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Abstract—Classification of traffic service types is a valuable
function for wireless communication networks. Even though some
progress has been made, the recognition of the type of the traffic
services cannot be done in real time. In this paper, we propose
a novel method for classifying traffic series in real time based
on transfer learning techniques. We pre-train a deep learning
model with long traffic series and fine-tune the model with short
traffic series. In this way, the developed model achieves the
capability of recognising traffic services in real time. In other
words, the model can recognize traffic services by using short
traffic series. We collect Downlink Control Information (DCI)
from commercial LTE networks when using five common types
of traffic services. Then we use the dataset to validate our method.
Our experimental results show that, by using proposed method,
LSTM accuracy rates will increase to 80% and 88.5% when the
length of the traffic series is 5 seconds and 10 seconds respectively,
which is higher than the baseline. The strategy is also suitable
for one dimension convolution neural network (1D-CNN).

Index Terms—LTE, Downlink Control Information, Traffic
classification, Transfer learning

I. INTRODUCTION

The rapid development of wireless communication networks

makes mobile phones indispensable in our daily life. A variety

of applications (apps) have been developed to meet service

requirements of users. Thus, service recognition becomes pos-

sible by analyzing the app data traffic in the wireless network.

Service recognition mainly has two aspects of benefits to the

wireless communication network. First, service recognition

gives a better understanding of the traffic demand in the

network. This is beneficial to network operations and manage-

ment [1]. Second, service recognition reveals the possibility

of leaking private information through the public commercial

network, which regards as a security problem that needs to be

solved.

A large amount of work on mobile encrypted traffic classi-

fication leverages UDP/TCP port analysis or packet-level in-

formation [2]–[7]. However, in LTE/4G and 5G networks, the

information in the network layer or transport layer cannot be

acquired in a passive way because of the network encryption

mechanism. This makes traffic classification in LTE and 5G

networks a challenging task.

Recently, some studies take advantage of the LTE downlink

decoding software (e.g. SRS Airscope [8] or OWL [9]) to

analyze Downlink Control Information (DCI). DCI carries the

important scheduling information, and it is sent to the user

equipment (UE) from the base station through the Physi-

cal Downlink Control Channel (PDCCH). As DCI contains

adequate user-specific traffic information, it enables traffic

classification by a passive sniffer. In [10], a recurrent neural

network (RNN) based model was reported to recognize traffic

service types by decoding DCI. Trinh et al. introduced the

method to recognize not only traffic services, but also the

usage apps in both supervised and unsupervised ways based on

machine learning [11]. It can achieve about 90% accuracy in

the identification task of three types of traffic services with

the traffic series longer than 20 seconds. Nevertheless, the

accuracy rate will drop rapidly, if the traffic series is shorter

than 20 seconds. This will emerge a problem when the users

switch between different traffic services with a short usage

duration. The reported model will fail to recognize the traffic

service. Another interesting work is presented in [12], with the

usage of the data link layer information. The machine learning

based classifier can recognize 20 types of apps in both iOS and

Android mobile phones. However, this work was done only in

the lab simulation network and the traffic series is longer than

50 seconds.
In this paper, we present a novel method to real-time

recognize the traffic services in the real world commercial

LTE network based on transfer learning. We leverage the

knowledge from a deep learning model pre-trained with the

long traffic series to improve the model performance on the

short traffic series. This allows the recognition of LTE traffic

services to become real-time. A developed passive sniffer first

decodes the DCI by using Airscope. After preprocessing and

encoding the raw data, we then train the model with long traffic

series and fine-tune with short traffic series. We demonstrate

the effectiveness of the proposed method through real-world

LTE data. Furthermore, we combine our method with user

identification tracking method introduced in [13] to make our

traffic monitor be able to long-term track for a specific user.
We summarize our main contributions as follows:

• We propose a novel method for effectively classifying

short time series based on transfer learning techniques.

• A raw LTE traffic information encoding method is pre-

sented to reduce the complexity of the model training.

