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Abstract
Within this work, we investigate how physiologically observed microstructural changes induced by myocardial infarction 
impact the elastic parameters of the heart. We use the LMRP model for poroelastic composites (Miller and Penta in Contin 
Mech Thermodyn 32:1533–1557, 2020) to describe the microstructure of the myocardium and investigate microstructural 
changes such as loss of myocyte volume and increased matrix fibrosis as well as increased myocyte volume fraction in the 
areas surrounding the infarct. We also consider a 3D framework to model the myocardium microstructure with the addition of 
the intercalated disks, which provide the connections between adjacent myocytes. The results of our simulations agree with 
the physiological observations that can be made post-infarction. That is, the infarcted heart is much stiffer than the healthy 
heart but with reperfusion of the tissue it begins to soften. We also observe that with the increase in myocyte volume of 
the non-damaged myocytes the myocardium also begins to soften. With a measurable stiffness parameter the results of our 
model simulations could predict the range of porosity (reperfusion) that could help return the heart to the healthy stiffness. 
It would also be possible to predict the volume of the myocytes in the area surrounding the infarct from the overall stiffness 
measurements.

Keywords Poroelasticity · Computational modelling · Asymptotic homogenization · Myocardial infarction

1 Introduction

Poroelasticity has been applied to many biological scenarios 
that comprise an elastic matrix with an interconnected fluid 
flow to investigate their effective mechanical behaviour. 
The theory was first developed by Biot (1955, 1956a, b, 
1962a) and it is applicable to situations where the interac-
tions between the solid and the fluid take place at a scale 
much smaller than the overall tissue scale. The theory can 
be applied to a variety of materials including hard hierarchi-
cal tissues such as the bones and the tendons (Cowin 1999; 
Weiner & Wagner 1998) and also to soft biological tissues 
such as the interstitial matrix, tumours (Bottaro and Ansaldi 
2012; Flessner 2001) and also the myocardium of the heart 

(May-Newman and McCulloch 1998; Cookson et al. (2012; 
Chapelle et al. 2010; Bukac et al. (2015).

The effective mechanical behaviour of a material can be 
derived via a variety of homogenization techniques. Their is 
to incorporate the porescale interactions and properties into 
the effective macroscale behaviour of materials. Without 
using this type of modelling, it would be computationally 
impossible to resolve all of the porescale details. These tech-
niques, see, e.g., Mei and Vernescu (2010), Auriault et al. 
(2010), and Holmes (2012) include volume averaging, mix-
ture theory, and asymptotic homogenization. A comparison 
of these techniques can be found in Hori and Nemat-Nasser 
(1999) and Davit et al. (2013).

The asymptotic homogenization technique exploits the 
scale separation present in material systems to fully decouple 
spatial scales and derive a macroscale model where the coef-
ficients encode the microstructural details. This technique 
has been applied to poroelastic materials by Burridge and 
Keller (1981), Wang (2017), Lévy (1979) and Penta et al. 
(2020). The theory has since been extended to model a vast 
range of scenarios including growth of poroelastic materials 
(Penta et al. 2014), vascularised poroelastic materials (Penta 
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and Merodio 2017) and poroelastic composites (Miller and 
Penta 2020). Recently there has also been a development of 
the theory for nonlinear poroelastic materials (Collis et al. 
2017; Brown et al. 2014; Ramírez-Torres et al. 2018) and 
nonlinear poroelastic composites (Miller and Penta 2021a). 
The theory has also been investigated with various addi-
tional scales such as poroelastic with inclusion (Royer et al. 
2019) and Chen et al. (2018) and double poroelastic (Miller 
and Penta 2021b).

In Miller and Penta (2020) the authors develop a novel 
multiscale model for poroelastic composites. This was then 
extended in Miller and Penta (2022) where a robust 2D and 
3D computational platform was developed. Within this work 
we will use this platform to perform simulations to deter-
mine the elastic parameters of the heart.

The human heart has four chambers each of which have 
a muscular wall with three distinct layers, the endocardium, 
the myocardium, and the epicardium. The endocardium 
and epicardium are the thin inner and outer layers, whereas 
the myocardium is the middle and most dominant layer. It 
is supplied by the coronary arteries and is the layer most 
affected by a variety of diseases, e.g., myocardial infarction, 
angina and the effects of ageing (Whitaker 2014; Weinhaus 
and Roberts 2005).

The myocardium has a structure where there are cardiac 
myocytes (muscle cells) embedded in a collagen matrix, 
which is produced by the cardiac fibroblasts, with an inter-
connected fluid (blood) flow through permeating vasculature 
(Purslow 2008). These structures are visible on a microscale 
length which is much smaller than the size of the heart mus-
cle. The myocardium microstructure is complex geometri-
cally and is strongly impacted by a variety of diseases, in 
particular myocardial infarction (heart attack). In the case 
of myocardial infarction blood flow is reduced to an area of 
myocardium tissue, this results in the death of the cardiac 
myocytes and in their place, we find collagen rich scar tissue 
produced by the fibroblasts to retain the structural integrity 
of the myocardium (Fan et al. 2012; Humeres and Frango-
giannis 2019). The size and amount of scar tissue affect the 
heart’s functionality post recovery (Ertl and Frantz 2005). 
As a result of the loss of cardiac myocytes, the remaining 
myocytes in the area surrounding the infarct increase in vol-
ume to attempt to retain homeostasis in the heart (Kozlovs-
kis et al. 1991). The increase in the volume of the myocytes 
corresponds to the infarct size (Olivetti et al. 1987, 1994; 
Anversa et al. 1985).

