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Abstract: Due to their bioinert and reliable tribological performance, cobalt chromium molybdenum
(CoCrMo) alloys have been widely used for articular joint implant applications. However, friction and
wear issues are still the main reasons for the failure of implants. As a result, the improvement of the
tribological properties and biocompatibility of these alloys is still needed. Thus, surface modification
is of great interest for implant manufacturers and for clinical applications. In this study, a strategy
combining laser surface texturing and chitosan grafting (mussel inspired) was used to improve the
tribological and biocompatible behaviors of CoCrMo. The microstructure and chemical composition
were investigated by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron
spectroscopy, respectively. The tribological properties were discussed to determine their synergistic
effects. To evaluate their biocompatibility, osteoblast cells were cocultured with the modified surface.
The results show that there is a distinct synergistic effect between laser surface texturing and polymer
brushes for improving tribological behaviors and biocompatibility. The prepared chitosan brushes
on a textured surface are a strong mechanism for reducing friction force. The dimples took part in
the hydrodynamic lubrication and acted as the container for replenishing the consumed lubricants.
These brushes also promote the formation of a local lubricating film. The wear resistance of the
chitosan brushes was immensely improved. Further, the worn process was observed, and the
mechanism of destruction was demonstrated. Co-culturing with osteoblast cells showed that the
texture and grafting have potential applications in enhancing the differentiation and orientation of
osteoblast cells.
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1. Introduction

In recent years, cobalt and its alloys (e.g., the commercial cobalt chromium molybdenum (CoCrMo)
alloy) have become well known for their orthopedic and dental applications. For orthopedic treatment,
CoCrMo is commonly used in articulating load-bearing implants because of its high performance
in wear resistance and corrosion resistance [1–7]. With aging of the population and an increase in
active lifestyles, the demand for all these replacements is increasing [8]. However, revision surgeries
are also common. There are several reasons for revision surgeries, such as debris-induced osteolysis,
metal ion releasing caused by tribocorrosion, and ascetic loosening [9]. In order to prolong an
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implant’s life, different surface modifications have been investigated for enhancing the wear resistance
properties of the CoCrMo, including thermal oxidation, thin film coatings, surface textures, and
nitrogen diffusion [10].

Designing and fabricating a microstructured topography called surface texturing is an alternative
method and has tremendous technological importance. By introducing microstructures, the surface
area can be enhanced. Laser surface texturing (LST) is regarded as one of the most powerful ways to
improve the tribological properties of the rubbing surfaces [6,11]. For example, Langhorn produced
micro-dimple patterns on a CoCrMo alloy and found that the tribopair wear of polyethylene was
reduced by more 50% [12]. Chan used laser ablation on CoCrMo and a greatly enhanced wear resistance
was found [13]. Voevodin et al. investigated laser surface texturing of TiCN coatings to permit storage
of solid lubricants and results showed that the lifetime of solid lubricants on dimpled surfaces was
multifold longer than those on an unmodified surface [14]. In addition, the texture induced on the
surface has important applications in the following broad areas of research and development, such
as amplifying cell adhesion and proliferation for biomedical applications, enhancing light reflecting
behaviors in optical usage, and changing the surface wetting performances for anti-biofouling [15–17].

The usage of polymer brushes is another way to fabricate substrate surfaces with low friction
coefficients. Polymer brushes are prepared from different monomers, which act as a protective coating.
Increasing researches have been conducted by this method in recent years. Grafted surfaces have been
proven to exhibit superlow friction force in specific environments [18]. The mechanism behind polymer
brush lubrication can be attributed to the highly stretched arrangement of its polymer chains. Due to
solvation, the generation of an osmotic repulsive force repels the applied load, which can effectively
avoid the occurrence of the substrate with direct contact. Thus, a flowing layer is easily formed
between the frictional interfaces, which results in ultralow friction when the interface is sheared [19].
Different polymer brushes are also investigated to enhance interfacial properties, such as bioaffinity
sensing, specific protein binding, and antibacterial activity [20–23]. Amongst these properties, chitosan
(CS) is one such promising biomaterial because of its high biocompatibility, biodegradability, and
antibacterial activities [24]. To conveniently facilitate the grafting of chitosan brushes on substrates,
many methods of surface modification have been applied. Qin used a layer-by-layer grafting technique
to graft chitosan molecules on Co–Cr–Mo alloys, and the biocompatibility was improved [25]. In order
to simplify the grafting process, a polydopamine (PDA)-based surface modification method inspired
by marine mussels has gained significant attention, and PDA can be easily used as a strong glue in
various environments [26]. Compared to other surface modification technologies, the PDA based
grafting method is more convenient to realize [27]. A PDA-modified surface introduces amino and
hydroxyl groups, which may keep a relatively long-term stability. Even so, there have been few reports
about investigations into PDA-modified chitosan brushes. The preparation of PDA assisted chitosan
brushes might contribute interesting knowledge to the field of tribology and biocompatibility.

