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Improving 3D Vulnerable Road User Detection with
Point Augmentation

Weihao Lu1, Dezong Zhao1, Senior Member, IEEE, Cristiano Premebida2, Member, IEEE, Li Zhang3, Senior
Member, IEEE, Wenjing Zhao4, Daxin Tian5, Senior Member, IEEE

Abstract—Point clouds have been a popular representation to
describe 3D environments for autonomous driving applications.
Despite accurate depth information, sparsity of points results
in difficulties in extracting sufficient features from vulnerable
objects of small sizes. One solution is leveraging self-attention
networks to build long-range connections between similar objects.
Another method is using generative models to estimate the
complete shape of objects. Both approaches introduce large mem-
ory consumption and extra complexity to the models while the
geometric characteristics of objects are overlooked. To overcome
this problem, this paper proposes Point Augmentation (PA)-
RCNN, focusing on small object detection by generating efficient
complementary features without trainable parameters. Specifi-
cally, 3D points are sampled with the guidance of object proposals
and encoded through the 3D grid-based feature aggregation to
produce localised 3D voxel properties. Such voxel attributes are
fed to the pooling module with the aid of fictional points, which
are transformed from sampled points considering geometric
symmetry. Experimental results on Waymo Open Dataset and
KITTI dataset show a superior advantage in the detection of
distant and small objects in comparison with existing state-of-
the-art methods.

Index Terms—Autonomous driving, 3D object detection, light
detection and ranging (LiDAR) point clouds, intelligent vehicles.

I. INTRODUCTION

3D object detection is irreplaceable in current research
around intelligent vehicles. The aim is to equip the ego-

vehicles with the capability of recognising and locating other
road users in 3D environments. It provides a fundamental
understanding of the surrounding of intelligent systems and
facilitates the subsequent tasks in the perception workflow of
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autonomous driving [1], [2]. With greater weather-proof ability
than camera systems, light detection and ranging (LiDAR)
sensors are more widely deployed to acquire accurate depth
measurements and to extract the geometry information with
point clouds. Recent development in deep neural networks has
further boosted the use of LiDAR sensors.

Different from images, point cloud processing is less
straightforward because of its sparsity and irregularity [1].
To address this issue, researchers extract the high-dimensional
features from point clouds in two main formats, which are
point-based and voxel-based. Point-based methods encode
point coordinates with a symmetry function and store the
information at point locations [3]–[5], while voxel-based meth-
ods discretise the 3D scene and perform feature learning on
the regular grids [6]–[8]. Voxelisation simplifies the nearest
neighbour query by directly selecting the adjacent indexes on
the grid map to increase sampling efficiency in the receptive
field. However, locating features at the fictional voxel centres
harms the accuracy of voxel-based encoders. In contrast, by
inheriting accurate point locations throughout the information
flow of the networks, point-based methods can locate rich
features precisely in the scene. However, owing to the fact that
searching for nearest neighbours among unordered points is
time-consuming, a poor point sampling scheme may also limit
the efficiency of point-based encoders, such as Set-Abstraction
in [5]. Although remarkable performance is achieved in 3D
car detection using point clouds, researchers tend to overlook
the deficiency in detecting more vulnerable targets, such as
pedestrians and cyclists. Such small or distant objects often
attract fewer laser beams from a LiDAR sensor due to the sen-
sor’s nature (i.e. , point density shrinks as distance increases).
Therefore it is crucial to consider raw point features for the
detection network.

Down-sampling points is inevitable to increase the receptive
field and maintain the input size with point-based methods.
Thus, convolutions are performed around the selected key
points. The commonly used schemes are farthest point sam-
pling (FPS) and random point sampling (RPS). FPS may
ensure the most coverage of the scene, while RPS may avoid
overfitting. However, both cannot guarantee object points
can survive the next stage of the network. Many irrelevant
background points are included due to the imbalance number
of foreground/background points. This leads to potential in-
formation loss, especially for distant and small objects, such
as pedestrians and cyclists. Increasing the receptive field is
relatively easy with a grid-like structure, usually by decreasing
the voxel resolution. It is often difficult to balance the trade-off
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Fig. 1. Shape completion on a cyclist with Point Augmentation module
utilising symmetry. From the top, there are one top view and two front views.
From right to left, it includes Original, Mirroring (xz-plane), Mirroring (yz-
plane), Rotation displays. Original and augmented points are in black and red
respectively.

between memory usage (number of voxels) and performance,
as larger voxels often neglect small objects.

Vision transformer (ViT), as a counterpart of convolutions,
has played a noticeable part in current 2D object detection
tasks [9]–[11]. The self-attention mechanism provides long-
range connections between pixels which are close in high
dimensions. This aids the discovery of small objects in the
image. Researchers aim to transfer the success of ViT in 2D
tasks into 3D tasks [7], [12]. Although the latency and perfor-
mance can be improved, the transplant for the transformer can
be expensive and bring extra complexity to detection networks.

Another approach to improve detection on occluded, distant
or small instances is to reconstruct the points of missing
shapes. With the aid of point completion algorithms, a genera-
tive module is trained to predict the full shape of objects from
incomplete point sets in a self-contained manner or through
external datasets [13]–[16]. The instances with incomplete ge-
ometry are replaced or augmented with the generated shapes to
increase the confidence of predictions for small and occluded
objects. As the predicted parts of objects are usually unseen or
overlooked by the sensors, the point completion results may
not always reconstruct the correct object surfaces, especially
when testing outside the training domain. These methods tend
to induce large memory usage and high computational cost
due to the extra inference module, as well as a longer latency.

To solve the aforementioned issues, a new object detection

framework with Point Augmentation, namely PA-RCNN is
proposed, to facilitate efficient detection of small and distant
objects, by integrating a proposal-guided sampling scheme and
a simple yet effective object point augmentation module in a
two-stage object detection architecture. The main contributions
of this paper can be summarised as follows:

• To ensure accurate proposals are generated, a lightweight
Attention-based Semantic Mining (ASM) module is
adopted to yield the 2D feature map, considering both ge-
ometric and semantic information. Gradient degradation
can be mitigated by fusing geometric information, which
is relatively shallow. Compared to 3D transformer [7],
the 2D attention algorithm consumes less memory, while
achieving favourable results for detection proposals.

• To sample as many informative foreground points as
possible for the second stage of the detector, key point
sampling is guided by detection proposals. This effec-
tively reduces background noises for the region of interest
(RoI) pooling and bounding box refinement.

• To benefit from the complete object shapes, the RoI
refinement stage comprises a point augmentation mod-
ule (PAM) and local Grid-based Voxel-to-Point Feature
Aggregation (GVPFA) module. The PAM has no train-
able parameters and extracts all proposed object points
from raw input and their associated features. To realise
point cloud completion without trainable parameters, the
generic geometric characteristics of symmetry are ex-
ploited, shown in Figure 1.

Thorough experiments prove that our proposed method
exceeds the current state-of-the-art on Level 2 of Waymo
Open Dataset and achieves the best results on KITTI cyclist
category among methods without generative modules.

II. RELATED WORKS

A. Convolution-based 3D Detection

Most existing 3D detectors heavily rely on the advance-
ment of convolutional neural networks [1], [2], [6]. Some
detectors perform convolutions directly on raw points using,
for instance, the Set Abstraction module from PointNet [1].
F-PointNet [17] crops the point cloud scene based on the
proposals generated by a 2D detector from RGB images. The
cropped point cloud can reduce the number of background
points for bounding box refinement. Point-RCNN [5] improves
proposal quality by adopting a 3D backbone to encode the
entire scene to provide 3D proposals. 3DSSD [3] replaces the
costly feature propagation layers with an advanced sampling
technique to achieve single-stage anchor-free detection.

