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Nuclear and mtDNA sequences from selected short-looped terebratuloid (terebratulacean) articulate
brachiopods yield congruent and genetically independent phylogenetic reconstructions by parsimony,
neighbour-joining and maximum likelihood methods, suggesting that both sources of data are reliable
guides to brachiopod species phylogeny. The present-day genealogical relationships and geographical
distributions of the tested terebratuloid brachiopods are consistent with a tethyan dispersal and subsequent
radiation. Concordance of nuclear and mitochondrial gene phylogenies reinforces previous indications that
articulate brachiopods, inarticulate brachiopods, phoronids and ectoprocts cluster with other organisms
generally regarded as protostomes. Since ontogeny and morphology in brachiopods, ectoprocts and
phoronids depart in important respects from those features supposedly diagnostic of protostomes, this
demonstrates that the operational de¢nition of protostomy by the usual ontological characters must be
misleading or unreliable. New, molecular, operational de¢nitions are proposed to replace the tradi-
tional criteria for the recognition of protostomes and deuterostomes, and the clade-based terms
`Protostomozoa' and `Deuterostomozoa' are proposed to replace the existing terms `Protostomia' and
`Deuterostomia'.
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1. INTRODUCTION

We recently reported analyses of DNA sequences
representing the nuclear-encoded small subunit ribosomal
RNAs (hereafter nDNA) from a taxonomically represen-
tative selection of articulate and inarticulate brachiopods,
together with homologous sequences from a number of
phoronids and a few (taxonomically unrepresentative)
ectoprocts (Cohen & Gawthrop 1996; Cohen & Gawthrop
1997; Cohen et al. 1998). One important conclusion of these
studies was that, with minor exceptions, the resulting
brachiopod nDNA gene tree is broadly concordant with
the largely shell morphology-based taxonomy of the
group (Williams 1997), although for some clades, branch-
lengths were short and support indices were relatively low.
We also con¢rmed that brachiopods, phoronids and
ectoprocts cluster with undoubted protostomes such as
molluscs and annelids, not with deuterostomes. This result
is contrary to much zoological opinion about these

lophophorates (e.g. Brusca & Brusca 1990; Nielsen 1991,
1995; Eernisse et al. 1992), but consistent with earlier
conclusions from molecular analyses (Field et al. 1988;
Halanych et al. 1995). (Pterobranchs, a fourth lophopho-
rate group, do cluster amongst deuterostomes (Halanych
1995)). Because acceptance of the protostome a¤nity of
most lophophorates has far-reaching implications, it
needs to be con¢rmed by independent, molecular
evidence. In this paper we provide such evidence, using
trees based on a segment of the small subunit ribosomal
RNA gene from mitochondrial DNA (mtDNA) of
selected articulate brachiopods and both protostome and
deuterostome outgroups. The new data con¢rm both the
nDNA phylogeny and the protostome a¤nity of articu-
late brachiopods and, by inference, of inarticulate
brachiopods, phoronids and ectoprocts. That these lopho-
phorate phyla are genealogically allied to undoubted
protostomes implies that traditional morphological
criteria for the diagnosis of protostomes and deuterostomes
are unreliable when applied to lophophorates. Yet
protostomes and deuterostomes appear to be genuine,
apparently monophyletic, supra-phylum aggregates. We
therefore propose molecular, clade-based diagnoses and
new names for these groups.
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2. MATERIALS AND METHODS

(a) Specimens and sequences
Provenance, identi¢cation and taxonomy of the animals

studied and GenBank accession numbers for the nDNA
sequences have been reported (Cohen et al. 1998). Details relating
to the mtDNA sequences are given in table 1.

(b) Laboratory procedures
Procedures for DNA isolation, polymerase chain reaction

ampli¢cation, DNA sequencing and data-handling were as
described (Cohen et al. 1998). The sequenced fragment of
mtDNA was de¢ned by the `universal' gene primers L1091 and
H1478 which amplify domain three of the mitochondrial small
subunit ribosomal RNA gene (Kocher et al. 1989). Sequencing
was assisted by taxon-speci¢c internal primers.

