

11

Contents lists available at ScienceDirect

Best Practice & Research Clinical Endocrinology & Metabolism

journal homepage: www.elsevier.com/locate/beem

Statins and diabetes: What are the connections?

Naveed Sattar (Professor)

School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK

ARTICLE INFO

Article history: Available online 15 February 2023

Keywords: Randomized trials Mendelian randomization HbA1c lifestyle cardiovascular outcomes

Randomized trials suggest moderate-intensity statins increase type 2 diabetes risk by around 11% with a potential further 12% moving to high-intensity statins, such that high intensity may increase risk by 20% or more relative to placebo. These data translate into one extra diabetes case per 100-200 statin recipients over 5 years, with ~10fold greater benefits on major vascular outcomes. The underlying mechanisms for diabetes harm are not clear but could include modest weight gain (noted in randomized trials), or, speculatively, beta cell harm. Concordant genetic studies link HMG CoA Reductase inhibition to diabetes risk and weight gain. Patients should be warned about a slight diabetes risk when prescribed statin and told that modest lifestyle improvements can i) nullify diabetes risk, and ii) improve cardiovascular risks beyond statins. Doctors should also measure glycemia status post statin commencement, most commonly with HbA1c, and tailor lifestyle advice and care dependent on the results.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).

Introduction

In 2001, the Glasgow group reported a hypothesis generating lower 30% risk of incident diabetes with pravastatin compared to placebo in the WOSCOPS trial, a trial of over 6000 men with hypercholesterolemia in the West of Scotland [1]. Moving forwards several years, the JUPITER trial suggested the opposite as more rosuvastatin compared to placebo recipients had a doctor diagnosis of diabetes (n = 270 vs. 216, p = 0.01), even though cardiovascular risk was lowered by 44% with rosuvastatin [2]. Such a

https://doi.org/10.1016/j.beem.2023.101749

E-mail address: Naveed.Sattar@glasgow.ac.uk.

¹⁵²¹⁻⁶⁹⁰X/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

report generated concern in the cardiovascular community about the glycaemic impact of statins. Our group subsequently collated all the potential randomized trial data we could gather on this topic, collecting unpublished data from several trials such that in 2009 we reported statin recipients across 13 randomized-controlled trials had a 9% (95% CI: 2–17%) higher risk of type 2 diabetes compared to placebo/standard care recipients, with low levels of heterogeneity [3]. We subsequently reported a 12% (4–22%) higher diabetes risk in people randomized to high versus moderate intensity statin across five trials [4]. These two meta-analyses have since been heavily cited and have informed relevant lipid-lowering guidelines and opinion pieces.

In 2015, we repeated the meta-analysis but this time with data from 15 placebo-controlled or standard care control arm trials [5]. The results suggested an overall elevated diabetes risk by 11% (3–20%) in statin relative to placebo/standard control participants (Fig. 1). The highest risk in any trial was seen in the SPARCL trials which tested the impact of atorvastatin 40 mg in elderly subjects post stroke. There was moderate heterogeneity ($I^2 = 29.6\%$) and insufficient power to prove any statin type had a greater impact on diabetes risk. Even so, it did appear that higher intensity statins yielded greater diabetes risks [5].

Notably, trial data on diabetes diagnoses were mostly collected post hoc with heterogeneous methods ranging from a mixture of repeat glycemia testing (fasting glucose) to doctor-diagnosed diabetes. Ongoing individual participant data analysis of statin trials, which has collated more data from all relevant trials as part of the CTT collaboration [6], should help shed more granularity on glycemic impact of statins in both people with and without baseline diabetes, including the time course for glycemia changes.

Numerous other meta-analyses or observational data have since examined this topical subject, but many have important limitations, and none meaningfully extend the results of the three meta-analyses [3–5] co-led by the Glasgow group. In 2018, Collins et al. put these meta-analyses data into context by comparing the number needed to benefit of 10–20 for one less major vascular events with five years of daily high-intensity statin therapy, with the number needed to harm of 100–200 for one new-onset diabetes case, Table 1 [7]. In other words, for every 10 major vascular events prevented, approximately one extra case of diabetes would emerge.

What do the genetics tell us?

Mendelian randomization is a method now familiar to most readers whereby genetic polymorphisms that lead to lifelong differences in one biological pathway can be used to approximate its relevance to long-term risks by comparing outcomes in those with or without such polymorphisms. Such work (for example, using polymorphisms that lower HMG-CoA-Reductase activity, the rate-limited step in cholesterol, synthesis) has been widely used to confirm LDL-c lowering should lower cardiovascular outcomes, but also that longer term statin treatment should yield even greater outcomes benefits than reported in shorter term trials [8]. Using the same polymorphisms, we reported their association with higher diabetes risk, and interestingly also with higher weight in the 2015 meta-analysis [5]. To confirm clinical relevance, we also extracted weight changes from as many trials as we could gather and were able to show statins modestly increased weight (on average 0.24 kg) relative to control arm, with the effect being somewhat greater in the placebo /standard arm control trials (0.33 kg), (Fig. 2) [5]. Interestingly, there was no weight differential in the five low versus high statin intensity trials, which on the face of it seems to go against weight excess explaining the diabetes risk. However, weight is composite of fat and lean mass, and as patients with existing cardiovascular disease (as in low vs high-intensity statin trials) tend to lose weight over time due to unintentional weight loss, any signal of statin-induced fat mass gain could be lost or attenuated.