There have been a variety of approaches taken to model 
the heart summarised in the review articles (Peirlinck 
et al. 2021; Owen et al. 2018; Smith et al. 2004). The most 
prominent of these include constitutive non-linear elastic 
approaches using the Holzapfel-Ogden Law (Holzapfel 
and Ogden 2009). The work (Holzapfel and Ogden 2009) 
describes the myocardium as a non-homogeneous, nonlinear 

elastic and incompressible material and then proposes a gen-
eral theoretical framework that uses invariants associated 
with the three orthogonal directions that can be identified 
within the material. This work has paved the way for a vari-
ety of extensions in an attempt to understand the phenom-
ena of the heart behaviour such as in Guan et al. (2019) 
and Wang et al. (2014), and different methods of numerical 
implementation such as Pezzuto et al. (2014). A viscoelastic 
approach to understanding the myocardium has also been 
taken by Gültekin et al. (2016) and Nordsletten et al. (2021). 
Within these works there is the aim to address the viscoe-
lastic phenonmena observed experimentally by modifying 
the constitutive laws previously used for the myocardium. 
There has also been a poroelastic approach taken by May-
Newman and McCulloch (1998); Cookson et al. (2012) and 
Chapelle et al. (2010). This approach aims to incorporate 
the porescale fluid flow into the overall behaviour of the 
myocardium and to consider the perfused muscle.

Within this work, we aim to investigate the effects of 
microstructural changes induced by myocardial infarction on 
the elastic parameters of the heart. In Sect. 2 we summarise 
the LMRP (Miller and Penta 2020) model for poroelastic 
composites which we will use to model the microstructure 
of the myocardium. Within the sections that follow we will 
investigate a variety of changes to the parameters and geom-
etry of the microstructure in order to simulate a variety of 
phenomena observed post myocardial infarction. We account 
for the anisotropy of the heart microstructure through the 
inclusion of the myocytes in one direction. In Sect. 3, we 
will investigate the comparison between healthy elastic 
parameters and the parameters obtained in the post myocar-
dial infarction setting of loss of myocyte and increased fibro-
sis. Then in Sect. 4, we consider the effect that the increase 
in myocyte volume fraction has on the elastic parameters 
of the myocardium post myocardial infarction. Finally in 
Sect. 5, we propose a 3D framework to model the myocytes 
connected via intercalated disks. We conclude this work by 
providing the future prospects of developing this model and 
its potential as a diagnostic tool to aid clinicians.

2  The mathematical model

We use the LMRP model for poroelastic composites 
(Miller and Penta 2020) to describe the microstructure of 
the myocardium tissue. The myocardium is predominantly 
comprised of an extracellular matrix with embedded blood 
vessels and cardiac myocyte cells. We, therefore, have two 
elastic phases and a fluid interacting on the microscale, see 
(Fig. 1).

Here, we summarise the mathematical model for a 
poroelastic composite derived by the asymptotic homog-
enization technique in Miller and Penta (2020) that we 
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will use to describe the myocardium microstructure. The 
model derivation is carried out by setting up an appropri-
ate fluid-structure interaction problem between a linear 
elastic porous matrix, Ω

II
 , with embedded linear elastic 

subphases, Ω
I
 , with a Newtonian fluid, Ω

f
 , flowing in the 

pores. When applying this to the myocardium we make 
the identifications that Ω

II
 is the extracellular matrix, Ω

I
 is 

the myocyte and Ω
f
 is the permeating vasculature of the 

heart. Before describing the model equations we wish to 
clarify the notation that we will use throughout the work.

Remark 1 (Notation) We use the following for a generic 
field. For a scalar, we use ordinary lowercase letters e.g. v, 
for a vector we use boldface e.g. v , then � is used for second 
rank tensor. We also use uppercase normal text e.g. V for 
third rank tensors, and finally �  is used for fourth rank ten-
sors. There are some exceptions to this notation to keep the 
style consistent with classical notation used for the Biot’s 
modulus and the Biot’s tensor of coefficients as well as 
porosity. In these cases the Biot’s modulus is M, the Biot’s 
tensor is � and the porosity is � as used in Biot (1962b); 
Burridge and Keller (1981).

The fluid-structure interaction problem comprises a bal-
ance equation for each of the solid domains and the fluid 
domain. We can write these as

where �
Myo

 , �
M
 and �

f
 are the stress tensors in the myocyte, 

extracellular matrix and the fluid respectively. The solid 
phases are linear elastic and the fluid is incompressible and 
Newtonian so the constitutive laws for each of these phases 
are given as

(1)∇ ⋅ �
Myo

= 0 in Ω
I
,

(2)∇ ⋅ �
M
= 0 in Ω

II
,

(3)∇ ⋅ �
f
= 0 in Ω

f
,

where ℂ
Myo

 and ℂ
M
 are the fourth-rank elasticity tensor in 

the myocyte and the extracellular matrix; u
Myo

 and u
M
 are 

the elastic displacements in each of the phases, p is the fluid 
pressure, v is the fluid velocity and � is the fluid viscosity. 
Since the fluid is incompresible we have the incompress-
ibility constraint given as

The fluid structure interaction problem is then to be closed 
by appropriate interface conditions. These are continuity of 
tractions and elastic displacements between the myocytes 
and the extracellular matrix

and the continuity of tractions and velocities between the 
extracellular matix and the fluid flowing in the vessels,

where �
II
 and �

III
 are the unit outward normal vectors to the 

fluid-solid and solid-solid interfaces Γ
II
 and Γ

III
 , respectively. 

The Eqs. (1)–(11) form our complete fluid structure interac-
tion problem.

We make the assumption that the radius of the blood 
vessels, d (the porescale), is comparable with the distance 
between the adjacent myocytes (Potter and Groom 1983; 
Tracy 2014). Overall this length is much smaller than the 

(4)�
Myo

= ℂ
Myo
∇u

Myo
in Ω

I
,

(5)�
M
= ℂ

M
∇u

M
in Ω

II
,

(6)�
f
= −p� + �∇v + (∇v)T in Ω

f
,

(7)∇ ⋅ v = 0 in Ω
f
.

