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Abstract—In post-covid19 world, radio frequency (RF)-based
non-contact methods, e.g., software-defined radios (SDR)-based
methods have emerged as promising candidates for intelligent
remote sensing of human vitals, and could help in containment of
contagious viruses like covid19. To this end, this work utilizes the
universal software radio peripherals (USRP)-based SDRs along
with classical machine learning (ML) methods to design a non-
contact method to monitor different breathing abnormalities.
Under our proposed method, a subject rests his/her hand on
a table in between the transmit and receive antennas, while
an orthogonal frequency division multiplexing (OFDM) signal
passes through the hand. Subsequently, the receiver extracts
the channel frequency response (basically, fine-grained wireless
channel state information), and feeds it to various ML algorithms
which eventually classify between different breathing abnormal-
ities. Among all classifiers, linear SVM classifier resulted in a
maximum accuracy of 88.1%. To train the ML classifiers in
a supervised manner, data was collected by doing real-time
experiments on 4 subjects in a lab environment. For label
generation purpose, the breathing of the subjects was classified
into three classes: normal, fast, and slow breathing. Furthermore,
in addition to our proposed method (where only a hand is exposed
to RF signals), we also implemented and tested the state-of-the-
art method (where full chest is exposed to RF radiation). The
performance comparison of the two methods reveals a trade-off,
i.e., the accuracy of our proposed method is slightly inferior but
our method results in minimal body exposure to (non-ionizing)
RF radiation, compared to the benchmark method.

Index Terms—software-defined radio, non-contact methods, vi-
tals, breathing, respiratory disorders, covid19, machine learning.

I. INTRODUCTION

Breathing (or, respiratory) rate is one of the most important
vital signs that needs to be monitored from time to time.
In fact, breathing rate becomes relatively more significant
compared to some other vitals (e.g., blood pressure) in ascer-
taining one’s overall well-being (e.g., after general anesthesia)
[1]. According to a World Health Organization (WHO) study,
respiratory abnormalities are one of the leading causes of dis-
ability and death worldwide[2]. The risk factors for abnormal
breathing include smoking, air pollution, malnutrition, and
others. Breathing abnormality, when occurs, could indicate the
following: cardiac arrest, covid19 [3], [4], chronic obstructive
pulmonary disease (COPD), asthma, and lungs cancer [5, 6].
Thus, continuous (or periodic) monitoring of breathing pat-

terns could help raise an early alarm to prompt the medical
experts to differentially diagnose the underlying problem.

A very brief pathophysiology of breathing disorder is as
follows. The breathing cycle includes inspiration of O2 to
the expiration of CO2. This exchange of gases takes place
in the alveolar membrane [7, 8]. Air from the lungs travels
from the larynx and trachea to the nasal, pharyngeal, and
oral cavities during exhale. Thus, the quality of our voice
is influenced by our exhalation’s strength, variety, and speed
(depending on the amount of syllables in our speech). There
is coordination in the respiratory system with the laryngeal-
based subsystems [9, 10]. During asymptomatic stages of
diseases, the changes might be minor but they eventually affect
the vocal coordination and subsystems. Taking covid19 as an
example, the respiratory system as well as the neurological
system may be affected by the disease. Additionally, covid19
affects the function of the respiratory process that involves
the diaphragm and respiratory tract. As a result, the pattern
of exhaling and inhaling from lungs is affected and leads to
breathing abnormalities [11].

The breathing rate and other body vitals have tradition-
ally been measured using either invasive (e.g., capnography,
catheters) or contact-based methods (e.g., electrocardiographs,
pulse-oximeters, etc.) until very recently. But ever since the
outbreak of covid19, the clinical context has changed dras-
tically. Specifically, it is now well-known that the covid19
pathogen/virus could stay on various surfaces (e.g., plastic,
metal) for days, and could possibly infect a healthy person
upon touching such surfaces. This fact alone has motivated the
researchers to devise novel mechanisms to measure the body
vitals (e.g., heart rate, blood oxygen saturation level, breathing
rate, etc.) in a non-contact (and non-invasive) manner1. To
this end, a range of technologies have been proposed to
design contactless solutions for monitoring of body vitals
which could help spread the spread of the contagious covid19
disease. Additionally, such tools have the potential to reduce
the dependence of the patients on the visits to the hospitals,
and thus, help share the burden of the health care systems [12].