Other work using genetic analyses and novel Egger regression analyses has suggested that the statin to diabetes effect, in line with the statin to cardiovascular benefit, is likely entirely explainable by the impact of statins on LDL-c levels [9]. In other words, pleiotropic effects are unlikely to explain statin benefits or their actions to worsen glycemia. Of course, the degree of LDL-c reduction is dependent on the degree of reduced activity of HMG CoA Reductase activity, and thus these results are in line with earlier genetic data and with data comparing the impact of high-intensity versus low-intensity statin trial [5]. The one cautionary note with Mendelian randomization genetic studies is that their robustness

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Non-case Low case Non-case Low case Non-case dudt care: controlled 3322 3333 3336 3433 3336 3338 <th>Stati</th> <th>f</th> <th>Control</th> <th></th> <th></th> <th>OR (95% CI)</th> <th>Weight</th>	Stati	f	Control			OR (95% CI)	Weight
controlled or standard care controlled BS 1918 193 193 2832 Fer CAPS 72 3022 73 303 2833 Fer CAPS 72 3022 73 303 2853 Fer CAPS 72 3024 193 1363 Fer CAPS 72 3024 193 1363 Fer CAPS 72 3024 138 3363 Fer CAPS 72 302 138 3363 Fer CAPS 72 303 6969 FIT 238 2779 283 6999 FIT 238 2779 281 46087 A 100 1671 88 1673 A 100 1671 188 1673 A 100 1671 210 101 1671 2131 46087 F 2003 3439 2093 353 A 100 1671 210 101 1671 2131 46087 A 100 1671 210 116 169 393 1593 A 100 15041 2013 A 100 1504	controlled or standard care controlled BS 1918 193 2832 Tec.CAPS 72 3022 73 303 2893 Tec.CAPS 72 3022 73 303 2853 Tec.CAPS 72 3024 138 3363 evenzione 96 647 105 1612 evenzione 96 647 105 1612 LLT 233 6956 233 6969 LLT 233 6956 134 3729 LLT 233 779 115 101 106 197 LLT 240 3437 209 3515 LLT 240 2438 474 2438 474 474 474 474 474 474 474 474 474 47	Case	Non-case	Case	Non-case			(%)
S 198 191 193 19	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lacebo-controlled or stan		lled				
BS 75 2924 93 2882 94 Tec(AFS 72 3022 14 737 103 1612 vernzione 96 1647 105 1612 363 14 vernzione 96 1647 105 1612 368 14 vernzione 96 1647 105 1513 14 737 LIT 238 6956 2345 127 2386 14 729 LIT 238 777 134 3729 144 329 LIA 154 3756 134 3729 144 2909 LIA 156 134 3729 144 2909 146 1606 A 100 1671 88 1675 146 1606 146 1607 $K_{1}=0.134$ 4574 2181 46087 146 160 146 146 146 $K_{1}=0.134$ 216	BS 75 2924 93 2882		1918	193	1933		1.03 (0.84-1.27)	5.51
TeckAbs 72 3022 74 3043 11 707 14 736 12 3370 14 737 14 737 14 733 17 707 14 736 14 735 14 733 15 2345 123 2358 115 238 2779 212 2358 117 238 213 73386 144 2909 117 2381 115 1783 115 1783 117 2381 115 1783 116 1299 117 2841 166 1739 115 1783 117 2841 216 865 21435 215 1203 110 166 1739 115 1783 216 120 111 2409 45741 2181 46087 47 120 10 166 133	TeccABs 72 3022 74 3043 11 707 14 731 12 335 6956 293 6989 -LIT 238 2779 14 731 14 737 14 732 15 2345 113 709 16 1739 115 1783 117 288 2779 212 2868 117 2841 164 2909 5956 117 2841 164 2909 5956 118 3729 115 1783 5956 117 2841 166 1393 5956 118 3729 115 1783 5956 11 200 551 143 5163 11 203 3158 3153 5164 11 203 3158 3133 516 11 240 3363 3333 3333		2924	93	2882 —	•	0.79 (0.58-1.08)	2.77
126 3370 138 3363 werratione 96 1647 105 1612 17 707 14 333 6956 239 6936 11 238 2779 212 2858 7779 212 2858 R 165 2345 127 2386 127 2386 LL 238 2779 212 2858 127 2386 A 100 167 138 1667 133 166 A 200 85, p=0.134 166 133 166 133 166 M 200 153 116 2009 167 166 173 166 173 166 173 166 173 166 173 166 173 166 173 166 173 174 173 173 <th< td=""><td>126 3370 138 3363 100 111 100 101<</td><td></td><td>3022</td><td>74</td><td>3043</td><td></td><td>0.98 (0.71-1.36)</td><td>2.47</td></th<>	126 3370 138 3363 100 111 100 101<		3022	74	3043		0.98 (0.71-1.36)	2.47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3370	138	3363		0.91 (0.71-1.17)	4.14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1647	105	1612	•	0.89 (0.67-1.19)	3.19