(8)�
Myo
n

III
= �

M
n

III
on Γ

III
,

(9)u
Myo

= u
M

on Γ
III
,

(10)�
M
n

II
= �

f
n

II
on Γ

II
,

(11)u̇
M
= v on Γ

II
,

Fig. 1  Image of heart micro-
structure and the assumed 
microstructural geometry of our 
model



1022 L. Miller, R. Penta 

1 3

size of the entire myocardium, L (the macroscale). The dif-
ference in length scales is the scale separation parameter � . 
This allows us to introduce two variables, one is x for the 
macroscale, and one to capture the microscale variations 
y . Having this difference in lengths allows us to decouple 
the spatial scales and apply the asymptotic homogenization 
technique to derive the macroscale model. We make the 
assumptions of microscale periodicity (Burridge and Keller 
1981) and macroscopic uniformity (Penta et al. 2014; Hol-
mes 2012). These assumptions mean that at each macroscale 
point we see the same repeating microstructure.

The asymptotic homogenization technique involves 
applying a multiple scales expansion and expressing each 
of the fields appearing in the fluid structure interaction prob-
lem as a power series in the scale separation parameter � . 
We then are able to equate coefficients of � in the multiple 
scales expansion to derive the governing equations and to 
form differential problems with linear ansatz that lead to 
the microscale periodic cell problems that are to be solved 
to find the macroscale model coefficients. The cell problems 
that are used to find the model coefficients are detailed in 
the Appendix A.

The new system of partial differential equations is of 
poroelastic-type. The model equations contain coefficients 
that encode the properties of the underlying material micro-
structure such as the stiffness and geometry of the myocytes 
and extracellular matrix and the geometry of the channels.

Here, we summarise the four governing equations. The 
first macroscale equation is the balance of linear momentum

where we have the constitutive law

where ℂi with i = Myo, M is the elasticity tensor for the 
myocyte and matrix respectively. We can define the effective 
elasticity tensor ℂ̃ as

The stress balance equation and constitutive law arrise from 
the summation of the asymptotic expansion of the stress 
balance equations.

The system also comprises the conservation of mass 
equation which we derive via the asymptotic expansion of 
the incompressibility constraint and the use of the ansatz to 
the elastic differntial problem. We have

where we have that p(0) is the macroscale pressure, u̇(0) is the 
leading order solid velocity, w is the average fluid velocity, 

(12)∇x ⋅ �Eff = 0,

(13)
�Eff = ⟨ℂ

Myo
𝕄

Myo
+ ℂ

Myo
+ ℂ

M
𝕄

M
+ ℂ

M
⟩s�xu(0) + �p(0),

(14)ℂ̃ = ⟨ℂ
Myo
𝕄

Myo
+ ℂ

Myo
+ ℂ

M
𝕄

M
+ ℂ

M
⟩s,

(15)ṗ(0)

M
= −∇x ⋅ ⟨w⟩f − � ∶ 𝜉xu̇

(0),

M and � are the resulting Biot’s modulus and tensor of coef-
ficients associated with the system respectively. The final 
macroscale equation is Darcy’s law

where ⟨�⟩f  is the hydraulic conductivity tensor.
From our governing equations, we have that the behav-

iour of the poroelastic composite material (myocardium) 
can be fully characterised by the model coefficients, that 
is, by the effective elasticity tensor ℂ̃ , the hydraulic con-
ductivity ⟨�⟩f  , the Biot’s tensor of coefficients � and the 
Biot’s coefficient M. These coefficients can be written as

where the fourth rank tensors �
Myo

 , �
M
 and the second rank 

tensors �
Myo

 , �
M
 are to be computed by solving the micro-

scale cell problems arising from the asymptotic homogeniza-
tion. The asymptotic homogenization technique provides six 
elastic type cell problems that are to be solved to compute 
the strains �

Myo
 , �

M
 . These can then be used, along with the 

original input elasticity tensors for the material ℂ
Myo

 , ℂ
M
 to 

compute the effective elasticity tensor. To see these elastic 
type problems explicitly see Appendix A and for even fur-
ther details consider the references therein. The asymptotic 
homogenization technique also gives rise to a further vector 
problem that can be solved to obtain the tensors �

Myo
 and �

M
 . 

By solving the seven problems we obtain the four tensors 
required so that we can compute all the coefficients of our 
novel macroscale model.

Within this work, since our analysis will focus predomi-
nantly on the elastic parameters of the myocardium in both 
healthy and diseased scenarios we will only compute the 
necessary components of the effective elasticity tensor ℂ̃.

Lastly, we note the notation ⟨�⟩ , which is a cell average 
defined as

where ⟨�⟩s = ⟨�⟩M + ⟨�⟩Myo , and where � is a general field 
in our system and |Ω| is the volume of the domain and the 
integration is taken over the porescale.

Before considering the numerical simulations for this 
model, we wish to make a few remarks on the well-posed-
ness of the model and the cell problems. The novel model 
for poroelastic composites (Miller and Penta 2020), on 
which the simulations in this work are based, also con-
tains rigorous results concerning well-posedness. In par-
ticular, the effective elasticity tensor (14) is proved to be 

(16)⟨w⟩f = −⟨�⟩f∇xp
(0),

(17)

� = �I − ⟨ Tr (𝕄
Myo

+𝕄
M
)⟩s, M =

−1

⟨ Tr (�
Myo

+ �
M
)⟩s

,

� = ⟨ℂ
Myo
�

Myo
+ ℂ

M
�

M
⟩s − �I,

(18)⟨�⟩k =
1

�Ω� ∫Ωk

�(�, �, t)d� k = f , s
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positive-semi definite. This property can be proved using 
the cell problems properties and the definition of the ten-
sor (14), Miller and Penta (2020). A similar proof is car-
ried out in Penta and Gerisch (2017) who proved that the 
effective elasticity tensor for elastic composites was posi-
tive definite.

By proving the positive semi-definiteness of the effec-
tive elasticity tensor (14), along with other results proved 
in Miller and Penta (2020) (positive Biot Modulus and the 
equality between the Biot’s tensor of coefficients � and the 
coefficient � in Eq. (17)), we show that the model is of Biot-
type, and therefore well-posed.