(c) Sequence alignment and masking
The nDNA alignment and excluded sites have been described

(Cohen et al. 1998). Newly determined mtDNA sequences were
aligned manually with outgroup sequences from a published
alignment, making use of the associated secondary structure
model and conserved motifs (Hickson et al. 1996). To exclude
ambiguously aligned or misaligned sites, two masks were
constructed, guided by a GDE 50% consensus selection mask
(Smith et al. 1994). Since alignment di¤culties were largely
con¢ned to phylogenetically distant taxa, one mask, used only
for analyses of the ingroup plus the chiton outgroup, excluded as
few sites as possible (25 out of 426), leaving 401, of which 101were
parsimony-informative, whereas the second mask, used for
analyses of the ingroup plus multiple, more distant, outgroups
excluded 100 potentially misaligned sites, leaving 316 of which
160 were parsimony-informative. The mtDNA sequence align-

ment and masks are available on request from the author for
correspondence or from the EMBL alignment database, acces-
sion number DS32096. The EMBL alignment database may be
accessed from the EBI FTP server by anonymous FTP from
ftp.ebi.ac.uk in the directory /pub/databases/embl/

align or from the EBI WWW server: (URL ftp://ftp.

ebi.ac.uk/pub/databases/embl/align/).

(d) Phylogenetic analysis
The nDNA alignment was tested for adequacy of phylogenetic

information-content using Paup* (Swo¡ord 1997) by plotting the
distribution of 10 000 random trees, with calculation of g1 (Hillis
& Huelsenbeck 1992) and by the proportion of unresolved
maximum likelihood quartets reported by PUZZLE 3.1
(Strimmer & von Haeseler 1996). Maximum parsimony (MP)
and weighted parsimony (WP; equivalent to successive approxi-
mation (Farris 1969)) analyses of the nDNA alignment were
made using the exhaustive search procedure. ForWP, characters
were reweighted according to the best ¢t of the rescaled consis-
tency index (RCI, baseweight�1). Three cycles of reweighting^
searching led to stable results.WP bootstrap resampling consensus
trees were obtained by branch-and-bound searches with furthest
taxon addition. Jackknife replication was performed with default
and 1/e (Jac) resampling (Farris et al. 1996; Swo¡ord 1997), but
since the results were similar to those of bootstrapping, they are
not reported. Procedures for phylogenetic analysis of mtDNA
sequences were similar to those used for nDNA, except that
branch-and-bound or heuristic searches were used, depending on
the numbers of taxa.The use of exhaustive andbranch-and-bound
searches ensured that the most parsimonious trees were found.
Neighbour-joining (NJ) trees and NJ bootstrap consensus trees
were constructed using both Kimura two-parameter (Kimura
1980) and LogDet (Lockhart et al. 1994) distances. Maximum
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Table 1. Specimens and mtDNA sequences

(Details of nDNA sequences have been reported (Cohen et al. 1998). Taxon description abbreviations: (ingroups) AB�articulate
brachiopods; lophophore support (loop) types: C�cancellothyrid; R�rhynchonellid; S� short. (Outgroups) P�protostome;
D�deuterostome.)

taxon description binomial Glasgow acces-
sion numbers

GenBank accession
number

reference or collector (locality)

ingroup
AB, S Abyssothyris sp. D1181 AF034220 (Cohen et al. 1998)
AB, C Cancellothyris hedleyi D1150 AF034230 (Cohen et al. 1998)
AB, S Dyscolia sp. D1219 AF034221 (Cohen et al. 1998)
AB, S Gryphus vitreus D521, 525 AF034222 AF034223 (Cohen et al. 1998)
AB, S Liothyrella neozelanica DNZ289, 290 AF034227 AF034228 (Cohen et al. 1998)
AB, S Liothyrella uva D930, 1024 AF034225 AF034226 (Cohen et al. 1998)
AB, R Notosaria nigricans DNZ100 AF034235 (Cohen et al. 1998)
AB, S Stenosarina crosnieri D1163 AF034229 (Cohen et al. 1998)
AB, C Terebratulina retusa D677, 678 AF034231 AF034232 (Cohen et al. 1998)
AB, C Terebratulina septentrionalis D163, 164 AF034233 AF034234 G. B. Curry (Bay of Fundy,