LIT 238 6956 293 6989 R 154 3745 127 288 LA 154 3756 134 7236 LA 154 3756 134 2399 A 100 1671 88 1675 A 200 8631 216 8685 F 225 1435 215 1568 R, p=0.134) %, p=0.134) %, p=0.253 %, p=0.253	LIT 238 6956 293 6989 LIT 238 2779 212 2858 LA 154 3756 134 3236 LA 154 3756 134 3236 A 100 1671 88 1675 A 200 8631 216 8885 F 225 1435 215 1503 M 2400 45741 2181 46087 %, p=0-134) %, p=0-293 M, p=0-		707	14	737		1.27 (0.62-2.59)	0.55
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LIT 238 2779 212 2858 R 165 2345 112 2386 LA 154 2376 134 3729 115 1783 115 2386 A 100 1671 88 1675 A 100 1675 4100 1675 A 100 1675 4100 1675 A 100 1675 4100 1675 A 100 1675 2 255 A 100 1675 41005 A 100 1675 2 4105 A 100 1675 2 255 A 100 1675 2 4105 A 100 1675 2 4105 A 100 1675 2 255 A 100 1675 2 4105 A 100 1675 2 4105 A 100 1675 2 255 A 100 1675 2 4105 A 100 1675 2 255 A 100 1675 2 4105 A 100 1675 2 255 A 100 1675 2 4105		6956	293	6869		1.15 (0.98-1.35)	8.32
R 165 2345 127 2386 LA 154 3756 134 3729 166 1739 115 1783 172 2841 164 2909 A 100 1671 88 165 A 200 8631 216 8685 A 200 8631 216 8685 A 200 8631 216 8685 $\kappa_p = 0.134$) 2181 46087 $\mu_{polocoloriclocicicicicicicicicicicicicicicicicici$	R 165 2345 127 2386 LA 154 3726 134 3729 116 1739 115 1783 115 1783 1172 2841 164 1739 115 1783 1172 2841 164 1790 8631 216 8685 1172 216 8685		2779	212	2858		1.15 (0.95-1.40)	6.27
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2345	127	2386	•	1.32 (1.04-1.68)	4.38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3756	134	3729		1.14 (0.90-1.44)	4.46
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1739	115	1783		1.48 (1.16-1.89)	4.12
A 100 1671 88 1675 Z70 8631 216 8685 215 1503 M 2409 45741 2181 46087 1436 1450 %, p=0.134) 216 8685 1436 2181 46087 14087 %, p=0.134) 2181 46087 2181 46087 14087 14087 %, p=0.134) 11606 99 1289 12893 12693 12693 %, p=0.134) 1606 99 12893 12693 12693 12693 12693 126944 1410 1495 13903 3515 4713 587 4812 12644 0.5 4773 587 4812 12644 12644 12644 $0.9-0.598$ 0.500 3481 61131 0.5 1.0 1.5 2.5 1.0 1.5 2.5 0.5 0.5 1.0 1.5 1.0 1.5 2.5 2.5 2.5 2.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2841	164	2909		1.07 (0.86-1.34)	5.02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1671	88	1675		1.14 (0.85-1.53)	3.01
F 225 1435 215 1503 M 2409 45741 2181 46087 %, p=0-134) 2.181 46087 1001 1606 99 1589 %, p=0-134) 1606 99 1589 1608 <td>F 225 1435 215 1503 w, p=0·134) 45741 2181 46087 46087 %, p=0·134) 2409 45741 2181 46087 %, p=0·134) 2409 45741 2181 46087 %, p=0·134) 1606 99 1589 \sim evs moderate dose 17001 1606 99 1589 \sim evs moderate dose 17003 347 2183 3439 \sim evs moderate dose 17003 347 2183 3439 \sim evs moderate dose 17003 347 2183 3439 \sim \sim 0.5 4773 587 4812 \sim \sim \sim \sim \sim 0.5 4733 587 4812 \sim \sim</td> <td></td> <td>8631</td> <td>216</td> <td>8685</td> <td>•</td> <td>1.26 (1.05-1.51)</td> <td>6.88</td>	F 225 1435 215 1503 w, p=0·134) 45741 2181 46087 46087 %, p=0·134) 2409 45741 2181 46087 %, p=0·134) 2409 45741 2181 46087 %, p=0·134) 1606 99 1589 \sim evs moderate dose 17001 1606 99 1589 \sim evs moderate dose 17003 347 2183 3439 \sim evs moderate dose 17003 347 2183 3439 \sim evs moderate dose 17003 347 2183 3439 \sim \sim 0.5 4773 587 4812 \sim \sim \sim \sim \sim 0.5 4733 587 4812 \sim		8631	216	8685	•	1.26 (1.05-1.51)	6.88
I 2409 45741 2181 46087 %, p=0-134) %, p=0-134) 2181 46087 %, p=0-134) 1666 99 1589 evs moderate dose 1666 99 1589 65 1703 3515 473 3380 3383 3515 473 65 4773 587 4812 1449 14959 1300 15044 $b, p=0.598$) 3858 60700 3481 60 3481 61131 0.5 $b, p=0.253$ 0.5 1.0 1.5	I 2409 45741 2181 46087 %, p=0·134) %, p=0·134) ************************************		1435	215	1503		1.10 (0.90-1.34)	5.86
