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A B S T R A C T

Three-dimensional axisymmetric elasticity solutions for pull-out stresses in bonded anchors with spatially
stiffness-varying adhesive are presented. A stiff rod embedded in a semi-infinite rigid half-space through an
adhesive bondlayer, representing a general anchor problem is analyzed. The adhesive layer is considered
to have a smoothly varying stiffness over embedded length. Two cases of particular engineering relevance
are considered: (i) stiffness grading of the bondlayer to enhance performance while retaining the critical
length characteristics of bonded anchors, and (ii) modulus reduction of the bondlayer representing adhesive
degradation proximal to the loaded-end. Theoretical solutions are developed adopting a stress function
approach in conjunction with a variational method that compare well with 3D axisymmetric finite element (FE)
results. Both theoretical and FE results indicate that the maximum shear stress in the adhesive decreases over
60% for a graded bondlayer for the parameters considered here without warranting a longer embedment length.
In contrast, the degraded bondlayer reduces shear stress peaks significantly but warrants a larger embedment
length to enable shear-dominated stress-transfer, disadvantageously loading the embedded-end in tension. A
design map showing the critical embedment length required for degraded bondlines as a function of fractional
embedment length over which bondline is regarded to have degraded is presented. In addition, interfacial
fracture behaviors of the tailored and degraded adhesive anchors were examined through FE analyses finding
that the tailoring reduces the energy release rate and has the potential for enhancing damage tolerance. The
findings of the study indicate that the stiffness-tailored and -degraded bondlayers significantly redistribute the
stress field with concomitant influence on stress-transfer and interfacial debonding characteristics of bonded
anchors.
1. Introduction

The stress-transfer between the fiber and the matrix in fiber rein-
forced composites in the neighborhood of a fiber break while there is
perfect bonding at the fiber–matrix interface is an important mechanics
problem (McCartney, 1989; Cox, 1952; Nairn, 1997) as it is applicable
to several different situations. Therefore, in this study, the generic
problem of load-transfer between a broken fiber bonded to the matrix is
investigated and discussed in the context of adhesively bonded anchors,
ubiquitous in construction industry. Retrofitting and rehabilitation of
aging infrastructure as well as the demand for flexibility in utilizing
the existing structures has led to an increased usage of fastening sys-
tems. Adhesively bonded structural systems have been widely adopted
for such applications because of their rapid curing speed and cost-
effectiveness (Upadhyaya and Kumar, 2015b; Kalfat and Al-Mahaidi,
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2015). Four different modes of failure have been reported for adhe-
sive anchors (Cook, 1993): (i) debonding of the anchor-adhesive or
adhesive-concrete interface occurs at the embedded-end of the anchor
when tensile stress reaches the interface tensile strength of the adhe-
sive; (ii) debonding of the anchor-adhesive or the adhesive-concrete
interface occurs due to shearing of lateral surface of the adhesive for
anchors with thin adhesive layer and larger embedment length; (iii)
concrete failure (concrete-cone failure) occurs when the embedment
length is small (between 3 to 5 times of the diameter of the anchor);
and (iv) the failure of anchor (rod breakage) occurs when the tensile
stress in the anchor rod exceeds its tensile strength. The experimental
work by Zavliaris et al. (1996), observed bond-failure for embedment
lengths in the range of 8.3 to 10 times the anchor diameter and the
failure of anchor is noted for an embedment length of about 11.2 times
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the diameter of anchor, for a bondline thickness in the range of 2
to 4 mm. The design specifications for industrial anchors recommend
larger embedment lengths with a thin adhesive. Therefore, the pullout
failure mode is very important in such a scenario (Upadhyaya and
Kumar, 2015b; Kumar and Khan, 2016b).

Several theoretical, experimental, and numerical studies have re-
ported pullout performance of anchors with non-tailored bondlayer
(see for instance, McVay et al. (1996), Farmer (1975), Kim and Smith
(2010), Cook (1993), Wang et al. (2020)). The works of Cook (1993),
Cook and Konz (2001) and Doerr and Klingner (1989) provided an
in-depth analysis of the failure characteristics of adhesive anchors.
To assess the non-uniform bond-stress in adhesively bonded anchors
with homogeneous adhesive, shear-lag elastic analysis was utilized,
neglecting the influence of Poisson’s ratio of the bondline (Cook et al.,
1993; Farmer, 1975). A thorough analysis of models for concrete-cone,
bond, and combined failure modes, as well as calibrated models for FRP
spike anchors based on trials and existing models, were reported by Kim
and Smith (2010). Some of the above models assumed a uniform bond-
stress and therefore, spatial variation of shear stress and other possible
failure modes were ignored.

The analytical work of Chen et al. (2015) on cable bolted anchors,
showcased that for anchors with a larger embedment length, the shear
stress distribution along the interface is non-uniform. Prieto-Muñoz
et al. (2013a) proposed closed form elastic solutions for stresses in
adhesively bonded anchors and compared the results with an axisym-
metric finite element solution. They further extended the models to
account for the visco-elastic behavior of the adhesive (Prieto-Muñoz
et al., 2013b). Recent studies (Upadhyaya and Kumar, 2015b; Kumar
and Khan, 2016b; Khan et al., 2022) demonstrated that the boundary
condition at the embedded-end of the anchor has a negligible influence
on the shear stress distribution and its peak for practical anchors
with larger embedment length and stiff adhesive. This is because the
embedment length considered is long enough for shear-dominated
stress-transfer through the adhesive eventhough the embedded-end is
intact and has the potential to transfer the load in direct tension. There-
fore, the boundary condition at the embedded-end may not influence
the failure mode/characteristics of practical adhesive anchors as long
as the strength and stiffness of the adhesive remains unchanged with
time. Wang et al. (2020) proposed a 3D analytical solution in contrast
to a one dimensional model which we refer to as a shear-lag model,
for predicting the performance of bonded anchors with non-tailored
bondlayer. They also reported that a majority of studies rely on shear-
lag analysis for predicting the pullout performance of bonded anchors
with non-tailored bondlayer.

Theoretical analyses of stress-transfer in unidirectional fiber rein-
forced composites (see for e.g., Nairn (1997), Upadhyaya and Ku-
mar (2015a)) and stress-transfer through partially debonded interfaces
in three-phase composites (Wu et al., 1998, 1999) provide potential
guidance for analyzing pullout performance and interfacial debonding
behavior of adhesive anchors due to similar nature of these problems.
In an effort to understand the stress-transfer through the adhesive
interfaces, several analytical solutions have been proposed for bonded
systems (Yang et al., 2008; Ballarini et al., 1986; Gesoğlu et al., 2014;
Steen and Valles, 1998).

Adhesive interfaces with spatially-varying stiffness deserve atten-
tion from the standpoint of designing efficient bonded anchors so as
to improve their pullout capacity and damage tolerance (Krasucki and
Lenci, 2000). Several studies (Stein et al., 2017; Khan et al., 2018;
Paroissien et al., 2018) proposed theoretical models for bonded joints
with functionally graded adhesive to predict the effect of such stiffness-
grading on reduction in peak adhesive stresses. Finite element studies
with continuum damage models were conducted by Kim et al. (2021)
to evaluate mixed-mode failure characteristics of functionally graded
adhesive joints. Recent studies and surveys on functionally graded
adhesive joints provide insights into the analysis, fabrication, experi-
2

mental testing and applications of interface-tailored joints (Durodola,
2017; Kumar and Adams, 2017; Stapleton et al., 2021). For instance,
Stapleton et al. (2012) used glass beads with variable volume fraction
to tailor the adhesive stiffness over the bondlength of a single-lap
joint. Furthermore, second generation acrylic adhesive could be tai-
lored by changing the mixing ratios (Sekiguchi et al., 2019). Recently,
manufacturing challenges in realizing spatially tailored adhesives were
discussed by Marques et al. (2021). Dadian and Rahnama (2021)
has reported a remarkable improvement (≈ 300%) in shear load-
carrying capacity of joint due to an optimal tailoring of adhesive.
Functionally graded adhesives have already been employed in bonded
repairs (Bouchikhi et al., 2010; Kim et al., 2013). Emerging multi-
material 3D printing techniques also facilitate the fabrication of such
stiffness-tailored bondlayers/interfaces (Kumar et al., 2016, 2018; Khan
and Kumar, 2018) and adherends (Ubaid et al., 2018).

