintaining a low computational complexity. Experiments on
CT and MRI datasets show CS-Unet (24M parameters) trained from
scratch outperforms pre-trained Swin-Unet (27M) on ImageNet by
around 3% dice score, achieving state-of-the-art performance.
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Fig. 1. Visualization of segmentation results of different methods trained from scratch on Synapse dataset.

2. METHOD

Most Transformer based methods in MISS, i.e., encoder-decoder
models with a standard U-shape, use a standard Transfomer block
containing linear projections and linear FFNs, which are essentially
MLPs, to process the data. Hence, to create effective image rep-
resentations using such a regime requires huge amounts of data for
training, as they lack local spatial information.

The first pure-Transformer based MISS model is the Swin-Unet
[12] which adopts Swin Transformer blocks [18] to add locality in-
formation to Transformers. The data representation created here is
still inherently linear as this block contains linear projections and
feature processing. Figure 1 shows segmentation visualizations for
the Synapse dataset. Swin-Unet trained from a random weight ini-
tialization (Figure 1.(d)) does not perform well. It fails to detect the
spleen and misclassifies the left kidney as the right.

Next, we add convolutional projections to this Swin Trans-
former block structure. The projections follow the methodology
proposed in [20] where tokens are first shaped into a 2D token map,
then processed by a depth-wise separable convolution with kernel
size s implemented by: Depth-wise Conv → BatchNorm
→ Point-wise Conv. Finally, the tokens are flattened into
1D token input xq/k/v

i for Q/K/V matrices. It can be formulated
as: x

q/k/v
i = Flatten(Conv(Reshape2D(xi), s). Figure 1.(c)

shows outputs of the resultant Unet trained with this block. It vi-
sually demonstrates how spatial locality is essential for low level
pixel labelling tasks. It can be seen that although the convolutional
projection alleviates a lot of the problems posed by the linearity of
Swin-Unet, there are still severe over-segmentations on pancreas
and liver and extremely rough boundaries of right kidney.

Following this, when a 3x3 convolution is used for FFNs instead
of MLPs to introduce more spatial context, we see the full effects of
adding complete spatial locality to Transformers through the bound-
aries of the left and right kidneys and spleen becoming greatly re-
fined. The over-segmentation problem of the pancreas however gets
worse (as shown in Figure 1.(b)). This is due to the limited receptive
field not modeling the whole boundary of big organs effectively.

2.1. Convolutional Swin Transformer (CST) Layer

We propose a CST layer to fully explore spatial modeling abil-
ity of convolutions in MHSA and FFN. First, we propose a novel
(shifted) window based convolutional multi-head self attention
((S)W-CMSA) to extract hierarchical semantic features while reduc-
ing computational costs, by combining a shifted windows mecha-
nism and convolutional projection. Then, we replace the MLP with
our novel depthwise separable feed-forward (DSF) module. From
Figure 1.(a), we see the Transformer model based on CST handles
challenging organ boundaries more efficiently. The CST layer is
formulated as:

ẑl = W − CMSA(LN(zl−1)) + zl−1, (1)

zl = DSF (ẑl) + ẑl, (2)

ẑl+1 = SW − CMSA(LN(zl)) + zl, (3)

zl+1 = DSF (ẑl+1) + ẑl+1 (4)

where ẑl and zl denote the outputs of (S)W-CMSA module and
DSF of the l-th block, respectively.

(Shifted) Window based convolutional multi-head self atten-
tion

Fig. 2. Convolutional Swin Transformer (CST) Block.

As shown in Figure 2, once tokens enter (S)W-CMSA, they are
reshaped into a 2D token map, and partitioned into windows. For
each window, we use three depth-wise convolutions with kernel size
s of 3×3, padding of 1 and stride of 1 to create our Q, K and V
vectors via: Flatten(DepthConv(Window(Reshape(xi)), s).

CST is different from [20] as we create a projection based on
windows rather than the whole image, leading to more refined local
features as now the kernels learnt on each window are different. In
order to better adapt to medical images with smaller data volumes,
point-wise convolutions are removed to avoid over-fitting. Further-
more, we replace Batch Normalization with Layer Normalization
(LN), providing a performance boost. The token vectors are fed to
MHSA as:

MHSA(xq
i , x

k
i , x

v
i ) = SoftMax

(
xq
i (x

k
i )

T

√
d

+B

)
xv
i (5)

Here d represents the dimension of the query and key. The val-
ues in B are the bias.

Then, we replace the linear layer and feed the attention output to
a 3×3 depth-wise convolution for fine-tuning for more spatial infor-
mation. We follow this by reversing the windows to 2D token maps,
resulting in more robust estimations compared to Swin Transformer
[18] removing our dependence on positional encoding.