%, p=0-134) es moderate dose er s moderate dose f 5 1703 47 1589 65 1703 37 1689 65 1703 3515 9 1589 240 3397 259 3439 9 287 4812 635 4773 587 4812 1 1449 14959 1300 15044 1404 5, p=0-598) 3858 60700 3481 61131 1 %, p=0-253) 0.5 1.0 1.5 2 2.5 %, p=0-253) 0.5 1.0 1.5 2 2.5 %, p=0-253) 0.5 1.0 1.5 2 2.5	%, p=0-134) evs moderate dose evs moderate dose 171M122 101 1606 99 1589 65 1703 347 171M122 101 1606 163 373 353 171M122 101 1606 165 1703 343 240 3497 209 3383 353 4812 1 1449 1495 1 1449 1495 1 1449 1495 1 1449 1495 1 1449 1495 1 1449 1495 3858 60700 3481 61131 %, p=0.253) 0.5 1.0 1.5 2.5 . 0.5 1.0 1.5 2.5 . 0.5 1.0 1.5 2.5 . 0.5 1.0 1.5 2.5 . 1.5 2.5 2.5 . 1.6 1.5 2.5 <td></td> <td>45741</td> <td>2181</td> <td>46087</td> <td>\Diamond</td> <td>1.11 (1.03-1.20)</td> <td>66.98</td>		45741	2181	46087	\Diamond	1.11 (1.03-1.20)	66.98
evs moderate dose ITTMI22 101 1606 99 1589 65 1703 47 1689 418 3380 358 3439 240 3497 209 3515 625 4773 587 4812 1 0 15044 5, p=0-598) %, p=0-253) %, p=0-253) %, p=0-253) 0,5 Lower odds of type 2 diabetes Higher odds of type 2 diabetes	evs moderate dose ITTMI22 101 1606 99 1589 65 1703 47 1689 418 3380 358 3439 240 3497 209 3515 180 15044 625 4773 587 4812 1300 15044 627 473 587 4812 628 4773 587 4812 1300 15044 6131 % p=0-598) % p=0-253) % p=0-253) % p=0-253) % p=0-253) % p=0-253) % p=0-253) % p=0-253)	=29·6%, p=0·134)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ensive vs moderate dos	4					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OVE-IT TIMI22 101		66	1589		1.01 (0.76-1.34)	3.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	418 3380 358 3439 240 3497 209 3515 240 3497 209 3515 625 4773 587 4812 625 4773 587 4812 625 4773 587 4812 625 4773 587 4812 625 4773 587 4812 625 1300 15044 1 60-538 60700 3481 61131 %, p=0-253) 0.5 1.0 1.5 2 0.5 1.0 1.5 2 2.5 Lower odds of type 2 diabetes Higher odds of type 2 diabetes Higher odds of type 2 diabetes		1703	47	1689	•	1.37 (0.94-2.01)	1.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3380	358	9439		1.19 (1.02-1.38)	9.25
1 2.35 3.473 5.87 4812 1 1449 14959 1300 15.044 5 p=0-598) 3858 60700 3481 61131 %, p=0-253) 0.5 1.0 1.5 2 2.5 %, p=0-253) 0.5 1.0 1.5 2 2.5 1 0.5 1.0 1.5 2 2.5 1 0.5 1.0 1.5 2 2.5 1 0.5 1.0 1.5 2 2.5	1 527 537 4812 1 1 1449 14959 1300 15044 1 5, p=0.598) 1300 15044 1 1 5, p=0.598) 3858 60700 3481 61131 5, p=0.553) 3858 60700 3481 61131 5, p=0.253) 0,5 1.0 1.5 2.5 1 0,5 1.0 1.5 2.5 1 0,5 1.0 1.5 2.5 1 0,5 1.0 1.5 2.5 1 0,5 1.0 1.5 2.5 1 0,5 1.0 1.5 2.5 1 1.5 1.0 1.5 2.5 1 1.5 1.0 1.5 2.5 1 1.5 1.0 1.5 2.5 1 1.0 1.5 2.5 1.0 1 1.5 1.0 1.5 2.5 1 1.5 1.0 1.5 2.5 1 1.0 1.		LUVC	000	261C		1.1E (0.0E_1.40)	6.22
022 4//2 500 4//2 300 1504 5, p=0.598) 14959 1300 15044 1 1 858 60700 3481 61131 1 1 1 %, p=0.253) 0.5 1.0 1.5 2 2.5 Lower odds of type 2 diabetes 1:0 1.5 2 2.5	0.25 4/7.5 500 40.12 0.15 1300 15044 150 150 150 0.15 100 15 10 15 2 25 %, p=0.253) 0.5 0.5 1.0 1.5 2 2.5 0.5 0.5 1.0 1.5 2 2.5 1.0 1.5 2.5 Icower dds of type 2 diabetes Higher odds of type 2 diabetes 1.0 1.5 2.5 1.6	2		L07				
1 1449 14959 1300 15044 0, p=0-598) 3858 60700 3481 61131 %, p=0.253) 0.5 1.0 1.5 2 5 %, p=0.253) 0.5 1.0 1.5 2 2 5 1 0.5 1.0 1.6 1.6 2 5 1 0.5 1.0 1.6 1.6 2 5 1 0.5 1.0 1.6 1.6 2 5	1 1449 14959 1300 15 044 5, p=0.598) 3858 60700 3481 61131 3858 60700 3481 61131 10 %, p=0.253) 0.5 1.0 1.5 2 0.5 1.0 1.5 2 2.5 Lower odds of type 2 diabetes Higher odds of type 2 diabetes 10.416.416.0140.0140.01200 10.416.416.0140.0140.01200		C1/4	100	7104	- <	(T7.T-CE.O) /O.T	FC.21
3858 60700 3481 61131 %, p=0-253) 0.5 1.0 1.5 2 2.5 Lower odds of type 2 diabetes Higher odds of type 2 diabetes	3858 60700 3481 61131 ↔ % p=0:253) 0.5 0.5 1:0 1.5 2 2.5 Lower odds of type 2 diabetes Higher odds of type 2 diabetes in the treatment arm in the treatment arm	n=0.598)	14959	1300	15044	<u>}</u>	1.12 (1.04-1.22)	33-02
3858 60700 3481 61131 ↔ %, p=0.253) 0.5 1.0 1.5 2.5 Lower odds of type 2 diabetes Higher odds of type 2 diabetes	3858 60700 3481 61131 ↔ %, p=0:253) 0.5 1.0 1.5 2 2.5 Lower odds of type 2 diabetes Higher odds of type 2 diabetes in the treatment arm in the treatment arm							
1.0	1.0	%, p=0·253)	60700	3481	61131	- - 	1.12 (1.06-1.18)	100-00
					0-5	1-0		
					Lower odds of t			