1Some further disadvantages of contact-based methods are as follows. Con-
tinuous use of contact-based sensors (e.g., ECG electrodes, pulse-oximeters,
smart watches) could cause skin-related problems and create discomfort as
well. Persons with dementia may forget to put on the wearable sensor.
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Finally, non-contact methods could monitor human vitals from
a distance, thus, they allow long-term and real-time monitoring
of a subject without any potential inconvenience [13, 14].

To date, various promising solutions for non-contact sensing
of body vitals have been proposed [15–17], which could be
categorized into the following four classes.

1) Camera-based monitoring systems: Such methods record
video of a subject from a distance and estimate vitals by
exploiting the periodic change of skin color to measure the
heart rate and measure the periodic chest movement to es-
timate the breathing rate. Despite the promise, such systems
have some limitations, e.g., they require good light around the
surrounding, can’t see through the walls, and have a restricted
viewing angle, etc.

2) Radar-based monitoring systems: These systems use
classical radar principles, i.e., range and doppler, to estimate
the vitals. Such systems are accurate (especially at mm-wave
frequencies), could localize the target (i.e., heart that generates
the pulse). But the cost of equipment, and radiation hazards
are the limitations of such systems.

3) Wi-Fi-based monitoring systems: This method utilizes the
existing widespread infrastructure of WiFi routers in indoor
environments. With little modification, a WiFi router could
collect the signals reflected-off a person in order to estimate
body vitals using the cutting-edge machine learning (ML) and
deep learning (DL) methods. This method is cost-effective,
and could prove to be ubiquitous, but has some drawbacks
too, e.g., lack of flexibility (due to rigid hardware design).

4) Software-defined radio-based monitoring systems: Such
systems utilize a pair of software-defined radios (SDR) in
order to do contact-less monitoring of body vitals, and offer
the benefits of scalability and flexibility.

Note that the non-contact monitoring methods 2-4 all share
one common theme—wireless/RF sensing. The success of
such systems is based upon the fact that the human body has
more than 60% of water, which could efficiently reflect the
wireless signals impinging on the body, and thus it enables
the detection of various kinds of human activities. In other
words, the signals reflected off the body once received convey
information about body movement (as they vary proportion-
ally with body movement). More precisely, different body
movements lead to different (mostly unique) received signal
patterns, which are utilized by the ML and DL methods that
extract the relevant features to do vitals estimation (e.g., heart
rate, blood oxygen saturation level, breathing rate, etc.).

One key benefit of RF sensing solutions is the enhanced
coverage, and thus it alleviates many of the challenges faced
by the camera-based solutions. Furthermore, RF-based remote
sensing of vitals could be done beyond the walls, doors and
windows (for sufficiently-low frequencies) [13, 18].

A. Contributions

This work is first of its kind where a human subject exposes
his/her hand to an OFDM signal in order to infer his/her
breathing performance. The proposed method capitalizes on
the following to infer about the breathing performance from
the hand only: i) the hand (being connected to the shoulder)

undergoes subtle periodic movement due to the rhythmic
movement of the chest due to respiration, ii) the arteries in the
wrist and arterioles in the fingers witness respiration-induced
rhythmic variations in the blood flow. Not only the proposed
method reduces the RF radiation exposure of the subject (hand
in this work, while the full chest in the state-of-the-art), it is
equally important to note that this work utilizes the microwave
band which is known to be non-ionizing.

The key contributions of this work are as follows:
1) We propose hand-breathe, a novel non-contact method to

detect breathing abnormalities. Specifically, the subject rests
his/her hand on a table in between the transmit and receive
horn antennas. The transmitted OFDM signal passes through
the hand, and is collected at the receive end. The receiver ex-
tracts from the received signal the channel frequency response
(CFR), i.e., fined-grained wireless channel state information
(WCSI) which is then fed to various ML classifiers which
eventually classify between different breathing abnormalities.
Among all classifiers, linear support vector machine (SVM)
classifier yielded the best accuracy which is 88.1%.

