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Abstract

In massive multiple-input multiple-output (MIMO), it is much challenging to ob-

tain accurate channel state information (CSI) after radio frequency (RF) chain

reduction due to the high dimensions. With the fast development of machine

learning(ML), it is widely acknowledged that ML is an effective method to deal

with channel models which are typically unknown and hard to approximate.

In this paper, we use the low complexity vector approximate messaging pass-

ing (VAMP) algorithm for channel estimation, combined with a deep learning

framework for soft threshold shrinkage function training. Furthermore, in or-

der to improve the estimation accuracy of the algorithm for massive MIMO

channels, an optimized threshold function is proposed. This function is based

on Gaussian mixture(GM) distribution modeling, and the expectation maxi-

mum Algorithm(EM Algorithm) is used to recover the channel information in

beamspace. This contraction function and deep neural network are improved

on the vector approximate messaging algorithm to form a high-precision chan-

nel estimation algorithm. Simulation results validate the effectiveness of the

proposed network.

Keywords: Massive MIMO Channel Estimation, Vector Approximate Message

Passing (VAMP), Deep Learning Framework, Gaussian Mixture Distribution,

Expectation Maximum Algorithm
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1. Introduction

Massive multiple input multiple output (MIMO) has been regarded as a key

technology for 5G. With the rise of massive antennas, many methods to reduce

the number of RF chains have been applied. However, due to the high dimen-

sions, it is much challenging to obtain accurate channel state information (CSI)5

after RF chain reduction. Therefore, in recent years, researchers have put for-

ward a lot of channel estimation schemes under large-scale MIMO. Considering

the high path loss of MIMO channel [1], the number of multipath components

received by the system receiver is less than the amount of system antenna.

According to the sparsity of the wireless channel [2], many channel estimation10

methods based on compressed sensing are widely used. The sparse linear inverse

problem is the core of compressed sensing, which has been concerned in recent

years[3]. For such channel estimation problems and based on the premise of

spatial sparsity [4], more extensive Saleh-Valenzuela(SV) models are used [5].

Many ways have been put forward to solve this problem, such as the tracking15

matching algorithm and the greedy algorithm. Especially, there is an orthogonal

matching pursuit algorithm that estimates sparse signal channels by reducing pi-

lot overhead [6][7]. In addition, a channel estimation method based on a block

sparse compressed sensing algorithm is proposed, by taking advantage of the

feature that non-zero values in the angle domain matrix of mmWave channels20

are distributed in blocks [8]. However, these methods cannot achieve a high

accuracy in massive MIMO systems. Zou proposed an approximate message

passing (AMP) algorithm in [9], which adds Onsager correction to accelerate

the convergence of the algorithm [10][11]. Moreover, the algorithm can achieve

high estimation accuracy, but may diverge when the matrix deviates from the25

i.i.d.sub-Gaussian model. Rangan proposed a vector approximate message pass-

ing (VAMP) algorithm to solve this problem. For some large right orthogonal

invariant matrices, the VAMP algorithm has higher stability, which is more

appropriate for channel estimation in massive MIMO systems [12][13]. The

derivation and linear model extension of the AMP algorithm and the VAMP30
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algorithm are also investigated in [14][15][16]. However, the main difficulty lies

in determining the optimal shrinkage parameters, thus empirical parameters are

usually used, which degrades the accuracy of channel estimation.

Recently, deep learning is developing rapidly in the field of wireless com-

munication. Some intelligent schemes for channel estimation [17][18][19] have35

been proposed, including beamforming design in [20]. Combined with the pro-

posed objective function, models generated by deep learning eliminate the need

for prior knowledge of the sparsication and maximize the correlation between

the receiver and base station signals like [17]. Similarly, [18] exploits a learned

denoising-based approximate message passing(LDAMP) network to train chan-40

nel data and structure. It effectively solves the problem of the limited number

of base station RF chains, realizing the combination of fully convolutional de-

noising network with learned approximate message passing(LAMP) algorithm

in [19] in the millimeter-wave massive MIMO system. On the basis of com-

pressed sensing, a learning-based AMP network in [21][22] is proposed, which45

is suitable for channel estimation in massive MIMO. The linear transformation

coefficients and nonlinear shrinkage parameters are jointly optimized to achieve

higher channel estimation accuracy. Besides, a complex-valued Gaussian mix-

ture LAMP is proposed for the channel distribution problem [23], where it uses

the threshold parameters of the AMP algorithm as learning objects for hier-50

archical training [24][25]. Specifically, using the prior information constructs a

GM-LAMP network because beamspace channel elements obey Gaussian mix-

ture distribution, which improves the accuracy of beamspace channel estimation

[23].

Based on this idea, we exploit Gaussian distribution to conduct prior in-55

formation on the beamspace. However, due to the loss of channel data in the

construction of Gaussian mixture distribution, the expectation maximum(EM)

algorithm is added to recover the data, which greatly improves the accuracy

of channel estimation. Simulation results demonstrate the performance gain of

the proposed scheme. The main contributions of this article are summarized as60

follows:
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• Based on the sparsity of the beamspace, we construct the channel models

to analyze the AMP and VAMP algorithms in two antenna arrays(ULA,

UPA). Based on this, deep learning is introduced into the VAMP algorithm

and an LVAMP algorithm with high stability and accuracy is generated65

through hierarchical optimization.