Since previous studies have shown that surfaces with texture can enhance load-carrying capacity,
and grafted polymer brushes can increase lubricity. A strategy combining texturing and grafting is
proposed in the study to prolong the service life of commercial CoCrMo. Tribological properties,
combined with a laser textured surface and chitosan brushes, are discussed to determine their synergistic
effects. For the fabrication process, CoCrMo was initially laser-textured, followed by covalently
immobilizing chitosan brushes onto the textured surface which was with assistance of polydopamine.
Then, the wettability and tribological properties were compared and analyzed. Meanwhile, it is also
commonly known that the biocompatibility of material for medical applications should be considered
first. To provide new insights for medical applications, the differentiation and stained morphologies of
the osteoblast MC3T3-E1 cells were investigated to evaluate their biocompatibility.

2. Materials and Methods

The cobalt chromium molybdenum (CoCrMo) alloy (ASTM F75, Steel Material Technology Co.,
Ltd., Nanjing, China) was used. The samples were cut into dimensions of 12 mm × 6 mm × 2.5 mm.
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One 12 mm × 6 mm face was polished to a mirror finish by a series of sand grinding papers up to
1600 grit. Then, the samples were ultrasonically cleaned in ethanol and distilled water, following by
drying in an atmosphere. The surface roughness (Ra) was measured by a surface profiler (TR-200,
Time Group, China), and the Ra was ~80 nm.

The density of the texture for lubricated components should be between 5% and 25% to obtain
good lubrication performance [6,28]. As shown in Figure 1, a nanosecond laser fiber machine (QC-F20,
Qinchuang, China) with a wavelength of 1064 nm was used to introduce the surface texture. The focused
laser beam was delivered by a galvanometer scanner and a F-Theta focusing lens, and the laser pulse
duration and peak fluency were 200 ns and 20 J/cm2, respectively. The dimple radius and pitch between
dimples were approximately r = 50 µm and p = 200 µm, respectively. Area densities were calculated to
be around 20%. The average output power, laser repetition frequency, and scanning speed were fixed
at 20 W, 20 kHz, and 600 mm/s, respectively. After the laser manufacturing process, the substrates
were ultrasonically cleaned in ethanol and then rinsed with distilled water and ethanol, respectively.
The sample was denoted as Co–T.
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Figure 1. Schematic of polydopamine mediated immobilization for grafting chitosan onto the textured
CoCrMo surface.

The sequential deposition of PDA and chitosan was performed by immersing the substrates into
different solutions at room temperature (24 ± 2 ◦C). Firstly, a tris(hydroxymethyl)aminomethane HCl
buffer solution was prepared of concentration 10 mM and the pH was adjusted into 8.5. 0.1 g dopamine
was solved in 50 mL solution. Clean and dried samples were immersed for 3 h and kept in dark for the
PDA coating. Secondly, PDA-coated samples were washed by distilled water and then were immersed
in the solution, which was composed of 1 wt% chitosan (110 kDa, ~75% deacetylated, sigma, USA),
1 wt% acetic acid, and 98 wt% deionized water. The samples and solution were kept static for 12 h.
Last, samples were rinsed by distilled water and dried in oven at 37 ◦C. Both the flat and textured
surfaces were used. These surfaces are denoted as Co–S and Co–T–S, respectively.