2) In addition to our proposed method (where a hand is
exposed to RF signals), we also implement and test the state-
of-the-art method [19] (where full chest is exposed to RF
radiation). The performance comparison of the two methods
reveals a trade-off, i.e., the accuracy of our proposed method
is slightly inferior than the benchmark method, but our method
results in minimal body exposure to RF radiation compared
to the benchmark method.

Note that the proposed method utilizes the OFDM signal
because of its wideband sensing capability. Specifically, each
of the N subcarriers of the OFDM provides distinct infor-
mation about the modulation of the RF signal reflected-off
the human body. Thus, the received OFDM signal helps us
observe the effect of respiration-induced near-periodic motion
of the chest and the hand, over a wide range of frequencies
which eventually helps our ML classifiers achieve a superior
classification accuracy.

B. Outline

Section II summarizes the related work. Section III intro-
duces the system model. Section IV outlines the essential de-
tails of the proposed hand-breathe method. Section V presents
results of performance evaluation of the ML classifiers. Sec-
tion VI concludes the paper.

II. RELATED WORK

This section provides a compact yet comprehensive review
of the related work on contact-less RF sensing methods that
monitor breathing abnormalities.

1) Camera-based respiration monitoring systems: Such
systems utilize either thermal imaging or depth cameras to
monitor the breathing abnormalities. They exploit the fact that
during breathing the temperature around the nose changes, and
use infrared thermography for sensing breathing abnormalities
[20]. Similarly, the depth cameras and video cameras are also
used for capturing the breathing activities of humans. Such
methods have some drawbacks, e.g. susceptibility to heat and
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high computational cost in the case of thermal and depth
cameras respectively [21].

2) Radar-based respiration monitoring systems: Various
kinds of radar modules, e.g., frequency-modulated continuous-
wave (FMCW) radar, ultra-wideband (UWB) pulse radar,
continuous-wave (CW) Doppler radar, ultrasonic-based radar,
and mm-wave radar are among the RF-based sensing methods
for detection of breathing abnormalities. For example, the
FMCW radars work on the classical principle of sending radar
signals with varying frequency over time, and the signals
reflected-off the subject are recorded and processed. The
reflected signal typically undergoes a change in amplitude
and phase as a result of the subject’s breathing activity. This
helps the radar modules to detect breathing abnormalities by
utilizing the range and Doppler principles [22]. As another
example, UWB radar sends short-duration pluses toward the
target subject and captures the weak reflected signal that is
delayed in time. This signal is used to calculate the distance
between the radar and the target, which in turn helps to
monitor the breathing abnormalities [23]. CW Doppler radar,
on the other hand, transmits sinusoidal RF signals which get
modulated by chest and abdomen movement, and are received
subsequently. Finally, self-injection locked ultrasonic radar has
also been used to measure breathing abnormalities [24, 25].
Radar-based technologies provide a non-contact solution for
the sensing of breathing abnormalities but they typically
require high-cost equipment, and are radiation hazards.

3) Wi-Fi-based respiration monitoring systems: During the
last decade, Wi-Fi has become one of the most extensively
used technology in our daily lives. WiFi systems utilize the
radio signal strength (RSS) and channel state information
(CSI) of the received signals after they reflect-off the subject,
in order to monitor the breathing of the subject. The multipath
effect captured by the RSS provides the ML algorithms with a
coarse feature which they capitalize upon to detect breathing
abnormalities. On the other hand, CSI provides fine-grained
information about the body movement, and captures power
attenuation due of multipath [26, 27]. As mentioned earlier,
the Wi-Fi-based solutions require a low initial capital, have
a low operational cost, offer ubiquitous operations (due to
standardized and easily available hardware), but these systems
lack the flexibility (due to rigid design of the hardware).

4) SDR-based respiration monitoring systems: All the SDR-
based methods for monitoring breathing abnormalities rely
upon the observation that the (amplitude and phase) variations
of the signals reflected-off the subject are directly proportional
to the tiny chest movements during a breathing cycle (exhale
and inhale) [28–30]. More precisely, the SDR-based methods
utilize the WCSI which contain the combined effect of reflec-
tion, scattering, shadowing, scattering, and power decay with
increasing distances, all due to the motion of body [31, 32].
Many works have been reported which claimed to detect large-
scale movements like standing, walking falling, and small-
scale moments such as keystroke, gesture recognition, rapid
eye moment (REM), and breathing [33–37]. Finally, the RF
sensing systems based on SDRs provide various advantages,
e.g., scalability, flexibility, and reliability.