Degradation of the epoxy adhesive along with its creep deforma-
tion led to the fatal collapse of a suspended ceiling section in the
Interstate 90 Connector Tunnel in Boston, Massachusetts on July 10th
2006 (NTSB, 2007). This has sparked enormous research interest in
predicting the loss of strength and stiffness of the adhesive material
and the performance of the adhesively bonded anchors under sustained
loading (Kränkel et al., 2015). Under appropriate service condition,
the embedded-end of the anchor is perfectly bonded to the concrete
through adhesive. In this case, the embedded-end of the anchor is
regarded to be fully restrained by the concrete. On the other hand,
if either the concrete has fractured, or alternatively, the hole at the
embedded-end is dry due to non-penetration of adhesive this far, this
restraint would be zero. The latter can occur due to deficient installa-
tion. Non-linear irreversible creep deformations of the adhesives, stress
level and the operating conditions such as the presence of moisture
or freeze-thaw cycles as well as off-design cure cause degradation of
the adhesives, leading to spatially varying-stiffness of the bondline as
a function of time (Rizzoni and Lebon, 2013; Tipireddy and Kumar,
2017). This renders the bondline compliant. Decrease in stiffness of
the bondline warrants a larger embedment length for complete shear
stress-transfer (Tipireddy and Kumar, 2017). The peak shear stress in
the bondlayer is always higher for the case of anchors with debonded
embedded-end (Khan et al., 2022; Kumar and Khan, 2016b). There-
fore, considering debonded-interface condition at the embedded-end
of the anchor is indispensable to assess the influence of bondline
stiffness-degradation on the pullout strength and interfacial fracture be-
havior of such systems. Furthermore, as reported by authors’ previous
work (Khan et al., 2022), the critical length anchors show a zero shear
stress in the adhesive at the debonded embedded-end while they show
finite tensile stress at the embedded-end for anchors with perfectly
bonded embedded-end. As the embedded-end condition is uncertain,
for a conservative design, we consider debonded embedded-end to
evaluate stresses and to identify critical transfer length 𝑙𝑐𝑟. Note that 𝑙𝑐𝑟
is the minimum length required for shear-dominated load transfer and
the anchors with shorter embedment length exhibit concrete-failure
rather than a bond-failure.

Therefore, this study is focused on the stress-transfer and interfacial
debonding characteristics of adhesive anchors subjected to a pullout
load, considering spatial variation in bondline stiffness over a par-
tial/entire embedment length via a theoretical framework, adopting
a stress function approach in conjunction with a variational method,
in contrast to a shear-lag analysis adopted by the previous studies.
In this line of view, a 3D analytical solution for stress-transfer is
proposed for the bonded anchors with functionally stiffness-varying
adhesive subjected to a pullout load. The novelty of the proposed model
is that it accounts for a complex stress-state in the bonded anchors
with graded bondlines rather than employing a shear-lag model which
ignores the Poisson’s effect. To the best of authors’ knowledge only
one model capable of capturing such a complex stress-state exists for
the analysis of anchors, that too, with homogeneous bondline (Wang
et al., 2020). Therefore, in this study, we propose a model to analyze

the stress-transfer characteristics in the functionally graded anchors
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considering a 3D axisymmetric formulation. Moreover, as demonstrated
by Wang et al. (2020), strength prediction based on a 3D axisymmetric
formulation is more accurate than the shear-lag model. The first part of
the study investigates the effect of a tailored bondline in reducing shear
stress concentrations in the bonded anchors, while the subsequent part
of this study evaluates the stress distribution in a degraded bondline. Fi-
nally, this study investigates the interfacial debonding characteristics of
bonded anchors with homogeneous, tailored and degraded bondlines.

2. Analytical model

Consider an anchor rod of radius 𝑎 embedded in a semi-infinite
concrete half-space over a length 𝑙 through an adhesive layer of internal
nd external radii 𝑎 and 𝑏, respectively, as shown in Fig. 1a. The

anchor is considered either as a transversely isotropic or an isotropic
linear-elastic material, while the adhesive is regarded as a linear elas-
tic isotropic continuum. Note that the transverse isotropy of the an-
chor allows for the generalization of proposed model to the cases
of fiber–matrix pullout studies. The interface between the bonded-
in end of the anchor and the concrete is assumed to be completely
debonded/unbonded as shown in Fig. 1a. The axisymmetric assembly is
referred to a cylindrical coordinate system (𝑟, 𝜃, 𝑧), representing radial,
ircumferential and longitudinal directions respectively, with origin 𝑂
t the bonded-in end of the anchor as shown in Fig. 1a. The anchor rod
s subjected to an axial tensile load 𝑃 as shown in Fig. 1a. 𝜎0 is the axial

tensile stress experienced by the anchor due to applied load 𝑃 at 𝑧 = 𝑙
and therefore 𝜎0 = 𝑃

𝜋𝑎2
. 𝐸𝑖 and 𝜈𝑖 denote the Young’s modulus and the

oisson’s ratio of the member 𝑖, respectively. 𝑙𝑐 is the critical length
required for shear-dominated stress-transfer. Fig. 1b shows modulus
profiles (𝐸2(𝑧)) considered for homogeneous, tailored and degraded
bondlines over the embedment length. 𝐸𝑚 is the Young’s modulus of
he homogeneous adhesive. 𝐸𝑝 and 𝐸0 are the maximum and minimum
oung’s moduli respectively of the tailored bondline whose effective
odulus is 𝐸𝑚. 𝐸𝑚 and 𝐸𝑑 are the maximum and minimum Young’s
oduli of the partially degraded bondline respectively. For represent-

ng partially degraded bondline, adhesive modulus is de-graded near
he loaded end over (1 − 𝜁 )𝑙 ≤ 𝑧 ≤ 𝑙 such that 0 < 𝜁 < 1. Fig. 1c

shows typical interfacial shear stress distribution over the embedded
length for different modulus profiles considered in Fig. 1b. Note that 𝑙𝑐
required for both tailored bondline and homogeneous bondlines with
modulus 𝐸𝑚 are the same to ensure shear-dominated load transfer from
the anchor/fiber to the adhesive/matrix as the effective stiffness of the
tailored bondline is 𝐸𝑚.

The following assumptions have been adopted in order to develop
a tractable analytical model.

• The radial stress in each member is assumed to be proportional
to circumferential stress (Kumar and Khan, 2016a) such that
𝜎(𝑖)𝑟𝑟 (𝑟, 𝑧) = 𝜆𝑖 𝜎

(𝑖)
𝜃𝜃(𝑟, 𝑧), where 𝜆𝑖 is a proportionality constant of the

member ′𝑖′. The superscript/subscript 𝑖=1 for anchor and 𝑖 = 2 for
adhesive layer.

• The anchor, adhesive layer and the concrete are assumed to be
perfectly bonded at their respective lateral interfaces.

• Axial stress in each member is assumed to spatially vary along the
’𝑧’ coordinate only, i.e., 𝜎(1)𝑧𝑧 = 𝜎(1)𝑧𝑧 (𝑧) ; 𝜎(2)𝑧𝑧 = 𝜎(2)𝑧𝑧 (𝑧). For brevity,
we henceforth denote 𝜎(𝑖)𝑧𝑧 by 𝜎𝑖.

• Adhesive layer is considered either as a homogeneous or an
inhomogeneous linear elastic isotropic material such that 𝐸2 is
either a constant or a function of 𝑧 i.e., 𝐸2(𝑧).

• The concrete is relatively stiffer (∼ 10–15 times) than the bulk ad-
hesive material, so the deformation of an anchor under a pullout
load is mainly caused by the deformation of adhesive layer and
therefore the concrete is assumed to be infinitely stiff (Upadhyaya
3

and Kumar, 2015b).
2.1. Stress field

The axisymmetric equilibrium equations considering 𝜎(𝑖)𝑟𝑟 = 𝜎(𝑖)𝜃𝜃 for
each of the members taking 𝜆𝑖 = 1 can be written as:

𝜕
𝜕𝑟

(𝑟𝜎(𝑖)𝑟𝑧 ) + 𝑟
𝜕𝜎(𝑖)𝑧𝑧
𝜕𝑧

= 0 (1)

𝜕
𝜕𝑟

(𝑟𝜎(𝑖)𝑟𝑟 ) + 𝑟
𝜕𝜎(𝑖)𝑟𝑧
𝜕𝑧

− 𝜎(𝑖)𝑟𝑟 = 0 (2)

Admissible stress fields are derived from the equilibrium equations
of the system given above using traction-free boundary conditions,
stress continuity conditions at the anchor-adhesive interface and rigid
adhesive-concrete interface condition. Using equilibrium Eq. (1), an
implicit expression for the shear stress in the anchor rod can be written
as:

𝑟𝜎(1)𝑟𝑧 = − 𝑟2

2
𝜎̇1 + 𝜒1 (3)

where, 𝜎̇1 =
𝑑𝜎1
𝑑𝑧 . At the center of the anchor, shear stress is zero as it is

the axis of symmetry i.e., 𝜎(1)𝑟𝑧 (0, 𝑧)=0 and this yields 𝜒1=0. Therefore,
the shear stress in the anchor is given by

𝜎(1)𝑟𝑧 = − 𝑟
2
𝜎̇1 ; 0 ≤ 𝑟 ≤ 𝑎 (4)

Using equilibrium Eq. (2), and Eq. (4), radial stress in the anchor is
expressed as:

𝜎(1)𝑟𝑟 = 𝑟2

4
𝜎̈1 + 𝜒2(𝑧) (5)

where, 𝜎̈1 = 𝑑2𝜎1
𝑑𝑧2

. Without loss of generality, it can be assumed that
𝜎(1)𝑟𝑟 (0, 𝑧) = 𝑘 𝜎̈1. This gives 𝜒2 = 𝑘𝜎̈1. Therefore, radial stress in the
anchor is given by

𝜎(1)𝑟𝑟 =
(

𝑟2

4
+ 𝑘

)