The morphologies of the samples were observed by field emission scanning electron microscopy
(FE-SEM, TESCAN, USA) and 3D laser confocal microscopy (OLS4000, Olympus, Japan). An Innova
Digital Nanoscope atomic force microscope (AFM) (Veeco, Plainview, NY, USA) was used to investigate
the topographic details. Under tapping mode, a scanning area of 5 µm × 5 µm was performed, and the
scanning rate was set to 0.8 Hz Commercial silicon cantilever probes (RTESP, Bruker, Billerica, MA,
USA) with a spring constant of 0.35 N/m and a nominal tip radius of 8 nm were selected. The chemical
composition of grafting surface was obtained by attenuated total reflectance–Fourier transform infrared
spectroscopy (ATR-FTIR) (TENSOR27, Bruker, Karlsruhe, Germany) and ultra X-ray photoelectron
spectroscopy (XPS) spectrometer (AXIS-ULTRA DLD, Kratos, UK). The elements of worn surface
were measured by an energy-dispersive spectrometer (EDS, OXFORD instruments, Abingdon, UK).
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The static contact angle (CA) was measured by a video-based contact angle system (JC2000D2A,
Powereach, Shanghai, China) at room temperature. The Young–Laplace fitting method was used to
calculate the CA value. For every sample, three different areas were tested, and the mean CA was
obtained as the apparent CA.

Using a pin-on-disc tribometer (UMT-2, CETR Corporation Ltd., Madison, MI, USA), the
tribological performances were investigated via reciprocating sliding. The upper sample was a
CoCrMo pin with a diameter of 2 mm. The CoCrMo alloy disc was loaded to reciprocate on a horizontal
plane. The reciprocating stroke length was adjusted to 6 mm. For the frictional test the load was set
to 2.4 MPa, and the CoCrMo pin was changed into a CoCrMo ball for the acceleration experiment.
The ball diameter was 9.5 mm, and the load was 1.2 GPa All tests were carried out under the following
conditions; room temperature and relative humidity of ~40%. Lubricants were Bovine Serum Albumin
(BSA, Lanji Technology Development Co Ltd., Shanghai, China), and the concentration was 2 mg/mL
in NaCl solution. The coefficient of friction (COF) was recorded by the computer. For the observation
of morphologies, at least three samples were prepared and three points of each sample were detected.
During the wear and frictional test, every data for COF and observation for worn surface were repeated
at least twice.

For the biocompatible experiments, MC3T3-E1 cells (a density of 1 × 105 cells/mL) were seeded
onto different sample surfaces. The morphologies of the cells were stained and observed under a
fluorescence microscope (Ti-s, Nikon, Tokyo, Japan) with different wavelengths. The procedure of
cell staining can be found in the previous work [29]. After culturing for 96 h, the cells on the samples
were collected, and their RNA was extracted using a TRIzol reagent (Bioteke Corporation, Beijing,
China). The sequences of the RT-PCR primers were as same as those of our previous studies [25].
All experiments were performed at least thrice. mRNA of osteoprotegerin (OPG), the receptor activator
of NFκB ligand (RANKL) and bone morphogenetic protein 2 (BMP-2) were measured. The fold change
in the gene expression was calculated by the 2−44Ct method, as compared to the flat samples.

3. Results

3.1. Surface Characterization

The morphology of the CS grafted with flat CoCrMo was characterized through AFM (Figure 2).
For PDA modification, a smooth surface was observed, and its root-mean-square (RMS) roughness
was approximately 2.35 ± 0.42 nm (Figure 2a). When further immersed into the chitosan solution,
the modified surface developed rough, considerable brush peaks (particle-like topography due to the
collapse of the attached molecular chains under “dry” conditions were found on the surface [30], and
its RMS was increased to 6.61 ± 1.12 nm (Figure 2b). The above characteristics were chosen based on
the untextured areas, except in the micro-dimple region.
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Due to the serious ablation and rough morphology induced by the laser ablation, the micro-dimples
could not be accurately characterized by AFM. As shown in Figure 3, the morphologies of the dimples
were characterized by SEM and a 3D confocal microscope. After the laser ablation, dimple patterns
were observed on the CoCrMo surface. The radius of each dimple was 50 ± 3 µm, and its depth ranged
from 13 to 16 µm. Several burrs were found on the edge of the dimples, which were caused by the
melting process of the laser (Figure 3c). After grafting CS onto the dimpled surface, there was subtle
change of morphologies between the laser textured surface and the ungrafted surface (see Figure 3b,d).
This may be due to the grafting thickness of the chitosan in the nanoscale. Micron morphologies of the
substrate were unaffected by the nano modification. Meanwhile, the micro-dimples were found to be
filled with chitosan polymers. This condition may be related to the difficulty of washing the chitosan
molecules that were physically trapped by laser textured dimples.
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Figure 3. SEM morphologies of the textured surfaces (a,c) without CS grafting and (b,d) with CS grafting.