By discretising the 3D space into voxels, VoxelNet [18] can
deploy 3D convolution directly on the regular grids. SECOND
[19] improves the 3D CNN with sub-manifold and sparse
convolutions, considering the sparsity of the point cloud.
PointPillars [20] merges vertical voxels into pillars to form a
pseudo-image, with the attempt to reduce computation burden.
Voxel-RCNN [6] integrates a bounding box refinement stage
to the SECOND backbone. PV-RCNN [2] associates voxel
features to key point locations with the voxel set abstraction
module. Li et al. [21] solve the IoU-misalignment issue with
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Fig. 2. Overview of the PA-RCNN architecture. a) The input point cloud is first voxelised and encoded with the 3D sparse convolution backbone to output
intermediate features as L ×W ×H × C. The 3D voxel features are flattened as L × W × (H × C), followed by a 2D region proposal network (RPN).
b) The 2D RPN comprises the proposed attention-based semantic mining network. The depth of the semantic branch depends on the architecture design for
certain applications. c) 3D proposals and point semantics are given by the 2D backbone, and guide the point sampling and facilitate the point augmentation.
The estimated object shapes are represented by the union of all complementary points and raw points, which are used in the RoI refinement stage. d) By
encoding the point coordinates and aggregating voxel features with the GVPFA module, features are summarised to the RoI grid points. The RoI features are
used to predict the final bounding box output and the corresponding confidence scores.

the redesigned box refinement module. However, such recent
detectors mainly focus on the detection of targets such as
cars or vehicles, while smaller vulnerable instances are often
overlooked, due to the lack of both rich features and long-
range connections to similar objects in the scene.

B. Attention-Based 3D Detection

While being able to provide long-range connections, self-
attention-based modules usually act as feature enhancers in 3D
detectors in early work. DVFENet [22] enhances the features
by adding the graph-attention-based branch in parallel with
the baseline sparse convolution backbone. S-AT GCN [23]
adds a spatial-attention module to PointPillars [20] to reduce
partition effects. Pyramid-RCNN [8] improves the second-
stage module by introducing the pyramid RoI head with
conventional attention- and graph-based operators. VoTr [7]
rebuilds the detector’s backbone with a 3D voxel transformer
with large memory consumption. CT3D [24] consists of a
channel-wise transformer, which operates on raw 3D points.
VoxSet [12] detects 3D objects with set-to-set translation,
reducing memory usage and runtime. However, transformers
are usually introduced to voxel-only networks. Increasing the
usability of transformers on 3D raw points is not trivial, due
to the unordered nature of point clouds.

C. Generative Methods for 3D Detection

To solve the inconsistent point density, PC-RGNN [25]
predicts the complete shapes of objects with a point cloud
completion module. The point cloud completion module ren-
ders additional points to the proposals with a multi-resolution
graph encoder and a point pyramid decoder. Associate-3Ddet
[26] and AGO-Net [26] mimic the bio-model by learning to
map incomplete perceived features of objects to more complete
features of corresponding class-wise conceptual models. Such
a generative feature enhancement scheme greatly improves the
detection accuracy on distant objects with fewer numbers of
points. SIENet [27] predicts the spatial shapes of foreground
points in proposals, where the prediction module is trained
with external data. Semantic point generation (SPG) [14]
closes the domain gap by adopting an SPG module to recover
the foreground points overlooked by the sensors. Btc-Det [13]
predicts the occupancy map and estimates the complete object
shapes that are occluded with prior learned information. SFD
[15] generates pseudo point clouds by estimating depth on
RGB images and extracting rich contextual and spatial features
with attentive fusion with raw point clouds. Generative mod-
ules provide conceptual information that is not perceived by
the sensors. Considering the advantages of generative modules,
a more simple approach to estimate the complete object shapes
is further investigated.
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III. PA-RCNN: POINT AUGMENTATION FOR
VULNERABLE OBJECT DETECTION

This section introduces the proposed PA-RCNN detector.
Based on PV-RCNN [2], a two-stage detection framework,
the author explores the improvements of bird’s eye view
(BEV) encoders, point sampling strategy, deformable point-
voxel feature aggregation and point augmentation. Figure 2
shows the layout of the network. The first stage of PA-
RCNN encodes voxel features with the 3D backbone of sparse
and sub-manifold convolutions and BEV features with the
2D backbone of an attention-based semantic mining module.
BEV features are used to generate detection proposals. The
proposals are then refined by the second stage to perform
point augmentation and RoI-grid pooling to produce the final
predictions.

A. Attention-based Semantic Mining Module

2D BEV features are crucial in the 2-stage detection
pipeline, as the detection proposals are generated solely from
the BEV feature map. The quality of proposals directly affects
the final results. In recent methods, flattened 2D BEV feature
maps are processed with the widely used 2D backbone, con-
sisting of a group of basic convolution layers for encoding and
decoding. The features are less sensitive to small objects due
to the partition effects, where small objects may be neglected
or truncated through pooling.

To enhance the feature richness in the 2D backbone, CIA-
SSD [28] builds a dual-branch encoding scheme and SMF-
SSD [29] uses multi-scale 3D features. Inspired by [30], we
consider both the depth and width of the features. The deeper
features focus on the high-dimensional semantic information
of the scenes, while the shallower features emphasise the intra-
and inter-instance geometric relations. Similar to [28], a dual-
branch feature encoder is constructed to avoid the shallower
features being washed out in a deep neural network. On the
short path, feature map resolution and the number of channels
remain unchanged with fully connected layers ϕ. While [28]
uses a single semantic branch in the 2D backbone, ASM
further exploits the high-dimensional semantics by adopting
multiple information paths in the semantic branch. On this
long path, strided convolutions ψ are used to aggregate high
dimensional semantics. Different from SMF-SSD [29], only
features from the last layer of the 3D backbone are fed to
ASM. The structure of ASM is shown in Figure 2(b). Given the
flatten 3D feature map, Fflat, the process can be summarised
as:

Fbev,g = ϕ(τ(Fflat)) (1)
Fbev,s,i = ψ(τ(Fflat)), (2)

where τ is a shared bottom-up convolution layer, Fbev,g and
Fbev,s,i are the features from the geometric and semantics
branches respectively. Unlike dense connections [31], where
features from different layers are stacked through concatena-
tion, we follow SKNet [32] to use branch-wise attention for its
advantages in filtering meaningful discriminative information
from a sparse feature map. To match the feature map sizes
of the branches, extra deconvolution layers are introduced to

Algorithm 1 Object-guided Point Sampling for N points and
M proposal boxes

Input: Point coordinates pi ∈ R3, for i ∈ [1, N ]
Proposal centres cj ∈ R3, for j ∈ [1,M ]
Proposal dimensions dj ∈ R3, for j ∈ [1,M ]

Output: key point candidates P ∈ Rn×3

per-box key point list Q ∈ RM×n′×3

1: Create an empty list of key point candidates P
2: for i = 1 to N do
3: for j = 1 to M do
4: create an empty list of key point sets Qj ∈ Rn′×3

5: if ||pi,x − cj,x|| < dj,x & ||pi,y − cj,y|| < dj,y &
||pi,z − cj,z|| < dj,z do

6: Qj ← [Qj , pi]
7: if pi not in P do
8: P← [P, pi]
9: end if

10: end if
11: end for
12: Q← [Q,Qj ]
13: end for

follow the strided convolutions to obtain Fbev,s. We compute
the intermediate features z with the channel-wise addition of
Fbev,g and all Fbev,s,i. The attention weights for each path in
both branches can be denoted as Ω = {ωg, ωs,1, ..., ωs,i}.
The weights can be given as:

Ω = Softmax(A ·MLP(z)), (3)
z = Fbev,g ⊕ Fbev,s,1 ⊕ ...⊕ Fbev,s,i, (4)

where A = {Ag, As,1, ..., As,i} are the attention embed-
dings for Fbev,g and each Fbev,s,i respectively. The aggregated
BEV features can then be given as:

Fbev = ωg · Fbev,g +

l∑
i=1

ωs,i · Fbev,s,i, (5)

where ωg +
∑l

i=1 ωs,i = 1. l is the number of layers on the
semantic branch. The attention mechanism naturally gathers
the related information from both the geometric and semantic
feature maps.