Depthwise separable feed-forward (DSF) module After com-
puting (S)W-CMSA, the feature maps are fed into a FFN. Exist-
ing Transformers implement this module as an MLP: LN,d →
Linear,4×d → GELU → Linear,d → RC. The d denotes
the number of channels of a reshaped feature map and RC denotes
the residual connection. We propose a DSF module as a choice of
FFN which provides adding spatial context. We use three depth-wise
convolutions instead of two linear layers for utilizing the features be-
tween channels, C. In addition, we found that adding LN after con-
volution gives better segmentation results. The DSF is implemented
as: 7x7 Depth-wise Conv,d → LN,d → Point-wise
Conv,4×d → GELU → Point-wise Conv,d → RC.

2.2. Overall Structure Design

CS-Unet keeps a symmetrical UNet shape. The input of our model
is a 2D image slice with the resolution of H × W × 3 sampled
from a 3D volume of images. H , W and 3 denote the height, width
and number of channels of each input. The input images on en-
tering the encoder are passed through the convolutional token em-
bedding to create a sequence embedding on overlapping patches of
the image, following which CST and patch merging layers are ap-
plied. Extracted features are then processed by the model’s bottle-
neck that consists of two CST blocks. A symmetrical decoder then
creates the final segmentation marks. In addition, skip convolution
(SC) modules are added between corresponding feature pyramids of
the encoder and decoder to compensate for the missing information
caused by down-sampling. The overall architecture of the proposed
CS-Unet is presented in Figure 3.

2.3. Encoder

The input image is first passed through the convolutional token em-
bedding layer to create a sequence embedding with the resolution of
H
4

W
4

× C (C = 96 in experiments). This embedding is fed to three
main CST layers and a patch merging module which downsamples
the image and doubles the number of channels. For example, at the
first patch merging module, an input with size H

4
×W

4
×C is divided

into four parts and concatenated along the C dimension to create a
feature map of size H

8
× W

8
× 4C. Then a linear layer is applied to

this map to reduce the C dimension by a factor of 2.
Convolutional Token Embedding layer Existing models use a

linear layer to split images into non-overlapping patches and reduce
the size of the image drastically, e.g. by 75%, while increasing the
channel dimension C. However, as the images’ highest resolution
is H × W at the encoder, using a linear layer to compress these
features not only loses high-quality spatial and local information,
but also increases model size. Our embedding layer, is imple-
mented as four convolutions with overlapping patches to compress
features in stages, helping to introduce more spatial dependency
between, and inside the patches, while greatly reducing the param-
eters (by 6M. See Ablation 3, Method 1). Specifically, this layer
is implemented as follows: 3x3 s=1 Conv,d/2 → GELU →
3x3 s=2 Conv,d/2 → GELU+LN → 3x3 s=1 Conv,d
→ GELU → 3x3 s=2 Conv,d → GELU. Here, s is stride,
the input dimension is 3, and d = C. In the end, 2D reshaped token
maps with resolution H

4
× W

4
× C are outputted.

Bottleneck The bottleneck contains two CST blocks, based on
W-CMSA. The feature map size here remains unchanged.

Fig. 3. (a) Overall architecture of CS-Unet, (b) one CST layer, (c)
convolutional token embedding, (d) DSF and (e) skip convolutions.
d is the current number of channels, c is an arbitrary dimension.

2.4. Decoder

Our decoder is symmetric to the encoder. Feature representation is
created by enlarging the feature volume through a convolutional up-
sampling module and then passing it through a SC module to com-
pensate for the information lost due to down-sampling. A CST layer
then provides spatial context to the upsampled features. After repeat-
ing the above process three times, the features are fed into the patch
expansion layer which up-samples by 4×, followed by a linear pro-
jection to fine tune the final segmentation prediction. Specifically,
convolutional up-sampling module employs strided deconvolution
to 2× up-sample feature maps and halves the channel dimension as:
LN,d → 2x2 s=2 ConvTranspose,d/2 → GELU.

Skip Convolutions (SC) module The outputs of high-resolution
feature maps created from up-sampling are concatenated with shal-
low feature representations from the encoder, and then merged by a
SC module. It further enriches both spatial and fine-grained infor-
mation, while compensating for the missing information caused by
down-sampling. It is implemented as :3x3 s=1 Conv,d/2 →
GELU → 3x3 s=1 Conv,d/2 → GELU.

3. EXPERIMENTS

We use two publicly available datasets to benchmark our method.
Synapse multiorgan segmentation (Synapse): This dataset

[21] contains abdominal CT scans from 30 subjects. Following [7],



Methods DSC HD Aorta Gallb Kid L Kid R Liver Pancr Spleen Stom
R50 UNet [7] 74.68 36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92

R50 AttnUNet [7] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
UNet [1] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

AttnUNet [4] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
R50 ViT [7] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

TransUnet [7] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
Swin-Unet [12] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
MT-UNet [16] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

Ours 82.21 27.02 88.40 72.59 85.28 79.52 94.35 70.12 91.06 75.72

Table 1. Comparison with different models on Synapse. Gallbladder, left Kidney, right
Kidney, Pancreas and Stomach are abbreviated as Gallb, Kid L, Kid R, Pancr and Stom.