To further confirm the modified surface, SEM, FTIR, and XPS were used to detect and compare
the surface compositions of the flat and chitosan grafted CoCrMo surfaces. As shown in Figure 4a,
a compact and uniform morphology of the CS coatings was observed. The chemical characteristic
peaks of chitosan (Figure 4b) are located at 3412 cm−1. The stretching vibration of the hydroxyl group
and amide group were found at 1654 and 1584 cm−1, which represented the acetylated amino group
of chitosan. Figure 4c,d represents the XPS elements’ high concentrations of C and N, respectively.
After CS immobilization, the N/C ratio for Co-S was remarkably increased, indicating that the amino
chains on the surface also significantly improved. In addition, the high-resolution C1s peak on the
surface of the grafted CS sample could be decomposed into three peaks at 284.5 eV, 286.0 eV, and
287.6 eV (Figure 4c), which corresponded to C–C/C=C, C–N/C–O, and C–N=O, due to the condensation
reaction between the amino groups and carboxyl groups from the CS brushes. The N1s peak could be
decomposed into two peaks at 399.5 eV (–NH– of CS) and 401.5 eV (–CO–NH– and C=N of dopamine)
(Figure 4d). These indicated that CS brushes were successfully grafted onto the CoCrMo surface.
Meanwhile, PDA was an ideal candidate for grafting chitosan brushes onto the CoCrMo substrate,
which normally proves difficult to be modified by general chemical processes.
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3.2. Surface Wettability

Among various surface properties, surface wetting plays an important role in controlling
lubrication. After successfully grafting chitosan onto flat and textured CoCrMo surfaces, the static
contact angles (CA) of surfaces with different treatments were measured. As shown in Figure 5, the
contact angle of the flat CoCrMo sample was approximately 73.2◦, which reduced to 54.1◦ after grafting
Chitosan, indicating the high hydration of chitosan in the aqueous solution. Chitosan exerted an
“anti-polyelectrolyte effect”, and the surface can provide good lubrication for the tribopairs under an
aqueous solution, which is ideal for cells to be adhered to. For the laser textured CoCrMo surface, the
contact angle decreased to 60.2◦ and to 39.0◦ with further grafting of chitosan molecules. The results
indicate that the immobilization of CS can effectively increase the wetting performance of flat and
textured CoCrMo surfaces. To thoroughly investigate the surface wetting behaviors, the contact angle
of the flat CoCrMo and chitosan’s grafted textured surface was measured according to the increase
in time (Figure 5b). The CA was ~66.6◦, which was close to the theoretical calculating results of
the Cassie–Baxter model, indicating that the wetting state of Co–T–S was in the Cassie–Baxter state.
Murakami et.al modified hexagonal pillared lattices with cycloolefin polymer and similar wetting
transition was found [31]. The liquid droplets gradually covered micro-dimples of the textured
substrate resulting in a decrease of the apparent CA. This is due to the strong adsorption effect of the
chitosan brushes under an aqueous solution. For the purpose of biomedical applications, the bulk
and surface properties are the key factors. The interfacial behavior of biomaterials on the surface in
the aqueous environments plays a significant role in assessing the biomaterials’ biocompatibility with
living tissue. The surface free energy of a material is related to its contact angle, which is directly
correlated to its wettability.
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Figure 5. Contact angle in aqueous solution: (a) static contact angles and (b) the evolution with
time increased.