3  Loss of myocytes and increased fibrosis

Within this section, we wish to compare the elastic parame-
ters (Young’s and shear moduli) for the healthy myocardium 
versus the infarcted myocardium. The healthy myocardium is 
proposed to consist of a number of cardiac myocytes embed-
ded in an extracellular matrix surrounded by a network of 
blood vessels supplying the myocytes (Purslow 2008). This 
structure is shown in Fig. 2. In the infarct region, we have 
a loss of myocytes due to the interruption in the blood flow 
supplying them which causes them to die or become dam-
aged. In order to retain the structural integrity of the heart 
the extracellular matrix forms a collagen rich scar to replace 
the damaged and lost myocytes (Prabhu and Frangogiannis 
2016). In order to simulate this myocyte damage, we have 
created the geometry, Fig. 3 where the myocyte is missing 
a section and we increase the stiffness of the extracellular 
matrix.  The parameters chosen are shown in (Table 1).

Within this section, we make the assumption that both 
the healthy and the damaged myocytes run from the top of 
the cell to the bottom as a single fibre. This means that we 
can cut the plane and perform 2D simulations (See Figs. 4, 

Fig. 2  3D geometry healthy intact myocyte embedded in soft extra-
cellular matrix with four blood vessels

Fig. 3  3D geometry myocyte that has been injured as a result of 
infarction embedded in the stiffer collagen rich extracellular matrix 
with four blood vessels

Fig. 4  2D cross-section showing a myocyte that has been injured as a 
result of infarction embedded in the stiffer collagen rich extracellular 
matrix with four blood vessels

Fig. 5  2D geometry for healthy myocyte embedded in the healthy 
extracellular matrix with four blood vessels
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5 for 2D geometry) to solve the cell problems of LMRP. The 
details of the 3D cell problems can be found in the Appendix 
A and the reduction of these problems to 2D can be found in 
Miller and Penta (2022).

We use the input parameters found in Table 1 to carry 
out our simulations. These parameters come from a variety 
of sources (Andreu et al. 2014; Chiou et al. 2016; Lieber 
et al. 2004).

Due to the geometry, we are assuming for the microstruc-
ture we are including the effects of anisotropy of the myo-
cardium tissue in our results. This means that we have more 
than one independent shear and more than one independ-
ent Young’s modulus. Our material is not fully orthotropic 
with three Young’s moduli and three shears since there is 
a symmetry in x and y. So therefore due to the symmetries 
imposed by our choice of geometry we should note that the 
shear C44 is the same as the shear C55 , so we consider shears 
C44 and C66 . We also only have the two Young’s moduli E1 
and E3 , since E1 is the same as E2.

Here we compare the shear modulus C44 for a healthy 
myocyte embedded in the extracellular matrix with a setup 
where there has been loss of myocyte volume fraction and 
increased fibrosis of the matrix designed to represent the 
case of myocardial infarction. The parameter C44 is taken 
directly from the computed effective elasticity tensor for the 
model. We have plotted the comparison of the shear moduli 

for the healthy and infarcted cases over a range of porosities 
from 2–30%. This is shown in the figures below.

We see in Fig. 6 that the healthy setup has much lower 
values for shear and produces an overall smaller decrease in 
shear with increasing porosity than the diseased case. The 
shear is being applied in the axial direction (where the myo-
cytes and voids elongate) so the material deforms into the 
voids and they flatten out allowing for the decrease in shear 
as the voids increase in size (larger porosity). The diseased 
case has a higher initial value for shear due to the increased 
stiffness of the matrix and the unusual geometry of the dam-
aged myocyte, compared to the healthy case which has the 
normal soft extracellular matrix and regular myocyte. The 
higher the shear the stiffer the overall material, this means 
in the case of infarction even with reperfusion (increase in 
porosity) the stiffness of the myocardium still does not return 
to the normal healthy value. However, the increased perfu-
sion does improve the overall compliance of the diseased 
material.

We also carry out the same comparison but this time for 
the shear modulus C66.

In Fig. 7 we see that the healthy setup begins with a much 
lower shear value even at small porosities compared with the 
infarcted case. The healthy case produces an overall much 
smaller decrease in shear with increasing porosity than the 
diseased case. The shear is being applied in the x-direction 
(transverse). Therefore for both the diseased and healthy 
cases the force is being applied taking a cross section of 
structure which contains the voids and the myocyte. At 
higher porosities this makes the material weaker as the larger 
voids deform more easily hence why the decrease in shear 
is observed in both cases. The diseased case has a higher 
initial value for shear C66 due to the increased stiffness of 

Table 1  Input parameters

Model Emyo Ematrix �myo �matrix

Healthy 35 40 0.49 0.4
Infarcted 35 80 0.49 0.4

Fig. 6  Shear C
44

 versus porosity for both the healthy heart and the 
infarcted case

Fig. 7  Shear C
66

 versus porosity for both the healthy heart and the 
infarcted case
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the matrix and the unusual geometry of the damaged myo-
cyte, compared to the healthy case which has the normal soft 
extracellular matrix and regular myocyte. Again the increase 
in porosity (to mimic reperfusion) in the diseased case does 
reduce the overall stiffness of the material to attempt to 
return to a similar stiffness as the healthy. Comparing the 
shear C66 with shear C44 we can see that C66 has higher initial 
values but with increasing porosity actually becomes lower 
than C44 . This can be explained by the geometry and the 
direction in which the myocytes elongate and the presence of 
the voids. The voids have the larger influence on shear when 
applying in the C66 direction as they deform easily with less 
influence from the myocyte.

We also wish to consider the comparison between the two 
Young’s moduli E1 (transverse) and E3 (axial) for the healthy 
and the infarcted heart using the LMRP model. We compute 
the components of the effective elasticity tensor for both the 
healthy and infarcted cases and use in the formulas for the 
Young’s moduli. These formulas, which can be derived via 
inverting the elasticity tensor and comparing with the mate-
rial compliance tensor (Vignjevic et al. 2008), are given by

We plot the comparison of Young’s moduli between the 
healthy and infarcted cases.