• Considering that the beamspace elements obey the Gaussian mixture dis-

tribution, part of the channel information is missing after the construc-

tion of the new threshold function. Therefore, the EM algorithm is used

to restore Gaussian mixture distribution date to improve the accuracy of70

channel information via deep learning.

• A new GMEM threshold function based on these algorithms is constructed,

and replace the LVAMP threshold function to generate a new GMEM-

LVAMP channel estimation algorithm.

Notation. : The notations in this paper are as follows: the uppercase boldface75

letters denote matrices, lowercase boldface letters are vectors and normal letters

are scalar quantities. (·)H denotes conjugate transpose. ‖·‖2 is two-norm. E {·}

denotes the expectation, U(−a, a) denotes the probability density function of

uniform distribution on (−a, a).

2. SYSTEM MODEL80

In this section, we represent the beamspace channel estimation problem in

uplink mmWave massive MIMO system, and then transform the channel esti-

mation problem into a sparse signal recovery problem. The last, the VAMP

algorithm and its improving LVAMP network are presented.

2.1. Array Model85

Our work considers a time division duplex (TDD) based massive MIMO

system. For convenience, we assume that one user only has a single antenna,

and the total number of users is K. We describe the universal spatial channel
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firstly and based on it to introduce other channel models. Based on the SV

model in [1], the channel vector between the kth user and the N antenna base

station under the lens antenna array channel is

hk =

√
N

Lk

Lk∑
i=0

β
(i)
k a(θ

(i)
k ) =

√
N

Lk

Lk∑
i=0

ck,i, (1)

where ck,i = β
(i)
k a(θ

(i)
k ) is the ith path component with β

(i)
k presents the complex

gain and Lk is the number of resolvable paths [2]. θ
(i)
k denotes the spatial

direction, which depends on the array geometry. a(θ
(i)
k ) denotes the N × 1

array steering vector. For uniform linear array (ULA) which has N antennas,

we have

a(θ) =
1√
N

[
e−j2πd sin(θ)n/λ

]
, (2)

where n = [0, 1, · · · , N − 1]T . For uniform planar arrays (UPAs) which has

N1 ×N2 (N=N1 ×N2) antennas [4], we have

a(θ) =
1√
N

[
e−j2πd sin(θa) sin(θe)πn1/λ

]
⊗
[
e−j2πd cos(θa)πn2/λ

]
, (3)

where n1 = [0, 1, · · · , N1 − 1]T ,n2 = [0, 1, · · · , N2 − 1]T , λ denotes the wave-

length of carrier, and d is the antenna spacing that usually satisfies d = λ/2 in

mm-wave communications.

2.2. Beamspace Channel

For the spatial domain channel model in Formula (2), it can be converted

into a beam spatial channel through a lens antenna array. Such lens antenna

array is like a spatial DFT matrix p of size N ×N , which contains the array

steering vectors of N orthogonal directions covering the entire space as

P =
[
a(ψ̄1),a(ψ̄2), · · · ,a(ψ̄N )

]H
, (4)

where ψ̄n= 1
N (n− N+1

2 ), and n=1,2, . . . , N is the pre-defined spatial directions90

by the lens antenna array. As the same, UPA also can be expressed as

P =
[
a(ψ̄a

1 , ψ̄
e
1), · · ·a(ψ̄a

1 , ψ̄
e
N2

), · · · ,a(ψ̄a
N1
, ψ̄e1), · · ·a(ψ̄a

N1
, ψ̄eN2

)
]H
, (5)
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where ψ̄a
n= 1

N1
(n− N1+1

2 ) , n = 1, 2, · · · , N1 and ψ̄en = 1
N2

(n − N2+1
2 ) , n =

1, 2, · · · , N2. They represent the spatial Angle of azimuth and elevation defined

by the lens antenna array respectively. Therefore, through different antenna

arrays and the derivation of Formula (4) (5), a beam channel space vector h̃k

with a size of N × 1 between the kth user and N antennas is obtained, and its

beamspace channel is expressed by the following [22][
h̃1, h̃2, · · · , h̃k

]
= [Ph1,Ph2, · · · ,Phk] . (6)

It is worth pointing out that only a few path signals are sent after passing

through the lenticular line array, so our beam channel space is characterized by

sparse signals. The massive MIMO with a lenticular antenna array only have a

small amount of RF chains with a little compromise on performance.95

2.3. Problem Formulation

In the upward training stage, the received signal vector of the base station

yk,q ∈ NRF × 1 can be expressed [5] as

yk,q = Ak,qh̃ksk,q + n̄k,q, q = 1, 2, · · · , Q, (7)

where h̃k represents the channel vector, Ak,q is the lens beam selection network

of NRF×N , sk,q is the pilot symbol, and n̄k,q = Ak,qnk,q , nk,q ∼ CN
(
0, σ2

nIN
)

is a gaussian noise of N × 1 . In the remaining parts, we set s = 1, because the

pilot symbol s is usually known at the receiving end. We obtain an M ×1(M =

QNRF ) measurement signal yk as:

yk =


yk,1

yk,2
...

yk,Q

 =


Ak,1

Ak,2

...