3.3. Tribological Behaviors

Figure 6 shows the friction coefficient of the flat surface, Co-T, Co-S, and Co–T–S as a function of
the sliding time under a normal load of 2.4 MPa and a reciprocating frequency of 2 Hz. The results
show that the flat specimen had the highest average COF among all the specimens during the entire
test period. The laser textured surface gradually decreased to 0.16, which is approximately two-thirds
of the flat surface. For the surface grafted with brushes, the COF was lower in the initial state, while the
COF sharply increased after the sliding, over a period 2653 s. The COF of CS grafted surface is 0.208,
which is approximately 17.4% lower than that of the flat surface. Combining grafting and texturing, the
COF is the lowest at ~0.165. The surface texture’s antifriction has been widely identified by numerous
studies [6,32]. This quality can be attributed to surface micro-dimples, which decrease the contact area
and effectively enhance the fluid-bearing capacity of the surface, thereby lowering the friction force
and improving wear resistance under fluid lubrication. In addition, grafting CS brushes can immensely
reduce the friction coefficient of the textured surface. The significant antifriction effects of the grafted
surface of the polymer brushes have been reported by many researchers, while the lifetime of the
coating is limited, as shown in our studies (2653 s). Similar to the storage of lubricants for the textured
surface, the thicker layer of the CS in the dimples can transfer onto the sliding area and prolong the
service time of the grafted surface. Other studies showed excellent lubrication performance under the
aqueous solution [33]. In addition, aqueous environment resulted in a highly stretched conformation of
the polymer chains. In the sliding interface, a repulsive osmotic pressure force from the polymer chains
was produced, which was opposite to the applied load and effectively enhanced the load-carrying
capacity of the surface. A thin fluid lubrication film was easily formed, which resulted in a low surface
friction coefficient.

Materials 2019, 12, x FOR PEER REVIEW 8 of 16 

 

0 1000 2000 3000 4000 5000 6000

0.15

0.20

0.25

0.30

0.35

0.40

0.45

C
O

F

Time / s

 CoCrMo
 Co-S
 Co-T
 Co-T-S

 

Figure 6. Variations in the friction coefficient of the flat, dimpled, and overgrafted specimens and the 
overgrafted dimpled specimens as a function of sliding time at a normal load of 2.4 MPa and a 
frequency of 2 Hz under BSA-lubricated sliding conditions. 

To investigate the relationship between the sliding speed and COF, the average coefficient of 
friction for different samples was performed under different reciprocal sliding conditions. After 30 
min, the COF was calculated. As shown in Figure 7, the COF of all frictional tribopairs was 
decreased when the sliding speed was increased. The COF of the flat CoCrMo was always higher 
than 0.22. When the surface was textured by the micro-dimples, the friction coefficient was more 
sensitive to speed than that of the flat surface. According to the elastohydrodynamic lubrication 
(EHL) theory [34], the load capacity is directly proportional to the value of (L/h)2, and the frictional 
force is proportional to (L/h), where L is the bearing length and h is the minimum thickness of 
lubrication film. In the initial stage of sliding, Co–T and Co–T–S could achieve these similar EHL 
conditions. However, the continuous consumption of CS chains resulted in a reduction in the 
repulsion force derived from osmotic pressure, and this lubrication film could not support a 
sufficient carrying load under continuous frictional sliding. Therefore, the thickness of lubrication 
film was decreased. The frictional pairs (pin and disk) were gradually contracted resulting in 
breakage of chitosan chains and surface wear, which caused the increase of friction force, especially 
at speeds greater than 2 Hz. When the CS was grafted alone on the CoCrMo surface, the average 
COF was slightly lower than that of the flat samples, and the COF decreased slightly as the sliding 
speed increased. From the various speed test, it can be concluded that desired COF is preferred on 
the surface of CoCrMo by a combination of these types of surface processing technologies. In 
addition, if the requirement in the tribological properties is not high, one can handle the surfaces 
using different single technologies. When the speed is low, CS brushes can be deposited on the 
sliding surfaces, and the abrasion can be reduced. Otherwise, the surface texture is selected to reach 
a low COF and prevent surface damage.  