Figure 8 shows that the infarcted myocardium has a 
much higher transverse Young’s modulus than the healthy 

(19)E1 =
(C12 − C11)(2C

2
13
− C12C33 − C11C33)

(−C2
13
+ C11C33)

(20)E3 =
(2C2

13
− C12C33 − C11C33)

(−C12 − C11)

case (almost double the stiffness). This is explained by the 
fact that the matrix in the infarcted case is much stiffer 
than in the healthy case and therefore influences the over-
all stiffness of the material to a large extent. The infarcted 
case also has the damaged myocyte which has lost volume 
and been replaced by the stiffer matrix which also influ-
ences the overall stiffness of the myocardium. We see that 
the stiffness of the infarcted case reduces dramatically 
with increasing porosity of the material. This means that 
with reperfusion of the infarcted tissue then the stiffness 
of the myocardium can be reduced with the benefit that the 
overall compliance of the tissue will then improve, thus 
improved heart function. We do see however that even at 
the highest porosities the diseased case never reaches the 
standard healthy E1 value that would be approximately 30 
kPA.

In Fig. 9 we consider the Young’s modulus E3 . We can 
again see that the healthy myocardium has a much lower 
axial Young’s modulus than the infarcted case. In fact the 
infarcted Young’s modulus is approximately double that 
of the healthy case. Overall again the increasing poros-
ity does have an effect in reducing the overall stiffness in 
both cases with the effects of the increasing porosity being 
shown more clearly in the diseased case. The increasing 
porosity has a much greater effect on the infarcted case in 
an attempt to improve the compliance of the overall heart 
muscle. We can compare E3 with E1 . We find that both the 
healthy and infarcted axial Young’s moduli ( E3 ) are ini-
tially higher than both the healthy and infarcted transverse 
Young’s moduli ( E1 ). We can see that the infarcted E3 is 
always higher than the infarcted E1 . We can also observe 
that the healthy E3 is also always higher than the healthy 
E1 . This is due to the fact that the myocytes and voids 

Fig. 8  E
1
 versus porosity for both the healthy heart and the infarcted 

case
Fig. 9  E

3
 versus porosity for both the healthy heart and the infarcted 

case
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elongate in the axial direction which is also considered a 
contributory factor to the stiffness in that direction.

4  Changing myocyte volume fraction

Following myocardial infarction we see a decrease in the vol-
ume fraction of myocytes in the infarct zone due to the death 
and damage of myocytes, however, in the regions surround-
ing the infarct zone the intact myocytes increase in volume 
to attempt to compensate for the section of damaged heart 
(Olivetti et al. 1987). We therefore wish to investigate the 
influence that this change in volume has on the overall elastic 
parameters of the heart. We assume our increase in myocyte 
volume fraction corresponds to different infarct sizes and not 
a time dependent increase following the infarction (Olivetti 
et al. 1994; Anversa et al. 1985).

Within this section, we make the assumption that the myo-
cytes run from the top of the cell to the bottom as a single 
cylindrical fibre. The myocytes here are intact cylinders since 
they have not been damaged by the infarction. This means that 
we can cut the plane and perform 2D simulations to solve the 
cell problems of LMRP. For a description of the cell prob-
lems see Appendix A and for the complete 2D reduction of 
the model see (Miller and Penta 2022).

We solve the cell problems using the following parameters, 
found in Andreu et al. (2014); Chiou et al. (2016); Lieber et al. 
(2004), summarised in the table below (Table 2).

We carry out the simulations for four fixed fluid volume 
fractions �f = 5%, 10%, 15%, 20% and for each of these 
varying the myocyte volume fraction from 5–30%. The fluid 
volume fractions have been chosen to represent the follow-
ing settings; 5% reduced flow leading to infarction, 10–15% 
normal range of healthy perfusion, 20% over perfused leading 
to myocardial injury.

We begin by considering the two Young’s moduli E1 and 
E3 for the infarcted heart.

In Fig. 10 we see that the transverse Young’s modulus E1 
decreases with increasing myocyte volume fraction and this 
behaviour is consistent across the four fixed fluid volume frac-
tions that we have considered. The Young’s modulus can be 
thought of as a measure of material stiffness so in the case of 
low myocyte volume fraction the extracellular matrix is the 
dominating parameter in influencing the stiffness of the overall 
material. A stiffer material leads to less elastic compliance 
which can be detrimental for overall function of the heart. This 
is why in the regions surrounding a myocardial infarction the 

myocyte volume fractions increase as their increase in volume 
actually reduces the overall stiffness and hence improves the 
overall compliance of the material. This biological mechanism 
is highlighted in the results of our simulations.

We also wish to consider the axial Young’s modulus E3 . 
This Young’s modulus is in the same direction that the myo-
cytes and voids elongate.

In Fig. 11 we see that the axial Young’s modulus E3 also 
decreases with increasing myocyte volume fraction and this 
behaviour is consistent across the four fixed fluid volume 
fractions that we have considered. In the case of E3 the val-
ues are higher for each of the fixed fluid volume fractions 
when compared to the transverse Young’s modulus E1 . This 

Table 2  Input parameters

Parameter Emyo Ematrix �myo �matrix

Value 35 80 0.49 0.4

Fig. 10  E
1
 versus myocyte volume fraction for four different fixed 

fluid volume fractions

Fig. 11  E
3
 versus myocyte volume fraction for four different fixed 

fluid volume fractions



1027Investigating the effects of microstructural changes induced by myocardial infarction on…

1 3

is due to the fact that the myocytes elongate in this direc-
tion which adds to the increased stiffness. Again since the 
matrix is stiffer as a result of the myocardial infarction then 
the increase in myocyte volume fraction helps to reduce the 
stiffness and improve the compliance of the material, which 
again emphasises the observed physiological response.