B. RoI Refinement with Auxiliary Points

1) Object-guided Point Sampling: The quality of point
sampling greatly affects the efficiency of the refinement stage.
Given the voxel features Fvoxel and sampled key points
q = {qi | i = 1, ..., N ′}, the feature encoder aggregates
the features of neighbouring voxels around each key points.
To ensure the aggregated features are relevant to the target
objects, it is essential to select as many foreground points as
possible. Therefore the distraction from the background can
be minimised when more foreground points are selected.

FPS is a popular approach in recent methods, which aims
to cover the scene evenly by selecting the most distant points.
FPS works well on detecting cars and vans, since the larger
objects have more points. However, many background points
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Fig. 3. Illustration of the grid-based voxel-to-point feature aggregation. With the grid drawn over the neighbourhood of a key point, local grid features are
first aggregated to the local grid points. The local grid features are then processed with a grouped MLP layer to produce Cin channels for each grid. The
Cin features are passed onto a multi-head attention layer, followed by a normalisation layer and MLP. The grid-distinct features with Cin channels, attention
features with Cout,att and the number of points are concatenated to give a Cout channel output, where Cout = Cin + Cout,att + 1.

are also selected. Semantic assisted FPS [4] introduces seman-
tic weights to the distance between points, where foreground
points have higher weights. This improves the sampling effi-
ciency with a high computational cost. Moreover, small objects
are more vulnerable to FPS and often overlooked. While
aggregating voxel features to the key points, features related
to a smaller object can be assigned to its nearest background
point that has survived the sampling process. This leads to a
mislocation of the features. The impact of feature mislocation
is more significant due to smaller object sizes.

Proposals generated by the first stage provide guidance to
the approximate locations and sizes of the target objects. By
selecting the points within the proposals, one can improve the
appearance of points from the small objects in the sampled
point set. The procedure is shown in Algorithm 1. The pro-
posal boxes are also enlarged to accommodate the imperfection
and include the background points around the boxes, which
possess important information to distinguish the object edges.
Different from a whole scene sampling, the proposed method
also creates a point set for each proposal. This helps separate
points from different objects and facilitates point augmentation
in the second stage.

2) Grid-Based Voxel-to-Point Feature Aggregation: The
voxel representation is favoured for its regularity, which
simplifies the neighbour quarrying process. Voxel neighbours
around the key point can easily be found by indexing, while
distance calculation and sorting are required to find point
neighbours. Voxel centres can be calculated with voxel indexes
(i, j, k) by:

Vc = (
L

Nx
(
1

2
+ i),

W

Ny
(
1

2
+ j),

H

Nz
(
1

2
+ k)), (6)

where (L,W,H) are the scene size and (Nx, Ny, Nz) are
the numbers of voxels in each dimension. The voxelisation
process tends to assign the encoded features to the voxel
centres. Such process leads to the loss of fine-grained point
details, since the precise point positions measured by a LiDAR
sensor are not used. The actual precision of feature locations
is greatly dependent on the degree of voxelisation, i.e. ,
voxel grid size. Smaller voxel grids produce more accurate
locations for feature aggregation and remarkable results with
only voxels on car detection are achieved [6]. However, cyclist
and pedestrian targets are more prone to failure caused by
inaccurate feature locations, since the bounding box sizes are
significantly smaller than those of cars and vans.

To mitigate this inefficiency, a Grid-based Voxel-to-Point
Feature Aggregation module (GVPFA) is proposed. Positional
information is implanted by adding the relative coordinates
of the neighbouring points. In addition, the point density
information is also inserted by adding the number of points
in the vicinity. Specifically, the space around a sampled key
point qi is divided into local grids Gl. Contradictory to the
commonly used set abstraction [2], features are first aggregated
within each local grid before being summarised to the key
points. The features of local grid Gl,i can be expressed as:

fGl,i
= f(Vi | Vi ∈ N (Gl,i)), (7)

where Vi is one of the neighbouring voxels around the local
grid centre. Inspired by [33], features of a key point qi can be
generated by a grouped MLP by:

fqi = [ωl,1 × fGl,1
, ωl,2 × fGl,2

, ..., ωl,n × fGl,n
], (8)

where ωl,i is the respective weight of kernel filters of the MLP
and n is the number of local grids around a key point. A
grouped MLP can limit the influence between different groups
by isolating the feature interaction. This allows the module
to produce position-specific semantics. Memory consumption
can also be reduced through the use of a grouped MLP by
removing unused links.

However, objects can appear at any rotational angle on
the ground surface. A complete detachment of features on
different grids around the key point is insufficient to address
this nature. The connection between these grids has to be built
to realise the rotational invariance of the features. Inspired
by [9], a lightweight self-attention module is deployed over
the local grids to enable feature communication. Since the
sparsity of points causes a more severe deficiency in detecting
small objects, the number of points in the local neighbourhood
is added to the feature map. The feature output can be
summarised as,

F = FC([SA(fq), fq, n]) (9)

where n is the number of points in each key point neigh-
bourhood. The output of the self-attention (SA) module is
concatenated with n and key point features, followed by a fully
connected (FC) layer to give the output feature dimension for
subsequent processes.

The same strategy is applied to the RoI grid pool module,
where keypoint features are aggregated to the box grid points
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instead of local grids. The self-attention layer also provides
interdependence over individual bounding boxes.

3) Point Augmentation: Detection on only downsampled
points results in a lower accuracy [3]. This is caused by
insufficient information and further deteriorated by the ground
truth ambiguities, occlusions and missing elements in the
ground truth. As such, a potential solution is to utilise gener-
ative modules to predict the missing signals and provide the
omitted semantic information [13], [14], [16]. However, the
extra complexity and issues with domain adaption is often
overlooked.

A simple and effective point augmentation module is built to
recover the approximate shape of the object based on the pure
geometric relation. By assuming approximate symmetry of the
detection targets, the key points and the associated features of
each proposal sampled by the object-guided point sampling
module are processed with the operation T . The augmented
features can be generated by:

Faug,j = T (Fj , [px, py, pz]), p ∈ Bj , (10)

where Fj is the features aggregated inside the proposal
bounding box Bj , [px, py, pz] ∈ RN ′×3 is the coordinates
of N ′ points inside Bj . The operation T can be mirroring or
rotating the points with reference to the bounding boxes. In
our case, mirroring the points and duplicating features for the
new points are used.

The enhanced features, as well as the original features, are
fed to the RoI grid pool module, where features are gathered
to the proposal box grid points accordingly. In addition,
the coordinates of all raw points in the proposal boxes are
processed with the GVPFA module to provide shallow and
complete geometric information. The point sets for different
proposals are given by the sampling layer.

With the help of the approximated object shapes and
structure-sensitive features, the bounding box refinement layer
can regress accurate bounding boxes based on enriched se-
mantics from both perceptual and conceptual information,
especially for small and vulnerable objects like cyclists and
pedestrians.

IV. EXPERIMENTS

This section presents results from thorough experiments,
and is formatted to provide: 1) a brief introduction to datasets
and implementation details; 2) a comparison with other state-
of-the-art methods and 3) an analysis of the effectiveness of
each component in the architecture.

A. Dataset

The proposed method is evaluated on the commonly used
KITTI dataset [34] and Waymo Open dataset (WOD) [35].

Waymo Open Dataset. WOD is a significantly larger
dataset with 798 training and 202 validation sequences, with
around 160k and 40k point cloud samples respectively. The
evaluation metric is calculated as the mean Average Precision
(mAP) and the mean Average Precision weighted by Heading
(mAPH). The 3D intersection-over-union (IoU) thresholds for
the bounding boxes are (0.7, 0.5, 0.5) for Car, Pedestrian and

Cyclist categories. Depending on how the testing samples are
split, the results can be formatted by difficulty levels and
detection ranges. By difficulty levels, ground truth targets are
divided into LEVEL 1 and LEVEL 2, which guarantees at
least 5 and 1 laser points are reflected from the objects. By
detection ranges, the ground truth targets are assigned to the
groups of 0− 30m, 30− 50m and > 50m from the sensor.