III. SYSTEM MODEL

Fig. 1 shows the system model (flowchart) for our proposed
SDR-based, ML-empowered system for detection of breathing
abnormalities. Below, we provide some succinct details about
the specific SDR platform used, the Matlab-based software
interface used to program the SDRs, the nature of experiments
conducted, and Matlab classification learner app that we used
for training and validation of various ML classifiers.

PC PC
SDR SDR

Data Pre-Processing

Training and Validation of ML
Classifiers

Testing Phase

Eupnea Tachpnea Bradypnea

Data Collection

Tx Rx

Breathing Pattern Classification

Fig. 1: The system Model (flowchart) of the proposed SDR-
based, ML-empowered non-contact method for breathing ab-
normalities detection.

The USRP B210 SDR: The proposed method utilizes a hard-
ware platform that is comprised of two PCs, two USRP SDRs,
and two directional horn antennas (see Fig. 1). In particular,
we chose USRP B210 module by National Instruments due to
its wide frequency range of operation and affordable cost. The
USRP B210 comes with a Spartan-6 field-programmable gate
array, integrated RF daughterboards, and could simultaneously
support two transmit and two receive data streams.

Software interface for the USRP SDR: The data collection
for training of the ML classifiers was done using the platform
shown in Fig. 1. For this purpose, Matlab communication
system toolbox was used that contains an add-on that enables
the USRP SDR to exchange real-time data with the host
PC. Additionally, the whole flowgraphs for the transmitter
and receiver were made in Simulink by utilizing various
building blocks (e.g., modulators, demodulators, etc.) from
communication system toolbox.

The experiment: OFDM symbols (with QAM modulation
on each sub-carrier) synthesized in Matlab at the host PC
were sent to the USRP B210 through an Ethernet cable using
MATLAB SDRu block. The transmitted signal passed through
the hand of subject placed in between the transmit and receive
antennas, and was subsequently received at the receiver end.
The receiver then extracted the CFR from the received signal.
This raw data was later used to train the ML classifiers.

Classification learner application of Matlab: The classifica-
tion learner application of Matlab was used to train various
classification models. It has various options for analyzing
the data, feature selection, selection of a validation scheme,
training and evaluation of ML models.
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IV. THE PROPOSED METHOD

This section outlines the essential details of the proposed
method that utilizes a pair of USRP SDRs to classify the
breathing abnormalities with the aid of various ML algorithms
in a contact-less fashion. Specifically, we describe in detail the
following core steps of the proposed method: the classification
problem at hand, the design of the USRP transmitter and
receiver in baseband, the details of the experiments done, the
data acquisition procedure, pre-processing of the data, and
finally the training and testing of the ML algorithms.

A. The breathing pattern classification problem

This work reformulates the breathing abnormalities detec-
tion problem into a classification problem with three classes:
normal breathing, fast breathing and slow breathing. Some
pertinent details for each breathing class are as follows.

Eupnea: Normal breathing activity is known as Eupnea. The
normal breathing rate remains in the range of 12 to 20 breaths
per minute. Traditionally, a healthy lifestyle and balanced diet
have been recommended for normal breathing.

Tachypnea: Tachypnea occurs when an individual breathes
faster than normal. It may be caused by anxiety, shock,
exercise, and symptoms of lung disease.

Bradypnea: Slower breathing as compared to normal breath-
ing is known as Bradypnea. The onset of Bradypnea typically
indicates that the body is not getting enough Oxygen. It
could also poin to other problems such as Carbon monoxide
poisoning, head injury, metabolic disorder, and sleep apnea.

B. Design of USRP transmitter and receiver in baseband

Both transmit and receive flowgraphs are made in Simulink.
Additionally, the communication system toolbox of Matlab is
used in order to interface the USRP SDR to the host PC.