𝜎̈1 ; 0 ≤ 𝑟 ≤ 𝑎 (6)

where, 𝑘 is an unknown constant to be determined. Using equilibrium
Eq. (1), we get

𝑟𝜎(2)𝑟𝑧 = − 𝑟2

2
𝜎̇2 + 𝑟 𝜒3 + 𝜒4(𝑧) (7)

sing shear stress continuity condition at the anchor-adhesive interface
nd global axial equilibrium condition given respectively by

(2)
𝑟𝑧 (𝑎, 𝑧) = 𝜎(1)𝑟𝑧 (𝑎, 𝑧) ; 𝜋𝑎2𝜎𝑜 = ∫

𝑙

0
𝜎(2)𝑟𝑧 (𝑏, 𝑧) 2𝜋𝑏 𝑑𝑧 (8)

e get, 𝜒3 = 0 and 𝜒4 = 𝑎2

2

(

𝜎̇2 − 𝜎̇1
)

. Therefore, the shear stress in the
dhesive layer is expressed as:

(2)
𝑟𝑧 =

(𝑎2 − 𝑟2)
2𝑟

𝜎̇2 −
𝑎2

2𝑟
𝜎̇1 ; 𝑎 ≤ 𝑟 ≤ 𝑏 (9)

where, 𝜎̇2 = 𝑑𝜎2
𝑑𝑧 . Using equilibrium Eqs. (2) and (9), the radial stress

in the adhesive can be derived as:

𝜎(2)𝑟𝑟 =
(

𝑟2

4
− 𝑎2

2
𝑙𝑛(𝑟)

)

𝜎̈2 +
𝑎2

2
𝑙𝑛(𝑟) 𝜎̈1 + 𝜒5(𝑧) 𝑟 + 𝜒6(𝑧) (10)

Since, the lateral surface of the adhesive is restrained by the stiff
concrete, we consider that the hoop strain at the adhesive-concrete
interface to be zero i.e 𝜀(2)𝜃𝜃 (𝑏, 𝑧) = 0 such that

𝜎(2)𝑟𝑟 (𝑏, 𝑧) =
𝜈2

(1 − 𝜈2)
𝜎2 (11)

onsidering radial stress continuity condition at the anchor-adhesive
nterface i.e., 𝜎(2)𝑟𝑟 (𝑎, 𝑧) = 𝜎(1)𝑟𝑟 (𝑎, 𝑧) and using Eq. (11), we deduce

5(𝑧) = 𝜉𝜎̈1 − 𝜌𝜎2 − 𝛽𝜎̈2 (12)

nd

6(𝑧) = −
(

𝑎2 𝑙𝑛(𝑏) + 𝑏𝜉
)

𝜎̈1+
(

𝜈2 + 𝑏𝜌
)

𝜎2+
(

𝑎2 𝑙𝑛(𝑏) − 𝑏2 + 𝑏𝛽
)

𝜎̈2
2 1 − 𝜈2 2 4
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Fig. 1. A. Adhesive anchor embedded in rigid half-space b. Elastic modulus profile for tailored, homogeneous and degraded bondlines (𝐸2(𝑧)) over the embedment length. 𝐸𝑚 is
the Young’s modulus of the homogeneous adhesive. 𝐸𝑝 and 𝐸0 are the maximum and minimum Young’s moduli of the tailored bondline respectively whose effective modulus is
𝐸𝑚. 𝐸𝑚 and 𝐸𝑑 are the maximum and minimum Young’s moduli of the partially degraded bondline respectively. For partially degraded bondline, adhesive modulus is graded over
(1 − 𝜁 )𝑙 ≤ 𝑧 ≤ 𝑙 such that 0 < 𝜁 < 1. d. Typical adhesive shear stress distribution over the embedded length for different modulus profiles when anchor/fiber is subjected a pullout
stress 𝜎0. 𝑃 is the tensile load applied to anchor at 𝑧 = 𝑙.
(13)

The radial stress in the adhesive layer is therefore given by

𝜎(2)𝑟𝑟 = 𝑘
(

(𝑟 − 𝑏)
(𝑎 − 𝑏)

)

𝜎̈1 +
(

𝑎2

2
𝑙𝑛
( 𝑟
𝑏

)

+ 𝜉(𝑟 − 𝑏)
)

𝜎̈1

+
(

𝜈2
1 − 𝜈2

+ 𝜌(𝑏 − 𝑟)
)

𝜎2

+
(

𝑎2

2
𝑙𝑛
( 𝑏
𝑟

)

+
(𝑟2 − 𝑏2)

4
+ 𝛽(𝑏 − 𝑟)

)

𝜎̈2 ; 𝑎 ≤ 𝑟 ≤ 𝑏 (14)

where, the known constants 𝜉, 𝜌 and 𝛽 depend on the geometric and/or
material properties of the bonded anchorage and are given in the
Appendix A. For the anchor, 3D axisymmetric constitutive relations for
linear-elastic homogeneous material considering 𝜎(1)𝑟𝑟 = 𝜎(1)𝜃𝜃 are:

𝜀(1)𝑟𝑟 =
(1 − 𝜈1)

𝐸1
𝜎(1)𝑟𝑟 −

𝜈1
𝐸1

𝜎(1)𝑧𝑧 ; 𝜀(1)𝑧𝑧 =
(1 − 𝜈1)

𝐸1
𝜎(1)𝑧𝑧 −

𝜈1
𝐸1

𝜎(1)𝑟𝑟 ;

𝜀(1)𝑟𝑧 =
(1 + 𝜈1)

𝐸1
𝜎(1)𝑟𝑧 (15)

Constitutive relations for linear-elastic isotropic but inhomogeneous
adhesive considering 𝜎(2)𝑟𝑟 = 𝜎(2)𝜃𝜃 are:

𝜀(2)𝑟𝑟 =
(1 − 𝜈2)
𝐸2(𝑧)

𝜎(2)𝑟𝑟 −
𝜈2

𝐸2(𝑧)
𝜎(2)𝑧𝑧 ; 𝜀(2)𝑧𝑧 =

(1 − 𝜈2)
𝐸2(𝑧)

𝜎(2)𝑧𝑧 −
𝜈2

𝐸2(𝑧)
𝜎(2)𝑟𝑟 ;

𝜀(2)𝑟𝑧 =
(1 + 𝜈2)
𝐸2(𝑧)

𝜎(2)𝑟𝑧 (16)
4

where, 𝐸2(𝑧) is the position dependent Young’s modulus of the inho-
mogeneous bondline. The complementary energy density in this linear
elastic assembly is given by

𝑈̃ = ∫

𝜎(1)𝑚𝑛

0
𝜀(1)𝑚𝑛 𝑑𝜎(1)𝑚𝑛 + ∫

𝜎(2)𝑚𝑛

0
𝜀(2)𝑚𝑛 𝑑𝜎(2)𝑚𝑛

where, 𝜎(𝑖)𝑚𝑛(𝑟, 𝑧) is the Cauchy or nominal stress tensor at a material
point in the member ’𝑖’ and 𝜖(𝑖)𝑚𝑛(𝑟, 𝑧) is the Lagrangian or infinitesimal
strain tensor at a material point in member ’𝑖’. Here 𝑚 and 𝑛 indepen-
dently range over 𝑟, 𝜃 and 𝑧. Using the constitutive relations given by
Eq. (15), the complementary energy in the anchor is expressed as

𝑈1 = 𝜋 ∫

𝑙

0 ∫

𝑎

0

(

𝑘1 𝜎(1)
2

𝑟𝑟 𝑟 + 𝑘2 𝜎21𝑟 + 𝑘3 𝜎(1)𝑟𝑟 𝜎1𝑟 + 𝑘4 𝜎(1)
2

𝑟𝑧 𝑟
)

𝑑𝑟 𝑑𝑧 (17)

where, the constants 𝑘𝑖(𝑖 = 1...4) depend upon elastic properties of
anchor and are given in Appendix A. Plugging in expressions for the
stress components derived above, the complementary energy in an
anchor, 𝑈1 could be written as

𝑈1 = 𝜋 ∫

𝑙

0

(

(𝐴1 + 𝑘2𝐴2 + 𝑘 𝐴3)𝜎̈21 + 𝐴4𝜎
2
1 + (𝐴5 + 𝑘 𝐴6)𝜎1𝜎̈1 + 𝐴7𝜎̇

2
1
)

𝑑𝑧

(18)

The explicit expressions for the constants 𝐴𝑖(𝑖 = 1...7) are given in the
Appendix A. Similarly, the complementary energy in a graded adhesive
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layer is given by

𝑈2 = 𝜋 ∫

𝑙

0 ∫

𝑏

𝑎

(

𝜂1 𝜎(2)
2

𝑟𝑟 𝑟 + 𝜂2 𝜎22𝑟 + 𝜂3 𝜎(2)𝑟 𝜎2𝑟 + 𝜂4 𝜎(2)
2

𝑟𝑧 𝑟
)

𝑑𝑟 𝑑𝑧 (19)

here, the variable coefficients 𝜂𝑖(𝑧)(𝑖 = 1...4) that depend on inho-
ogeneous elastic properties of the adhesive are given in Appendix B.