Methods DSC RV Myo LV
R50 UNet 87.60 84.62 84.52 93.68

R50 AttnUNet 86.90 83.27 84.33 93.53
R50 ViT 86.19 82.51 83.01 93.05

TransUnet 89.71 86.67 87.27 95.18
Swin-Unet 88.07 85.77 84.42 94.03
MT-UNet 90.43 86.64 89.04 95.62

Ours 91.37 89.20 89.47 95.42

Table 2. Experimental results of ACDC.

18 cases (2212 axial slices) are extracted for training, while other 12
cases are used for testing. We report the model performance eval-
uated with the average Dice score Coefficient (DSC) and average
Hausdorff Distance (HD) on eight abdominal organs.

Automatic Cardiac Diagnosis Challenge (ACDC): ACDC
[22] contains MRI images from 100 patients, with right ventricle
(RV), left ventricle (LV) and myocardium (MYO) to be segmented.
Using data splits proposed in [16], the dataset is split into 70 (1930
axial slices), 10 and 20 for training, validation and testing, respec-
tively. Evaluation metrics used are average DSC (%) and HD (mm).

3.1. Implementation details

We train our models on a single Nvidia RTX3090 GPU with 24GB
memory. We use flipping and rotation augmentations on the train-
ing data. The input image size is 224×224. Pre-trained weights are
used for other methods if provided, while our model is trained from
scratch for 300 epochs from a randomly initialized set of weights.
A batch size of 24 and a combination of cross entropy and dice loss
are used. Our model is optimized by AdamW [23] with a weight
decay of 5E-4 for both datasets. The learning rates for Synapse and
ACDC are 1e-3 and 5e-3, respectively. We start with a 10-epoch
linear warmup. Layer Scale [24] of initial value 1e-6 is applied.

3.2. Experimental Results

As shown in Table 1 and Table 2, our model consistently surpasses a
variety of convolution-based and Transformer-based methods. CS-
Unet outperforms Swin-Unet by 3.08% and 3.3% DSC on Synapse
and ACDC, respectively. In addition, our method gets the highest
DSC for five and two organs of Synapse and ACDC respectively, es-
pecially providing large boosts for challenging organs like gallblad-
der, pancreas and RV. Overall, compared to pretrained Swin-Unet
(27 M), nnFormer(158 M) and TransUnet (96 M), CS-Unet achieves
the best performance without pretraining while being lightweight (24
M) via introducing more local perception and inductive bias.

Figure 4 visualizes segmentation results. In case 1, our method
has overwhelming advantage on segmenting the pancreas, stomach
and liver. CS-Unet is also more discriminative on the complex shape
of RV than other Transformer-based models in case 2 due to its better
ability of spatial context modelling.

3.3. Ablation study

We explore the influence of proposed modules on the performance
on Synapse as shown in Table 3. The Swin-Unet trained from scratch
is treated as the baseline (method 0) which cannot adapt to small
datasets. Adding convolutional token embedding (method 1) and
convolutional projections (method 2), we observe large improve-
ments of 8% and 9% on DSC which is competitive with pre-trained

GT Ours MT-UNet SwinUnet

C
ase2

C
ase1

Fig. 4. Visualization of segmentation results on two datasets.

Swin-Unet emphasizing the importance of adding local modeling
ability to Transformers. Removing the position embedding in early
stages and using a convolution instead of a linear layer to fine-tune
the attention computation (method 3) leads to a slight increase in
performance and parameter reduction. Method 4 combines the CST
block with the DSF module leading to an improved DSC and HD
without extra parameters. After utilizing convolutional up-sampling
and feature fusion module, SC, for merging information during skip
connection, our best performing model method 6 achieves 3.17%
improvements on DSC. Comparison with method 5, shows that fully
convolutional pure Transformers can track the position of pixels bet-
ter without needing an extra positional embedding, and that spatial
feature extraction, is in fact, a necessity for Transformers.

Methods DSC HD Emb Proj Pos Att DSF SC #param
0 (Base) 60.80 54.35

√
27.15

1 68.57 51.02
√ √

21.55
2 77.47 18.54

√ √ √
21.55

3 78.32 25.43
√ √

×
√

19.63
4 79.04 22.96

√ √
×

√ √
19.84

5 81.93 24.59
√ √ √ √ √ √

24.68
6 82.21 27.02

√ √
×

√ √ √
24.68

Table 3. Ablation study on modules used in CS-Unet on Synapse.

4. CONCLUSIONS

In this work, we presented the effects of introducing convolutions to
Transformer blocks and to a multi-stage Transformer network to al-
leviate limitations of non-locality and need for extensive pre-training
that Transformers in MISS face. Extensive experiments demon-
strated that merging Convolutions with MHSAs and FFNs to create
our CST layer, provided inherent local context inside Transformer
blocks. Based on CST, our compact, accurate and pure Transformer
architecture, CS-Unet, achieved superior performance without pre-
training while maintaining less parameters.
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