
Feng, C., Xu, Z., Zhu, X., Valente Klaine, P. and Zhang, L. (2023) Wireless distributed 

consensus in vehicle to vehicle networks for autonomous driving. IEEE Transactions 

on Vehicular Technology, 72(6), pp. 8061-8073 (doi: 10.1109/TVT.2023.3243995). 

There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 

https://eprints.gla.ac.uk/291780/ 

Deposited on: 9 February 2023 

Enlighten – Research publications by members of the University of Glasgow 
https://eprints.gla.ac.uk 

https://eprints.gla.ac.uk/291780/
https://eprints.gla.ac.uk/


IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Wireless Distributed Consensus in Vehicle to
Vehicle Networks for Autonomous Driving

Chenglin Feng, Zhangchen Xu, Xincheng Zhu, Paulo Valente Klaine and Lei Zhang Senior Member, IEEE

Abstract—Vital societal and industrial autonomous compo-
nents are increasingly interconnected through communication
networks to complete critical tasks cooperatively. However, as
the reliability and trust requirements for connected autonomous
systems continue to grow, the centralized communication and
decision approaches that are in use today are reaching their
limits. Focusing on autonomous driving applications, this paper
proposes a resilient and trustworthy framework on wireless
distributed consensus networks, where the communication links
are less reliable or are even in the presence of incorrect local
sensor readings/decisions. To accomplish that, a novel three
stages consensus mechanism is proposed based on the practical
Byzantine fault tolerance (PBFT), where the veto collection and
gossip stages are designed to meet the stringent and complex
requirements for a vehicle’s maneuvers. A plan tree synthesis is
also proposed to make consensus on a series of decisions while
adopting network members’ decision preferences. A detailed
protocol including the distributed consensus, plan tree synthesis,
dynamic grouping, etc. is proposed. Simulation results show
that the proposed consensus mechanism is able to be reached
and propagated through the network under poor wireless com-
munication conditions and the presence of faulty vehicles with
incorrect sensor readings. The result can be extended to other
autonomous systems to significantly enhance safety in critical
industrial applications.

Index Terms—V2V network, autonomous driving, connected
autonomous systems, wireless distributed consensus, Byzantine
fault tolerance

I. INTRODUCTION

The application of IoT devices has seen a significant in-
crease in critical applications, such as in industrial environ-
ments and in intelligent transportation systems (ITS) in order
to aid these processes to make critical real-time decisions [1].
For example, today inside a car there are around 60 to 100
sensors, including Inertial Measurement Unit (IMU) camera,
radar and Lidar. Those sensors collect data and help an au-
tonomous system to make decisions on its own [2]. Such a ego-
only autonomous driving system has received wide research
interests. Tech-giants have demonstrated their ego-only system
in recent years, including Uber, Tesla, Waymo and Baidu to

C. Feng is with School of Information and Communication Engi-
neering, University of Electronic Science and Technology of China,
Sichuan, Chengdu, No.2006, Xiyuan Ave, West Hi-Tech Zone, China (e-
mail:202111012027@std.uestc.edu.cn).

Z. Xu is with the Department of Electrical and Computer Engineering,
University of Washington, Seattle, WA 98195 USA (email: zxu9@uw.edu).

X. Zhu is with School of Integrated Circuits, Peking Univer-
sity, Beijing, No.5, Yiheyuan Road, Haidian District, China (e-mail:
Xincheng.Zhu@stu.pku.edu.cn).

C. Feng, P.V. Klaine and L. Zhang are with James Watt School
of Engineering, University of Glasgow, Glasgow, G12 8QQ, United
Kingdom (e-mail:2357707F@student.gla.ac.uk; {Paulo.ValenteKlaine,
Lei.Zhang}@glasgow.ac.uk).

name a few [3] [4] [5] [6] [7]. Though numerous solutions
have been proposed, the perception range is limited within the
line-of-sight due to the inherit drawback of on-board sensors.
Besides, the devices inside a car only aid in the process of local
decision making, or in other words, other vehicles may not be
aware of a specific vehicle’s decision. In addition, sensors are
also prone to fail, which can lead to casualties. As such, local
decision making and sensor faults can be extremely dangerous,
especially in autonomous transportation systems where human
lives can be lost, as local decisions taken by different cars or
false sensor readings can be conflicting, and lead to accidents.
As an example, in a fatal crash of a Tesla car, in which a car’s
sensor failed to recognize a large truck and trailer crossing
the highway, leading the vehicle to drive full speed under the
truck [8].