Figure 6. Variations in the friction coefficient of the flat, dimpled, and overgrafted specimens and
the overgrafted dimpled specimens as a function of sliding time at a normal load of 2.4 MPa and a
frequency of 2 Hz under BSA-lubricated sliding conditions.



Materials 2019, 12, 3014 8 of 15

To investigate the relationship between the sliding speed and COF, the average coefficient of
friction for different samples was performed under different reciprocal sliding conditions. After 30 min,
the COF was calculated. As shown in Figure 7, the COF of all frictional tribopairs was decreased when
the sliding speed was increased. The COF of the flat CoCrMo was always higher than 0.22. When the
surface was textured by the micro-dimples, the friction coefficient was more sensitive to speed than
that of the flat surface. According to the elastohydrodynamic lubrication (EHL) theory [34], the load
capacity is directly proportional to the value of (L/h)2, and the frictional force is proportional to (L/h),
where L is the bearing length and h is the minimum thickness of lubrication film. In the initial stage
of sliding, Co–T and Co–T–S could achieve these similar EHL conditions. However, the continuous
consumption of CS chains resulted in a reduction in the repulsion force derived from osmotic pressure,
and this lubrication film could not support a sufficient carrying load under continuous frictional
sliding. Therefore, the thickness of lubrication film was decreased. The frictional pairs (pin and disk)
were gradually contracted resulting in breakage of chitosan chains and surface wear, which caused the
increase of friction force, especially at speeds greater than 2 Hz. When the CS was grafted alone on
the CoCrMo surface, the average COF was slightly lower than that of the flat samples, and the COF
decreased slightly as the sliding speed increased. From the various speed test, it can be concluded
that desired COF is preferred on the surface of CoCrMo by a combination of these types of surface
processing technologies. In addition, if the requirement in the tribological properties is not high, one
can handle the surfaces using different single technologies. When the speed is low, CS brushes can be
deposited on the sliding surfaces, and the abrasion can be reduced. Otherwise, the surface texture is
selected to reach a low COF and prevent surface damage.
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Figure 7. The curve graph of the average COF with different sliding speeds, (a) CoCrMo, (b) Co-T, (c)
Co-S, and (d) Co–T–S.

To quantify the wear resistance of the Co–T–S sample, accelerating wear experiments were
conducted. The pin was changed into a CoCrMo alloy ball whose diameter was 9.5 mm. The sliding
time was set as two hours. Accelerated wearing has been carried out to reproduce the strenuous
activities in movement of human implants. Figure 8 shows worn micrographs of the lower disk samples
and the upper ball samples. As shown in Figure 8a, the worn surface of the flat CoCrMo was severe,
and there were a multitude of intensive ploughed grooves. Compared with the flat CoCrMo, several
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slight ploughs were observed on the contact surfaces of textured samples. As shown in Figure 8b,
the worn surface of the disk indicates that the grafted CS chains were severely destroyed. This result
indirectly confirms that the failure of the grafted chitosan layer is mainly caused by the accelerating
condition. Although the broken signs of the grafted CS brushes could not be observed after such
a long period of sliding, the integrity of the circular dimples was obvious. EDS analyses (inserted
in Figure 8a,b) further confirmed that rare carbon element was found on the worn surface of flat
CoCrMo, whereas a significant detection of carbon was observed for the dimpled area in the worn
tract of Co–T–S. Results indicated that the Co–T–S may protect the CoCrMo alloy at least several years.
From Figure 8c,d, it can be calculated that the volume loss of the flat CoCrMo disk (with a radius of
~457.84 µm) against the ball was much higher than that of the Co–T–S disk against the ball (with a
radius of ~368.4 µm). As mentioned above, the transferred CS from the concave surface to supply the
consumption and the highly stretched chitosan chains in the sliding interface are the main reason why
the Co–T–S surface could keep long-term stable during the accelerating frictional test.Materials 2019, 12, x FOR PEER REVIEW 10 of 16 
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Figure 8. SEM micrographs of the lower disk samples and their corresponding upper ball samples:
(a,c) flat CoCrMo sample and its upper pin and (b,d) Co–T–S sample and its upper pin. The inserted
figures showed the EDS maps of worn surfaces.