Transmitter flowgraph: Random bits (of chunk size 128 bits)
are generated by means of the random bit generator block, for
each OFDM frame. The bits are converted into symbols by
the QPSK modulator block. Then, the serial data is converted
into parallel and 64-point IFFT of the input symbols is taken.
Subsequently, the last 16 samples of the current OFDM symbol
are appended in the beginning as cyclic prefix (CP), which
makes each OFDM symbol 80 samples long. The gain of
transmit horn antenna is set to 40 dB. The SDRu sink block is
employed to configure the hardware parameters of the transmit
USRP SDR (see Table I), and to transfer baseband samples to
USRP B210. Fig. 2 (a) shows the transmitter flowgraph used
to program the transmit USRP SDR.

Receiver flowgraph: The SDRu source block is employed to
configure the hardware parameters of the receive USRP SDR
(see Table I), and to receive baseband samples from USRP
B210. The gain of receive horn antenna is set to 40 dB. The
first step of the receive flowgraph is to identify the start of the
OFDM frame in order to remove the 16 samples corresponding
to CP. This is followed by an FFT block that returns the noisy
OFDM symbol. Next, complex-valued CFR is extracted, which
is one of the many manifestations of the CFR. The variation in
CFR arises due to channel effects, and is investigated to sense

the breathing abnormalities. Fig. 2 (b) shows the transmitter
flowgraph used to program the receive USRP SDR.

Table I lists all the important USRP configuration parame-
ters along with their values.

Parameter Type/Value
Bits per OFDM frame 128

Bits per symbol 2
Coding scheme Gray coding

Modulation scheme QPSK
No. of OFDM subcarriers 64

Data subcarriers 52
Pilot subcarriers 12

Size of FFT/IFFT 64 points
Size of cyclic prefix 16

Sampling rate 1000 samples/sec
Antenna type directional horn

USRP B210 frequency range 70 MHz - 6 GHz
Centre frequency 5.23 GHz

Clock source & PPS source Internal
Internal clock rate 200 MHz

Interpolation factor (at Tx) 250
Decimation factor (at Rx) 250

Transmitter gain (at Tx and Rx) 40 dB

TABLE I: Configuration of transmit USRP and receive USRP:
important parameters

C. Experimental Setup

Once the design of transmitter and receiver flowgraphs was
finalized, we proceeded to perform real-time experiments on
volunteer subjects in order to do data acquisition for training
of various ML classifiers later on. To be comprehensive in
our analysis, we performed two sets of experiments. During
first set of experiments, we collected data according to the
protocol described in the state-of-the-art method [19] whereby
the transmitter SDR impinges the signal onto the chest of the
subject, while the receiver SDR collects the signal reflected-off
the body (see Fig. 3). The second set of experiments represents
the proposed method where the subject places his/her hand on
a table such that the transmitted signal passed through the
hand, and the weak signal that penetrates through the hand is
collected at the receive end (see Fig. 4).

It is worth mentioning that first set of experiments was done
in order to utilize the work [19] as a benchmark to assess the
performance of our proposed method against it.

The benchmark method (chest movement-based experiment):
Two USRP radios each connected to a PC are placed on a
table with their directional horn antennas pointing towards
the subject who sits on a chair at about a distance of 80 cm
from the table, as shown in Fig 3. The transmit horn antenna
impinges the OFDM signal on the chest of the subject, while
the receive horn antenna collects the signal reflected-off the
chest of the subject. With this, the aim is to capture the small-
scale movement of the chest (due to respiration activity).

The proposed method (hand movement-based experiment):
Two USRP radios each connected to a PC are placed on a table
with their directional horn antennas2 (separated by 60 cm)

2Omni-directional antennas were also utilized but they led to acquisition
of a very noisy signal. Thus, this work utilized the directional antennas
eventually.
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(a) The transmitter flowgraph (b) The receiver flowgraph

Fig. 2: The Simulink flowgraphs for USRP transmitter and USRP receiver

Fig. 3: The experimental setup of the benchmark method that
aims to capture the small-scale chest movements for breathing
abnormality detection.

pointing towards each other, as shown in Fig 4. The subject
sits on a chair nearby the table and places his/her hand on
the table in between the transmit and receive horn antennas.
As before, the transmit horn antenna impinges the OFDM
signal on the hand of the subject, while the receive horn
antenna collects the weak signal that successfully penetrates
through the hand of the subject. With this, we aim is to capture
the faint movements of the hand (due to respiration activity).
Specifically, the proposed method intends to capitalize on the
fact the hand being connected to the shoulder undergoes a
minute periodic movement due to movement of the chest.