Ak,Q

 h̃k +


nk,1

nk,2
...

nk,Q

 = Akh̃k + nk, (8)

where Ak is the beam selection matrix with input of M×N , and nk is the noise

vector of M × 1. Due to the orthogonality of pilot frequency, we have unified
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the estimation of users, that is to say, we can use the same channel estimation

method for total K users, so we get

y = Ah̃ + n. (9)

Since the beamspace channel is approximately sparse, we use the sparse

signal recovery algorithm of compressed sensing knowledge to carry out the

channel estimation of the beamspace. Matrix A is the perception matrix.

Although the optimal solution can be obtained through such a method, it100

is a typical NP problem, the computational efficiency of the algorithm will be

greatly reduced. In order to solve this problem efficiently, one of the most fa-

mous methods is convert such sparse problem to a convex optimization problem.

Because the minimum l0 norm combination is needed in the process of solving

all non-zero values, which can lead to the complexity of the algorithm being105

improved, signal accuracy of reconstructing drops. Therefore, the non-convex

problem is relaxed to a convex problem to solve, using the l1 norm equivalent

instead of l0 norm [3]. Because the l1 norm has an optimal solution, turning

the problem into a linear programming problem

ĥ = arg min
h

∥∥∥h̃∥∥∥
1
,

s.t.∥∥∥Ah̃− y
∥∥∥
2
≤ ε.

Because of the large computational complexity and time cost of the convex110

optimization algorithm, it is generally considered to approach the original signal

indirectly by employing coefficient decomposition to realize signal reconstruc-

tion. Some traditional greedy algorithms can solve this problem, such as the

orthogonal matching tracking algorithm, regularization orthogonal matching al-

gorithm and generalized orthogonal matching tracking algorithm. However, the115

accuracy and effectiveness of these traditional algorithms cannot achieve satis-

factory results.
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2.4. LAMP and LVAMP

There is a large number of antenna array in massive MIMO systems, and the

dimension of sparse signals through lens antenna array is very high. To solve120

this problem, an iterative AMP algorithm is proposed to restore sparse signals

with low complexity, especially for high-dimensional sparse signals.

AMP algorithm decouples the input of each contraction function and accel-

erates convergence in [10] by introducing the Onsager correction. The Onsager

correction ensures that the shrinking input is an undermined form of additive

Gaussian white noise (AWGN) of the real signal h0. The key part of this algo-

rithm is the soft threshold contraction function[
ηηη
(
rt;λt, σ

2
t

)]
i

= max (|rt,i| − λtσt, 0) ejωt,i (10)

where i represents the elements of the input vector, ωt,i is the phase of complex-

valued element rt,i, λt is the predefined and fixed parameter in the tth iteration,

and σ2
t is updated via estimating the noise variance. Meanwhile, in Formula (10)

we can see that the denoising threshold of the threshold function λt depends

on the value of t, which is updated by estimating the noise variance [11]. The

AMP algorithm can work well with the response problem of massive sparse

signals, but it is hard to deal with large matrices. The VAMP algorithm is

proposed by Rangan in [13] to solve the vulnerability of AMP relative to a

special matrix (right orthogonal invariant matrix, a right orthogonal invariant

matrix A is a random matrix whose distribution remains the same after right

multiplication by any fixed orthogonal matrix). The VAMP algorithm has the

same characteristics as the original AMP algorithm, such as low complexity of

iteration and fewer convergent iterations. For matrix A. Assuming that

A = USVT. (11)

For the right orthogonal invariant A, the decomposed matrix V will include

the first R columns of the matrix uniformly distributed over the set of orthogo-

nal matrices of the same size. Note that the I.I.D. Gaussian matrix is a special

case of right orthogonal invariance, where U is randomly orthogonal and S has
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specific numerical values. Importantly, the VAMP algorithm is stable and suit-

able for massive MIMO, because when M and N dimensions are large enough,

the algorithm works well under any orthogonal matrix U and different singular

values S [28,29].In order to facilitate the derivation, we have adopted a method

of matrix extension, refer to [21]. Although we have assumed that A is square

to streamline the analysis, we make this assumption without loss of generality.

Where U and V are N × N orthogonal matrices such that U is deterministic

and V is Haar distributed. For example, by setting

S = diag (s) ,U =

 U0

0

0

I

 , s =

 s0

0


Corresponding to the AMP algorithm, the Onsager correction term for VAMP

algorithm is

r̃t =
(
ĥt − αtrt

)/
(1− αt) (12)

αt = ggg
′

1 (rt, γt) (13)

where αk is the Onsager correction term, ggg1 () is the threshold function of the

VAMP algorithm and has the same mathematical form as Formula (12). We

present the architecture of the algorithm in Fig.1.

Figure 1: VAMP network of T layer.

125

It can be seen that the VAMP algorithm and the AMP algorithm have the

same four basic steps, including estimation, divergence calculation, Onsager

correction and variance calculation. For large random A, the VAMP quantity
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rt behaves like a white Gaussian noise-destroying version of the real signal h0:

rt = h0 +N (0, τkI).130

It is also proven that the VAMP algorithm has a wider application range

than the AMP algorithm in [30]. However, it still has some problems in estimat-

ing the sparse beamspace. In the threshold function, the shrinkage parameters

generally adopt the same empirical value for iteration, are not suitable for dif-

ferent massive MIMO beamspace channels. In addition, the prior information135

of beamspace channel in the VAMP algorithm is not effectively utilized, and the

channel information is relatively independent of the algorithm.