To further reveal the failure mechanism of the CS grafted surfaces during the wear process, SEM
morphologies and the EDS analyses of the surfaces grafted with CS brushes were observed (Figure 9).
The wear process of CS brushes grafted on the surface was divided into three stages. Under BSA
lubrication, the worn surface was quite smooth, and the adsorbed layers were mainly composed of
proteins at the beginning of frictional sliding. The elements contained C, O, Na, and others (Figure 9a,b).
In addition to an increase in the rubbing cycles, the adsorbed surface became rough. The content of
C and O dramatically decreased, and the Na and Cl largely increased (Figure 9c). This is the second
stage of the wearing process. Commonly, this is also the steady state, and its life depends on the
rate of consumption. Finally, the thickness of the grafted CS surface gradually decreased (Figure 9d).
The matrix of the sample soon began to be exposed. Then, direct contact occurred, and, in the meantime,
the COF rose sharply (Figure 6). After 10,000 cycles, the grafted CS was almost worn away. This wear
represents the final stage, in which the task of the CS brushes was terminated.
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Figure 10 shows a schematic of the frictional mechanism of the CS brushes grafted on the flat and
textured CoCrMo surfaces, which is based on the obtained experimental results. When the CS brushes
were grafted on the flat CoCrMo surface, the CS’s molecular chains were homogenously stretched
towards the vertical direction and aligned in the direction as same as each other. Under the aqueous
solution, a uniform hydration layer was gradually formed, and thus a low friction of the CS grafted
surface was obtained. However, the lifetime of the CS chains was rather short. CS chains were easily
destroyed under the alternative shear stress. Meanwhile, the frictional interfaces were separated by an
extremely thin hydration layer. Therefore, the service life of the surface with CS grafting alone was
transitory. When brushes with long chains were grafted on the textured rough surface, e.g., grafting of
CS, the orientation of CS chains were arranged with the substrate’s morphologies [35,36]. In addition,
the number of CS chains was reduced on the textured surface due to introduction of numerous circle
dimples during the process of laser texturing. Thus, the osmotic pressure’s repulsive force acting was
reduced on the friction pair, and the shearing force was weakened accordingly [37]. The weak friction
was also observed in Jacob Klein’s investigation when layers of Chitosan were tested [38]. As shown
in Figure 10c, although most CS brushes on the micro-dimpled samples showed no direct contact
with the frictional tribopair, they still displayed excellent wetting (see Figure 5). Thus, the CS brushes
effectively locked lubricants and were kept in the micro-dimples to form a hydrodynamic lubricating
film during the sliding process. However, these polymer chains should be longer, as short polymer
chains grafted at the bottom cannot influence the lubricating performance on the top surface. Once the
polymer chains take part in the surface lubrication effect [39], the formation of lubrication film can
prevent the disturbance of the arrangement of grafted CS chains in the region without texturing (i.e.,
flat area outside the micro-dimples). Meanwhile, CS chains in the concave of micro-dimples showed
no direct contact with the sliding pin, which effectively protected the CS chains from consumption.
In addition, once the CS brushes outside the dimples were consumed, the stored CS can be supplied
onto the rubbing surface. Thus, the CS chains can enhance the lubrication effect between frictional
interfaces for a long time. Therefore, Combining with texture can remarkably prolong the service life
of CS brushes (see Figure 10).
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Figure 10. Schematics of the contact mechanics for (a) polymer brushes grafted on a flat CoCrMo
surface, (b) a textured surface, and (c) thicker polymer brushes on a textured surface.