Fig. 4: The experimental setup of proposed hand-breathe
method that aims to capture the minute rhythmic movements
of the hand for breathing abnormality detection.

D. Data Acquisition

Data acquisition for benchmark method (chest movement-
based): Data was collected in the lab environment. Four
healthy volunteers (all males) participated in the data col-
lection campaign. Each subject was requested to perform
three different breathing activities (Eupnoea, Tachypnea, and
Bradypnea) artificially. In other words, each subject breathed
normally for Eupnoea experiment, underwent fast breathing
for Tachypnea experiment, and performed slow breathing for
Bradypnea experiment. Furthermore, the experiment for each
breathing activity for each subject was repeated five times.
Each experiment (transmission) lasted for 30 seconds. This
led to a total of 4×3×5 = 60 experiments. The data collected
after each experiment consisted of the complex-valued CFR
(a manifesttaion of the WSCI). Table II summarizes the key
statistics of the data collection done for the chest movement-
based experiment. Fig. 5 (a) shows the experimental setup used
for data acquisition campaign for the benchmark method.

Data acquisition for proposed method (hand movement-
based): The data acquisition campaign for hand movement-
based experiment is completely identical to the data collection
campaign for the first experiment. That is, 4 volunteers per-
formed 3 breathing activities while repeating each activity 5
times, thus giving rise to a total of 60 experiments. However,
note that the subjects were advised to keep their hand (under
test) static on the table between the transmit and receive horn
antenna, while performing different breathing activities. This
was to make sure that there are no motion-induced artefacts in
the data being collected (which would in turn help in capturing
the very subtle/minute movement of hand due to respiration).
Table II could again be referred to, to get a quick glimpse at
the key statistics of the data collected for the hand-movement
based experiment. Fig. 5 (b) shows the experimental setup
used for data acquisition campaign for the proposed method.

E. Data Pre-processing & Training of Machine Learning
Classifiers

Data Preprocessing: First of all, the raw data collected from
each experiment was manually cleaned by zero-padding of the
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(a) Data collection for benchmark method (b) Data collection for proposed method

Fig. 5: Data acquisition campaign: benchmark method (left), and proposed method (right)

Parameter Value
Number of subjects 4

Number of breathing activities performed 3
Number of times each activity was performed 5

Duration of each experiment 30 sec
Total number of experiments 60
Number of USRP radios used 2

Number of PCs used 2

TABLE II: Pertinent details of data collection campaign for
the proposed method and the benchmark method

missing data, and discarding the the corrupted (highly noisy)
data. Next, the data was manually annotated/labeled. Finally,
some further reshaping/resizing of the data was done for each
breathing experiment. Eventually the data corresponding to all
experiments for each of the two methods (the proposed method
and the benchmark method) were concatenated to construct a
single file representing the labeled data. For denoising of the
received OFDM signal, we used a low-pass filter followed by
the Savitzky-Golay filter. Additionally, we considered the N
subcarrier signals as the features set for our ML classifiers.

Training & validation of ML classifiers: Three supervised
machine learning classifiers, i.e., k nearest neighbors (k-NN),
support vector machine (SVM), and decision tree (DT) were
trained on the two labeled datasets (corresponding to the
proposed method and the benchmark method). For validation,
the K-fold cross-validation approach was implemented in order
to avoid the over-fitting problem. Recall that in the cross-
validation approach, the dataset is randomly divided into
smaller chunks for testing and training. For example, if K is
5, then 80% of the data is used for training, while remaining
20% of the data is used for testing/validation purpose. Further,
with K=5, the classifier model will train 5 times.