Figure 2: LAMP network of T layer.

Recently, due to the excellent channel approximation performance of ma-

chine learning, some deep learning networks were proposed based on the AMP

algorithm to optimize its linear shrinkage parameter Bt and nonlinear shrink-140

age parameters λt at each iteration. Finally, each iteration of the algorithm

is mapped to each layer of the deep learning network. As illustrated in Fig.2,

deep learning parameters can be introduced into the original AMP algorithm,

realizing a linear transformation of the measured signal space to the original

sparse signal space. Different linear coefficients are chosen at different layers of145

the iteration to improve the accuracy of channel information recovery. Referring

to the LAMP algorithm threshold parameter, the threshold function ggg1 () of the

VAMP algorithm is decomposed during the iterative process of the LVAMP al-

gorithm. Like Formula (10), γt is decomposed into two values λt and σ2
t , with

λt being trained as a non-linear coefficient by machine learning in a hierarchi-150

cal iteration, and σ2
t is updated by estimated noise variance. To accommodate
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Formula (12) of the VAMP algorithm, linear coefficients are not constructed,

which largely reduces the computation complexity.

ĥt = ggg1 (rt, γt) = ggg1
(
rt, λt, σ

2
t

)
, (14)

where σ2
t = 1

M ‖rt‖
2
2. The same supervised learning approach as the GMEM-

LVAMP algorithm is used in the deep learning training of the LVAMP algorithm.

The exact process is described uniformly in section3.3. Here we give the loss

function firstly for the LVAMP iterative process:

Lt (λt) =
1

D

D∑
d=1

∥∥∥ˆ̃
hdt+1

(
yd, λt

)
− h̃d

∥∥∥2
2
, (15)

The t-layer algorithm architecture of the LVAMP algorithm is illustrated in

Fig.3. The t-layer algorithm steps are mapped into the LVAMP-DNN network155

and the data generated using the SV channel model is iteratively computed.

Figure 3: LVAMP network of T layer.

Algorithm 1 Learning VAMP

Input: compressed sensing matrix A, measurements y, denoiser g1, assumed

noise precision γω, number of iterations Kit;

Output: X̂Kit.160

1: initial A=UDiag(̄s)V and ŪŪT=IR,V̄
TV̄=IR,R = rank(A); Compute pre-

conditioned y= Diag(̄s)
−1

ŪTy

2: σ2
t = 1

M ‖y‖
2
2

3: get λt from T layers

11



4: γt = max (abs (λtσt) , 0)165

5: ht = ggg1(rt;λt, σ
2
t )

6: αt = ggg
′

1

(
rt;λt, σ

2
t

)
7: rt = (ht − αtrt)

/
(1− αt) (Initial parameter calculation)

8: (see Section 2.4)

9: for t = 0, 1, · · · ,Kit do170

10: σ2
t = 1

M ‖rt‖
2
2

11: γt = max (abs (λtσt) , 0)

12: ht = ggg1(rt;λt, σ
2
t )

13: αt = ggg
′

1

(
rt;λt, σ

2
t

)
14: r̃t = (ht − αtrt)

/
(1− αt)175

15: γ̃t = γt(1− αt)/αt
16: dt = γωDiag

(
γω s̄2 + γ̃t1

)−1
s̄2

17: γt+1 = γ̃t 〈dt〉/(N/R− 〈dt〉)

18: rt+1=r̃t+N/RV̄Diag (dt/〈dt〉)
(
ỹ − V̄Tr̃t

)
19: X̂K = ggg1(rt;λt, σ

2
t )180

20: end for

21: return X̂Kit.

Referring to Algorithm1, the compressive sensing matrix is decomposed by

singular value decomposition(SVD), and its characteristic matrix S is used for

subsequent calculation. In the basic VAMP algorithm process, the algorithm185

and the beamspace channel data are matched by updating parameters λt and σ2
t

in step3. After initialization, we use the Onsager correction term to represent

the variance of the shrinkage function in step10. Step12 is equivalent to the

denoising process.

In the following simulation, the threshold of the shrinkage function in the190

VAMP algorithm has been improved. Through the improved threshold shrink-

age function, the channel estimation performance has obvious enhancement and

improvement. However, this method is based on signal sparse recovery algo-

rithm. We improve the shrinkage function that does not play a good role in the

specific beamspace channel. Then, on this basis, we derive a new contraction195
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function suitable for the beamspace based on the Gaussian mixture distribution,

and propose a GMEM-LAMP channel estimation scheme.

3. A NEW SOFT THRESHOLD FUNCTION BY GMEM

3.1. Gaussian Mixture Model

When sparse signals are recovered from complex compressed linear measure-200

ments, the distribution of non-zero coefficients of the signal has an effect on the

recovered mean square error (MSE). If this distribution is prior known, we can

use the known prior distribution to construct the AMP algorithm [24], so that

the AMP technique can achieve almost minimal MSE recovery.