Newfoundland)
outgroup
apodan, D Scolecomorphus sp. T7 ö J. A. Sheps (unpublished)
coelacanth, D Latimeria chalumnae ö M87534 (Zardoya &Meyer 1997)
frog, D Xenopus laevis ö M10217 (Stanley 1993)
lung¢sh, D Protopterus annectens ö M87535 (Zardoya &Meyer 1996)
centipede, P Allotheura sp. ö L02376 (Ballard et al. 1992)
chiton, P Ischnochiton australis ö L02388 (Ballard et al. 1992)
hemipteran, P Magicicada tredecim ö X97146 (Simon et al. 1996)
scorpion, P Liocheles waigiensis ö L02397 (Ballard et al. 1992)
spider, P Tetragnatha mandibulata ö U00118 (Croom&Gillespie 1991)



likelihood (ML) analyses was performed in Paup* using heuristic
search with the 2ST (HKY) and 6ST models, with all available
parameters estimated from the data, and ML bootstrap trees
were obtained by NJ analysis with ML distances. Similar results
were obtained using quartet puzzling with the HKY substitution
model (Strimmer & von Haeseler 1996), and results with other
models did not di¡er appreciably (not shown).

(e) Secondary structure modelling
For comparison with published secondary structure models,

regions containing a well-de¢ned complementary helical struc-
ture and intervening bulge and/or terminal loops were excised
and complementary clamp sequences were added. The
minimum-energy folded con¢gurations of these regions were
then determined using MULFOLD (Jaeger et al. 1989a,b; Zuker
1989; Zuker et al. 1991). Output ct ¢les were visualized and
converted to graphics ¢les using loop-D-loop (Gilbert 1992).

3. RESULTS

(a) Sequence reliability, alignment parameters and
secondary structures

Relevant parameters of the nDNA sequences have been
reported (Cohen et al. 1998). Reliability of the newly deter-
mined mtDNA sequences is indicated by hierarchical
concordance between sequences from conspeci¢c, congen-
eric and confamilial groups, and by the presence (not
shown) of conserved motifs and secondary structure diag-
nostic of domain three of mitochondrial small subunit
ribosomal RNA gene sequences (Hickson et al. 1996). All
sequences except those from Liothyrella neozelanica were
completely determined from both strands, with multiple
redundancy. The two exceptional sequences were less
perfect near their ends and included a small number of
undetermined sites. Mean (range) base composition of
the mtDNA sequences from 16 articulate brachiopods did
not di¡er (heterogeneity �2, p40.05). A: 0.348 (0.333^
0.361); C: 0.278 (0.250^0.296); G: 0.191 (0.175^0.206); T:
0.179 (0.154^0.193). Similarly, base compositions were
stationary (heterogeneity �2, p40.05) within the
arthropod and deuterostome outgroups, between brachio-
pods and the deuterostome outgroups, and between
brachiopods and some of the protostome outgroups.
Other outgroup and ingroup^outgroup comparisons
showed signi¢cant di¡erences in base composition. These
di¡erences imply that LogDet and ML trees could be
more reliable than those based on parsimony or other
distances. However, since the resulting trees did not di¡er
materially, base composition di¡erences were not su¤cient
to cause false clustering.

The presence of strong non-random structure in the
mtDNA ingroup plus chiton outgroup alignment was indi-
cated by g1�70.81 (p50.01) and by the low frequency of
unresolved ML quartets (0^7% depending on numbers of
taxa). Slight saturation of transition substitutions was seen
in a plot of ingroup plus chiton outgroup Kimura pairwise
distances, and strong saturation was evident when multiple,
taxonomically distant outgroups were included (not shown).