Table 1

Numbers needed to treat and harm for	or outcomes associated with fiv	e years of daily high-intensity statin therapy.

	Primary prevention		Secondary prevention	on
	NNH	NNT	NNH	NNT
Major vascular events		20		10
New diabetes	100-200		100-200	
Hemorrhagic stroke	1000-2000		1000-2000	
Myopathy	2000		2000	

Based on data from Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 2016;388(10059):2532–61.

depends on the preciseness of the genetic instrument used; not uncommonly chosen instruments are associated with different biological pathways (pleiotropy), leading to erroneous outcomes. Geneticists have developed new mathematical models to try to account for different types of confounding but, even so, the answers are not always as accurate as headlines would suggest.

Potential impact of other lipid-lowering drugs from genetics and trials

Of the other lipid-lowering drugs which have looked at this question, most robust data come from studies of PCSK9i. Here, genetic studies based on several different polymorphisms suggest a modest impact on diabetes risk and weight gain [10]. However, data from two large outcome trials have looked at this question and do not show appear to show any clear impact on diabetes risk. For example, in FOURIER, adjudicated cases of new-onset diabetes did not differ significantly between the evolocumab or placebo groups (hazard ratio, 1.05; 95% CI, 0.94–1.17) [11], whereas in ODYSEY OUTCOMES trial, 9.6% of alirocumab recipients develop new-onset diabetes versus 10.1% in the placebo group [12]. The one cautionary note was the shorter duration of these trials at 2.2 and 2.8 years, respectively, necessitating continued vigilance in ongoing trials.

Some groups have simultaneously conducted Mendelian randomization studies linking several lipidlowering targets and their impacts on diabetes. For example, Lotta et al. confirmed links between HMG CoA Reductase genes and diabetes but also reported that genes near NPC1L1, encoding the molecular target of ezetimibe, may be associated with the highest risk of type 2 diabetes of any lipid target. The OR for a genetically predicted 1-mmol/L reduction in LDL-C via this pathway was 2.42 [95% CI, 1.70–3.43] [13]. The same paper also predicted a higher diabetes risk for PCSK9i. However, as noted, there is, as yet, no clear evidence for PCSK9i impact on diabetes risk in major trials [11,12]. Preliminary data also goes against any clear impact of ezetimibe on the glycemic status on top of statins [14]. Analyses from the IMPROVE-IT trial also did not confirm an impact of ezetimibe on diabetes risk (Robert P Giugliano, personal communication). Thus, some caution is required about ezetimibe, which, by its mode of action, would not be predicted to influence diabetes risk.

The one other recently approved agent of interest is Bempedoic acid, which is an oral ATP citrate lyase inhibitor, and a prodrug converted to active coenzyme A form by enzymes found only in the liver and not in muscles. Current accumulated randomized controlled phase 3 trial evidence suggests Bempedoic acid lowers: i) HbA1c levels modestly (by around 0.12–0.06%, in diabetes and pre-diabetes, respectively) and ii) weight by around 0.42 and 0.35 kg relative to placebo in those with diabetes and pre-diabetes, respectively [15]. There was no evidence of weight loss in non-diabetes in those trials. Interesting, pre-liminary genetic data on ACLY variants also suggest a potential borderline (p = 0.05) reduction in the risk of diabetes, data in stark contrast to the opposite findings for HMG CoA Reductase variants) [16].

Table 2 provides a summary of the commonly used LDL-c lowering agents in practice, and their effects on diabetes risks reported variably in genetic studies and clinical trials. To date, only statins have reliable evidence for an adverse impact on diabetes risk, albeit modest in nature. More data on Bempedoic acid will come from the CLEAR Harmony trial due to report in the near future. If this confirms a