• We demonstrate the ability of the proposed method to

learn through real-world LTE data to recognise five types

of the traffic services in real time, including streaming



video, streaming music, social media, text chat and video

calls.

The remainder of the paper is organized as follows. Section

II introduces the LTE technique background of our proposed

traffic services classifier. Section III presents our data ac-

quisition system, the proposed raw traffic data encoder and

our deep learning model for short traffic series classification.

Section IV demonstrates the experimental setting and results

and comparison results to other methods. Section V concludes

the paper.

II. BACKGROUND OF LTE

We briefly introduce the LTE network infrastructure, pro-

tocol stack and identifiers which serve as background of our

proposed traffic services classifier.

A. LTE Network Infrastructure

The LTE Network infrastructure is shown in Fig. 1. The

LTE network contains multiple user equipment (UE), in-

cluding mobile phones and other user mobile devices. The

base stations, Evolved NodeB (eNodeB) is the intermediate

connectors. Because the messages from the eNodeB to the UEs

are broadcast in the air, this gives us an opportunity to get the

unencrypted information. The core network, Evolved Packet

Core (EPC), is in charge of establishing the point-to-point

connection from the UEs to the Internet. The traffic monitor

presented in this paper consists of the software defined radios

(SDR) and a computer is deployed between the UE and the

eNodeB.

B. LTE Protocol Stack

The LTE protocol stack contains the physical layer (L1),

data link layer (L2) and network layer (L3). The functions

of the L3 layer include system message broadcasting, paging,

wireless connection management, etc. The L2 layer is respon-

sible for data encryption, data segmentation and concatenation,

etc. L1 layer completes physical layer processes including

coding, modulation, and multi-antenna mapping. The PDCCH,

an important physical channel in the physical layer, contains

DCI. DCI carries resource allocation information, which is

useful to identify the app or traffic service usage on the

victim’s device [10], [11].

C. LTE Identifiers

There are several identifiers used in LTE network. In-

ternational Mobile Subscriber Identity (IMSI) is a unique

ID that globally identifies a SIM card. Because of IMSI’s

high sensitivity, when the mobile subscriber first accesses

the network, the network allocates an Temporary Mobile

Subscriber Identifier (TMSI) to the subscriber. Meanwhile,

eNodeB transmits the TMSI without encryption when setting

up the Radio Resource Control (RRC) connection [13]. This

makes getting TMSI possible. Even though TMSI is refreshed

periodically, its longer life time than Cell Radio Network

Temporary Identifier (C-RNTI) gives us the opportunity to

track a specific user for a long time.

UE1

UE2

eNodeB

EPC

Mo tor

SDR PC

Fig. 1. LTE Network Infrastructure and the position of the deployed traffic
monitor

TABLE I
NAMES AND CATEGORIES OF THE APPS FOR EXPERIMENT

Traffic service type Representative app
Streaming Video TikTok
Streaming Music Spotify

Social Media Instagram
Test Chat Whatsapp

Video Calls Whatsapp

III. PROPOSED METHODOLOGY

A. Data acquisition System

For data collection, we set our experiment mobile phones to

connect to the commercial LTE network. We then launch the

downlink traffic monitor to collect the broadcast information

from the base station connected by user devices. For this,

we use the SDR, USRP X310, equipped with the downlink

sniffer software, SRS AirScope. AirScope enables us to get

all DCI messages and MAC layer packets, including the RRC

connection setup message. The traffic monitor position is

between the eNodeB and UEs as shown in Fig. 1.

We first upload a large size file to make a burst in uplink

data rate. In this way, we can determine the initial RNTI of

the experimented mobile phone. Then we control the mobile

phone to use the specific apps. We select five common traffic

service types in mobile networks and set the mobile device to

use the representative apps in each type. The list of the selected

apps is shown in TABLE I. We collect 100 traffic traces for

each app and each trace lasts for 50 seconds. After that we

map multiple RNTIs with the TMSI. The corresponding DCI

messages are filtered by using the RNTIs chain to get all DCI

messages of the experimented mobile phone. In this paper, we

use uplink and downlink Transport Block Size (TBS) in DCI

messages as the raw traffic data.