V. PERFORMANCE EVALUATION

This section discusses the performance of the proposed
SDR-based, ML-empowered non-contact method that captures
the subtle but periodic movements of the hand for breathing
abnormality detection. The accuracy of each classifier is
evaluated as follows:

Accuracy =
Correct prediction

Total observations
× 100 (1)

Accuracy =
Tn + Tp

Tn + Tp + Fn + Fp
× 100 (2)

where Tn is true negative, Tp is true positive, Fn is false
negative and Fp is false positive, respectively. Additionally,
we also construct the confusion matrices in order to investigate
the test accuracy of the three ML classifiers.

A. Performance of Benchmark method (chest movement-
based)

Recall that the benchmark method relies upon the small-
scale chest movements due to respiration for breathing pattern
classification.

We first discuss the performance of the k-NN classifier.
Since k represents the number of neighbors the algorithm
computes the distance of the new data point from, we studied
the performance of k-NN for three different values of k.
Accordingly, we obtained an overall accuracy of 80% for
fine k-NN (k=1), 67.8% for medium k-NN (k=9), and 75.6%
(k=3). The detailed confusion matrix showing the performance
breakup of the k-NN for the three breathing patterns and for
three different values of k is shown in Table III.

We also tested the SVM classifier (with both linear and
cubic kernel) and obtained an overall accuracy of 93.6 %
for linear SVM, and 95.9% for cubic SVM. Furthermore, the
detailed confusion matrix showing the performance breakup
of the linear SVM and cubic SVM for the three breathing
patterns is presented in Table IV. Last but not the least, the
DT classifier yields the lowest overall accuracy of 51.7%.

Table V provides a crisp performance comparison of all the
three classifiers. The SVM classifier (with cubic kernel) per-
forms the best with an accuracy of 95.9%, for the benchmark
method (that relies upon the small-scale chest movements due
to respiration for breathing pattern classification).

Algorithm Actual /Predicted Eupnea Tachypnea Bradypnea
Eupnea 82.66 5.70 11.64

k-NN (k=1) Tachypnea 9.22 76.41 14.38
Bradypnea 10.78 8.28 80.94

Eupnea 75.16 7.89 16.95
k-NN (k=9) Tachypnea 18.44 60.16 21.41

Bradypnea 21.80 10.08 68.13
Eupnea 82.66 4.69 12.66

k-NN (k=3) Tachypnea 14.69 68.75 16.56
Bradypnea 17.58 7.66 74.77

TABLE III: Confusion matrix of k-NN algorithm for the
benchmark method (chest movement-based). Total number of
observations for each breathing class is 1280.
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Algorithm Actual /Predicted Eupnea Tachypnea Bradypnea
Eupnea 90.0 1.02 8.98

Linear SVM Tachypnea 1.17 92.5 6.33
Bradypnea 0.63 1.02 98.36

Eupnea 96.09 0.39 3.52
Cubic SVM Tachypnea 1.72 93.52 4.77

Bradypnea 0.70 1.09 98.2
Eupnea 48.05 5.94 46.02

DT Tachypnea 13.52 32.11 54.38
Bradypnea 17.73 7.19 75.08

TABLE IV: Confusion matrix of SVM and DT classifiers for
the benchmark method (chest movement-based). Total number
of observations for each breathing class is 1280.

Algorithm Accuracy
Fine k-NN (k=1) 80%

Medium k-NN (k=9) 67.8%
Medium k-NN (k=3) 75.4%

Linear SVM 93.6%
Cubic SVM 95.9%

DT 51.7%

TABLE V: Performance comparison of all the three classifiers
for the benchmark method (chest movement-based).

B. Performance of Proposed method (hand movement-based)

Recall that the proposed method capitalizes on very minute
but rhythmic movements of the hand due to respiration for
breathing pattern classification.

Table VI provides the detailed confusion matrix showing
the performance breakup of the fine k-NN (with k=1), medium
k-NN (with k=3), linear SVM, quadratic SVM and DT clas-
sifiers. We note that both the fine k-NN (k=1) and medium
k-NN (k=3) perform poorly as they obtain an overall accuracy
of 45.7% and 45.9%, respectively. On the other hand, linear
SVM and quadratic SVM perform very well with an overall
accuracy of 88.1 % and 85.7%, respectively. The DT algorithm
performs the worst with an overall accuracy of 40.8%.