Placebo controlled or standard care controlled 920 2025 942 973 973 45 XCAPS Text (APS 2039 2975 0.41 0.42 0.071 594 45 XCAPS Text (APS 2320 2375 0.41 0.42 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41		Statin treatment	Control		Change in bodyweight (kg 95% Cl)	Weight (%)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Placebo-controlled or standard ca	re-controlled				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4S	2029	2026	*	0·42 (0·07 to 0·77)	5.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WOSCOPS	2999	2975		0·31 (0·06 to 0·56)	7.34
4116 4116 6 112 060 (008 to 1-12) 1743 1717 0-10 (040 to 0-58) 0-31 (0.04 to 0-36) 0-31 (0.04 to 0-38) 10 (0.04 to 0-36) 0-31 (0.04 to 0-38) 10	AFCAPS TextCAPS	3220	3230	•	0.41 (0.19 to 0.63)	7.71
1743 1717 0-31 (0-04 to 0-58) 2459 2475 0-34 (0-17 to 0-71) 3752 3660 0-44 (0-17 to 0-71) 1970 1967 0-29 (0-06 to 0-58) 1970 1967 0-29 (0-06 to 0-58) 1970 1967 0-29 (0-07 to 0-67) 1771 1763 0-10 (-0-49 to 0-29) 1771 1763 0-10 (-0-49 to 0-29) 1771 1763 0-13 (0-00 to 0-36) 1771 1763 0-30 (-0.07 to 0-67) 1649 1626 0-33 (0-07 to 0-67) 1649 1626 0-33 (0-25 to 0-42) 1649 1626 0-13 (0-05 to 0-38) 1771 273 384 270 (0-07 to 0-67) 36023 35522 3552 0-33 (0-25 to 0-42) 3603 3866 0-33 (0-25 to 0-42) 0-13 (0-36 to 0-38) 1649 1626 0-33 (0-27 to 0-29) 0-20 (0-07 to 0-38) 3865 0-701 0-13 (0-10 to 0-38) 0-13 (0-10 to 0-38) 0701 971 971 0-13 (0-10 to 0-38) 075 0-31 (0-10 to 0-38) 0-13 (0-	LIPID	4116	4116	•	0.60 (0.08 to 1.12)	4.16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GISSI-Prevenzione	1743	1717	*	0.31 (0.04 to 0.58)	7.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PROSPER	2459	2475	*	0.44 (0.17 to 0.71)	7.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ASCOT-LLA	3752	3660		0.29 (0.05 to 0.53)	7.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SPARCL	1970	1967	*	-0.10 (-0.49 to 0.29)	5.43
1771 1763 0.30 (-0.07 to 0.67) 7437 7331 0.30 (-0.07 to 0.67) 1660 1718 0.30 (-0.07 to 0.67) 36023 35952 0.35 (0.23 to 0.57) 36023 35952 0.33 (0.23 to 0.57) 36023 35952 0.33 (0.23 to 0.67) 3603 35952 0.33 (0.25 to 0.42) 3603 35952 0.33 (0.25 to 0.42) 3843 3866 -0.13 (-0.64 to 0.38) 9701 9717 0.33 (0.25 to 0.42) 9703 9704 45059 to -0.10) 9704 9717 0.35 (-0.59 to -0.10) 9704 9717 0.35 (-0.59 to -0.10) 9704 9717 0.25 (-0.59 to -0.10) 9717 0.5 0.15 (-0.10 to 0.38) 10 1 1 1 0.24 (0.10 to 0.38) 10 1 1 1 0.5 1 1 1 0.5 0	MEGA	2867	2974	•	0.18 (0.00 to 0.36)	8.27
7437 7331 7437 7331 1660 1718 $040(0.23 t0 0.57)$ $0.72(0.28 t0 1.16)$ 36023 35952 $0.33(0.25 to 0.42)$ $0.72(0.28 t0 1.16)$ 3649 1626 $0.33(0.25 to 0.42)$ $0.33(0.25 to 0.42)$ 1649 1626 $0.33(0.25 to 0.42)$ $0.33(0.25 to 0.42)$ 3843 3866 $0.33(0.25 to 0.42)$ $0.33(0.25 to 0.42)$ 3843 3866 $0.33(0.25 to 0.42)$ $0.33(0.25 to 0.42)$ 9701 9717 $0.33(0.25 to 0.42)$ $0.33(0.25 to 0.42)$ 9703 9717 $0.34(0.13 to 0.03)$ $0.33(0.25 to 0.42)$ $0.33(0.25 to 0.42)$ 45724 4569 0.15 $0.24(0.13 to 0.03)$ $0.24(0.10 to 0.38)$ 10 -0.5 0 0.5 1 $0.24(0.10 to 0.38)$ 10 -0.5 0.55 1 $0.24(0.10 to 0.38)$ 10 100 0.5 1 $0.24(0.10 to 0.38)$ 10 0.55 1 0.55 1 $0.24(0.10 to 0.38)$ 10 100 0.5 1 <t< td=""><td>CORONA</td><td>1771</td><td>1763</td><td></td><td>0.30 (-0.07 to 0.67)</td><td>5.68</td></t<>	CORONA	1771	1763		0.30 (-0.07 to 0.67)	5.68
1660 1718 0.72 (0.28 to 1.16) 36023 35952 0.33 (0.25 to 0.42) 36023 35952 0.33 (0.25 to 0.42) 1649 1626 0.13 (-0.64 to 0.38) 4209 4225 0.03 (0.25 to 0.42) 3843 3866 -0.13 (-0.64 to 0.38) 3843 3866 -0.13 (-0.64 to 0.38) 3701 9717 -0.35 (-0.59 to -0.10) 9703 9717 -0.25 (-0.59 to -0.10) 9704 9717 -0.25 (-0.39 to 0.08) 10.45 (-0.310) -0.15 (-0.39 to 0.03) 5 0 -0.5 (-0.10 to 0.38) 10effects analysis -0.5 (-0.10 to 0.38) 10 10effects analysis -0.5 (-0.10 to 0.38) 10 10effects analysis -0.5 (-0.10 to 0.38) 10 10the treatment arm the treatment arm the treatment arm	JUPITER	7437	7331		0.40 (0.23 to 0.57)	8.35
36023 35952 0.33 (0.25 to 0.42) 1.23 1649 1626 0.33 (0.25 to 0.42) 1.3 4209 4225 0.33 (0.25 to 0.42) 1.3 3843 3866 -0.13 ($-0.4100.38$) -0.13 ($-0.5100.07$) 3843 3866 -0.35 ($-0.3100.07$) -0.35 ($-0.3100.07$) 3701 9717 0.35 ($-0.3100.06$) -0.35 ($-0.39100.08$) 10 45724 4569 -0.5 0 0.5 1 n -effects analysis -0.5 0 0.5 1 10 the treatment arm the treatment arm the treatment arm 10	GISSI-HF	1660	1718		0.72 (0.28 to 1.16)	4.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Subtotal (/ ² =18·6%, p=0·261)	36023	35 952	\Diamond	0-33 (0-25 to 0-42)	79.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Intensive vs moderate dose	01.31	2021	,		0
4209 4225 3843 3866		640T				
3045 3000 9701 9717 9701 9717 9701 9717 9701 9717 9701 9717 9701 9717 9701 9717 9701 9717 9701 9717 9703 971 9704 971 9705 0.15 (-0.39 tio 0.08) 10 0.24 (0.10 to 0.38) 11 0.24 (0.10 to 0.38) 12 Lower bodyweight (kg) in 13 Lower bodyweight (kg) in 14 the treatment arm		6024	5774 570c	•		51.Y
5/01 9/1/ 9/1/ 45724 4569 0.24 (0.10 to 0.38) 1 1 1 0.24 (0.10 to 0.38) 1 0.10 to 0.38) 1 1 1 1		3043	3000			15.1
45724 45669 0-24 (0-10 to 0-38) m-effects analysis -0.5 0 0.5 1 Lower bodyweight (kg) in Higher bodyweight (kg) in the treatment arm	Subtotal (/*=03·2%, p=0·060)	10/6	9/1/	\	-0·15 (-0·39 to 0·08)	20.02
-0	Overall (1 ² =78.6%, p<0.0001) Note: weights are from random-e	45724 effects analysis	45669		0.24 (0.10 to 0.38)	100-00
			-	-0		
	351–361, Copyright Elsevier. (2015). [5].					

5

Table 2

Summary of top-line results on the impact of the four most used lipid-lowering agents on diabetes and weight gain in trials and genetic studies.