KITTI dataset. The KITTI 3D object detection dataset
contains 7481 and 7518 samples for training and testing
respectively. The training set is further divided into a 50/50
train/val splits with 3712 training and 3769 validation samples
respectively. The official evaluation metric is the mAP calcu-
lated by the official evaluation tool with 40 points from the
precision-recall curve on three difficulty levels. The 3D IoU
thresholds are (0.7, 0.5) for Car and Cyclist categories.

B. Implementation

The proposed method is built based on the widely used
OpenPCDet [40] codebase. Particularly, the 2D backbone of
PV-RCNN [2] is replaced with our ASM module. The RoI
refinement stage is also extended with our grid-based feature
aggregation and point augmentation module, while keeping the
rest of the network untouched.

For the ASM module, a 2-layer semantics mining sub-
module is used, which consists of a 3 × 3 convolution with
a feature dimension of 128 for each layer. A deconvolution
layer is added to each of the layers on the semantic branch
to match the feature map shape of the geometric branch. The
geometric branch comprises a single 3 × 3 convolution layer
with 128 output channels. The features of different branches
are summarised with an attention fusion module with 256
output channels.

For the second stage of RoI refinement, raw points that
lie is the enlarged proposal boxes are sampled. The proposal
boxes are enlarged by 0.2m in each axis. For aggregating
features from the BEV and 3D backbone, each local grid
has 32 output channels. The local grid features are processed
with a transformer layer. The point augmentation is configured
to mirror the raw points around the proposals to obtain the
estimated shapes. For aggregating the shallow and complete
geometric information from raw and augmented points, the
author uses a two-scale approach with local grid sizes of
(2, 2, 2), (3, 3, 3) for Waymo Open dataset, and (3, 3, 3),
(4, 4, 4) for KITTI dataset.

The model is trained with the ADAM optimiser on 4 RTX
2080 Ti GPUs. With respect to the KITTI dataset, the model is
trained with a batch size of 8 and a learning rate of 0.007 for
80 epochs. For obtaining the results on the val set, the models
are trained on the 50/50 train/val split. For reporting the results
on the test server, a 80/20 train/val split is used. On Waymo
Open dataset, the model is trained with a batch size of 8 and a
learning rate of 0.007 for 40 epochs. A 20% train-split training
option is also provided, where training scenes are sampled
uniformly and evaluation is performed on the full validation
set. Following OpenPCDet [40], the cosine annealing learning
rate decay strategy is adopted and the same data augmentation
scheme is used.
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TABLE I
PERFORMANCE COMPARISON ON THE WAYMO OPEN DATASET WITH 202 VALIDATION SEQUENCES BY OBJECT TYPES. *: RESULT ON 20% TRAINING

SPLIT. †: RESULTS FROM [36].

Methods Vehicle LEVEL 1 Vehicle LEVEL 2 Pedestrian LEVEL 1 Pedestrian LEVEL 2 Cyclist LEVEL 1 Cyclist LEVEL 2
mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

SECOND† [19] 72.27 71.69 63.85 63.33 68.7 58.18 60.72 51.31 60.62 59.28 58.34 57.05
PointPillars [20] 56.62 - - - 59.25 - - - - - - -

DVF [37] 67.62 67.09 62.66 62.17 - - - - - - - -
Part-A2† [38] 74.82 74.32 65.88 65.42 71.76 63.64 62.53 55.3 67.35 66.15 65.05 63.89

Voxel-RCNN [6] 75.59 - 66.59 - - - - - - - - -
PV-RCNN† [2] 78.00 77.50 69.43 68.98 79.21 73.03 70.42 64.72 71.46 70.27 68.95 67.79

PV-RCNN++† [36] 79.10 78.63 70.34 69.91 80.62 74.62 71.86 66.30 73.49 72.38 70.70 69.62
PDV [39] 76.85 76.33 69.30 68.81 74.19 65.96 65.85 58.28 68.71 67.55 66.49 65.36

VoxSet [12] 77.82 - 70.21 - - - - - - - - -
AGO-Net [26] 69.20 68.70 60.60 60.10 59.30 48.70 51.8 42.4 55.3 54.2 53.5 52.5

BtcDet [13] 78.58 78.06 70.10 69.61 - - - - - - - -
VoTr-TSD* [7] 74.95 74.25 65.91 65.29 - - - - - - - -

Pyramid-PV* [8] 76.3 75.68 67.23 66.68 - - - - - - - -
PA-RCNN* 77.91 77.44 69.54 69.11 80.50 74.94 72.09 66.88 74.05 72.96 71.37 70.32
PA-RCNN 78.75 78.29 70.43 70.00 81.73 76.55 73.46 68.59 74.23 73.18 71.54 70.52

TABLE II
PERFORMANCE COMPARISON ON THE WAYMO OPEN DATASET WITH 202

VALIDATION SEQUENCES FOR VEHICLE CLASS BY RANGE. †: RESULTS
FROM [36]

Methods Vehicle LEVEL 1 mAP/mAPH
0-30m 30-50m 50m-inf

SECOND† [19] 90.66/- 70.03/- 47.55/-
PointPillars [20] 81.01/- 51.75/- 27.94/-

Part-A2† [38] 92.35/- 75.91/- 54.06/-
Voxel-RCNN [6] 92.49/- 74.09/- 53.15/-

CT3D [24] 92.51/- 75.07/- 55.36/-
PV-RCNN† [2] 92.96/- 76.47/- 55.96/-

PV-RCNN++† [36] 93.34/- 78.08/- 57.19/-
VoxSet [12] 92.5/- 70.10/- 43.20/-
PDV [39] 93.13/92.71 75.49/74.91 54.75/53.90

BtcDet [13] 96.11/- 77.64/- 54.45/-
PA-RCNN 92.88/92.48 77.60/77.10 57.71/56.99

Methods Vehicle LEVEL 2 mAP/mAPH
0-30m 30-50m 50m-inf

Voxel-RCNN [6] 91.74/- 67.89/- 40.80/-
CT3D [24] 91.76/- 68.93/- 42.60/-
PDV [39] 92.41/91.99 69.36/68.81 42.16/41.48

BtcDet [13] 95.99/- 70.56/- 43.87/-
PA-RCNN 91.69/90.91 71.20/70.73 45.30/44.71

C. Waymo Results

The main results on Waymo Open dataset are shown in
Table I, where the comparison is made between the proposed
method and the recent studies across two difficulty levels
and three object categories. PA-RCNN achieves state-of-the-
art performance on all columns except for Vehicle LEVEL 1,
on which competitive accuracy is also obtained. Note that our
method outperforms BtcDet [13], which consists of generative
modules, on mAPH by 0.23% and 0.39% on both levels of
the Vehicle category. It is also worth mentioning that higher
improvements can be seen from vulnerable targets, which are
more difficult to detect. The proposed method raises the best
mAPH by 1.93% and 2.29% on Pedestrian LEVEL 1 and
LEVEL 2 respectively. There is also an increase of 0.8% and
0.9% in mAPH on both levels of Cyclist. The results of the
model trained with 20% of the training split are also presented
to compare with VoTr-TSD [7] and Pyramid-PV [8].