(b) Phylogenetic reconstructions of brachiopod
phylogeny

(i) nDNA sequences
The nDNA alignment contained sequences from ten

taxa. These were a chiton, the closest lophotrochozoan

protostome taxon for which both nDNA and mtDNA
sequence was available (Halanych et al. 1995; Cohen et al.
1998), the rhynchonellid brachiopod Notosaria (a local
outgroup), and eight sequences from morphologically
short-looped terebratuloids. Two of these eight sequences
(Cancellothyris and Terebratulina) were from genera which
are grouped together on good morphological grounds in
the superfamily Cancellothyridoidea (Cooper 1973;
Williams 1997). From morphology, higher-level relation-
ships of the other ¢ve genera are less clear. After
removing parsimony-uninformative sites and seven poten-
tially misaligned sites, 44 informative sites remained.
An MP exhaustive search found four trees of length
67 steps (consistency index (CI)�0.806, retention index
(RI)�0.79), di¡ering in topology at the Dyscolia^
Liothyrella and Cancellothyris^Terebratulina nodes. A WP
exhaustive search found one tree (length�42.7 steps,
CI�0.96, RI�0.97). The topology of this tree was iden-
tical to that of the WP bootstrap tree and di¡ered from
distance and maximum likelihood trees only in the
topology of the Dyscolia^Liothyrella node.Whereas in parsi-
mony trees L. uva clustered (unexpectedly, from
morphology) with Dyscolia, in NJ and ML trees the two
Liothyrella species formed the expected clade, with a low
NJ bootstrap value. To determine whether this di¡erence
in topology was meaningful, the shortest WP tree that
contained the expected Liothyrella clade (43.7 steps,
CI�0.938, RI�0.94) was obtained by a branch-and-
bound search for non-minimal trees and compared with
the minimal tree using Hasegawa^Kishino, Wilcoxon
signed rank and winning-sites tests implemented in
Paup*. The trees were not signi¢cantly di¡erent
(Hasegawa^Kishino test, p�0.33; Wilcoxon test, p�0.32;
winning-sites test, p�1.0). The cladogram in ¢gure 1a is
therefore drawn with the Dyscolia^Liothyrella clade as an
unresolved trichotomy.

(ii) mtDNA sequences
Where available, multiple individuals from each taxon

in the nDNA alignment were selected for sequencing,
together with specimens of Terebratulina septentrionalis
(Cohen et al. 1991, 1993), a species for which no matching
nDNA sequence was available. Overall, the 15 articulate
brachiopod sequences in the mtDNA alignment repre-
sented taxonomic levels from superfamily to species. Two
alignments were used, di¡ering in the number of
outgroups. These were (i) the 15 brachiopods with a
chiton outgroup and (ii) the same ingroup, with outgroups
representing seven protostomes (three Lophotrochozoa
(Halanych et al. 1995) and four Ecdysozoa (Aguinaldo et
al. 1997)) and four deuterostomes (chordates). After exclu-
sion of ambiguously aligned sites, there were 100
parsimony-informative sites in the smaller alignment and
160 in the larger one. As noted above, these alignments
also di¡ered in the number of sites deliberately excluded
from analysis.

(iii) Comparison of nDNA and mtDNA phylogenies
An MP branch-and-bound search of the ingroup plus

chiton mtDNA alignment gave two equally most parsi-
monious trees (length�237 steps, CI�0.675, RI�0.776),
di¡ering only in topology of the Dyscolia^Liothyrella
clade and consistent with parsimony, distance and ML
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bootstrap consensus trees, in which this node formed a
trichotomy. The parsimony bootstrap tree is compared
with the corresponding nDNA tree in ¢gure 1. These
trees appear to be fully congruent with one another.
Congruence of the underlying data was assessed by a
partition homogeneity test, based on comparison of
separate and combined tree lengths, with data-randomi-
zation (Farris et al. 1994). For this test nDNA and
mtDNA sequences from the nine individual brachiopods
from which both had been obtained (as in ¢gure 1)
were concatenated and designated as separate parti-
tions. Using 1000 branch-and-bound replicates, this test
found no incongruence in the data (p�1.00). Thus, the
phylogenetic relationships discovered amongst short-
looped brachiopods by analyses of nDNA were fully
con¢rmed by similar analyses of mtDNA.