B. Encoder

In order to decrease the complexity of the machine learning

model, we design an encoder to compress the raw traffic series

to the same length. A sliding window length of 0.1 second

is used to move rightwards from the beginning of the traffic

series to the end without overlapping. The spilt traffic series

is then used to calculate eight dimensions features, which are

mean TBS in uplink, mean TBS in downlink, max TBS in
uplink, max TBS in downlink, total TBS in uplink, total TBS in
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Fig. 2. Experiment and proposed model architecture. Baseline A: Traditional training deep learning model with using short traffic series randomly sliced
from long traffic series. Baseline B: Training the model with long traffic series and testing with short traffic series. Proposed: Pre-training the model with
long traffic series and fine-tuning pre-trained model with short traffic series

downlink, total numbers of packets arrived in uplink and total
numbers of packets arrived in downlink. Next, the encoded

data will be inputted to the deep learning model.

C. Model

In this section, we introduce our training method to make

the deep learning model capable of recognising short traffic

series based on transfer learning techniques.

Pan et al. introduced an elegant definition of transfer

learning in [14]. Consider a domain D = {X , P (X)}, where

X is a feature space, P (X) means the marginal probability

distribution and X = {x1, x2, . . . , xn} ∈ X . The task can

be defined as T = {Y, f(.)}, where Y = {y1, y2, . . . , ym} is

the label space and f(.) is the objective predictive function

f : X → Y . Given a source domain DS and source task TS ,

a target domain DT and target task TT , transfer learning is

designed to help learn the fT (.) with the knowledge in DS

and TS , where DS �= DT or TS �= TT .

In this paper, DS and DT are traffic series in different time

durations. We only collect data from LTE networks, so XS =
XT . But different traffic series lengths will make PS(X) �=
PT (X). Thus, we leverage the knowledge in the model pre-

trained by long traffic series to enable training the models

for short traffic series. We propose to use Long-Short Term

Memory (LSTM) networks [15] with fully connected layer to

this task. Thus, the objective predictive function will be:

fS(.) = fFC
S (fLSTM

S (.)) (1)

where fFC
S (.) and fLSTM

S (.) are the fully connected layer and

LSTM layers trained by long traffic series, respectively. For

an input sequence, S = {s1, s2, s3, ...sT }, the forward process

of an LSTM cell at time t is shown in Eq. (2) - Eq. (7).

it = σ(Wisst +Wihht−1 + bi) (2)

ft = σ(Wfsst +Wfhht−1 + bf ) (3)

ot = σ(Wosst +Wohht−1 + bo) (4)

c̃t = tanh(Wcsst +Wchht−1 + bc) (5)

mt = ft �mt−1 + it � c̃t (6)

ht = ot � tanh(mt) (7)

where it, ft and ot are the input gate, forget gate and output

gate respectively. c̃t is the intermediate state; mt is a memory

cell and ht is the hidden state. tanh(.) and σ(.) are activation

functions and � is pointwise multiplication. The procedure of

the model training is as below.

• We first train the LSTM with fully connected layer with

the encoded long traffic series, whose length is with 50

seconds. From this we get the fS(.) = fFC
S (fLSTM

S (.))
on DS .

• We transfer the pre-trained model in the previous step

to the short traffic series. When training the transferred

model, we set the learning rate of the LSTM layer to an

extremely small value. In this way, we could freeze the

LSTM layers and maintain its knowledge learning from

the long traffic series.

• The pre-trained fully connected layer is discarded, and a

new fully connected layer will be trained to fit the short

traffic series. Finally, we will get TT on DT . The objective

predictive function fT (.) in TT will be:

fT (.) = fFC
T (fLSTM ′

S (.)) (8)

where fFC
T (.) means the fully connected layer trained

by short traffic series and fLSTM ′
S (.) means the LSTM

layers from TS with minor changes.

Then the softmax function is used to get the probability of

each class i shown in Eq. (9).