nserting stress components for the adhesive layer in the above, we get

2 = 𝜋 ∫

𝑙

0

[

(𝑘2𝐵1 + 𝐵2 + 𝑘𝐵3)𝜎̈21 + (𝐵4 + 𝐵11 + 𝐵14)𝜎22

+𝐵5𝜎̈
2
2 + (𝐵6 + 𝐵15)𝜎2𝜎̈2

+ (𝑘𝐵7 + 𝐵9 + 𝑘𝐵12 + 𝐵13)𝜎2𝜎̈1 + (𝑘𝐵8 + 𝐵10)𝜎̈1𝜎̈2

+𝐵16𝜎̇
2
1 + 𝐵17𝜎̇

2
1 + 𝐵18𝜎̇1𝜎̇2

]

𝑑𝑧 (20)

The coefficients 𝐵𝑖(𝑖 = 1...18) are function of 𝑧 for inhomogeneous
adhesive layer. Combining Eqs. (18) and (20), we can express the
complementary energy functional of the system as:

𝛱 = 𝜋 ∫

𝑙

0

[

(𝛼1 + 𝑘2𝛼2 + 𝑘𝛼3)𝜎̈21 + 𝐴4𝜎
2
1 + 𝛼4𝜎

2
2 + 𝐵5𝜎̈

2
2 + (𝐴5 + 𝑘𝐴6)𝜎1𝜎̈1

+ 𝛼5𝜎̇
2
1 + 𝛼6𝜎2𝜎̈2 + (𝑘𝛼7 + 𝛼8)𝜎2𝜎̈1 + (𝑘𝐵8 + 𝐵10)𝜎̈1𝜎̈2

+𝐵16𝜎̇
2
2 + 𝐵18𝜎̇1𝜎̇2

]

𝑑𝑧 (21)

where, the coefficients 𝛼𝑖(𝑖 = 1...8) are functions of 𝑧, akin to the
coefficients 𝐵𝑗 and can be obtained by comparing Eqs. (18) and (20)
with Eq. (21). The above functional is of the form:

𝛱(𝜎1, 𝜎2, 𝑘) = 𝜋 ∫

𝑙

0
𝜑
(

𝜎1(𝑧), 𝜎2(𝑧), 𝜎̇1(𝑧), 𝜎̇2(𝑧), 𝜎̈1(𝑧), 𝜎̈2(𝑧), 𝑧, 𝑘
)

𝑑𝑧 (22)

We adopt a variational method to obtain governing ODEs. Our task here
is to determine the functions that minimize the functional 𝛱 . Here, 𝑧 is
an independent variable and the integrand 𝜑 depend on stress functions
(𝜎1(𝑧), 𝜎1(𝑧)) and their higher order derivatives as well as the unknown
constant 𝑘. The extremal functions are solutions of the Euler–Lagrange
equations that are obtained by setting the first variational derivatives of
the functional with respect to each function equal to zero. Accordingly,
we obtain a pair of coupled nonlinear ordinary differential equations
(ODEs):

[𝑀𝑖𝑗 ]
(

𝜎1
𝜎2

)

+[𝑁𝑖𝑗 ]
(

𝜎1
𝜎2

)

+[𝑃𝑖𝑗 ]
(

𝜎1
𝜎2

)

+[𝑄𝑖𝑗 ]
(

𝜎̇1
𝜎̇2

)

+[𝑅𝑖𝑗 ]
(

𝜎1
𝜎2

)

=
(

0
0

)

(23)

where, the matrices 𝑀𝑖𝑗 , 𝑁𝑖𝑗 , 𝑃𝑖𝑗 , 𝑄𝑖𝑗 , and 𝑅𝑖𝑗 depend on the geometric
and material properties of the bonded system as well as the loading
condition. The elements of these matrices are function of 𝑧 and are
given in the Appendix B. The indices 𝑖 and 𝑗 can range over 1–2. The
optimal value of 𝑘 is determined by setting 𝜕𝛱

𝜕𝑘 = 0. Accordingly, we
get

𝜋 ∫

𝑙

0

[

(

2𝑘𝛼2(𝑧)+𝛼3(𝑧)
)

𝜎̈21 +𝐴6 𝜎1 𝜎̈1 +𝛼7(𝑧) 𝜎2 𝜎̈1 +𝐵8(𝑧) 𝜎̈1 𝜎̈2
]

𝑑𝑧 = 0.

(24)

Coupled ODEs given by Eq. (23) and the integro-differential equation
given by Eq. (24) can together be solved to determine the stress state in
the assembly using the traction and traction-free boundary conditions
given below.

𝜎1(0) = 0; 𝜎(1)𝑟𝑧 (𝑟, 0) = 0; 𝜎1(𝑙) = 𝜎0; 𝜎(1)𝑟𝑧 (𝑟, 𝑙) = 0; 𝑟 ∈ [0, 𝑎] (25)

(0) = 0; 𝜎(2)(𝑟, 0) = 0; 𝜎 (𝑙) = 0; 𝜎(2)(𝑟, 𝑙) = 0; 𝑟 ∈ [𝑎, 𝑏] (26)
5

2 𝑟𝑧 2 𝑟𝑧
.2. Homogeneous adhesive layer

For the homogeneous adhesive layer, it is Young’s modulus 𝐸2 is
onstant over the embedment length. The coupled ODEs for this case
ecome linear and are given as follows:

𝑀̃𝑖𝑗 ]
(

𝜎1
𝜎2

)

+[𝑁̃𝑖𝑗 ]
(

𝜎1
𝜎2

)

+[𝑃𝑖𝑗 ]
(

𝜎1
𝜎2

)

+[𝑄̃𝑖𝑗 ]
(

𝜎̇1
𝜎̇2

)

+[𝑅̃𝑖𝑗 ]
(

𝜎1
𝜎2

)

=
(

0
0

)

(27)

here, the elements of the matrices 𝑀̃𝑖𝑗 , 𝑁̃𝑖𝑗 , 𝑃𝑖𝑗 , 𝑄̃𝑖𝑗 , and 𝑅̃𝑖𝑗 are
onstant. These matrices are obtained by setting derivatives of 𝑧 to zero
n the matrices 𝑀𝑖𝑗 , 𝑁𝑖𝑗 , 𝑃𝑖𝑗 , 𝑄𝑖𝑗 , and 𝑅𝑖𝑗 . The optimal value of 𝑘 for
his case is determined from the following integro-differential equation

𝑘 (𝛼2+𝛼3)∫

𝑙

0
𝜎̈2
1 𝑑𝑧+𝐴6 ∫

𝑙

0
𝜎1𝜎̈1 𝑑𝑧+𝛼7 ∫

𝑙

0
𝜎2𝜎̈1 𝑑𝑧+𝐵8 ∫

𝑙

0
𝜎̈1 𝜎̈2 𝑑𝑧 = 0.

(28)

Note that 𝛼2, 𝛼3, 𝛼7, and 𝐵8 become constant for this case.

3. Solution procedure

The set of governing equations (Eqs. (23) and (24) or Eqs. (27) and
(28)) need to be simultaneously solved to get the actual solution for 𝜎1
and 𝜎2 which minimize the functional, imposing traction and traction-
free boundary conditions given by Eqs. (25) and (26). However, we
need to know 𝑘 from the integro-differential equations (Eq. (24) or
Eq. (28)) in order to solve the pair of coupled ODEs. But 𝑘 can be
evaluated only if we know the stress functions 𝜎1 and 𝜎2. Therefore,
we initially find the approximate value of 𝑘 by fitting a cubic polyno-
mial for the stress functions 𝜎1 and 𝜎2 since we know four boundary
conditions for each of them. Accordingly, we initially impose

𝜎1 = 𝜎0
( 𝑧
𝑙

)2
[

3 − 2
( 𝑧
𝑙

)

]

; 𝜎2 = 0 (29)

and solve the integro-differential to obtain the following initial approx-
imate value for 𝑘 such that

𝑘 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐴6
6𝜎0

2

5𝑙 − ∫

𝑙

0
𝛼3
[

36𝜎02
𝛼2(𝑧)
𝑙4

(

1 − 2𝑧
𝑙

)2]
𝑑𝑧

2∫

𝑙

0

[

36𝜎02
𝛼2(𝑧)
𝑙4

(

1 − 2𝑧
𝑙

)2]
𝑑𝑧

; if 𝐸2 = 𝐸2(𝑧)

(

𝐴6 𝑙2−10𝛼3

)

20𝛼2
; if 𝐸2=Constant.

This approximate value of 𝑘 is subsequently used together with BCs
given by Eqs. (25) and (26) to find the solution for the coupled ODEs.
Thus, we obtain approximate numerical solution for 𝜎1 and 𝜎2 and their
derivatives over the entire embedment length. Now we use this solution
set to evaluate a new value of 𝑘 solving the integro-differential (Eqs. 24
or (28)). Again we use the current value of 𝑘 to solve coupled ODEs.
This process is repeated until the value of 𝑘 attains a constant value,
i.e.,

(

𝑘𝑗 − 𝑘𝑗−1
)

≈ 0. The converged 𝑘𝑗 is the optimal value and the 𝜎𝑗−11
and 𝜎𝑗−12 and their derivatives correspond to actual stress state. Once
we know the actual distribution of 𝜎1 and 𝜎2 and their derivatives, we
can determine the complete stress state in the entire system using the
expressions for stress components derived in Section 2.