(iv) Evidence from mtDNA for protostome a¤nity of brachiopods
An MP heuristic search of the larger alignment with

protostome and deuterostome outgroups gave 18 equally

most parsimonious trees (length�611 steps, CI�0.507,
RI�0.657). After reweighting, these reduced to one WP
tree (length�180.86 steps, CI�0.614, RI�0.768) which
was identical in topology to the WP bootstrap tree. ML
and NJ distance and bootstrap consensus trees di¡ered
from one another and from theWP tree only by showing
less resolution of the deepest nodes. Similar support values
for ML tree nodes were also obtained by quartet puzzling
(not shown). Since it would be unreasonable to expect
fewer than 400 base pairs of mitochondrial sequence to
accurately resolve all deep nodes, one of the less-resolved
ML cladograms is shown in ¢gure 2. Like all the other
trees, this provides strong support for a clade comprising
brachiopods, Lophotrochozoa and Ecdysozoa (i.e.
undoubted protostomes), which is a sister-clade of the
chordates (undoubted deuterostomes, here designated as
outgroup). The absence of monophyletic lophotrochozoan
and ecdysozoan clades may be due to a combination of
the few taxa and small amount of sequence involved,
together with nucleotide composition di¡erences and
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Figure 1. Comparison of nDNA and mtDNA parsimony bootstrap consensus trees. (Numbers adjacent to nodes show the
frequency (%) with which the indicated clades occurred in the underlying trees. (a) 50% majority-rule consensus of branch and
bound searches of 1000 bootstrap replicate nDNA data-sets, after RCI character reweighting. The Dyscoliâ Liothyrella clade is
drawn as a trichotomy for reasons given in the text. (b) 50% majority-rule consensus of branch and bound searches of 1000 boot-
strap replicate mtDNA data-sets, with equal character weights.)



residual ambiguity in alignment of the more phylogeneti-
cally distant outgroup sequences. Despite these potential
di¤culties, an ecdysozoan clade is clearly present.

4. DISCUSSION

(a) Terebratuloid brachiopod phylogeny
The systematics of fossil and Recent rhynchonellate

brachiopods is based principally on the ontogeny and
morphology of the brachidia (lophophore supports or
`loops'), and articulation-related shell characters
(Williams 1965, 1997; Carlson 1995; Williams et al. 1996).
Owing to a general lack of well-de¢ned morphological
characters, short-looped, terebratuloid forms (`this di¤-
cult group'; Cooper 1983, p. 35) o¡er the taxonomist
particular problems, and recent developments in mol-
ecular systematics create the ¢rst prospect of resolving
genealogical relationships within such groups. This
prospect provided the main impetus for the present inves-
tigation for it was clear that the nDNA sequences then
available from di¡erent, well-established terebratuloid
genera di¡ered by very few substitutions and predicted
some relationships that were not morphologically