Some previous work has verified that Gaussian mixture (GM) distribution

is used to obtain a prior of the beamspace such as in [25]. We can obtain the

probability density function of beamspace channel elements as

p
(
h̃;θθθ
)

=

Nc−1∑
k=0

pkCN
(
h̃;µk, σ

2
k

)
, (16)

where θθθ =
{
p0, · · · , pNc−1, µ0, · · · , µNc−1, σ

2
0 , · · · , σ2

Nc−1
}

represents the set of

all parameters, Nc denotes the number of Gaussian components in the Gaus-

sian mixed distribution, pk is the probability of the kth Gaussian component,

equivalent to the weight of each single Gaussian distribution, µk and σ2
k are the

mean and variance of the kth Gaussian component respectively. We can get the

probability density function of the Gaussian distribution [26] as

CN
(
h̃;µk, σ

2
k

)
=

1

πσ2
k

exp

− (h− µk)
∗
(
h̃− µk

)
σ2
k

 . (17)

In this way, the Gaussian mixture distribution can be used to represent the

channel distribution of the beamspace, from Formula (1), (4), and (8), we can

get the nth element of the beamspace channel as

h̃n =

√
N

L

L∑
l=1

βlsinc (∆ψn), (18)
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where βl is the complex gain, ∆ψn = ψn − ψl, ψn is the predefined spatial205

direction and ψl is the actual direction of the path. We know that at the trans-

mitting end of the lens antenna array when the actual spatial direction ψn of

the path approach the predefined spatial direction ψl , sinc (∆ψn) can achieve

a larger value, so h̃n could have a large power. Due to the randomness of the

direction ψl , the different h̃n can be regarded as the different Gaussian compo-210

nent. We can use the gaussian mixture distribution to simulate the distribution

of beamspace channel elements.

3.2. Expectation Maximum Algorithm

Based on gaussian mixture distribution, we obtain the prior of the beamspace

channel. However, because of different paths, the beamspace channel will lose215

part of the information, when using gaussian mixture distribution to describe

the channel space through machine learning, the distribution will be biased, and

the accuracy will be reduced. And with different levels of training, the EM al-

gorithm maybe helpful in solving certain problems, such as overfitting problems

and under-learning rates that can arise from machine learning. Therefore, we220

consider the EM algorithm to improve the Gaussian mixture distribution like

[26].

The EM algorithm adopts the iterative optimization method, and each it-

eration is divided into two steps, one is the expectation step (E step), and the

other is the maximum step (M step). The starting point of the design of the

EM algorithm is to restore the parameters in the case of some missing data [28].

After training with the gaussian mixture distribution parameters of beamspace

channel through machine learning, we obtain the characteristics of the initial

Gaussian mixture distribution like [31]. Then we consider the derivation of the

EM algorithm based on Gaussian mixture distribution. The original form of

GM is known as Formula (16), for this, we introduce a k dimensional random

variable H, where hk = k represents the probability of the kth class being se-

lected, and p (hk = k) = pk,
∑
K

pk = 1. Assuming that hk is independent and

identically distributed, we can write the joint probability distribution form of

14



H:

p (h) = p (h1) p (h2) · · · p (hk) =

K∏
k=1

phk

k , (19)

p (x |hk = k ) = N
(
x
∣∣µk, σ2

k

)
, (20)

p (x |h ) =

K∏
k=1

N
(
x
∣∣µk, σ2

k

)hk
, (21)

It can be seen that Formula (21) of GM model has the same form as Formula

(14), and a new variable H is introduced into Formula (19), which is usually

called the implicit variable. For the data in the channel, the implied meaning

is that we know that the channel data can be divided into K categories, but

when a data point is randomly selected, we do not know which category this

data point belongs to, and its attribution cannot be observed. Therefore, an

implied variable H is introduced to describe this phenomenon. This is consistent

with the Gaussian mixture distribution. Then under Bayes, p (h) is the prior

probability and p (x |h ) is the likelihood probability, so the posterior probability

is

γ (hk) = p (hk = k |x ) =
pkN

(
x
∣∣µk, σ2

k

)∑K
j=1 pjN

(
x
∣∣µj , σ2

j

) . (22)

This is the expectation step (E step) of the Expectation maximum algorithm.

Then we can update and expand the parameters based on a posterior probability

(M step)

µk =
1

Nk

N∑
n=1

γ (hnk)xn, (23)

σ2
k =

1

Nk

N∑
n=1

γ (hnk) (xn − µk) (xn − µk)
T
, (24)

pk =
NK
N

, (25)

where Nk =
N∑
n=1

γ (hnk). Then the steps are iterated until convergence com-

pletes the calculation of maximum expectation. We can see that in step12 to
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16 of Algorithm2. In this way, we obtain a gaussian mixture distribution of

the beamspace with information recovery, which can accurately represent the

distribution of the beamspace channel. On this basis, the Bayesian minimum

mean square error (MMSE) is used to deduce the contraction function

ηηηgmem = E
{
h̃
∣∣r;θθθ, σ2

}
=

∫
h̃p
(
r
∣∣∣h̃;σ2

)
p(h̃;θθθ)dh̃∫

p
(
r
∣∣∣h̃;σ2

)
p(h̃;θθθ)dh̃

, (26)

where r = h̃+n considering that n is additive Gaussian noise obeying CN
(
0, σ2

)
.