Class of lipid-lowering agent	Genetics		Trials		Comment	
	DM Risk	Wt Gain	DM Risk	Wt change		
Statins (HMGCoA Reductase)	1	1	1	✓ weight gain	Diabetes and weight effect modest—likely mitigated by lifestyle improvements. More long-term data needed for statins on body composition	
Ezetimibe (NPC1L1)	1	NR	NR	NR	More data on ezetimibe impact on diabetes risk coming later this year but preliminary data from IMPROVE- IT do not support an impact on diabetes risk	
PCSK9i	J	1	No	No	Two large trials show no clear impact on diabetes risk which suggests the current genetics may not be accurate or that risk will take longer to materialize	
Bempedoic acid (ACLY)	✓ but lower (borderline)	NR	✓ Lower risk	✓ Weight reduction	Short-term trials suggest a reduction in HbA1c, but longer-term data needed, and no mechanistic work done as yet. Note urate levels increase with Bempedoic acid.	

NR = not recorded.

lower diabetes risk, studies on potential mechanisms for how this class lowers HbA1c whilst increasing urate levels would be useful.

Mechanisms of diabetes risk of statins: largely unknown

There is no clear consensus on the mechanisms by which statins increase diabetes risk. The most convincing pathway for a contributory effect is the statin-induced weight gain given weight excess is a key feature of diabetes pathogenesis. Mendelian randomization data suggest around half of the impact of statins on diabetes risk may be accounted for their impact on weight [17]. However, the trial data showed only a modest increase in weight (~0.66 pounds) relative to placebo/standard control arm, which seems too low to account for a 10–20% higher diabetes risk, unless the statin-induced weight gain is attenuated by a subtle loss of muscle mass. There was a very minor increase in creatine kinase levels by approximately 0.02 times the upper limit of normal with statins in a recent individual participant data meta-analysis of statin randomized trials [18]. To what extent such a small rise in creatine kinase levels reflect changes in muscle mass or function to enhance diabetes risk is uncertain. More studies are needed to tease out the impact of statins on body composition, though such work would need very large numbers to have adequate power.

In terms of insulin resistance, there is some weak and mixed evidence for worsening insulin resistance (based on surrogate markers) with statins but the evidence base in general supporting this conclusion is rather weak, as we have previously summarized [19]. Surprisingly, there is a lack of robust clamp-based randomized trials of sufficient power testing this question. There are also hypothetical arguments to support an adverse impact of statins on beta cell function, potentially arising from an increase in intracellular cholesterol in beta cells, again as previously discussed [19]. However, once again, robust randomized trials are lacking to support or refute these suggestions. Presently, therefore, definitive mechanisms explaining the statin impact on diabetes risk is far from established.

Clinical relevance of the data

Statin treatment has overwhelmingly shown cardiovascular benefit with numbers needed to benefit of 20 and 10 patients treated for five years to prevent one major vascular event in primary and secondary prevention populations, respectively [7]. As noted, these numbers compare with numbers needed to harm of 100–200 for one extra case of diabetes, which should be remembered as a diagnosis of elevated glucose levels, not a hard outcome per se. Such diabetes risks are also, predicably, higher in absolute terms in those with greater risk factors for diabetes given they will be closer to the threshold for diagnosis of diabetes in the first place [20]; of course, such patients are also often at higher-than-average cardiovascular risk. The reverse is also true in that those with no or minimal risk factors for diabetes have low absolute risks of converting to diabetes when on a statin.

Concerns about diabetes risk are therefore seldom a reason to withhold statins, but it should be mentioned to patients even if it is modest, especially as diabetes risk can be mitigated by simple lifestyle changes. Patients should also be told that any modest and ideally sustainable lifestyle changes will also help prevent vascular events beyond statin treatment. In this way, the statin-associated diabetes risk is an important point to get across to patients to help ensure they take lifestyle changes more seriously than they might otherwise. These points should be potentially more carefully mentioned to patients at elevated diabetes risk.

In patients with existing diabetes, the overall HbA1c change with statins is often trivial [21–23] and, currently, of little clinical concern. Again, more relevant data on this point should soon be forthcoming from a re-analysis of data from multiple statin outcome trials. Of course, it should be remembered that even if HbA1c does rise modestly with statins in people with diabetes, it may take many years to impact microvascular risk (if at all), whereas cardiovascular risk would be reduced rapidly.

A final point is that when type 2 diabetes develops in general, many other risk factor changes are evident such as higher blood pressure, higher BMI, and a characteristic dyslipidemia. We know statins increase weight modestly, but there is no evidence to support an impact on blood pressure and, LDL-c improves with statins, as do triglyceride levels. Thus, the impact of statin-induced new-onset diabetes on microvascular risk may not be the same as new-onset diabetes in general but, once again, more data are needed to prove this point.

Summary

Of all the lipid-lowering agents, statins have the best evidence to support a small, but significant impact on the development of new-onset diabetes. Such risks appear higher in relative terms at greater statin intensities and greater in absolute terms when patients have more diabetes risk factors at baseline. However, such patients often have higher average cardiovascular risks. Statins increase glycemia levels very modestly, but the underlying mechanisms remain uncertain. A slight weight gain may be contributory but more research on their impact on body composition, tissue insulin sensitivity, and beta cell function is needed to resolve numerous speculations. Such trials may never be conducted with sufficient power. More data on HbA1c level changes with statins will be shortly available from additional analyses of randomized trials, including how fast HbA1c rises and whether it continues to rise over time and, if and how fast it declines once statins are stopped.

Presently, statin reduction of major vascular outcomes outweighs their impact on diabetes risk; one extra diabetes case occurs per 100–200 statin recipients over 5 years, with benefits on major vascular outcomes being ~10-fold greater, at least at current cardiovascular risk thresholds for statin treatment. Clinically, doctors need to counsel patients about the potential for very modest increase in diabetes risk when commencing statins and advise that by improving lifestyle—walking a little more and eating a better-quality diet—such risks can be mitigated. Patients should also be told that modest lifestyle changes can also help lower cardiovascular risks beyond impact of statins to diagnose pre-diabetes or new diabetes and treat accordingly or, where appropriate, give patients an opportunity to lower their HbA1c levels meaningfully by extra lifestyle efforts (often involving weight loss) before reassessing glycaemic status.

