Implications of a simple mantle transition zone beneath cratonic North America

Thompson, D.A. , Helffrich, G., Bastow, I.D., Kendall, J.-M., Wookey, J., Eaton, D.W. and Snyder, D.B. (2011) Implications of a simple mantle transition zone beneath cratonic North America. Earth and Planetary Science Letters, 312(1-2), pp. 28-36. (doi: 10.1016/j.epsl.2011.09.037)

Full text not currently available from Enlighten.

Abstract

Many areas of old continental interiors have thick roots that extend to depths of 250 km or more, in contrast to the oceans and younger continents, whose lithospheric thickness is less than 100 km. These cratonic roots might perturb temperatures in their surrounding mantle, though the net result could be either cooling or heating; both of which may lead to small-scale convective flow around the root. We show here, using new data from a study of the seismic structure of the Canadian Shield, that the relative positions of the 410 km and 660 km seismic discontinuities are unperturbed beneath one of the deepest and broadest cratonic roots on the Earth. Differential arrival times and internal discontinuity structure are remarkably uniform and simple, varying by little more than ± 0.5 s over the root's 3500 km lateral extent. This implies that the root has no significant thermal effect on the underlying mantle (< 50 K), and any small-scale convection or cold mantle downwelling associated with the large free-air gravity anomaly beneath the shield must be confined to the upper mantle. Our observations are also consistent with phase changes solely in the olivine system ((Mg,Fe)2SiO4), with the caveat that our method is dominantly sensitive to S-wave velocity jumps alone.

Item Type:Articles
Additional Information:The study was supported by the Natural Environment Research Council (NERC) grant no. NE/F007337/1 and a NERC-funded studentship with Rio Tinto to DT. IB was funded by the Leverhulme Trust.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Thompson, Dr David
Authors: Thompson, D.A., Helffrich, G., Bastow, I.D., Kendall, J.-M., Wookey, J., Eaton, D.W., and Snyder, D.B.
College/School:University Services > Research Strategy and Innovation > Research and Innovation Services
Journal Name:Earth and Planetary Science Letters
Publisher:Elsevier
ISSN:0012-821X
ISSN (Online):1385-013X
Published Online:21 September 2011

University Staff: Request a correction | Enlighten Editors: Update this record