Tables II, III and IV show the comparisons pertaining to the

TABLE III
PERFORMANCE COMPARISON ON THE WAYMO OPEN DATASET WITH 202
VALIDATION SEQUENCES FOR PEDESTRIAN CLASS BY RANGE. †: RESULTS

FROM [36]

Methods Pedestrian LEVEL 1 mAP/mAPH
0-30m 30-50m 50m-inf

SECOND† [19] 74.39/- 67.24/- 56.71/-
PointPillars [20] 67.99/- 57.01/- 41.29/-

Part-A2† [38] 81.87/- 73.65/- 62.34/-
PV-RCNN† [2] 83.33/- 78.53/- 69.36/-

PV-RCNN++† [36] 84.88/- 79.65/- 70.64/-
PDV [39] 80.32/73.60 72.97/63.28 61.69/50.07
PA-RCNN 86.13/82.17 80.73/74.89 73.14/64.57

Methods Pedestrian LEVEL 2 mAP/mAPH
0-30m 30-50m 50m-inf

PDV [39] 75.26/68.82 65.78/56.85 47.46/38.30
PA-RCNN 81.41/77.55 73.62/68.11 59.04/51.70

TABLE IV
PERFORMANCE COMPARISON ON THE WAYMO OPEN DATASET WITH 202

VALIDATION SEQUENCES FOR CYCLIST CLASS BY RANGE. †: RESULTS
FROM [36]

Methods Cyclist LEVEL 1 mAP/mAPH
0-30m 30-50m 50m-inf

SECOND† [19] 73.33/- 55.51/- 41.98/-
Part-A2† [38] 80.87/- 62.57/- 45.04/-

PV-RCNN† [2] 81.10/- 65.65/- 52.58/-
PV-RCNN++† [36] 83.65/- 68.90/- 51.41/-

PDV [39] 80.86/79.83 62.61/61.45 46.23/44.12
PA-RCNN 83.56/82.47 70.84/69.68 54.40/52.91

Methods Cyclist LEVEL 2 mAP/mAPH
0-30m 30-50m 50m-inf

PDV [39] 80.42/79.40 58.95/57.87 43.05/41.09
PA-RCNN 82.96/81.88 67.03/65.93 50.71/49.30

detection range. The close-range targets are easier to identify
as the point density is higher, while the distant targets are
more difficult to recognise as the point density decreases with
the increasing distance. While achieving competitive results
for close-range vehicles, a larger advantage of the proposed
method can be observed on distant objects. Although BtcDet
[13] with generative modules dominates 0-30m in vehicle
detection, PA-RCNN obtains better results for vehicles at
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TABLE V
RESULTS ON KITTI val SET FOR CAR, PEDESTRIAN AND CYCLIST CLASSES, WITH AN AVERAGE PRECISION OF 40 RECALL POINTS (R40). *: BEST

AMONG LIDAR-ONLY NON-GENERATIVE METHODS.

Methods Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

RGB+LiDAR
MV3D [41] 71.29 62.68 56.56 - - - - - -

F-PointNet [17] 83.76 70.92 63.65 70.00 61.32 53.59 77.15 56.49 53.37
DVF [37] 93.07 85.84 83.13 - - - - - -

CAT-Det [42] 90.12 81.46 79.15 74.08 66.35 58.92 87.64 72.82 68.20
LiDAR

PointRCNN [5] 88.72 78.61 77.82 62.72 53.85 50.24 86.64 71.62 65.59
PointPillars [20] 87.75 78.39 75.18 57.30 51.41 46.87 81.57 62.94 58.98

SA-SSD [43] 92.23 84.30 81.36 - - - - - -
Voxel-RCNN [6] 92.38 85.29 82.86 - - - - - -

PV-RCNN [2] 92.57 84.83 82.69 64.26 56.67 51.91 88.88 71.95 66.78
SE-SSD [16] 93.19 86.12 83.31 - - - - - -

PDV [39] 92.56 85.29 83.05 66.90 60.80 55.85 92.72 74.23 69.60
Generative Model

PC-RGNN [25] 90.94 81.43 80.45 - - - - - -
AGO-Net [26] - - - 60.39 54.81 50.59 87.57 69.24 64.74
SIENet [27] 92.49 85.43 83.05 - - - - - -
BtcDet [13] 93.15 86.28 83.86 69.39 61.19 55.86 91.45 74.70 70.08
SFD† [15] 95.47 88.56 85.74 - - - - - -
SPG [14] 92.53 85.31 82.82 - - - - - -

PA-RCNN(P) 90.21 81.39 79.94 64.50 55.82 52.89 87.36 72.02 66.07
PA-RCNN 92.77* 85.77* 83.31* 70.29* 62.98* 57.61* 94.18* 73.13 69.19

TABLE VI
RESULTS ON KITTI test SET FOR CAR, PEDESTRIAN AND CYCLIST CLASSES, WITH AN AVERAGE PRECISION OF 40 RECALL POINTS (R40). *: BEST

AMONG LIDAR-ONLY NON-GENERATIVE METHODS.

Methods Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

RGB+LiDAR
MV3D [41] 74.97 63.63 54.00 - - - - - -

F-PointNet [17] 82.19 69.79 60.59 51.21 44.89 40.23 72.27 56.12 49.01
DVF [37] 90.99 82.40 77.37 - - - - - -

CAT-Det [42] 89.87 81.32 76.68 54.26 45.44 41.94 83.68 68.81 61.45
LiDAR

SECOND [19] 83.34 72.55 65.82 48.73 40.57 37.77 71.33 52.08 45.83
PointPillars [20] 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92

Part-A2 [38] 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93
Point-RCNN [5] 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.12 49.01

3DSSD [3] 88.36 79.57 74.55 50.64 43.09 39.65 82.48 64.10 56.90
SA-SSD [43] 88.75 79.79 74.16 - - -

Voxel-RCNN [6] 90.90 81.62 77.06 - - - - - -
PV-RCNN [2] 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65

PV-RCNN++ [36] 90.14 81.88 77.15 54.29 47.19 43.49 82.22 67.44 60.04
PDV [39] 90.43 81.86 77.36 - - - 83.04 67.81 60.46

CIA-SSD [28] 89.59 80.28 72.87 - - - - - -
VoxSet [12] 88.53 82.06 77.46 - - - - - -
SE-SSD [16] 91.94 82.54 77.15 - - - - - -
VoTr-TSD [7] 89.90 82.09 79.14 - - - - - -

Pyramid-PV [8] 88.39 82.08 77.49 - - - - - -
SASA [4] 88.76 82.16 77.16 - - - - - -

Generative Model
PC-RGNN [25] 89.13 79.90 75.54 - - - - - -
AGO-Net [26] 91.53 80.77 75.23 45.18 37.22 34.62 72.82 57.60 51.53
SIENet [27] 88.22 81.71 77.22 - - - 83.00 67.61 60.09
BtcDet [13] 90.64 82.86 78.09 47.80 41.63 39.30 82.81 68.68 61.81
SFD† [15] 91.73 84.76 85.74 - - - - - -
SPG [14] 90.50 82.13 78.90 - - - - - -
PA-RCNN 90.94 82.44 77.69 51.25 43.57 40.35 83.32* 68.04* 59.88

further than 30m. This may be explained by the greater effec-
tiveness of point augmentation and object-guided sampling on
instances with fewer points. The improvement in close-range
performance is limited, as the objects in this range are usually
comparatively more visible and comprise denser point sets.
Moreover, the proposed methods show superior performance

on Pedestrian and Cyclist across all ranges and difficulties
except for Cyclist LEVEL 1 in 0-30m. A bigger margin is
also observed from the most difficult Pedestrian class.
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Fig. 4. Car mAP by distance on KITTI val set.

D. KITTI Results

Table V illustrates the results of the KITTI val split. Our
method improves Car mAP by +0.94% and +0.48% as com-
pared with those of its baseline (PV-RCNN [2]) and the second
best model (PDV [39]) with respect to the moderate difficulty.
In both the Pedestrian and Cyclist classes, the proposed
method also shows competitive performance to some of the
multi-modality methods. We also include the performance of
PA-RCNN(P), where the only Point Augmentation module is
adapted to the PointRCNN [5] framework. Since PointRCNN
is a point-only detector, we can observe the improvement
solely induced by PA. However, the improvement on vulner-
able objects is limited as a result of less accurate proposal
bounding boxes. Following the KITTI guideline, we submit
our best model to the test server.