For the specific derivation of the NMSE results, we can refer to the reference in

[23]. For simplicity, we can obtain

ηηηgmem
(
r;θθθ, σ2

)
=

∑Nc−1
k=0 pkµ̃k (r) CN

(
r;µk, σ

2 + σ2
k

)∑Nc−1
k=0 pkCN (r;µk, σ2 + σ2

k)
. (27)

The distributed parameters θθθ is also known as contraction parameters. It

includes the probabilities, means and variances accounted for by the different

Gaussian distributions θθθ, which are generated by machine learning and the EM225

algorithm training. We can see the detailed construction process of the GMEM

shrinkage function in Algorithm2. The initialization of the algorithm values is

performed first. In step7 to 10, the parameter θθθt is trained by GMEM-DNN

network firstly. The derivation of the threshold function NMSE based on a

Gaussian mixed distribution is performed. The contraction function is intro-230

duced into the GMEM-DNN structure, which is equivalent to the effect of the

activation function. θθθt is obtained through the EM algorithm via step13 to 17 to

receive the best Gaussian mixture distribution, which more accurately describes

the beamspace channel information. Step19 constructs the final shrinkage func-

tion ggg2 () to replace the shrinkage function ggg1 () of the LVAMP algorithm. We235

can see the detailed construction process of GMEM shrinkage function in the

Algorithm2. Compared with simple LVAMP soft threshold contraction function,

this method can be estimated for a specific beamspace channel. After designing

the new shrink function, the next step is to build the GMEM-LVAMP network

for beamspace channels.240

Algorithm 2 GMEM-LVAMP
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Input: compressed sensing matrix A, measurements y, denoiser ggg2, assumed

noise precision γω, number of iterations Kit.;

Output: X̂Kit.

1: initial A=UDiag(̄s)V and ŪŪT=IR,V̄
TV̄=IR, R = rank(A).;245

2: Computepreconditioned y= Diag(̄s)
−1

ŪTy.

3: Selectinitial r0 and γ0 ≥ 0.

4: ggg2(rt;λt, σ
2
t ) = max(|rt,i| − λtσt, 0)ejωt,i

5: rt = (ht − αtrt)
/

(1− αt)

6: for t = 0, 1, · · · ,Kit do250

7: ggg2 = E
{
h̃
∣∣r;θθθt, σ2

}
=

∫
h̃p(r|h̃;σ2 )p(h̃;θθθt)dh̃∫
p(r|h̃;σ2 )p(h̃;θθθt)dh̃

8: p
(
r
∣∣∣h̃;σ2

)
p
(
h̃;θθθt

)
=
Nc−1∑
m=0

pmCN
(
r;µm, σ

2 + σ2
m

)
CN

(
h̃; µ̃m (r) , σ̃2

m

)
9: µ̃m (r) =

σ2µm+σ2
mr

σ2+σ2
m

, σ̃2
m (r) =

σ2σ2
m

σ2+σ2
m

10: ggg2
(
r;θθθt, σ

2
)

=
∑Nc−1

k=0 pkµ̃k(r)CN(r;µk,σ
2+σ2

k)∑Nc−1
k=0 pkCN(r;µk,σ2+σ2

k)
11: (see Refer [23])255

12: for k = 0, 1, · · · ,Tit do

13: γ (hk) =
ptN(x|µk,σ

2
k)∑K

j=1 pjN(x|µj ,σ2
j )

14: (see Section 3.2)

15: get new µk, σ
2
k, pk

16: end for260

17: Return µk, σ
2
k, pk

18: ggg2
(
r;θθθt, σ

2
)

=
∑Nc−1

k=0 pkµ̃k(r)CN(r;µk,σ
2+σ2

k)∑Nc−1
k=0 pkCN(r;µk,σ2+σ2

k)
19: X̂K = ggg2(rt;θθθt, σ

2)

20: (see Algorithm 1)

21: end for265

22: return X̂Kit.

3.3. GMEM-LVAMP Networks

In order to improve the precision of channel estimation, the machine learning

method is used in the VAMP algorithm, making the choice of shrinkage coeffi-

cient more accurate. At the same time, building a new threshold function can270

provide the prior distribution of the beamspace channel, so the VAMP algorithm

17



architecture is the basis of the GMEM-LVAMP algorithm. GMEM-LVAMP net-

work is divided into T layers for training [31]. Different from LVAMP, the new

shrink function includes training the data distribution in the beamspace after

the machine learning training and obtains new data containing the Gaussian275

mixture distribution. Next, we specifically describe how the two algorithms

estimate the beamspace of massive MIMO systems.

The parameters of the threshold function are constructed based on Fig.3.

For the training process of the GMEM-LVAMP algorithm, the derived shrinkage

function with the beamspace channel data is used. Distinguishing from the lin-

ear systolic coefficient λt of Formula (14), we construct a new systolic function,

where θθθt is used as the object of training for each layer. For the GMEM-DNN

training, a supervised learning approach is used in the offline training phase [23].

The training dataset can be represented as

{
yd, h̃d

}D
d=1

, where yd is the input

to the training network, h̃d is the corresponding label, and D represents the

training number. Also using the layer-by-layer training method, we train the

parameters for each layer in the GMEM network, and different loss functions

for each layer can be expressed as

Lt (θθθt) =
1

D

D∑
d=1

∥∥∥ˆ̃
hdt+1

(
yd, θθθt

)
− h̃d

∥∥∥2
2
, (28)

where
ˆ̃
hdt+1 is the output of the non-linear shrinkage operation of the tth layer.