4. Homogeneous, tailored and degraded bondlayers

4.1. Bondlayer with tailored modulus over entire embedment length 𝑙

The homogeneous/non-tailored bondline (HBL) with Young’s mod-
ulus 𝐸𝑚 (=𝐸2) is considered as a baseline. The critical length required
for complete shear stress-transfer for the system with homogeneous
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adhesive modulus 𝐸𝑚 is 𝑙𝑐 . In case of tailored bondline, the adhesive
modulus is considered to vary as a function of the axial distance 𝑧
over the entire bondlength 𝑙 (Fig. 1). The following functional forms
f modulus variation as shown in Fig. 6 are considered.

𝑓0 = 𝐸0 (30)

𝐸𝑓𝑖 = (𝐸0 − 𝐸𝑝)
( 𝑧
𝑙

)𝑛
+ 𝐸𝑝 ; 𝑖 = 𝑛 = 1, 2, 3, 4 (31)

𝐸𝑓5 = 𝐸𝑚 (32)

Eqs. (30) and (32) represent constant modulus profile for homo-
geneous compliant and stiff bondlines respectively, while Eq. (31)
represents an inhomogeneous bondline whose modulus varies over the
entire bondlength 𝑙 such that its value is 𝐸0 at 𝑧 = 𝑙 and 𝐸𝑝 at 𝑧 = 0.
Note that the effective modulus of the tailored bondline is enforced
to be the same as the modulus of the homogeneous adhesive, 𝐸𝑚 and
herefore

𝑝 =
(𝑛 + 1)

𝑛

[

𝐸𝑚 −
𝐸0

(𝑛 + 1)

]

; 0 < 𝑛 < ∞ (33)

.2. Degraded bondlayer

The adhesive is considered to have degraded over a fraction of
ondlength ′𝜁𝑙′ from the loaded end of the anchor/fiber such that
< 𝜁 < 1 as shown in Fig. 11. The adhesive is expected to degrade

o a greater extent, due to higher stresses and faster degradation rate
roximal to the loaded end. Therefore, we have chosen such a modulus
rofile. The adhesive modulus is constant over 0 ≤ 𝑧 ≤ (1−𝜁 )𝑙 and varies
ccording to power law over (1 − 𝜁 )𝑙 ≤ 𝑧 ≤ 𝑙. The modulus profile of

the adhesive in this case can be defined as

𝐸𝑓𝑖 =

⎧

⎪

⎨

⎪

⎩

𝐸𝑚 ; 0 ≤ 𝑧 < (1 − 𝜁 )𝑙

(𝐸𝑑 − 𝐸𝑚)
(

𝑧−(1−𝜁 )𝑙
𝑙𝜁

)𝑛
+ 𝐸𝑚 ; (1 − 𝜁 )𝑙 ≤ 𝑧 ≤ 𝑙

(34)

here 0 ≤ 𝜁 ≤ 1 and 𝑛 is a positive integer. Note that 0 < 𝐸𝑑 < 𝐸𝑚.

• If 𝜁 → 0, then 𝐸𝑓𝑖 → 𝐸𝑚 representing a homogeneous stiff/intact
adhesive according to first row of Eq. (34).

• If 𝜁 → 1, then 𝐸𝑓𝑖 represents a bondline which is degraded over
entire bondlength 𝑙 according to second row of Eq. (34).

• If 0 < 𝜁 < 1, it represents a partially degraded bondline over
length 𝜁𝑙 from the loaded end according to Eq. (34), see Fig. 11.

olving governing equations for partially degraded bondline case with
𝑓𝑖 given by Eq. (34) is cumbersome and therefore a single profile for

he adhesive modulus was constructed using a logistic growth function
(𝑧). A logistic growth function 𝜚(𝑧) is S-shaped (sigmoidal) curve that
an be used to model functions that increase gradually at first, more
apidly in the middle, and slowly at the end, leveling off at a maximum
alue. A sigmoid function is given below for the degraded and intact
egions of the bondline such that

(𝑧) = 1
1 + 𝑒−𝜍(𝑧−(1−𝜁 )𝑙)

{

𝜚(𝑧) = 0+ ; if 𝑧 < (1 − 𝜁 )𝑙
𝜚(𝑧) = 1− ; if 𝑧 > (1 − 𝜁 )𝑙

(35)

where, 𝜍 dictates the steepness of the curve. 𝜍 > 0 is chosen to control
the gradient of the curve near (1 − 𝜁 )𝑙. From Eqs. (34) and (35), a
continuous modulus profile for a partially degraded bondline can be
written as

𝐸2(𝑧) = (1 − 𝜚)𝐸𝑚 + 𝜚
(

(𝐸𝑑 − 𝐸𝑚)
(

𝑧 − (1 − 𝜁 )𝑙
𝑙𝜁

)𝑛
+ 𝐸𝑚

)

(36)
6

5. Results and discussion

5.1. Homogeneous bondlayer (HBL)

For a bonded system with a homogeneous adhesive, consider-
ing the Young’s modulus of the anchor 𝐸1=210 GPa, Poisson’s ra-
tio of the anchor 𝜈1=0.3, Young’s modulus of the adhesive/matrix
𝐸2 = 𝐸𝑚=3920 MPa, Poisson’s ratio of the adhesive/matrix 𝜈2=0.4,
𝑙=150 mm, 𝑎=5 mm, 𝑏=6 mm and 𝜎0=12.73 MPa, both theoretical
results and 3D axisymmetric FE results are obtained. Henceforth,
aforementioned properties are used unless otherwise stated.

The shear-lag solution, having relevance to many stress-transfer
problems including the anchor problem here (and directly a single-fiber
composite pullout problem), has a simplified closed-form solution as
reviewed by Hull and Clyne (1996) and discussed by many authors
including Kelly’s early work on composites (Kelly and Tyson, 1965).
The shear-lag solution which assumes no shear strain in the fiber and
no transfer of normal stress across the fiber-end (Kelly and Tyson, 1965;
Lawrence, 1972; Chua and Piggott, 1985), for the single-fiber pullout
test gives following closed form expressions for the axial stress in the
fiber 𝜎(1)𝑧𝑧 and interfacial shear stress 𝜎(2)𝑟𝑧 :

𝜎(1)𝑧𝑧 = 𝜎0

⎛

⎜

⎜

⎜

⎝

sinh
[

𝑞𝑧
𝑎

]

sinh
[

𝑞𝑙
𝑎

]

⎞

⎟

⎟

⎟

⎠

(37)

𝜎(2)𝑟𝑧 =
𝑞𝜎0
2

⎛

⎜

⎜

⎜

⎝

cosh
[

𝑞𝑧
𝑎

]

sinh
[

𝑞𝑙
𝑎

]

⎞

⎟

⎟

⎟

⎠

(38)

where, the dimensionless constant 𝑞 is given by,

𝑞 =

[

2𝐺2
𝐸1

1
ln( 𝑏𝑎 )

]
1
2

(39)

Note that 𝜎(1)𝑧𝑧 and 𝜎(2)𝑟𝑧 predicted by the shear-lag model do not vary
over the radial coordinate 𝑟. Fig. 2a and b shows the normalized axial
stress in the anchor and normalized shear stress in the adhesive layer at
the mid-surface of the adhesive layer respectively over the normalized
embedment length (𝜂 = 𝑧

𝑙 ). A good match between the analytical,
shear-lag model (Lawrence, 1972; Chua and Piggott, 1985) and FE
results validates the accuracy of the proposed theoretical model. For the
geometric and material properties considered here, the critical length
(𝑙𝑐) required for the system with homogeneous adhesive of modulus 𝐸𝑚
is about 135 mm. In Fig. 2b the stress at the mid-surface of the adhesive
layer is compared instead of comparing anchor-adhesive interface stress
as the proposed analytical model does not capture the singular stress-
field at the free surface of the bi-material interface. The proposed
analytical model also satisfies the zero shear stress condition exactly
at 𝑧 = 𝑙 unlike the shear-lag solution. Fig. 3a and b shows the shear
stress at different radial adhesive surfaces over the embedment length
and the shear stress at different 𝑧 locations across the cross-section
f the assembly, respectively. It can be seen from Fig. 3a and b that
he peak shear stress occurs at the anchor-adhesive interface but close
o the loaded end. Fig. 4a and b shows the shear stress distribution
or three different thicknesses of adhesive layer over the embedment
ength at 𝑟 = 𝑎 and at 𝑟 = (𝑎 + 𝑏)∕2 respectively. Fig. 4a and b
onfirms again that the peak shear stress always occurs at 𝑟 = 𝑎

although the magnitude of peak shear stress decreases with increase
in adhesive thickness as expected. Note that the increase in thickness
of homogeneous adhesive does not warrant larger 𝑙𝑐 . Fig. 5a and b
shows the axial stress in the anchor and the shear stress distribution
in the adhesive for different homogeneous adhesives at 𝑟 = 𝑎, over
the embedment length, respectively. Decrease in Young’s modulus from
3290 MPa, warrants larger 𝑙𝑐 for shear-dominated stress-transfer. The
discussion pertinent to pullout strength is based on shear stress failure
criterion. It was considered that the crack would emanate from the
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Fig. 2. HBL-Analytical vs FEA: a. Axial stress in the anchor over the embedment length and b. Shear stress at the mid-surface of the adhesive layer over the embedment length;
the analytical solution is benchmarked with FE results and shear-lag solution (Lawrence, 1972).