The other two elastic parameters that we consider for var-
ying myocyte volume fraction are the shear moduli C44 and 
C66 . These parameters are taken directly from the computed 
effective elasticity tensor for the model. In the same way as 
with the Young’s moduli we have plotted the comparison of 
the shear moduli over a range of myocyte volume fractions 
from 5–35% at the four fixed fluid volume fractions. This is 
shown in the figures below.

From Fig. 12 we can see that the shear C44 decreases 
with increasing myocyte volume fraction. In the case of 
C44 the force is being applied in the axial direction, this 
is the direction in which the myocytes and blood vessels 
elongate. The blood vessels can be thought of as empty 
channels since we are considering the drained parameters. 
This means that when the force is applied to the material 
it deforms and the channels flatten out. This means that 
the empty channels just make it softer allowing for the 
decrease in shear with the increasing fluid volume fraction. 
When the myocytes have a low volume fraction, such as in 
the case where myocyte damage and death has occurred 
due to myocardial infarction, then we see that, for all four 
fixed fluid volumes, the shear values are higher than for 
a larger myocyte volume fraction. The stiffest scenario is 
for fixed 5% fluid volume and low myocyte volume frac-
tion and this can be representative of the situation directly 
following myocardial infarction where fluid flow to the 

tissue has been dramatically reduced resulting in the loss 
of myocyte volume. We see that by increasing the myo-
cyte volume fraction the shear decreases at all four fluid 
volumes, meaning that we have a softer and more compli-
ant material once the myocytes increase in size. Physi-
ologically this occurs to help the myocardium return to 
homeostasis after infarction and this mechanism is clearly 
observed from our simulations.

In Fig. 13 the shear C66 decreases with increasing myo-
cyte volume fraction for all four fixed fluid volumes. For 
C66 the force is being applied in the transverse direction, 
that is, the force is being applied taking a cross section of 
the structure where we have the myocyte and the chan-
nels. At the lowest fluid volume fraction and smallest myo-
cyte volume (the scenario representing immediately post 
myocardial infarction) we see that the shear is the largest, 
this means that under this setting the myocardium is very 
stiff. The typical healthy shear for the myocardium would 
be approx. 10 kPa which is much lower that the 24.2 kPa 
value we see for the infarcted setup. This motivates the 
myocardium’s biological response to increase the myocyte 
volume fraction in order to try to return the tissue to the 
correct shear values so that the stiffness and compliance of 
the material are closer to the healthy case which leads to 
greater efficiency of the recovered muscle. If we compare 
C66 with C44 we see that C44 has the higher values across 
the increasing myocyte volume fraction. This is due to the 
fact that the shear C44 is being applied in the direction the 
myocyte elongates so the increase in its volume influences 
the material in that direction making it stiffer.

Fig. 12  Shear C
44

 versus myocyte volume fraction for four different 
fixed fluid volume fractions

Fig. 13  Shear C
66

 versus myocyte volume fraction for four different 
fixed fluid volume fractions
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5  3D simulations results—intercalated disks

Within this section we extend the current computational 
platform to 3D to allow us incorporate more structural 
details that will give us an even more detailed picture of 
the true elastic response of the heart. We now consider a 
setup where we have the myocyte with intercalated disks 
at either end embedded in the extracellular matrix with the 
four blood vessels in each corner. The intercalated disks are 
thin connecting plates found at either end of the myocytes 
that allow for connection to the next myocyte cell (Moise 
et al. 2021). The more detailed 3D geometry we consider is 
shown in Fig. 14.

Here we make the assumption that the myocytes have 
a height of 0.8 in the unit cell of length 1. This is centred 
so there is a gap of 0.1 height between the myocyte ends 
and the top and bottom of the cell. In this gap we place the 
intercalated disks that connect the myocytes between cells. 
This means that we must perform 3D simulations to solve 
the cell problems of LMRP since for every z we do not have 
the same microstructure so we cannot reduce to 2D.

We solve the cell problems using the following param-
eters, found in Andreu et al. (2014); Chiou et al. (2016) and 
Lieber et al. (2004). As far as can be determined from the 
literature there is no clear Young’s modulus for the interca-
lated disk, this can be attributed to the fact they are com-
posed of a variety of different proteins all with different elas-
tic parameters. However, we do know that the intercalated 
disks between myocytes are exposed to substantially higher 
forces than the equivalent cell-cell junctions in other organs 

(McCain et al. 2012). This leads to the assumption that disks 
should be stiffer than the myocyte but on the same order of 
magnitude. The myocardium also becomes stiffer in the case 
of hypertrophic cardiomyopathy due to an accumulation of 
proteins in the intercalated disks (Masuelli et al. 2003). We 
therefore have the following parameters and the values we 
have selected for the intercalated disks shown in (Table 3).

We carry out the simulations for four fixed fluid volume 
fractions �f = 5%, 10%, 15%, 20% and for each of these vary-
ing the myocyte volume fraction from 5–25%. The fluid vol-
ume fractions have been chosen to represent the following 
settings; 5% reduced flow leading to infarction, 10–15% nor-
mal range of healthy perfusion, 20% over perfused leading 
to myocardial injury. We should note that the intercalated 
disk is the connection between the myocytes, therefore we 
are assuming that the intercalated disks are growing with 
the myocytes so that the radii of both are consistently the 
same. This means that we are losing a larger percentage of 
the matrix with the increase in myocyte volume fraction at 
the expense of the larger disks.

We begin our analysis by considering the Young’s 
moduli.