expected (e.g. the sister-group relationships between, on
the one hand Gryphus and Abyssothyris^Stenosarina and, on
the other hand, Dyscolia and Liothyrella). Moreover, a
morphologically well-de¢ned subgroup of terebratuloids
(cancellothyrids) whose origin dates at least from the
Jurassic (Williams 1997), received only modest support in
the nDNA tree. (The complete lack of support for this
clade apparent in some analyses (Cohen et al. 1998) is
now known to be an artefact, resulting from inclusion of
one related but distant, and one related but highly imper-
fect, sequence.) Thus, sequence data from a more rapidly
evolving genome region were needed to test these impor-
tant, but relatively weak predictions of the nDNA gene
tree. The nuclear and mitochondrial SSU gene trees
compared in ¢gure 1 and the underlying sequence data
are clearly congruent. Thus, despite short branches and
weak to moderate bootstrap support, all the terebratuloid
clades predicted from analysis of nDNA sequences,
including both a clade expected from morphology and
unexpected clades (Cohen & Gawthrop 1996, 1997;
Cohen et al. 1998), have been veri¢ed by the mtDNA
results. Therefore, both nDNA and mtDNA gene trees
appear to be reliable guides to the articulate brachiopod
species tree.
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Furthermore, these mtDNA data contain enough phylo-
genetic signal to resolve relationships between orders
(Rhynchonellida: e.g. Notosaria; and Terebratulida: all
other genera), super-families (Terebratuloidea, e.g. Liothyr-
ella and Cancellothyridoidea, e.g. Cancellothyris), families
(e.g. Tichosininae: Stenosarina and Gryphinae: Gryphus),
confamilial genera and congeneric species. Thus, these
data strongly suggest that 1000 or more nucleotides of
mtDNA per taxon from a comprehensive selection of
terebratuloids would provide a realistic and useful phylo-
geny of this di¤cult group. Such data would make sense of
a rather featureless morphological landscape and would
provide a sound basis for inferences about the biogeo-
graphic and plate tectonic correlates of articulate
brachiopod evolution. For example, the super¢cially unex-
pected ¢nding that Gryphus, a genus found today
principally in the Mediterranean Sea, clusters with Abys-
sothyris and Stenosarina from the South Paci¢c but that the
latter do not cluster with Dyscolia and Liothyrella from the
same region may be consistent with the geologic record if
the relatively short-lived planktonic larvae of terebratu-
loid, articulate brachiopods dispersed widely in Tethys,
the circum-global tropical sea that opened in the Mid-
Jurassic. Continental drift has now closed most of Tethys
(except the Mediterranean) and north^south ocean
basins have opened instead (Stanley 1993; Smith et al.
1994), creating dispersal barriers that could have triggered
the phylogenetic radiation seen today. An ancestral
Tethyan distribution would explain why Stenosarina, a
genus originally described from the Caribbean but
present also in the South Paci¢c (Cooper 1977; Laurin
1997), clusters with Abyssothyris from the South Paci¢c and
with Gryphus from the Mediterranean and Atlantic.
Perhaps dispersal in the ancient Tethys explains what
would otherwise be a conundrum of modern biogeo-
graphy. Clearly, a future, comprehensive molecular
phylogeny of articulate brachiopods should reveal much
about their historical biogeography.

(b) Protostome versus deuterostome a¤nities of
brachiopods, ectoprocts and phoronids

The idea that there exist animal forms with distinct
body plans (BauplÌne) is a somewhat controversial corol-
lary of the fact that metazoa are classi¢ed into separate
phyla. Protostomes and deuterostomes (sometimes
elevated to taxonomic ranks as Protostomia and Deuteros-
tomia) are supra-phylum aggregates (Grobben 1908) that
have been widely recognized amongst the metazoan phyla
on the basis of mutually exclusive suites of ontogenetic
characters. Whether brachiopods (together with ecto-
procts, phoronids and pterobranchs) belong amongst
protostomes or deuterostomes (or neither group) has long
been a matter of debate, arising because they variously
display mixtures of the supposedly diagnostic characters.
Whereas many recent morphology-based reviews have
favoured deuterostome a¤nities of these lophophorates
(Brusca & Brusca 1990; Schram 1991; Eernisse et al. 1992;
Nielsen et al. 1996), current molecular data unequivocally
associate pterobranchs with other deuterostomes but place
brachiopods, ectoprocts and phoronids with other proto-
stomes (Field et al. 1988; Patterson 1989; Lake 1990;
Halanych 1995; Halanych et al. 1995; Cohen & Gawthrop
1996, 1997; Conway Morris et al. 1996; Cohen et al. 1998).