3.4. Biocompatibility

Osteoblast function is sensitive to the surface topography and surface chemistry of the material.
RANKL, OPG, and their ratio and BMP have been proven to play a major role in osteoclastogenesis, and
the ratio of OPG to RANKL is an especially critical factor influencing the processes of bone remodeling.
The expression of cytokines genes is shown in Figure 11. Compared with the flat CoCrMo samples, the
expression of RANKL mRNA for cells cultured on Co–T and Co–T–S was slightly decreased. For OPG
mRNA expression, the level was increased for all modified surface. The Co–T–S sample showed the
highest expression among the four investigated samples. The ratio of the OPG to the RANKL mRNA
expression of MC3T3-E1 cells on the Co–T–S was the highest amongst the four surfaces studied. BMP-2
mRNA was increased to 0.6, 0.75, and 1.2 for Co–S, Co–T, and Co–T–S, respectively. These results
suggest that surface chemistry combined with surface topography is a key element in promoting
cell proliferation and differentiation [40]. Results indicate that surface textures with CS grafting will
have an impact on the indirect regulation of osteoblasts, which will have potential applications in
decreasing osteoclastogenesis.
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BMP-2 mRNA.

Figure 12 shows the stained nuclear and actin of cultured MC3T3-E1 cells after seeding for 48
h. For different samples, the cell behaviors were significantly different. The cells were randomly
distributed on flat samples, and a lower number of cell attachments was found. For the CS grafted
surface, the number of cell attachments were increased, while the distribution of cells was still random.
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After laser texturing, the cells attached were around the rough regime of the dimples and oriented
according to the profile of patterns. Interestingly, with a combination of texturing and grafting,
the number of cell attachments and cell orientations were significantly improved (Figure 12d,h,l).
The in vitro study of the interactions between cells and substrates (e.g., cocultures) can mimic cellular
microenvironments. Substrates modified by textures and coatings were used to promote cell adhesion,
proliferation, and differentiation [41]. This is also called contact guidance, a phenomenon where
cells align themselves and migrate along the topographies and chemical cues [42]. Contact guidance
has been proven to decrease the extent of scar tissue formation and enhance osseointegration. Some
researchers have underlined the mechanisms of contact guidance, and several theories have been
outlined by experimental research [43,44]. In the study, the response of osteoblast cells to combinations
of adhesive cell architecture was investigated at two distinctly dimension scales (a micro-scale with a
dimple-like rough structure and nano-scale CS brushes). The cell distribution and orientation were
determined by the distribution of micro-dimples, while the grafted CS brushes could serve as good
seeding bed and enhance the orientation and proliferation. With a combination of texture and coating,
confined cell patterns were realized on a single culture substrate. Recently, it was found that cell
differentiation is regulated by an engineered substratum, such as the topography and chemical cues.
Homogenous cell-adhesive surfaces with directional topographies was fabricated and oriented cells
were found over the entire surfaces [45]. Meanwhile, cell morphologies have been demonstrated to
be indicators of the commitment that determines osteoblastic lineage [46]. A thorough knowledge
of the interactions between the different surface features and biological responses to biomaterials is
further required. This knowledge will facilitate the usage of innovative biomaterials and surfaces in
medical applications.Materials 2019, 12, x FOR PEER REVIEW 13 of 16 
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Figure 12. Fluorescence microscope images of cultured MC3T3-E1 cells after seeding for 48 h: (a,e,i)
Polished CoCrMo, (b,f,j) Co-S, (e,g,k) Co-T, and (d,h,l) Co–T–S. From top to bottom, nuclear stained
cells, actin stained cells, and the two merged cells, respectively.

4. Conclusions

To immobilize the chitosan brushes on the CoCrMo substrate and produce relatively long-term
stability, dimpled surfaces were firstly introduced onto CoCrMo using one step laser ablation, and then
bioinspired polydopamine was used. This polydopamine introduced amino and hydroxyl groups that
were used to graft chitosan brushes covalently. Using various characterizations, the chitosan brushes
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were grafted successfully after laser surface texturing. The wettability was improved, and the chitosan
grafting successfully formed a lubrication film. The lifespan was significantly improved by grafting
the chitosan onto the textured dimples. The MC3T3-E1 cells cultured on the surface were aligned
along the pattern direction and the orientation of cells was same as the dimple array. Meanwhile,
enhanced osteoblast adhesion and improved cell differentiation were found. Our findings highlight the
importance of guidance cues/synergetic effects both in tribology and biocompatibility by laser surface
texturing and chitosan grafting. These methods have potential applications in controlling frictional
behaviors and tissue organization, which will be of considerable importance for orthopedic implants.
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