Fig. 3. HBL-Analytical: a. Shear stress at different radial surfaces of the adhesive layer over the embedment length and b. Shear stress across the cross section of axisymmetric
bonded system at different 𝑧 locations.

Fig. 4. HBL-Analytical: Adhesive shear stress over embedment length for different adhesive thicknesses. (a) Anchor-adhesive interface and (b) Mid-surface of the adhesive.
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Fig. 5. HBL-Analytical: a. Axial stress in the anchor and b. Adhesive shear stress over embedment length at 𝑟 = 𝑎 for different Young’s moduli of the adhesive. Note, 𝐸𝑚 represents
he identified modulus of the adhesive needed for shear-dominated load-transfer for the parameters chosen here.
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Fig. 6. Normalized modulus profiles for stiffness-tailored and homogeneous bondlines
over entire embedment length 𝑙 for different values of 𝑛.

nchor-adhesive interface at the loaded end when the shear stress in
he adhesive exceeds adhesive shear strength 𝜏𝑐 = 6.2 MPa (Prieto-
uñoz et al., 2010). For the range of embedment lengths considered

ere, always failure initiation in the adhesive is assumed to occur upon
hear stress reaching a critical value at the loaded-end of the anchor.

.2. Tailored bondlayer (TBL) over entire embedment length 𝑙

In this section, the adhesive modulus variation over the entire
ength 𝑙 is discussed in the context of material tailoring (see, Fig. 6) so
s to improve the pullout performance. Adopting 𝐸𝑓2 (𝑛=2) with 𝐸0=

280 MPa and using 𝐸𝑝 calculated from Eq. (33), analytical solution is
obtained and compared with the 3D axisymmetric FE solution. In the
FE model, variation of modulus is incorporated through a user defined
subroutine called UMAT in Abaqus FEA. Fig. 7 shows the normalized
shear stress over the normalized embedment length obtained both
from analytical and FE models at the mid-surface of the adhesive
layer for 𝑙=150 mm. Fig. 7 yet again demonstrates the accuracy of
8

proposed theoretical model when a tailored bondline is considered.
Incorporation of adhesive compliance proximal to the loaded-end of the
anchor/fiber, reduces the peak shear stress by about 60% and the lo-
cation of peak shear stress is slightly shifted away from the loaded-end
of the anchor. Tailoring, besides reducing stress concentration, enables
strain-tolerance of the composite system. This may increase the failure
initiation threshold and has the potential for improving both strength
and toughness properties of the bonded anchors simultaneously (Kumar
et al., 2016).

Fig. 8a and 8b shows the axial stress in anchor and the shear stress
distribution over the embedment length for various modulus profiles
(𝑛=1, 2, 3 and 10), respectively. 𝐸𝑚 and 𝐸0 represent stiff and compli-
ant homogeneous bondlines respectively. All of the tailored bondlines
have the same effective modulus as that of stiff HBL (𝐸𝑚). Therefore,
all cases except for HBL with stiffness 𝐸0 require the same 𝑙𝑐 . 𝐸0, being

compliant HBL, the embedment length 𝑙=150 mm is not sufficient for
hear-dominated stress-transfer. By tailoring the bondline’s stiffness, we
ould optimally redistribute the stresses in the adhesive layer over the
mbedment length without changing the global stiffness of the system.
ig. 8b clearly shows that the shear stress could be redistributed in a
esired fashion by appropriately designing the modulus variation over
he embedment length. Note that the peak shear stress is minimum for
he case of a linearly-tailored adhesive.

Fig. 9 shows the shear stress distribution at the mid-surface of
he adhesive layer over the embedment length for various embedment
engths for a modulus profile 𝐸𝑓1 as a function of 𝐸0

𝐸𝑚
ratio. Fig. 9a is

for 𝑙 < 𝑙𝑐 , Fig. 9b is for 𝑙 = 𝑙𝑐 and Fig. 9c is for 𝑙 > 𝑙𝑐 . Stress distribution
for each case is given for various tailored bondlines with same effective
stiffness as that of HBL by changing the 𝐸0. This allows us to choose an
optimum 𝐸0

𝐸𝑚
ratio for a given 𝑙, 𝐸𝑓1 and other geometric and material

arameters. Note that for anchors with embedment length 𝑙 greater
han 10𝑎 and tailored bondline with 𝐸0

𝐸𝑚
≤ 0.4, the reduction in peak

stress is dependent of embedment length. Note that the entire load 𝑃 is
transferred to the concrete through shearing of lateral surface of the
adhesive layer as the embedded-end is considered to be completely
debonded/unbonded. Therefore, we can write:

𝑃 = 2𝜋𝑏∫

𝑙

0
𝜎(2)𝑟𝑧 (𝑏, 𝑧) 𝑑𝑧 (40)

Fig. 9d shows the maximum shear stress in the adhesive layer as a
function of 𝑙

𝑎 for both graded and non-tailored interlayers. It can seen
from Fig. 9d that the maximum shear stress in the adhesive layer
for both cases decrease with increase in 𝑙 and saturates eventually.
However, the maximum shear stress in the TBL is always less than
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Fig. 7. TBL-Analytical Vs. FEA: a. Axial stress in the anchor and b. Shear stress distribution at the mid-surface of the adhesive layer for 𝐸𝑓2 and 𝑙 = 150 mm. Note that the peak
shear stress decreases by 59.45%.
Fig. 8. TBL-Analytical: a. Axial stress in the anchor and b. Adhesive shear stress over embedment length, for different modulus profiles (𝑙 = 150 mm) compared with stiff and
compliant HBLs. Note 𝑙𝑐𝑟 is same for all except for HBL with modulus 𝐸0.
the HBL. It can be observed that the optimum 𝑙 for both cases are
different for the parameters considered here. From Fig. 9d for 𝑙 = 50𝑎,
the maximum shear stress decreases by about 63% if a TBL is employed
in lieu of a HBL. It also indicates that tailored bondline requires longer
embedment length for complete shear stress-transfer.

Fig. 10a–c shows the shear stress distribution for different adhesive
thicknesses for various 𝐸0

𝐸𝑚
ratios with 𝑙=150 mm and 𝐸𝑓1. Fig. 10d

shows the maximum shear stress in the adhesive as a function of 𝑡
𝑎 ratio

for various 𝐸0
𝐸𝑚

ratios. Note that the maximum shear stress decreases by
35% for 𝑡 = 0.2𝑎. For the TBL, the shear strength of the adhesive is
position dependent i.e., 𝜏𝑐 (𝑧). When the maximum shear stress in TBL
adhesive 𝜏𝑚𝑎𝑥(𝑧) ≥ 𝜏𝑐 (𝑧), crack would initiate (Tipireddy and Kumar,
2017).

5.3. Degradation over partial length 𝜁𝑙

Considering bondline degradation over 𝜁𝑙 distance along 𝑧 from
the loaded end, solutions were obtained using the analytical model
adopting modulus profile given by Eq. (36) with 𝑛 = 1 and 𝐸𝑚=3290
MPa and 𝐸𝑑 = 𝐸𝑚

10 (Singer et al., 2018) under the same tensile load 𝑃 as
before. As mentioned before, the factor 𝜁 is chosen such that 0 < 𝜁 < 1
9

to represent a bondline whose modulus has degraded over the length
𝜁𝑙 from the loaded end as shown in Fig. 11. Results were obtained for
different choices of 𝜁 for various embedment lengths 𝑙 under the same
load and are presented in Fig. 12. For a given 𝑙, increasing 𝜁 , reduces
the shear stress peak in the adhesive as larger fraction of bondline
behaves in a compliant manner due to degradation. Reduction in peak
shear stress is also accompanied by redistribution of shear stress over
the embedment length to maintain equilibrium, warranting larger 𝑙
to enable shear-dominated stress-transfer. Fig. 12a shows the stress
distribution for different choices of 𝜁 for 𝑙 = 75 mm. It is clear from this
figure that 𝑙 = 75 mm is not sufficient even for an intact bondline to
completely transferring through shearing of the adhesive. However, the
shear stress close to the embedded-end decays as the length is increased
for a given value of 𝜁 as shown in Figs. 12b–c. An important question
from the view point of design of adhesive anchors when the bondline
is partially degraded is whether the embedment length is sufficient
for a shear-dominated load-transfer. In order to answer this question,
a design map is generated by predicting shear stress distribution in
the bondline for various embedment lengths but increasing the partial
length over which the bondline has degraded. Shear stress-transfer
length 𝑙𝑐 is computed such that complete shear transfer is regarded to



European Journal of Mechanics / A Solids 99 (2023) 104950S. Kumar et al.

a

Fig. 9. TBL-Analytical: The shear stress distribution at the mid-surface of the adhesive as a function of embedment length 𝑙 along the bondline for 𝐸𝑓1: (a) 𝑙 < 𝑙𝑐 ; (b) 𝑙 = 𝑙𝑐 ; (c)
𝑙 > 𝑙𝑐 ; (d) Normalized maximum shear stress as a function of bondlength 𝑙 for linearly stiffness-tailored adhesive.
Fig. 10. TBL-Analytical: The shear stress distribution at the mid-surface of the adhesive for different 𝐸0

𝐸𝑚
ratios for 𝐸𝑓1 and 𝑙 = 150 mm. (a) 𝑡 = 0.05𝑎; (b) 𝑡 = 0.2𝑎; (c) 𝑡 = 0.5𝑎; (d)

Normalized maximum shear stress as a function of adhesive thickness 𝑡.
i
𝑙
s
F

have occurred when the area under shear stress curve dies down to less
than 1% of total area under the shear stress curve over 𝑧 ≤ 5%𝑙 from
the embedded-end of the anchor.