After t-layer training and optimization, the optimization coefficients θθθt are

added to the algorithm. Based on the coefficients constructed by machine learn-280

ing optimization, the algorithm is iteratively updated with the maximum ex-

pectation, and the new parameters are constructed to form the GMEM training

network. We introduce the detail of algorithm steps, as shown in Algorithm2.

Next NMSE is employed to evaluate the performance of the algorithm.

3.4. Computational Complexity Analysis285

In this subsection, we discuss the complexity of the proposed algorithm and

compare it with the current algorithms. We can know that both the LAMP

18



algorithm and the GM-LAMP algorithm are constructed on the AMP algo-

rithm, which has a complexity of O(TMN). Similarly, the complexity of the

LVAMP algorithm and the GMEM-LVAMP algorithm is O(TMN). And we290

take into account that the OMP algorithm complexity is O(SMN) +O(S3M)

in comparison, where S is the sparsity level of the beamspace channel vector.

3.5. Discussion

From the above discussion, the algorithm is only used to restore the sig-

nal data sparseness in some present LAMP networks. The Gaussian mixture295

distribution threshold function is used to accurately estimate the channel prior

distribution of the beamspace. It ignores the part data loss in the process of

machine learning. Therefore, we adopt the VAMP algorithm and add the EM

algorithm to make the GMEM-LVAMP algorithm more accurate and stable,

which is suitable for a wider range of beamspace channel estimation problems.300

In addition, the existing DNN training networks, such as the all-Unicom

network architecture, are universal to many typical application scenarios, but

there are a few changes to the algorithm. Therefore, in order to better fit with

the algorithm, a special DNN architecture is designed, or even the algorithm can

be directly presented with the DNN architecture for direct channel estimation.305

4. NUMERICAL STUDIES

In this section, we conduct simulations of the LVAMP algorithm and the

GMEM-LVAMP algorithm to compare the effectiveness of the existing algo-

rithms for beamspace channel estimation. For channel modeling, the number

of base station antennas and RF chains are N = 256 and NRF = 16. Simi-310

larly, the number of single-antenna users and instants is set as K = 16 ,Q = 8.

In order to facilitate computation generally, we expand the long matrix into

a square matrix. So the number of measurements M = N = 256, random

matrix A ∈ RM×N . To facilitate comparison between the LAMP algorithm

and the LVAMP algorithm, for the construction of the random matrix A, Ideal315
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derivative matrix is i.i.d random Gaussian matrix, in which both perform the

best algorithmic performance. But the assumption of using Gaussian random

matrix is inconsistent with the basic system constraint. so we onstructing a

random matrix A0 switcher based by value of 1 and -1. A = 1√
M

A0. In

addition, our beamspace channel is based on the SV model and adopts three320

different antenna arrays to set the same channel parameters for K users: path

component LK = 4, βk,l ∼ CN (0, 1), where l = 1, 2, 3, 4. θk,l ∼ U
(
−π2 ,

π
2

)
θa ∼ U

(
−π2 ,

π
2

)
θe ∼ U

(
−π2 ,

π
2

)
. In the uplink channel construction, we set

the frequency to 30 GHz. For the Gaussian mixture distribution construction

part, we set four Gaussian components. Considering fairness, we set their ini-325

tial probability to 0.25 and set the mean and variance to 0 based on sparsity.

Therefore, the threshold contraction function θθθt contains twelve elements in the

training process of each layer and θθθ0 = {0.25,0.25,0.25,0.25,0,0,0,0,0,0,0,0}. For

the OMP channel estimation algorithm, we set the channel sparsity S = 24, and

the empirical shrinkage parameter of the AMP algorithm as λt = 1.14 for each330

iteration t based on [21].

4.1. SV Model Simulation Results

For the network testing, we generate channel data sets based on the SV

channel model refer to Formula (1)(3)(5)(6). we generate 80000, 2000 and 2000

samples for training, validation, and testing, respectively for both algorithms in335

256× 1 ULA and 16× 16 UPA, the number of training layers is set as 8, where

the number of nodes in the LVAMP-DNN network and GMEM-DNN is related

to the measured number N and channel size M . The signal-to-noise ratio(SNR)

of the channel estimation is set to 0-30dB.

In order to reflect the performance of our algorithm, we compare the OMP340

algorithm, the AMP algorithm, and the VAMP algorithm with the algorithm

added with machine learning in different Signal-to-noise ratio. In Fig.4, we can

see that the normalized mean squared error(NMSE) of the original OMP al-

gorithm and AMP algorithm only achieve -15dB around. The NMSE of the

LVAMP algorithm is smaller than that of the VAMP algorithm while the ma-345
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Figure 4: NMSE performance comparison for ULAs.
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Figure 5: NMSE performance comparison for UPAs.

chine learning training parameters are utilized. which can achieve better channel

estimation performance due to the accurate contraction threshold of the algo-

rithm. In Fig.5, we replace the antenna array in order to achieve algorithm

performance in different antenna array beamspaces. By comparing the NMSE

performance of the five algorithms at 16× 16 UPA, it can be seen that the two350

schemes based on machine learning achieve similar performance. After 15dB,

the performance of the LVAMP algorithm is better than the LAMP algorithm.