σ(�z)i =
ezi

∑K
j=1 e

zj
(9)

where �z = {z1, z2, . . . , zK} is the output of the full connected

layer and K is the number of the classes. Moreover, we

demonstrate this training method can also be suitable for

one dimension convolution neural network (1D-CNN). The

detailed presentation is omitted here due to page limitation.

IV. EXPERIMENTS AND RESULTS

A. Experiments
In order to validate our proposed approach, we compare

the performance of the proposed method with two baseline



methods. The procedures of the experiment is shown in Fig.

2.

• Baseline A: It is the most traditional method to train the

model. We use a fixed length time window randomly

slicing the long traffic series to generate short series. Then

we directly input the short series to the encoder and deep

learning model for training and testing. This method is

used in [11]. Baseline A is to validate the necessity of

learning different objective functions f(.) in DS and DT .

• Baseline B: It is to train the model using the long traffic

series but to test the model performance using short time

series. This is to validate whether the model trained by

long traffic series has the capacity to classify short traffic

series, which means whether PS(X) is equal to PT (X).
• Proposed: It is our proposed transfer learning method.

All models use the same dataset to train and test, and the

proportion of the test data is 20%. The accuracy rates on

the test data are reported as the metrics of the model’s

performance. For the model trained by each method, we

test the performance on seven different traffic series lengths,

including 2 seconds, 5 seconds, 10 seconds, 20 seconds, 30

seconds, 40 seconds, and 50 seconds (i.e., the whole traffic

series).

B. Results

The experiment results are shown in Fig. 3 and Fig. 4. It

can be seen that the accuracy rates of the whole traffic series

are high, which is 92% in LSTM and 96% in 1D-CNN. This

means that the traffic service can be effectively recognized

by using a deep learning model when traffic series are long

enough. However, the accuracy rates drop rapidly in both deep

learning models trained by methods A and B. In method B, the

faster decreasing accuracy rates mean that the model trained

by long traffic series does not have the ability to recognize

short traffic series. For 1D-CNN, the accuracy rate even drops

to 20%, nearly the chance level for five class classification

tasks. This is because the size of the fully connected layer in

1D-CNN is fixed. But the length of the traffic series becomes

shorter when testing the model using short traffic series. In

order to use pre-trained 1D-CNN, the short traffic series need

to be padded with zeros, which introduces noise to data and

deteriorates the model performance.

For the proposed method, it can be seen that the perfor-

mance is better than the other two methods. This illustrates

that fine-tuning the pre-trained model by short traffic series

gives better performance. The knowledge from the pre-trained

model is able to guide to learn how to recognize short traffic

series, which is lacking in both Method A and B. The accuracy

rates can reach 81% and 88.5% in LSTM by using traffic

series length at 5 and 10 seconds. This improves the real-time

performance of the traffic classifier. In addition, fine-tuning the

1D-CNN achieves better performance because we only keep

the CNN layers of the pre-trained model and the size of the

fully connected layer is flexible for various short traffic series.

Meanwhile, the performance of the fine-tuned model is more

stable than the other two methods. Especially in 1D-CNN, the
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Fig. 3. Accuracy rates vs traffic series length on LSTM
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Fig. 4. Accuracy rates vs traffic series length on 1D-CNN

accuracy rate can maintain at 80% when traffic series length

is 10 seconds.

V. CONCLUSION

In this paper, we present a transfer learning method to

deal with real-time traffic service classification in LTE. From

the results, it is observed that the proposed method can

achieve a high accuracy rate even though the traffic series

is extremely short. Comparing with the two baseline methods,

we can validate the effectiveness of our proposed strategy.

The accuracy rates of LSTM are 80% and 88.5% when traffic

series length is 5 and 10 seconds respectively. Furthermore,

when compared to traditional methods, the performance of

1D-CNN can be improved, and the performance is more stable

for shorter traffic series.

For the equivalent capabilities of the 5G wireless commu-

nication networks, as the DCI format and PDCCH are similar

in LTE and 5G, the model proposed in this paper could be

extended to 5G networks.
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