Thus, in order to overcome these issues, vehicle to vehicle
(V2V) networks, or a broader concept of vehicle to everything
(V2X) networks were introduced, in which communication
networks, such as cellular networks, can be used to exchange
information between vehicles as well as infrastructures [9] [10]
[11]. Such V2X networks also enhance the functionalities of
vehicular control in ITS. It extends the management of an
ITS beyond traveling speed and vehicle spacing in platoon
control. As the sensors and hardware of autonomous driving
are becoming increasingly sophisticated, self-driving vehicles
are now more capable than adaptive cruise control (ACC) and
autonomous emergency braking (AEB), which brings more
complex coordination in managing a cluster of vehicles. To
maximize road safety and efficiency, the cooperative control
of vehicles is studied in this paper to utilize this improved
capability and managed complicated inter-vehicle interactions.
To realize such cooperative control in V2X networks, vehicles
within a network are further managed logically in either
centralized or distributed, depending on its requirements. In
centralized approaches, vehicles send their collected data to a
specified vehicle or a central server, which is then responsible
for making decisions. These decisions are then sent back to the
vehicles, which act accordingly. Although centralized systems
are simpler and bring more control over the decisions, it
comes with its disadvantages. With the continuous growth of
IoT devices and connected vehicles, centralized approaches
are expected to serve more and more autonomous cars in
the near future, which can result in a very expensive system
as well as cause scalability problems, since all cars would
have to send their data to a single point. In addition, single
point of failure or malicious attacks can also disrupt the
server operation, or even steal sensitive information from the
connected devices [12].



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

Another alternative for management consists in adopting a
distributed approach through distributed consensus protocols
(also known as consensus algorithms), in which vehicles
share information to one another and then agree on decisions
jointly, instead of relying on a central authority. We further
conclude such distributed approach as a Perception-Initiative-
Consensus-Action (PICA) scheme. In PICA, a node makes
initial decision based on local sensing and computing, then
consent through a distributed consensus protocol among the
relevant nodes before performing an action. Compared to
centralized mechanisms, the networks in the distributed PICA
scheme relies on peer-to-peer communication and organized in
a distributed manner, which tend to have shorter routing path
and lower costs [13]. Moreover, a central server is replaced
with a distributed database, which is not controlled by any
single party.

The distributed consensus algorithms is the key in PICA
scheme, which can guarantee the nodes agree on an iden-
tical value, despite the existence of faulty nodes. It can
be classified as crash-fault-tolerance (CFT) and byzantine-
fault-tolerance (BFT) by whether the faulty nodes act ran-
domly or simply crash [14] [15]. Two well-known applica-
tions based on distributed consensus are the newly emerged
blockchain technology and the classic state machine replica-
tions (SMR) [16] [17] [18]. In the context of blockchain, the
non-faulty members of a network agree on the contents and
order of a block, where ordered blocks form a chain-link struc-
ture. Algorithms like proof-of-work (PoW) and proof-of-stack
(PoS) are introduced to validate this process [19] [20] [21]. For
the classic SMR, however, the service is provided by replicat-
ing the state of the nodes across the whole network [22] [23].
Compared the blockchain with SMR, the former has better
scalability while the latter is less computational demanding
and more efficiency in terms of consensus finalization. There-
fore, we believe the SMR is more suitable for controlling num-
bers of vehicles in a time-critical situation. In particular, the
well-known SMR protocol-Practical Byzantine Fault Tolerance
(PBFT) [24]-is very simple to implement compared with the
extensively-used PoW-based blockchain consensus.

Despite its advantages, the performance of the consensus
might also be a bottleneck in V2V systems. First, the con-
sensus can significantly be affected by the performance of
the wireless communication network, especially in terms of
latency, reliability and throughput [25] [15]. Second, unlike
wired systems, wireless systems bring extra channel uncer-
tainty, scarcity of spectrum provision, thus entailing different
security thresholds. Third, the PBFT systems consider node
failure and when it happens, all associated communication
links are faulty. However, with dynamic wireless communica-
tion channels, a node may work fine, but some links connected
with the node might be unstable. Fourth, traditional PBFT
algorithms do not consider negative votes for a transaction,
only abstentions are available, thus few but critical objections
may be overlooked. Thus, there is a need to adapt existing
consensus mechanisms to wireless environments and more
specifically in this paper for the case of V2V networks for
autonomous driving.