Practice points

- Counsel about the potential for very modest increase in diabetes risk when commenced on statins and advise that improving lifestyle—by walking a little more and improving diet—will mitigate such risks. Also mention that such modest lifestyle changes can also help lower cardiovascular risks beyond impact of statins and can be enjoyable after a period of perseverance.
- Note that absolute risks of diabetes conversion on a statin will be far greater in those patients with risk factors for diabetes, so that lifestyle changes in such individuals should be strongly recommended.
- Counsel that prevention of cardiovascular events by statins substantially overwhelms any diabetes risk in people considered at high enough risk to be recommended a statin.
- Measure HbA1c or fasting glucose on those recently commenced on statins to diagnose prediabetes or new diabetes and treat accordingly or, where appropriate, give chance to lower HbA1c meaningfully by extra lifestyle efforts, and reassess glycaemic status.

Research agenda

- There is a need for a detailed analysis of individual participant data from statin trials to examine impacts of statins on HbA1c levels in people with and without diabetes, as well test for any differences by dose or length of statin treatment. Such data could also inform on how quickly HbA1c rises and whether it continues to rise over time or not.
- More mechanistic studies are needed to examine potential mechanisms by statins increase diabetes risks, including the impact of statins on body composition. More data on mechanisms for potentially lower risk of diabetes with Bempedoic acid may also be informative.
- Careful analyses of ongoing trials targeting LDL-c reduction by differing methods are needed to examine for any effects on diabetes risk. Such trials include CLEAR HARMONY (Bempedoic acid), VESALIUS (evolocumab) or ORION-4 (Inclisiran).
- More work should be done to see if patients take the diabetes risk associated with statins seriously enough to motivate for lifestyle change but, if not, how advice can be better delivered to help them do so.

Conflict of interest statement

NS has consulted for and/or received speaker honoraria from Abbott Laboratories, Afimmune, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Hanmi Pharmaceuticals, Janssen, Merck Sharp & Dohme, Novartis, Novo Nordisk, Pfizer, Roche Diagnostics, and Sanofi; and received grant support paid to his University from AstraZeneca, Boehringer Ingelheim, Novartis, and Roche Diagnostics outside the submitted work.

Acknowledgments

The author thanks Liz Coyle, University of Glasgow, for her excellent assistance in the preparation of this manuscript. This work was supported by the British Heart Foundation Research Excellence Award (RE/18/6/34217). The funders were not involved in the design of the study; the collection, analysis, and interpretation of data; writing the report; and did not impose any restrictions regarding publication.

8

N. Sattar

References

- Freeman DJ, Norrie J, Sattar N, et al. Pravastatin and the development of diabetes mellitus: evidence for a protective treatment effect in the West of Scotland coronary prevention study. Circulation 2001;103:357–62.
- *[2] Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated Creactive protein. N Engl J Med 2008;359:2195–207.
- *[3] Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 2010;375:735–42.
- *[4] Preiss D. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy. JAMA 2011;305:2556.
- *[5] Swerdlow DI, Preiss D, Kuchenbaecker KB, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 2015;385:351–61.
- [6] CTT Collaboration; 2023. [WWW document]. URL: (https://www.cttcollaboration.org/).
 *[7] Collins R, Reith C, Emberson J, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet
- 2016;388:2532-61.[8] Ference BA. Using genetic variants in the targets of lipid lowering therapies to inform drug discovery and development: current and future treatment options. Clin Pharmacol Ther 2019;105:568-81.
- [9] Labos C, Brophy JM, Smith GD, et al. Evaluation of the pleiotropic effects of statins. Arterioscler Thromb Vasc Biol 2018;38:262–5.
- [10] Schmidt AF, Swerdlow DI, Holmes MV, et al. PCSK9 genetic variants and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol 2017;5:97–105.
- *[11] Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017;376:1713–22.
- *[12] Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018;379:2097–107.
- *[13] Lotta LA, Sharp SJ, Burgess S, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA 2016;316:1383–91.
- [14] Shin K-H, Choi HD. Comparison of efficacy and safety of statin–ezetimibe combination therapy with statin monotherapy in patients with diabetes: a meta-analysis of randomized controlled studies. Am J Cardiovasc Drugs 2022;22:395–406.
- *[15] Leiter LA, Banach M, Catapano AL, et al. Bempedoic acid in patients with type 2 diabetes mellitus, prediabetes, and normoglycaemia: a post hoc analysis of efficacy and glycaemic control using pooled data from phase 3 clinical trials. Diabetes Obes Metab 2022;24:868–80.
- [16] Ference BA, Ray KK, Catapano AL, et al. Mendelian randomization study of ACLY and cardiovascular disease. N Engl J Med 2019;380:1033–42.
- [17] Yang G, Schooling CM. Statins, type 2 diabetes, and body mass index: a univariable and multivariable Mendelian randomization study. J Clin Endocrinol Metab 2023;108:385–96.
- *[18] Blazing M, Braunwald E, de Lemos J, et al. Effect of statin therapy on muscle symptoms: an individual participant data metaanalysis of large-scale, randomised, double-blind trials. Lancet 2022;400:832–45.
- [19] Sattar N, Taskinen M-R. Statins are diabetogenic myth or reality? Atheroscler Suppl 2012;13:1–10.
- [20] Waters DD, Ho JE, DeMicco DA, et al. Predictors of new-onset diabetes in patients treated with atorvastatin. J Am Coll Cardiol 2011;57:1535–45.
- [21] Erqou S, Lee CC, Adler AI. Statins and glycaemic control in individuals with diabetes: a systematic review and meta-analysis. Diabetologia 2014;57:2444–52.
- [22] Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004;364:685–96.
- [23] Collins R, Armitage J, Parish S, et al. MRC/BHF heart protection study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 2003;361:2005–16.
- [24] Kokkinos PF, Faselis C, Myers J, et al. Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet 2013;381:394–9.