However, these molecular studies have so far been based
exclusively on data from a single gene (strictly, a gene
family), which speci¢es the nuclear-encoded small subunit
of ribosomal RNA (nDNA). Although results from this
gene are widely accepted as reliable, and to our knowledge
no de¢nitely misleading phylogeny based upon it has yet
been recognized, the implications for the interpretation of
ontogeny of the hypothesis that lophophorates àre'
protostomes are so far-reaching that it should receive
independent con¢rmation before it is widely accepted.
The mtDNA results illustrated in ¢gure 2 appear to
provide such con¢rmation. They show strong support for
a clade uniting lophotrochozoan and ecdysozoan proto-
stomes with articulate brachiopods, distinct from a clade
containing undoubted deuterostomes. Thus, these mtDNA
data appear to con¢rm the conclusion drawn from all
previous nDNA studies, that brachiopods and other lopho-
phorates (excluding pterobranchs) are genealogically,
protostomes. The clarity of this result depends upon
selection amongst available mtDNA (but not nDNA)
sequences. Homologous nDNA sequences from the two
echinoids Psammechinus and Strongylocentrotus cluster
amongst deuterostomes as expected, but the small
segment of mtDNA analysed here unexpectedly clusters
amongst or adjacent to protostomes. A similar, surprising
e¡ect has been reported for sea urchin mitochondrial
protein-coding sequences in a di¡erent context (Nei 1996;
Russo et al. 1996). Whatever the signi¢cance of these
anomalies, they do not a¡ect the argument below,
except possibly to raise a question over echinoderm
genealogy.

Acceptance that brachiopods, ectoprocts and phoronids
are genealogically allied to undoubted protostomes implies
that, at least amongst lophophorates, the ontological
features on which these assemblages have been de¢ned
(mode of coelom formation, embryological location of
mouth and anus, etc.) have been misinterpreted or are
misleading in at least some cases, perhaps due to conver-
gence (Moore & Willmer 1997). Thus, operational
de¢nitions of the terms `protostome' and `deuterostome'
based upon the usual ontogenetic characters cannot be
relied upon: protostomes and deuterostomes as tradition-
ally de¢ned must be abandoned. If these categories are to
have any future utility it must be on the basis of a clade-
based taxonomy (de Querioz & Gauthier 1990, 1994) and
clearly, at present, only operational de¢nitions based on
molecular phylogenetic analyses are available. Using such
a de¢nition, protostomes are animals that cluster in gene
trees with other (undoubted) protostomes and are excluded
from clusters comprising deuterostomes, whilst deuteros-
tomes are de¢ned mutatis mutandis. It is therefore opportune
to replace the terms `protostome' and `deuterostome' by
clade-based names (de Querioz & Gauthier 1990, 1994).
Although `Protostomia' and `Deuterostomia' have been
used in a related context (Valentine 1997), these terms
predate the concept of clade-based names and we therefore
suggest that the (admittedly ugly) neologisms `Protosto-
mozoa' and `Deuterostomozoa' adequately combine
historical continuity with phylogenetic principle and
should henceforth be adopted. Retention of the reference
to mouth position is unfortunate, but in the absence of
other uniting characters this historical connection is
justi¢ed as a useful mnemonic.
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5. TAXONOMY

Protostomozoa
Etymology: from the Greek, protos, combining form, ¢rst;

stoma, a mouth; zoa, combining form, plural of zoion, an
animal.

Diagnosis: the last common ancestor of Lophotrochozoa,
Ecdysozoa and all their included phyla, and all its descen-
dants.

Deuterostomozoa
Etymology: from the Greek, deuteros, combining form,

second; stoma, a mouth; zoa, combining form, plural of
zoion, an animal.

Diagnosis: the last common ancestor of Echinodermata,
Hemichordata, Chordata, and all its descendants.

The mtDNA ampli¢cation and sequencing were initiated and
largely completed during the summer of 1993 by S.S., working
in partial ful¢lment of an MLA degree in the University of Penn-
sylvania under the supervision of C.W.T. S.S.'s laboratory work
was planned and supervised by B.L.C. M.E.B. subsequently ¢n-
ished the mtDNA sequencing. The nDNA sequencing was done
byA.B.G. and B.L.C. Phylogenetic analyses and manuscript pre-
paration were undertaken (eventually!) by B.L.C., with
geological input from C.W.T. We are grateful to Dr J. A. Sheps,
Dr A. Williams, both of the University of Glasgow, and Dr P.
Willmer, University of St Andrews, for critical reading of a draft
manuscript, and to Dr D. L. Swo¡ord, Smithsonian Institution,
for permission to report results obtained with Paup* test versions
d57 and d59.Work in Glasgow was supported by the UK Natural
Environment Research Council (GR3/8708 and GST/02/832).
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