Fig. 13a shows the a design map clearly demarcating the regions
where 𝑙𝑐 ≤ 𝑙 and 𝑙𝑐 ≥ 𝑙 for various choices of 𝑙, 𝜁 and other geometric
nd material parameters. 𝜁=0 indicates intact bondline while 𝜁=1
10
ndicates a bondline whose modulus is degraded over the entire length
. From Fig. 13a, one can see how degradation increases the shear
tress-transfer-length required warranting larger embedment lengths.
ig. 13b shows the design map 𝑙𝑐

𝑎 Vs. 𝜁𝑙
𝑎 and gives the 𝑙𝑐 required as a

function of degraded length of the bondlayer, for the parameters chosen
here.
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Fig. 11. Modulus profiles for partially deteriorated and homogeneous bondlines based
n power law given by Eq. (36). Note, 𝜁 varies such that 0 < 𝜁 < 1.

Although Sections 5.2 and 5.3 focused on the elastic stresses in
he tailored and degraded bondlines respectively, often, failure of the
onded anchors occurs due to the viscous nature of the adhesive. To
apture the viscoelastic stresses in the adhesive, a variational method
uitable for modeling dissipative systems (Pioletti and Rakotomanana,
000; Vassoler et al., 2012) is required. Alternatively, Newtonian prin-
iples (equilibrium equations along with the viscoelastic constitutive
aws) can be employed to predict the viscoelastic stresses in the ad-
esive (Shishesaz and Reza, 2013). Veisytabar et al. (2023) performed
viscoelastic analysis on bonded joints with tailored adherends, how-

ver, no studies have thus been reported for the case of bonded struc-
ural systems with graded adhesive; therefore, this aspect is suggested
s a future study.

.4. Interfacial fracture

Adhesively bonded anchors usually fail by one of the four possible
ailure modes as discussed in Section 1. It is envisaged that the failure
f the bondlayer could occur in two possible ways viz. 1. interfacial
racture (adhesive failure) at anchor-adhesive interface and 2. cohesive
ailure of the bulk adhesive. Herein, the crack-growth resistance of
he adhesive-anchor interface is modeled using J-integral method. The
xisymmetric geometric and FE models with a pre-existing crack of
ength 𝛤 at the anchor-adhesive interface emanated from the loaded-
nd of anchor are shown in Fig. 14a and b respectively. In Fig. 14a, the
nterface crack is highlighted by a bold black line. The crack is modeled
s a seam.

The virtual crack extension direction is specified with the 𝑞 vector.
n the model shown in Fig. 14, 𝑞 vector is defined with the starting point
t the crack tip and the end point at the red dot; the resulting 𝑞-vector
s shown in red. Since, we consider a sharp interface crack, we have
i-material stress/strain singularity at the crack tip. We include the
ingularity at the crack tip so as to accurately calculate the J-integral
nd the stresses/strains. The partitioning of the geometry is defined by
he circular line centered on the crack tip as shown in Fig. 14b. The
rack tip is meshed using a ring of collapsed quadratic quadrilateral
lements. Second-order elements are used to obtain a mesh singularity
t the crack tip. The circular partitioned areas are meshed using the
11

i

‘swept meshing’’ technique; this method allows the mesh to be regu-
ar and focused. The remaining portion of the model is free meshed
sing the ‘‘medial axis’’ meshing algorithm. The edge-based tools for
pecifying mesh seeding facilitate the development of a focused mesh
round the crack tip. The lateral adhesive-concrete interface is fully
estrained to mimic the rigid concrete. ABAQUS FE code was used to
erform the analysis. The variation in Young’s modulus of the adhesive
ayer over the embedment length was implemented through a user
efined subroutine called UMAT. As before, for inhomogeneous case
𝑓2 is adopted with 𝐸𝑚 = 3920 MPa and 𝐸0 = 280 MPa and for the

homogeneous case 𝐸2 = 3920 MPa.
Considering a crack of size 𝛤 at the anchor-adhesive interface at

the loaded end, mode-II J-integral was evaluated for the linear-elastic
system considering HBL, TBL and degraded bondline. The model is
subjected to an axial ramping stress 𝜎0=100 MPa at loaded end of
the anchor, while the debonded end is left free. Fig. 14c shows the
energy release rate as a function of normalized interfacial crack length.
Once shear crack initiates at the interface, Mode-II fracture along the
anchor-adhesive interface might occur. For HBL, the fracture toughness
𝐺𝑚
𝑐 is constant but the fracture toughness for the TBL 𝐺𝑣

𝑐 is position
dependent. For HBL, interface crack would grow if the energy release
rate 𝐺𝑚 ≥ 𝐺𝑚

𝑐 and for the TBL, crack would grow if 𝐺𝑣(𝑧) ≥ 𝐺𝑣
𝑐 (𝑧).

t can be seen from Fig. 14c that the energy release rate for the
tiffness-varying bondline anchors is much lower than that of the HBL
nchors for any given interface crack length while all other parameters
eing the same. The crack-growth resistance of the bonded anchors
ith stiffness-varying bondline anchors is different from that of the
BL anchors as evidenced by Fig. 14c. When 𝛤=0.1 𝑙, the crack-
rowth resistance changes by about 66% for the parameters considered
ere. Therefore, it can be concluded that an engineered bondline with
patially-varying stiffness along embedment length is more damage
olerant than the HBL anchors.

The fracture analysis of adhesive–adherend interface based on J-
ntegral approach requires the presence of an initial crack. To accu-
ately predict the crack initiation and/or propagation within the bulk
dhesive and/or at the adhesive–adherend interface in bonded systems,
nother energy-based approach, known as cohesive zone modeling
CZM) is widely used (Khoramishad et al., 2010). The CZM approach
mploys a traction–separation law - a sub-set of bond–slip models
see, for instance Anyfantis and Tsouvalis, 2012; Zhu et al., 2009).
everal studies utilized the bilinear CZM approach to model the fail-
re behavior of conventional bonded systems neglecting the plasticity
nd rate-dependent behavior of the adhesive. For the tailored bonded
ystem explored herein, the bondline could be treated as a series of
nfinitesimal adhesives with appropriate bond–slip parameters. This
equires extensive experimental characterization of traction–separation
arameters as a function of spatial co-ordinates. Furthermore, the
nelastic and rate-dependent behavior of the adhesive during separation
t failure can be captured using a trilinear (or trapezoidal) traction–
eparation law (Pisavadia et al., 2022) and is left to a subsequent
tudy.

. Conclusions

In this study, 3D axisymmetric elasticity solutions for pull-out
tresses are presented and validated. Analytical solutions for two dif-
erent cases are proposed: (1) bonded anchor with tailored bondlayer
etaining its effective stiffness in order to ensure shear-dominated load-
ransfer, and (2) stiffness degraded bondlayer. For the latter case, we
dentified the critical bondlength required for shear-dominated load-
ransfer through the adhesive. Both theoretical and FE results indicate
hat the maximum shear stress in the bondlayer can be decreased over
0% by incorporating a graded bondlayer in lieu of a homogeneous
ondlayer for the set of geometric and material properties considered
ere. The proposed theoretical model was also used to evaluate the

nfluence of loss of bondlayer stiffness due to degradation. A parametric
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Fig. 12. Partially degraded bondline-Analytical: Shear stress distribution along the bondline at the mid-surface of the adhesive as a function of 𝜁 for (a) 𝑙 < 𝑙𝑐 ; (b) 𝑙 = 𝑙𝑐 ; (c) 𝑙 > 𝑙𝑐 .
Fig. 13. Partially degraded bondline-Analytical: (a) Influence of 𝜁 on shear stress-transfer length 𝑙𝑐 for various embedment lengths 𝑙 and (b) design map 𝑙𝑐
𝑎

Vs. 𝜁𝑙
𝑎

.