Table VI presents the results on the KITTI testing server.
While achieving an improvement on the cyclist class over the
multi-class detectors (PV-RCNN [2], PV-RCNN++ [36] and
PDV [39]), the proposed model obtains the best overall detec-
tion on cyclists among methods without generative modules.
However, the performance enhancement in the Car category is
limited compared to the state-of-the-art. This can be explained
by the smaller voxel size on the KITTI dataset. Note that
WOD has a voxel size of (0.1, 0.1, 0.15)m, while KITTI has
a voxel size of (0.05, 0.05, 0.1)m. Compared to WOD, the
finer-grained voxelisation on the KITTI dataset permitted by
the smaller detection range allows the baseline detectors to
extract information from denser feature maps. This limits the
improvement provided by the proposed point augmentation
and the GVPFA modules, which aim to compensate for the
information loss due to the partition effects. The degradation in
the Pedestrian category can also be explained by the finer input
of KITTI. Furthermore, by examining the prediction results
on the val set, some false positives regarding the Pedestrian
class are actual target pedestrians visually observable from
RGB images. A sample is shown on the left in Figure 7a,
where the unlabelled pedestrians are correctly detected. It can
be hypothesised that a similar case would be observed on the
more difficult test set. Such results are less frequent on WOD.

Figure 4, 5 and 6 show the mAP by distance on KITTI val
set. It is noticeable that PA-RCNN outperforms the baseline in
all ranges, except for the cars from between 10 and 30 meters.

Fig. 5. Pedestrian mAP by distance on KITTI val set.

Fig. 6. Cyclist mAP by distance on KITTI val set.

E. Ablation Study

This section compares the effectiveness of each component
and the variation of the network.

Effect of network components. Table VII shows the
quantitative improvement as LEVEL 2 mAPH contributed by
each component on a 10% training set where Config. 1 is
the baseline PVRCNN [2] network re-implemented in the
OpenPCDet codebase [40]. By introducing the attention-based
semantic mining module to the BEV feature map (Config.
2), a 0.68%, 1.14% and 0.46% increases are observed in the
three classes respectively. The object-guided sampling method
(Config. 3) gives a boost of 0.5%, 0.96% and 0.61% to the
final results. By incorporating local grid feature aggregation to
the refinement stage (Config. 4), additional mAPH scores of
0.68%, 0.56% and 0.67% are gained for each of the classes.
The enriched point clouds estimated with the point augmen-
tation module (Config. 5) give a significant improvement of
1.89% and 1.15% to both vulnerable categories.

Effect of point augmentation scheme. The point augmen-
tation is implemented with three schemes: no transformation,
rotation and mirroring as shown in Figure 1. The augmented
points provide additional information on the unseen prospects
of the object. Table VIII shows a comparison of different
schemes. By just including all raw points around the proposal
boxes (Config. 4-a), the largest improvement of 0.98% is seen
on the Pedestrian LEVEL 2 mAPH. Minor improvements are
observed for rotating the points around the box centres and
mirroring the points about the transversal centre (yz) plane
(Config. 4-b and 4-c). It is hypothesised that the orientation
information can be corrupted through the transformations,
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(a) (b)
Fig. 7. Visualisations of detection results on KITTI val set. From top to bottom, it includes the point clouds with augmented points in red, the original point
clouds and the RGB images Blue and green boxes indicate ground truths and predictions by PA-RCNN respectively.

TABLE VII
COMPONENT ANALYSIS ON 10% WAYMO OPEN DATASET. SM, OG, GB

AND PA REPRESENT THE SEMANTIC MINING BEV ENCODER,
OBJECT-GUIDED POINT SAMPLING, GRID-BASED VOXEL-TO-POINT

FEATURE AGGREGATION AND POINT AUGMENTATION RESPECTIVELY.

Config. SM OG GB PA LEVEL 2 mAPH
Vehicle Pedestrian Cyclist

1 66.53 61.71 66.79
2 ✓ 67.21 62.85 67.25
3 ✓ ✓ 67.71 63.81 67.86
4 ✓ ✓ ✓ 68.39 64.37 68.53
5 ✓ ✓ ✓ ✓ 68.84 66.28 69.68

TABLE VIII
COMPARISON OF DIFFERENT IMPLEMENTATIONS OF POINT

AUGMENTATION ON WAYMO OPEN DATASET.

Config. Point augmentation scheme LEVEL 2 mAPH
Vehicle Pedestrian Cyclist

4 Baseline 68.39 64.37 68.53
4-a No tranformation 68.42 65.35 68.81
4-b Rotation 68.48 65.52 69.02
4-c Mirroring (yz-plane) 68.44 65.42 69.12
5 Mirroring (xz-plane) 68.84 66.28 69.68

leading to sub-optimal results on the heading weighted perfor-
mances. However, the improvement provided by the increased

TABLE IX
COMPARISON OF THE NUMBERS OF FALSE POSITIVES ON THE MODERATE

DIFFICULTY OF KITTI DATASET

Categories #FP KITTI moderate
PV-RCNN PA-RCNN

Car 6606 1878
Pedestrian 7142 5589

Cyclist 964 847

point density has overpowered the deficiency of sub-optimal
transformation. The more accurate localisation of bounding
boxes compensates for the corrupted heading estimation. This
can be explained by the visualisations in Figure 1, where all
three transformations provide rich geometry information for
locating the target accurately and directional information is
degraded when the object is rotated or mirrored longitudinally.

By mirroring the point about the longitudinal centre (xz)
plane (Config. 5), the symmetric characteristics can be fully
utilised. Noticeable gains are achieved in all classes. Partic-
ularly, a further boost of 0.93% and 0.87% is observed in
the vulnerable pedestrian and cyclist classes. Visualisations
of the point augmentation are shown in Figure 7. It can
be observed that the fictional points generated by the point
augmentation module provide extra information on distant
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(a) PA-RCNN

(b) PV-RCNN
Fig. 8. Visualizations of results from (a) PA-RCNN and (b) PV-RCNN on
KITTI val set. Green and blue boxes indicate predictions and ground truths
respectively. Significantly less false positives can be observed on the proposed
PA-RCNN.

objects by estimating the complete shapes. The RGB image in
Figure 7a shows that PA-RCNN can successfully detect distant
pedestrians and cyclists, which are visually visible but without
groundtruth labels.

F. Qualitative Results

Figure 7 includes two samples from the KITTI val set.
A dense point set can be seen with the augmented points
generated by the PA module, achieving accurate detection on
distance and vulnerable targets.

Figure 8 shows a visualisation of the detection results on a
sample instance from the KITTI val set. Table IX summarises
the numbers of false positives on KITTI dataset. With more
distinctive details added by the point augmentation module, it
is noticeable that the amount the false positives is drastically
reduced. In addition, the inclusion of point density information
also provides another confidence measure to help reduce false
positives, especially on vulnerable targets.

G. Comparison with Other Augmentation Methods

The point augmentation module in the proposed method
aims to estimate more complete shapes of the targets. The
same task can be achieved by a point completion (PC) module
in PC-RGNN [25], where a multi-resolution graph encoder
and a point pyramid decoder are used. The PC module is
applied to the 3D proposals and trained with the completion
loss and adversarial loss, with the discriminator aiming to
distinguish fictitious points from the real point cloud. While
more trainable parameters need to be considered in PC-RGNN,
the proposed PA-RCNN requires no additional optimisation

targets for shape estimation. SIENet [27] builds a Spatial Infor-
mation Enhancement (SIE) module based on PV-RCNN. The
SIE module is tasked to complete the shape of proposals from
the first stage RPN. The spatial shape prediction module in
SIENet consists of a PointNet-based encoder-decoder, which
maps an N×3 incomplete shape to a dense and complete shape
with 1024 points. The SIE module is pre-trained with samples
from the external ShapeNet [44] dataset for the Car category.
For the Pedestrian and Cyclist categories, training samples are
taken from KITTI dataset, due to the lack of corresponding
external data sources. The semantic point generation (SPG)
module [14] generates augmented points based on the voxel
features in the proposal regions. The point generation module
is trained to map the voxel or pillar features to voxel centroids
and mean point features. Similar to SIENet, BtcDet [13]
estimates the complete shape of objects by leveraging the
more complete objects in KITTI dataset. While the more
complete objects are used as training targets in SIENet, BtcDet
finds the best match from a collection of labelled objects
according to a heuristic function. The points of the best
match are then added to the proposal bounding box. Note
that an extra database of the labelled object with complete
object points is required before the training. Moreover, due
to the database being only generated from KITTI dataset, the
performance is limited when the point distribution is different
in an unseen dataset. While most of the above methods require
the design of additional training objectives, the proposed PA-
RCNN model is a pure end-to-end network, where no extra
trainable parameters are added for shape completion. SFD
[15] augments the detection workflow by performing depth
completion on RGB images. The generated pseudo clouds with
RGB information realise the depth-based data augmentation.
Despite that SFD achieved remarkable performance on single-
class Car detection on the KITTI test set, PA-RCNN explores
the improvement with only point cloud inputs and provides
competitive multi-class detection results.