Table VII provides a compact summary of overall perfor-
mance of the three classifiers. The SVM classifier (with linear
kernal) performs the best with an overall accuracy of 88.1%,
for the proposed method (which capitalizes on very minute
but rhythmic movements of the hand due to respiration for
breathing pattern classification).

Algorithms Actual /Predicted Eupnea Tachypnea Bradypnea
Eupnea 46 23 30

k-NN (k=1) Tachypnea 29 44 27
Bradypnea 29 24 48

Eupnea 44 23 33
k-NN (k=3) Tachypnea 28 44 28

Bradypnea 29 22 49
Eupnea 94.60 0.62 4.8

Linear SVM Tachypnea 8.35 80.31 11.32
Bradypnea 8.98 1.71 89.30

Eupnea 87.18 4.76 8.04
Quad. SVM Tachypnea 6.40 84.30 9.30

Bradypnea 9.21 5.15 85.62
Eupnea 91.32 3.30 5.40

DT Tachypnea 80.40 13.12 6.48
Bradypnea 76.87 5.08 18.04

TABLE VI: Confusion matrix of the three classifiers for the
proposed method (hand movement-based). Total number of
observations for each breathing class is 1280.

Algorithm Accuracy
Fine k-NN (k=1) 45.9%
Fine k-NN (k=3) 45.7%

Linear SVM 88.1%
Quadratic SVM 85.7%

DT 40.8%

TABLE VII: Performance comparison of all the three classi-
fiers for the proposed method (hand movement-based).

C. Discussions

We presented in detail the performance results of the three
classifiers for both methods (i.e., the benchmark method that
exploits the chest movement, and our proposed method that
capitalizes on subtle but rhythmic hand movements). The
results point towards a tradeoff: our proposed method has
slightly lower accuracy than the benchmark method (95.9%
vs. 88.1%), but our method will expose the subjects to least
amount of potentially harmful radiation (full chest vs. a hand
only). We further notice that the performance of proposed
method may further be increased by implementing the state-
of-the-art deep learning methods which will require a very
large dataset in order to train (leading to a very extensive data
collection campaign), but do have the potential to supersede
the performance of the benchmark method.

A key benefit of the proposed method is that it could lead to
the development of a smart mobile health (m-health) solution
that could be deployed in remote areas far away from mega
cities in order to ensure the comprehensive health monitoring
of the people in those areas. Additionally, the proposed method
could prove to be very useful for rapid and non-contact
testing of masses for their respiratory performance during the
outbreak of a pandemic like covid19.

VI. CONCLUSION & FUTURE WORK

This work proposed hand-breathe, a novel method for non-
contact monitoring of breathing abnormalities. Specifically,
we utilized a pair of USRP radios which exchanged known
OFDM symbols while the subject placed his/her hand between
the transmit and receive antennas. Subsequently, the receiver
extracted the CFR/WCSI that captured the small-scale hand
movements of the subject due to respiration. Eventually, three
ML algorithms were used to classify the breathing perfor-
mance of the subject into three different classes: normal, fast,
and slow. Maximum overall accuracy of 88.1% was achieved
with the Linear SVM ML algorithm. Furthermore, the current
state-of-the-art method (chest movements-based method) was
also implemented as a benchmark method, and its performance
was compared against the proposed method. This led us to
discover the following trade-off: our proposed method has
slightly lower accuracy than the benchmark method (95.9% vs.
88.1%), but our method exposes the subjects to least amount
of potentially harmful radiation (full chest vs. a hand only).

This work opens up many interesting directions for the
future work. For example, another dataset could be collected
from actual patients suffering from various respiratory dis-
eases, in order to increase the generalization capability of the
proposed ML algorithms. The testing and exploration of the
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coverage limits of the proposed method (by increasing the
distance between the transceiver and subjects) is another in-
teresting problem to look at. One may also consider extending
the proposed method to monitor the breathing performance of
multiple subjects simultaneously. Finally, the performance of
proposed hand-breathe method may further be increased by
implementing the state-of-the-art deep learning methods which
will require a very large dataset in order to train (leading to a
very extensive data collection campaign), but could supersede
the performance of the proposed hand-breathe method.
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