T
g

tudy was conducted to study the effect of an inhomogeneous bondlayer
n the interfacial stresses and crack growth resistance as a function of
eometric and material properties of the anchorage system. Through
racture analyses of bonded anchors, it is concluded that an engineered
r tailored bondlayer is more damage tolerant than anchors with
omogeneous adhesive layer. This study also provides insights into the
nfluence of loss of bondlayer stiffness on interfacial stresses and the
esign aspects of functionally graded and degraded adhesive anchors.
12
he following observations were made on the pull-out behavior of
raded and degraded anchors:

• The linear tailoring of the bondline stiffness was found to be
optimal from the perspective of peak stress reduction.

• For bonded anchors with embedment length greater than five
times the diameter of anchor and tailored bondlayer with 𝐸0

𝐸𝑚
>

0.4, the reduction in peak stress is independent of the embedment

length.
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Fig. 14. A. Axisymmetric geometric model b. Axisymmetric FE model to simulate interfacial debonding at the anchor-adhesive interface from the loaded end of the anchor c.
Energy release rate at the anchor-adhesive interface as a function of crack length.
• The reduction in peak shear stress is higher for the tailored anchor
assemblies with larger embedment length and thinner adhesive.

• Anchors with larger embedment lengths can tolerate degrada-
tion of the bondlayer without warranting a larger critical shear-
transfer-length.

This study only considered the elastic behavior of the adhesive layer
and developed a theoretical framework to analyze pull-out stresses
in the tailored and degraded adhesive anchors. However, failure of
bonded anchors is often due to creep damage of the adhesive. A CZM
approach capable of capturing the inelastic and viscous behavior of the
adhesive could provide a robust modeling framework for accurately
predicting the bond-failure and performance of functionally graded and
degraded bonded systems.
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Appendix A. Geometric and/or material properties

𝜉 = 1
(𝑎 − 𝑏)

(

𝑎2

4
+ 𝑎2

2
𝑙𝑛
( 𝑏
𝑎

)

)

; 𝜌 = 1
(𝑎 − 𝑏)

𝜈2
1 − 𝜈2

(A.1a)

𝛽 = 1
(𝑎 − 𝑏)

(

𝑎2

2
𝑙𝑛
( 𝑏
𝑎

)

+
(𝑎2 − 𝑏2)

4

)

(A.1b)

𝑘1 =
2(1 − 𝜈1)

𝐸1
; 𝑘2 =

1
𝐸1

; 𝑘3 = −4
𝜈1
𝐸1

; 𝑘4 = 2
(1 + 𝜈1)

𝐸1
(A.1c)

𝐴1 = 𝑘1 ∫

𝑎

0

𝑟5

16
𝑑𝑟 ; 𝐴2 = 𝑘1 ∫

𝑎

0
𝑟 𝑑𝑟 ; 𝐴3 =

𝑘1
2 ∫

𝑎

0
𝑟3 𝑑𝑟 (A.1d)

𝐴4 = 𝑘2 ∫

𝑎

0
𝑟 𝑑𝑟 ; 𝐴5 = 𝑘3 ∫

𝑎

0

𝑟3

4
𝑑𝑟 ;

𝐴6 = 𝑘3 ∫

𝑎

0
𝑟 𝑑𝑟 ; 𝐴7 = −𝑘4 ∫

𝑎

0

𝑟2

2
𝑑𝑟 (A.1e)

Appendix B. Geometric and/or material properties

𝜂1 =
2(1 − 𝜈2)
𝐸2(𝑧)

, 𝜂2 =
1

𝐸2(𝑧)
, 𝜂3 = −4

𝜈2
𝐸2(𝑧)

, 𝜂4 = 2
(1 + 𝜈2)
𝐸2(𝑧)

(B.1a)

𝑓3 =
(𝑟 − 𝑏)
(𝑎 − 𝑏)

𝑘, 𝑓4 =
𝑎2

2
𝑙𝑛
( 𝑟
𝑏

)

+ 𝜂(𝑟− 𝑏) ; 𝑓5 = 𝜌(𝑏− 𝑟) +
𝜈2

1 − 𝜈2
(B.1b)

𝑓6 =
𝑎2

2
𝑙𝑛
( 𝑏
𝑟

)

+
(𝑟2 − 𝑏2)

4
+ 𝛽(𝑏 − 𝑟) (B.1c)

𝐵1 = 𝜂1 ∫

𝑏

𝑎
𝑓 2
3 𝑟 𝑑𝑟; 𝐵2 = 𝜂1 ∫

𝑏

𝑎
𝑓 2
4 𝑟 𝑑𝑟; 𝐵3 = 2𝜂1 ∫

𝑏

𝑎
𝑓3𝑓4𝑟 𝑑𝑟; (B.1d)

𝐵4 = 𝜂1 ∫

𝑏

𝑎
𝑓 2
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𝑎
𝑓 2
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𝑎
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𝑏
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𝑎
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∫𝑎 ∫𝑎



European Journal of Mechanics / A Solids 99 (2023) 104950S. Kumar et al.

𝐵

𝐵

B

[

l

𝜎

=

=

U

=

A

𝜎

𝑥

𝐵13 = 𝜂3 ∫

𝑏

𝑎
𝑓4𝑟 𝑑𝑟; 𝐵14 = 𝜂3 ∫

𝑏

𝑎
𝑓5𝑟 𝑑𝑟 (B.1g)
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.1. Matrices

𝑀𝑖𝑗 ] =
[
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𝛼̇1(𝑧) + 𝑘2𝛼̇2(𝑧) + 𝑘𝛼̇3(𝑧)
)

2
(

𝑘𝐵̇8(𝑧) + 𝐵̇10(𝑧)
)

2
(

𝑘𝐵̇8(𝑧) + 𝐵̇10(𝑧)
)

4𝐵̇5

]

(B.3)

[𝑃𝑖𝑗 ]

=

[

2(𝛼̈1 + 𝑘2𝛼̈2 + 𝑘𝛼̈3) + 3(𝐴5 + 𝑘𝐴6) − 2𝛼5 (𝑘𝛼7 + 𝛼8) + (𝑘𝐵̈8 + 𝐵̈10) − 𝐵18

(𝑘𝛼7 + 𝛼8) + (𝑘𝐵̈8 + 𝐵̈10) − 𝐵18 2(𝐵̈5 + 𝛼6 − 𝐵16)

]

(B.4)

[𝑄𝑖𝑗 ] =
[

−2𝛼̇5 2(𝑘𝛼̇7 + 𝛼̇8) − 𝐵̇18
−𝐵̇18 2(𝛼̇6 − 𝐵̇16)

]

(B.5)

[𝑅𝑖𝑗 ] =
[

2𝐴4 (𝑘𝛼̈7 + 𝛼̈8)
0 (2𝛼4 + 𝛼̈6)

]

(B.6)

Appendix C. Errata

𝜎(2)𝑟𝑧 |𝑧=𝑙 =
𝑞𝜎0
2

⎛

⎜

⎜

⎜

⎝

cosh
[

𝑞𝑙
𝑎

]

sinh
[

𝑞𝑙
𝑎

]

⎞

⎟

⎟

⎟

⎠

; 𝑞 =

[

2𝐺2
𝐸1

1
ln( 𝑏𝑎 )

]
1
2

(C.1)

et 𝑘 =
√

2𝐺2
𝐸1

, 𝑥 = 1
√

ln(𝑏∕𝑎)

(2)
𝑟𝑧 |𝑧=𝑙 =

𝑘𝜎0
2

𝑥 coth
(𝑘𝑙
𝑎
𝑥
)

(C.2)

𝑘𝜎0
2

𝑥
⎛

⎜

⎜

⎝

𝑒
(

𝑘𝑙
𝑎 𝑥

)

+ 𝑒
(

− 𝑘𝑙
𝑎 𝑥

)

𝑒
(

𝑘𝑙
𝑎 𝑥

)

− 𝑒
(

− 𝑘𝑙
𝑎 𝑥

)

⎞

⎟

⎟

⎠

(C.3)

𝑘𝜎0
2

𝑥
⎛

⎜

⎜

⎝

1 + 𝑒
(

−2 𝑘𝑙
𝑎 𝑥

)

1 − 𝑒
(

−2 𝑘𝑙
𝑎 𝑥

)

⎞

⎟

⎟

⎠

(C.4)

sing L. Hospital’s rule,

𝑘𝜎0
2

⎛

⎜

⎜

⎜
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1 + 𝑒
(

−2 𝑘𝑙
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)

+ 𝑥 𝑒
(
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𝑎 𝑥

)

(

− 2𝑘𝑙
𝑎

)

(
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𝑎

)

𝑒
(

− 2𝑘𝑙
𝑎 𝑥
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⎞

⎟

⎟
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(C.5)

pplying L Hospitals rule again,

(2)
𝑟𝑧 |𝑧=𝑙 =

𝑘𝜎0
2
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⎜
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𝑒
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−2 𝑘𝑙
𝑎 𝑥
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− 4𝑘𝑙
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𝑒
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(C.6)

=
𝑘𝜎0
2

( 𝑎
𝑘𝑙

− 𝑥
)

(C.7)

Therefore, in limit sense

lim
𝑥→0

𝜎(2)𝑟𝑧 |𝑧=𝑙 =
𝜎0
2

𝑎
𝑙

(C.8)

lim 𝜎(2)| = −∞ (C.9)
14

→∞ 𝑟𝑧 𝑧=𝑙
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