From Fig. 15 we can see that for each fixed fluid vol-
ume fraction that the Young’s modulus E1 decreases with 
increasing myocyte volume fraction. As before the Young’s 
modulus is a measure of the material stiffness and therefore 
gives information about the overall elastic compliance of the 
heart. The heart should be soft and elastic when healthy with 

Fig. 14  3D geometry myocyte with intercalated disks at both ends 
embedded in the extracellular matrix with four blood vessels

Table 3  Input parameters 3D 
simulations

Parameter Emyo Ematrix Edisk �myo �matrix �disk

Value 35 80 60 0.49 0.4 0.49

Fig. 15  Young’s Modulus E
1
 versus myocyte volume fraction for four 

different fixed fluid volume fractions
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an overall Young’s modulus of 35 kPA (Lieber et al. 2004). 
This means we can determine a range of conclusions from 
the simulations that agree with physiological findings. Post 
myocardial infarction intact, surviving myocytes enlarge in 
an attempt to regulate the stiffness of the heart caused by 
the increasing stiffness of the extracellular matrix. Here we 
see exactly this phenomena, the larger the myocyte volume 
and the greater the fluid volume fraction the closer the E1 
parameter gets to that of the healthy heart.

Here, in Fig. 16, we consider the axial Young’s modulus 
E3 . We again can see that with increasing myocyte volume 
fraction the value of E3 (the stiffness) decreases for all four 
fixed fluid volumes. We again see that this behaviour is again 
representative of what happens physiologically in the heart 
to try to maintain homeostasis post infarction. We also can 
compare E3 with E1 . We see that E3 changes more than E1 
when we compare line-by-line (for each fluid volume frac-
tion) and that the starting values of E3 are higher than that of 
E1 . This can be explained by the fact that since the myocytes 
elongate in E3 this creates the stiffer Young’s modulus in this 
direction compared with the E1 Young’s modulus.

We also wish to consider the two shear moduli C44 and 
C66 for the four fixed fluid volumes with increasing myocyte 
volume.

In Fig.  17 we see that the shear C44 decreases with 
increasing myocyte volume fraction at all four fluid vol-
umes. This shear is applied in the direction that the myocyte 
and channels elongate. This means that for small myocyte 
volume fractions the matrix and the specified fluid volume 
fraction have most influence on the stiffness of the material. 
When the myocytes and disks increase in volume they play 
a role in reducing the overall stiffness since they are softer 
than the matrix. The higher the value of the shear then the 

stiffer the overall material is. The results of our simulations 
again agree with the physiologically observed behaviour that 
the increased myocyte volume aims to reduce the overall 
stiffness of the myocardium caused by the infarct scar in an 
attempt to return to homeostasis.

The final parameter we have considered is the shear C66 
as shown in Fig. 18. This shear is applied taking a cross-sec-
tion of the material where we will see matrix, channels and 
intercalated disk. This shear again decreases with increas-
ing myocyte volume. We can compare the behaviour with 
C44 . We see that for the 5% fluid volume fraction that C66 
decreases more than C44 , however for 10%, 15% and 20% 
fluid volume fractions C44 shows the greater decrease with 

Fig. 16  Young’s Modulus E
3
 versus myocyte volume fraction for four 

different fixed fluid volume fractions

Fig. 17  Shear C
44

 versus myocyte volume fraction for four different 
fixed fluid volume fractions

Fig. 18  Shear C
66

 versus myocyte volume fraction for 4 different 
fixed fluid volume fractions
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increasing myocyte volume fraction. We note that C44 has 
higher values across all myocyte volume fractions for all four 
fluid volume fractions than C66 . This can be explained by the 
different directions the shear is applied in. The increase in 
the myocyte volume does indeed decrease the overall stiff-
ness since the myocyte and the disks are taking up a larger 
volume of the whole structure and are softer than the matrix. 
However C44 is being applied against the base of the disk/
myocyte fibre and as the volume of this increases it has an 
influence when the force is applied. The voids with the C44 
shear only flatten out rather than deforming with the shear. 
Both of these reasons are what keeps the value of the shear 
C44 higher that that of C66.

6  Conclusions and future directions

Within this work we have created a robust computational 
platform that has allowed for a first study of how different 
microstructural features, that can be observed clinically fol-
lowing myocardial infarction, affect the elastic parameters 
of the heart. We have investigated a variety of elastic param-
eters obtained by solving the asymptotic homogenization 
cell problems of Miller and Penta (2020) for poroelastic 
composites.

We begin this work by firstly summarising the LMRP 
model for poroelastic composites. We provide an Appendix 
A with the specific cell problems that we have solved to 
produce the results of this work, as well as references to 
inform the reader of the numerical procedures that are car-
ried out. We then consider the first microstructural change 
that occurs as the result of myocardial infarction. That is, the 
loss of myocyte volume and increasing matrix fibrosis and 
we consider this versus porosity (Prabhu and Frangogiannis 
2016). For this microstructural change we make the com-
parison with the healthy heart for the four elastic parameters 
(Young’s moduli E1 and E3 and shear moduli C44 and C66 ). 
We find that in all cases the diseased/infarcted heart is much 
stiffer across the range of porosities considered. This is in 
line with the expected physiological response post infarction 
(Gupta et al. 1994; Voorhees and Han 2014).

We continue our analysis by considering the effect of 
increasing the volume fraction of the myocyte with the extra-
cellular matrix still being stiffer than in the healthy case. 
Physiologically this happens in the areas surrounding the 
infarct region in an attempt to counter balance the increased 
stiffness of the matrix with scar tissue (Olivetti et al. 1987). 
The results we obtain for all four elastic parameters, for all 
four different fixed fluid volume fractions, confirms this 
physiological phenomenon (Olivetti et al. 1994). For both 
of these cases it was possible to carry out the simulations in 
2D since our geometry is identical for each z.

The final part of our analysis extends the previous sec-
tion by the addition of the intercalated disks that are stiffer 
than the myocytes and connect myocytes cell-to-cell. The 
analysis carried out in this section requires 3D simulations 
since the microstructure varies with the z coordinate. In 
this setting it is again the increase in the myocyte volume 
fraction that is considered. We again see that with increas-
ing myocyte volume all of the elastic parameters that we 
have considered here decrease, meaning the stiffness of the 
overall myocardium is decreasing. Once again our numeri-
cal results were replicating the physiological response (i.e. 
increasing myocyte volume in order to try to reduce the stiff-
ness of the complete organ caused by the scar tissue (Olivetti 
et al. 1987, 1994)).