Experiments have also been conducted for feature-level
augmentation. However, it requires additional memory for
operation and provides a limited improvement on the final
results in our investigations. Based on the study of related
works, some existing methods have explored feature-level
augmentation, such as AGO-Net [26], BtcDet [13] and SFD
[15]. AGO-Net [26] uses the conceptual-perceptual approach
and is trained in a self-contained manner. The conceptual
network is trained with a fully augmented dataset, where the
incomplete objects are replaced by their closest pairs with
appropriate transformation. The perceptual network is trained
with the original dataset, with an additional loss for feature
adaptation. The parameters of the perceptual network are then
adjusted in accordance with the conceptual features, which are
generated by the conceptual network from the same training
samples with full augmentation. BtcDet [13] creates a database
for the occluded regions, which is used to train the model for
estimating occupancy probability. The occupancy probability
map is used as additional features to boost the main detection
performance. SFD [15] performs feature level augmentation
by generating pseudo point clouds with additional image
inputs, which are encoded by the Colour Point Convolution
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(CPConv) [15] to obtain the pseudo RoI features. Feature level
augmentation provides significant improvements on detection
accuracy with the help of additional inputs or hand-crafted
optimisation targets. However, neither model pre-training nor
an extra database is required to train PA-RCNN end-to-end.

V. CONCLUSION

This article presents a two-stage detection network for in-
telligent vehicles incorporating the enhanced feature encoding
and aggregation scheme to focus on detecting pedestrians
and cyclists. A shape estimation module with no trainable
parameters is introduced to remedy the point sparsity and
signal loss on vulnerable road users. Promising results on
KITTI and Waymo Open datasets show the effectiveness of
each component of the architecture. The compatibility of
the current model allows us to adapt the proposed method
to more 3D detection backbones in the future. However,
the improvement is limited when the voxelisation is more
sophisticated. In the context of smaller voxels, 1) the error
between voxel centres and the actual point locations is smaller;
and 2) there is less discrepancy in point density in each voxel.
Furthermore, while the proposed method induces considerably
less computation burden compared to generative models, there
is still a future plan to optimise the point augmentation
module for better memory usage and inference time. The
extra reduction in computational resources used by the new
modules can facilitate the deployment of the algorithm to
onboard computers of intelligent vehicles. The scalability of
the framework should also be investigated to incorporate a
larger backbone for more complex scenes.

REFERENCES

[1] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 652–660.

[2] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “PV-
RCNN: Point-voxel feature set abstraction for 3d object detection,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 526–10 535.

[3] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3DSSD: Point-based 3d single
stage object detector,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11 040–11 048.

[4] C. Chen, Z. Chen, J. Zhang, and D. Tao, “SASA: Semantics-augmented
set abstraction for point-based 3d object detection,” in AAAI Conference
on Artificial Intelligence, vol. 1, 2022.

[5] S. Shi, X. Wang, and H. Li, “PointRCNN: 3d object proposal generation
and detection from point cloud,” in in Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 770–
779.

[6] J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang, and H. Li, “Voxel R-
CNN: Towards high performance voxel-based 3d object detection,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 2, 2021, pp. 1201–1209.

[7] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and
C. Xu, “Voxel transformer for 3d object detection,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
3164–3173.

[8] J. Mao, M. Niu, H. Bai, X. Liang, H. Xu, and C. Xu, “Pyramid R-CNN:
Towards better performance and adaptability for 3d object detection,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 2723–2732.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[10] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021.

[11] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision. Springer, 2020, pp. 213–
229.

[12] C. He, R. Li, S. Li, and L. Zhang, “Voxel set transformer: A set-to-set
approach to 3d object detection from point clouds,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 8417–8427.

[13] Q. Xu, Y. Zhong, and U. Neumann, “Behind the curtain: Learning
occluded shapes for 3d object detection,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 3, 2022, pp. 2893–
2901.

[14] Q. Xu, Y. Zhou, W. Wang, C. R. Qi, and D. Anguelov, “SPG: Unsu-
pervised domain adaptation for 3d object detection via semantic point
generation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 15 446–15 456.

[15] X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu, and
D. Cai, “Sparse fuse dense: Towards high quality 3d detection with depth
completion,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 5418–5427.

[16] W. Zheng, W. Tang, L. Jiang, and C.-W. Fu, “SE-SSD: Self-ensembling
single-stage object detector from point cloud,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 14 494–14 503.

[17] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 918–
927.

[18] Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud
based 3d object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4490–4499.

[19] Y. Yan, Y. Mao, and B. Li, “SECOND: Sparsely embedded
convolutional detection,” Sensors, vol. 18, no. 10, 2018. [Online].
Available: https://www.mdpi.com/1424-8220/18/10/3337

[20] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 697–12 705.

[21] J. Li, H. Dai, L. Shao, and Y. Ding, “From voxel to point: Iou-guided
3d object detection for point cloud with voxel-to-point decoder,” in
Proceedings of the 29th ACM International Conference on Multimedia,
2021, pp. 4622–4631.

[22] Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li, and P. Wang, “DVFENet:
Dual-branch voxel feature extraction network for 3d object detection,”
Neurocomputing, vol. 459, p. 201–211, 2021.

[23] L. Wang, C. Wang, X. Zhang, T. Lan, and J. Li, “S-AT GCN: spatial-
attention graph convolution network based feature enhancement for 3d
object detection,” arXiv preprint arXiv:2103.08439, 2021.

[24] H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X.-S. Hua, and M.-J.
Zhao, “Improving 3d object detection with channel-wise transformer,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 2743–2752.

[25] Y. Zhang, D. Huang, and Y. Wang, “PC-RGNN: Point cloud completion
and graph neural network for 3d object detection,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp.
3430–3437.

[26] L. Du, X. Ye, X. Tan, E. Johns, B. Chen, E. Ding, X. Xue, and J. Feng,
“AGO-Net: Association-guided 3d point cloud object detection net-
work,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 11, pp. 8097–8109, 2021.

[27] Z. Li, Y. Yao, Z. Quan, J. Xie, and W. Yang, “Spatial information
enhancement network for 3d object detection from point cloud,” Pattern
Recognition, vol. 128, p. 108684, 2022.

[28] W. Zheng, W. Tang, S. Chen, L. Jiang, and C.-W. Fu, “CIA-SSD:
Confident iou-aware single-stage object detector from point cloud,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 4, 2021, pp. 3555–3562.

[29] W. Zheng, L. Jiang, F. Lu, Y. Ye, and C.-W. Fu, “Boosting single-
frame 3d object detection by simulating multi-frame point clouds,” in
Proceedings of the 30th ACM International Conference on Multimedia,
2022, pp. 4848–4856.

[30] W. Lu, D. Zhao, C. Premebida, W.-H. Chen, and D. Tian, “Seman-
tic feature mining for 3d object classification and segmentation,” in



13

IEEE International Conference on Robotics and Automation, 2021, pp.
13 539–13 545.