But the proposed methods work well with high SNRs and worse than existing

methods at low SNRs. Only the non-linear systolic parameters of the LVAMP
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algorithm are constructed. In contrast, the LAMP algorithm underwent joint355

training of the linear coefficients and the non-linear parameters. LVAMP algo-

rithm is therefore more significantly affected by changes in SNR.
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Figure 6: NMSE performance comparison for ULAs.
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Figure 7: NMSE performance comparison for UPAs.

Based on the new soft threshold shrinkage function algorithm GMEM-LVAMP

and the GM-LAMP networks in [23], we also give ULA and UPA arrays in

Fig.6 and Fig.7, respectively. We conduct the comparison of the four algo-360

rithms, where two algorithms only add machine learning training network(i.e.,

the LAMP algorithm and the LVAMP algorithm), while the other two replace

22



the threshold function on this basis. In this way, we can clearly see the improve-

ment effect of the threshold function. For instance, the GM-LAMP algorithm

has a slight improvement under the overall SNR compared with the LAMP al-365

gorithm. Considering the recovery of data, the GMEM-LVAMP algorithm is

better than the LVAMP algorithm in two types of antenna arrays. Especially

after 15dB of SNR, the NMSE can achieve under 25dB.
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Figure 8: NMSE performance against the number of layers for the GMEM-LVAMP.
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Figure 9: NMSE performance against the number of antennas for the GMEM-LVAMP.

In order to show the convergence of the algorithm under the condition of

maximum expected iteration, we give different simulation results with differ-370
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ent SNRs in the ULA array based on the SV model in Fig.8. We can observe

that the convergence is approximately reached in the number of layers T=8

when SNR=20dB. Besides, in Fig.9 we give the NMSE performance for differ-

ent number of antennas in the massive MIMO case, with the number of antennas

including 64, 128 and 256. For comparison, the SNR is set to 20 dB. We can375

see that the performance of the four algorithms is improved as the number of

antennas increases, thanks to the spatial multiplexing function of the number of

antennas. thanks to considering the prior distribution of the beamspace chan-

nel, both the GM-LAMP algorithm in [23] and our proposed GMEM-LVAMP

algorithm are better than the LAMP algorithm and the LVAMP algorithm,380

respectively.
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Figure 10: The number of complex multiplications against the number of antennas N.

In terms of complexity, we also calculate the number of antennas at the

base station (BS) N=256 and the number of measurements M=256, so the

complexity of five benchmark algorithms can be calculated as shown in Fig.10.

Since we only train the shrinkage threshold in the machine learning network,385

the calculation complexity is lower in the LAMP algorithm and the LVAMP

algorithm. The GM network in [23] considering the prior distribution of the

beamspace channel. So the complexity of the GM-LAMP algorithm has been in-

creased slightly. GMEM network both considering the channel distribution and
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Figure 11: Sum-rate against different NMSE.

beamspace channel dates recovery, computational complexity is also improved.390

But it can be seen in Fig.6, we have greatly improved NMSE performance, with

a small increase in complexity, the accuracy of channel estimation is greatly im-

proved. Next, we evaluate the impact of the NMSE for the beamspace channel

estimation by sum-rate. In the simulation of Fig9, the construction scheme in

[32] was used, The estimated beamspace channel was modeled (imperfect CSI)395

as

ˆ̃H = H̃ + E, (29)

where H̃ represents perfect CSI for K users, E is the error matrix with

entries following the distribution independent and identically distributed.

Specifically we continue to choose the SV model and the ULA antenna ar-

ray to construct the channel. Fig11 shows the sum-rate achieved by the same400

channel model against the NMSE for the beamspace channel estimation. In our

simulations, we can see that different algorithms have similar sum rates when

the NMSE is the same. The highest value converges gradually at NMSE = -25.

As seen in Fig4-7 at sufficient SNR, our channel estimation algorithms are able

to achieve this rate.405
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5. CONCLUSION

In this paper, we consider a channel estimation method based on beamspace

sparsity in massive MIMO. We adopt a widely used basic AMP algorithm and

VAMP algorithm. In order to further improve the accuracy of the algorithm,

referring to LAMP, we use machine learning to train the nonlinear shrinkage410

parameter of the VAMP algorithm, then obtain nearly a two-fold increase in

channel estimation accuracy and make the algorithm more stable. On this ba-

sis, inspired by the GM-LAMP algorithm, our work reconstructs the threshold

function of the algorithm, which is constructed by using the prior distribution of

channel data and Gaussian mixture distribution. Considering the similarity be-415

tween VAMP and AMP, we reconstruct the contraction function of LVAMP by

combining Gaussian mixture distribution and EM algorithm. The contraction

function consider the loss of channel data caused by machine learning, use the

EM algorithm to recover the lost data a priori. In this regard, we evaluate it un-

der the SV model. Simulation results show that the proposed GMEM-LVAMP420

algorithm can significantly improve the accuracy of Gaussian mixture distribu-

tion. When SNR reaches about 15dB to 30dB, its NMSE can still improve by

10dB.
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