The numerical simulations carried out in this work can 
be thought of as a first attempt to model some basic micro-
structural changes that can be observed post myocardial 
infarction. The simulations here are computationally cheap 
(approximately 15 s computing time to obtain each data 
point in the 3D and 2–3 s in the 2D) and can provide realis-
tically observed physiological responses.

Our current model does have some limitations and pos-
sible extensions. The model currently assumes a simplified 
microstructure, we therefore could extend the 3D simula-
tions in Sect. 5 for more complicated geometries. It would 
also be possible to split the heart into regions such as infarct 
zone, the infarct border and the remaining unaffected tissue. 
By doing this we would obtain different macroscale coef-
ficients for each of the regions that can be used to solve the 
overall macroscale model. The solution of the macroscale 
model would be straight-forward to obtain and can be found 
by using a scheme similar to the one proposed in Penta et al. 
(2020). The macroscale model of standard Biot’s poroelas-
ticity has been solved in Dehghani et al. (2020).

Currently this work has used linear elasticity however, 
we are able to make use of this computational platform to 
represent a more accurate nonlinear behaviour of the heart 
by using a piecewise approach to modelling as done in Hu 
et al. (2003a, 2003b). By doing this we can approximate the 
nonlinear behaviour using simple, computationally cheap 
simulations.

Future extensions to this model that could allow it to be 
used as a predictive tool for clinicians would be adding addi-
tional microstructural features that have an influence on the 
overall behaviour of the heart. The microstructures chosen in 
this work are a very basic starting point as a first approxi-
mation to the myocardial microstructure using the computa-
tional platform that we have created for our novel poroelastic 
composite model. The next steps will be to carry out further 
numerical tests with increasingly complex microstructures 
such as to include fibroblasts (Humeres and Frangogiannis 
2019; Fan et al. 2012), different directions of collagen and 
elastin fibres (Purslow 2008; Ohayon and Chadwick 1988) and 
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indeed tortuosity of the channels Penta and Ambrosi (2015). 
As well as obtaining additional data from medical imaging 
that would allow us to create a patient specific profile of the 
elastic parameters post infarction and in the recovery period.

Another useful source of data for model comparison and 
validation would come from elastography of the heart. The 
elastography technique uses vibrations applied to the skin 
and measures the responses from the underlying tissues 
since stiffer tissue responds differently to softer tissue (Wells 
and Liang 2011) This can be used to assess changes in myo-
cardial elasticity during the cardiac cycle (Tzschätzsch et al. 
2012). These measurements along with our model predic-
tions can provide valuable insight to clinicians on the stiff-
ness of the heart and inform treatment choices.

A final consideration that may be useful to our model 
simulations is the effects of the cell membranes of the dif-
ferent components in our periodic cell. This consideration 
can be very useful for some tissue types and perhaps less 
influential in others. Factors that could influence the impor-
tance of the cell membrane on the mechanics are the struc-
ture of the membrane and its stiffness or the permeability of 
the membrane. The cell membrane can have the following 
important mechanical properties such as its elastic modu-
lus, shear modulus, bending stiffness, and viscosity (Dai 
and Sheetz 1997). Cell membranes have a very low shear 
modulus as well as a high elastic modulus. The permeabil-
ity of the membrane influences the transport of substances 
across the cell membrane and in this case will be extremely 
important for the mechanics. This was investigated in Penta 
and Merodio (2017) for vascularised poroelastic materials.

Appendix A Cell problems

Within this appendix we present the cell problems for poroe-
lastic composites arising from the asymptotic homogeniza-
tion technique as found in Miller and Penta (2020). These 
cell problems allow us to compute all of the macroscale 
model coefficients.

We are able to compute the fourth rank effective elasticity 
tensor ℂ̃ for the LMRP model and by using its components 
calculate the two Young’s moduli and two shear moduli. The 
effective elasticity tensor is given by

We can see that this comprises the fourth rank tensor �i , 
where i = Myo, M , which can be defined as
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We can then write the cell problems for third rank tensors 
A

Myo
 and A

M
 , found in Miller and Penta (2020), with corre-

sponding components AMyo

ikl
 and AM

ikl
 as

The solutions to the problem (A3–A7), �kl
pq
(AMyo) and �kl

pq
(AM) , 

are found by solving six elastic-type cell problems by fix-
ing the couple of indices (k, l). By doing this the �kl

pq
(AMyo) 

and �kl
pq
(AM) that appear in (A3–A7) represent a strain, Then 

for every fixed couple (k, l) we have a linear elastic prob-
lem which has interface conditions between the matrix and 
inclusion determined by using the elasticity tensor in (A5) 
and between the matrix and the fluid that can be determined 
using (A7).

We also wish to be able to determine the other macroscale 
coefficients such as the Biot’s modulus and the Biot’s ten-
sor of coefficients (see 17). We see that these coefficients 
contain the tensors ℚMyo and ℚM . These can be defined as

We then have the cell problems for the vectors �Myo and �M , 
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The solutions to the problem (A9–A13), �pq(�Myo) and 
�pq(�

M) , are found by solving the linear elastic problem with 
inhomogeneous Neumann conditions between the matrix 
and the fluid and continuity of auxiliary stresses between 
the two elastic phases.

These are the 3D cell problems and the ones used to com-
pute the elastic parameters in Sect. 5. We must use the 3D 
problems when we have a variation in the z direction (i.e. 
in Sect. 5 we have cross-sections in the z direction that are 
disk and matrix or myocyte and matrix since this is different 
we must use the 3D problems). If the z cross-sections are all 
the same then it is possible to reduce these cell problems to 
2D, which reduces the computational complexity. It is the 
reduced cell problems that are used in Sects. 3 and 4. For 
the complete detailed reduction of these cell problems to 2D 
please see (Miller and Penta 2022).
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