[31] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[32] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 510–519.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[34] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–3361.

[35] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
June 2020.

[36] S. Shi, L. Jiang, J. Deng, Z. Wang, C. Guo, J. Shi, X. Wang, and H. Li,
“PV-RCNN++: Point-voxel feature set abstraction with local vector rep-
resentation for 3d object detection,” arXiv preprint arXiv:2102.00463v2,
2021.

[37] A. Mahmoud, J. S. Hu, and S. L. Waslander, “Dense voxel fusion for
3d object detection,” arXiv preprint arXiv:2203.00871, 2022.

[38] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3d
object detection from point cloud with part-aware and part-aggregation
network,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 43, no. 8, pp. 2647–2664, 2020.

[39] J. S. Hu, T. Kuai, and S. L. Waslander, “Point density-aware voxels for
lidar 3d object detection,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 8469–8478.

[40] OpenPCDet Development Team, “OpenPCDet: An open-source toolbox
for 3d object detection from point clouds, Ver. 0.5.2,” 2022. [Online].
Available: https://github.com/open-mmlab/OpenPCDet

[41] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2017, pp.
1907–1915.

[42] Y. Zhang, J. Chen, and D. Huang, “CAT-Det: Contrastively augmented
transformer for multi-modal 3d object detection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 908–917.

[43] C. He, H. Zeng, J. Huang, X.-S. Hua, and L. Zhang, “Structure aware
single-stage 3d object detection from point cloud,” in Proceedings of the
IIEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 873–11 882.

[44] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and
F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,” Stanford
University — Princeton University — Toyota Technological Institute at
Chicago, Tech. Rep. arXiv:1512.03012 [cs.GR], 2015.

Weihao Lu received the M.Eng. degree in Aero-
nautical Engineering from Imperial College London,
UK, in 2018. He is currently pursuing a Ph.D. degree
with the Department of Autonomous Systems &
Connectivity, University of Glasgow, Glasgow, UK.
His research interests include autonomous driving,
3D point cloud processing and 3D object detection.

Dezong Zhao (Senior Member, IEEE) received the
B.Eng. and M.S. degrees from Shandong University
in 2003 and 2006, respectively, and the Ph.D. degree
from Tsinghua University in 2010, all in Control
Engineering. He is currently a Senior Lecturer in
Autonomous Systems with the University of Glas-
gow. His research interests include Connected and
Automated Vehicles, Robotics, Machine Learning
and Control Engineering. He has been an EPSRC
Innovation Fellow since 2018 and a Royal Society-
Newton Advanced Fellow since 2020.

Cristiano Premebida is Assistant Professor in the
Department of Electrical and Computer Engineering
(DEEC) at the University of Coimbra (UC), Portu-
gal, where he is a member of the Institute of Systems
and Robotics (ISR-UC). C. Premebida is member
of the IEEE ITS and RAS societies. His main re-
search interests are autonomous systems, intelligent
vehicles, robotic perception, machine learning, and
sensor fusion.

Li Zhang (Senior Member, IEEE) is a Reader in
Department of Computer Science, Royal Holloway,
University of London, UK. She received a PhD
degree from the University of Birmingham, UK. She
holds expertise in machine learning, deep learning,
computer vision, and intelligent robotics.

Wenjing Zhao received Ph.D. degree in traffic engi-
neering with Central South University in 2022. She
is currently a Postdoctoral Fellow at the Department
of Civil and Environmental Engineering of Hong
Kong Polytechnic University. Her research interests
include traffic safety, connected and autonomous
vehicles, and human factors.

Daxin Tian (Senior Member, IEEE) is currently
a Professor with the School of Transportation Sci-
ence and Engineering, Beihang University, Beijing,
China. His current research interests include mobile
computing, intelligent transportation systems, vehic-
ular ad hoc networks, and swarm intelligence. He is
an IEEE Intelligent Transportation Systems Society
Member and an IEEE Vehicular Technology Society
Member.



14

APPENDIX

MORE QUALITATIVE RESULTS

In this section, more visualisations are provided. Figure 9a
shows that the PA-RCNN has the capability of detecting
distant objects. Effective pedestrian detection is seen from
Figure 9b. More complicated scenarios can be observed in
Figure 10 for the Waymo Open Dataset. It is noticeable that
PA-RCNN is able to accurately locate distant pedestrians and
vehicles with occlusions and incomplete shapes in crowded
urban scenes. Figure 11 depicts the point augmentation on the
pedestrian class.

Figure 14 shows the visualisations of proposals generated by
PA-RCNN for a complex sample with a number of occlusions
and overlaps in the KITTI val split. Figure 13 shows the
visualisation of proposals with respective three transforma-
tion schemes for the above example. For clarity, only 50
proposals are displayed in green. Figure 14 shows that the
sub-optimal transformation scheme leads to the false positive
detection on several ambiguous targets (i.e. humans sitting in
the background highlighted in orange) in a complicated scene.
Figure 12 shows the comparisons of final detection results. It
can be seen that the optimal transformation scheme Mirror
(yz-plane) is effective in reducing false positives, especially
in distance.

NETWORK EFFICIENCY

Table X shows the comparisons of inference speeds and
numbers of parameters on the KITTI dataset. The inference
speeds are measured with a single GTX 1080 GPU. With only
26 ms added to the baseline, the proposed method maintains
efficiency, while achieving better detection accuracies. Note
that the inference speed can be largely improved by using a
more powerful GPU.

TABLE X
COMPARISON OF INFERENCE SPEEDS AND NUMBERS OF MODEL

PARAMETERS ON KITTI DATASET.

Methods Inference Speed (ms) #Parameters
PV-RCNN 182 13.1M
PA-RCNN 208 16.2M

(a)

(b)
Fig. 9. Visualisations of detection results on KITTI val set on (a) Car and
(b) Pedestrian category. Blue and green boxes indicate ground truths and
predictions by PA-RCNN respectively.

(a)

(b)
Fig. 10. Visualisations of two detection samples on Waymo Open Dataset.
Both samples are able to show the performance of PA-RCNN in complicated
urban scenarios. Blue and Green boxes indicate ground truths and predictions
by PA-RCNNs respectively.
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Fig. 11. Shape completion on a pedestrian with Point Augmentation module
utilising symmetry. From top to bottom, there are one top view and two frontal
views. From right to left, it includes Original, Mirroring (xz-plane), Mirroring
(yz-plane), and Rotation displays. Original and augmented points are in black
and red respectively.

(a)

(b)
Fig. 12. Visualisations of detection of different transformation schemes on
KITTI val split. The two images show the comparison of the ground truths
and Mirror (yz-plane) with Rotation in (a) and Mirror (xz-plane) in (b),
respectively. Ground truth bounding boxes are in blue and the predicted
bounding boxes with Mirror (yz-plane) scheme are in green. The bounding
boxes in red are predicted with Rotation and Mirror (xz-plane) schemes in
(a) and (b), respectively. Circles in orange and blue highlight the sub-optimal
detection examples. The front-facing direction is shown by a cross on the
bounding box surface.

Fig. 13. Visualisations of detection generated by PA-RCNN on KITTI val
split split for an example image with occlusions and overlaps. Top: the origin
image. Bottom: image with the annotations of ground truth bounding boxes
in blue and predicted bounding boxes in green. Arrows indicate the correctly
detected targets, which are not labelled in the dataset. Orange circles highlight
the ambiguous targets associated with the wrong detection shown in Figure 14.
The blue circle indicates the target, whose front-facing direction is incorrectly
predicted with a Mirror (xz-plane) transformation shown in Figure 12b.

(a) Mirror (xz-plane)

(b) Rotation

(c) Mirror (yz-plane)
Fig. 14. Visualisations of proposals with augmented points on KITTI val
split. Proposal bounding boxes are in green and the augmented points are
in red. Orange circles depict the details of the wrong detection due to the
sub-optimal transformation scheme.
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