Since traditional consensus mechanisms have their limita-

tions to be applied in V2V systems for platoon control, in this
paper we carefully analyzed the properties that a consensus
algorithm in V2V networks should follow, and presents some
modifications to deal with the aforementioned concerns of the
consensus. The main contributions of this paper are as follows:

1) We provide a novel perspective on the process of
consensus/decision making for vehicles in autonomous
systems. This proposal-based protocol utilizes PBFT-
based consensus mechanism to enable vehicles within
the network jointly reach an agreement, even in the
presence of incorrect sensor reading/decision. In this
proposal-based mechanism, a vehicle (i.e., proposer)
sends a proposal of subsequent actions to other vehicles.
Other vehicles then evaluate the feasibility of the pro-
posal and jointly decide the execution under the control
of the consensus algorithm.

2) We propose veto-collection phase with feasibility proof-
ing procedure before the normal consensus process. The
traditional PBFT algorithms do not consider negative
votes in the consensus reaching process, only absten-
tions are available. The veto-collection considers critical
minority, improving safety in vehicular applications.

3) We propose the plan tree synthesis to improve the
efficiency and success rate of consensus reaching. Since
the execution of proposals is jointly decided, a pro-
posal may be rejected by part of the vehicles and fail
the consensus reaching. To improve the probability of
successful consensus reaching, we propose plane tree
synthesis that combines multiple proposals into a plane
three, which provide more proposal options.

4) We use a gossip algorithm as a complementary means
to increase the success rate of the modified PBFT con-
sensus algorithm in connected vehicular networks. The
gossip algorithm enables nodes that fail in intermediate
phases in PBFT to be synchronized by nodes that are
successfully committed, resulting in a higher consistency
throughout the vehicles in the network.

Note that apart from reaching consensus for autonomous
driving, our protocol can also be applied in other dis-
tributed systems with similar requirements. However, since
autonomous driving and V2V networks are emerging tech-
nologies, we mainly focus on the consensus for autonomous
driving in this paper.

The remainder of this paper is organized as follows. In Sec-
tion II, we present a literature review of consensus mechanisms
applied in V2V scenarios. A brief introduction to PBFT is
presented together with our proposed consensus scheme for
autonomous driving through V2V networks in Section III. The
Section IV elaborates the protocol of the consensus scheme.
The further refinement of the consensus scheme is given in
Section V. The performance of our scheme is analyzed in
Section VI through simulation experiments, while conclusions
are reported in Section VII.

II. RELATED WORK

Distributed consensus mechanisms have attracted wide in-
terest in autonomous systems and other related fields in-
cluding ITS, Cooperative Adaptive Cruise Control (CACC),



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

Connected Autonomous Vehicles (CAV), Vehicular Ad-hoc
Networks (VANET), autonomous vehicles, etc. [26] Prelim-
inary consensus mechanisms, which focus on managing the
inter-vehicle spacing in platoons, have been studied exten-
sively in recent years [27]. Running under different traffic
dynamics models [28], these platoon-based consensus require
the parameters to be exchanged among adjacent vehicles. It
describes the interactions of vehicles on roads and ensures
a stable platoon formation, while also optimizing the traffic
flow. With the known speed, acceleration and inter-vehicle
spacing of vehicles, adjustments are taken accordingly [29]–
[32]. To further improve the road throughput, multi-platoon
consensus and other more general formation are proposed [33],
[34]. Though the inter-vehicle spacing converges and stabilizes
via consensus with traffic dynamics models, their inability
in conducting complicated vehicle maneuvers limits their
application.

On the other hand, other researchers have applied block-
chain consensus mechanisms for constructing a more general
information sharing in V2V networks [35]. A great number
of works with proof-based consensus have been proposed
recently. For example, in [36], Kang et al. deploy distributed
smart contracts based on proof-of-work (PoW) and proof-of-
storage consensus to help data auditing and verification. In
their work, PoW nodes collect and verify local metadata to
find available hash value with certain level of difficulty to
get vehicle coins (a specific crypto-currency) as rewards to
upgrade computation resources, while proof-of-storage nodes
contribute storage resources to get vehicle coins for further
upgrades. In [37] Yang et al. present a joint consensus con-
sisting of both PoW and PoS, later they proposed a trust
management system for data credibility assessment using
Bayesian inference model. Yet the aforementioned solutions
are computationally demanding since nodes are competitively
mining.

Despite traditional PoW-based consensus mechanisms be-
ing thoroughly investigated, a few other studies implement
alternative consensus schemes. In [38], for example, the in-
formation sharing is secured by the proof of data contribution
frequency and proof of energy contribution amount. In their
distributed consensus mechanism, data coins and energy coins
serve as cryptocurrency for vehicular applications. Besides,
the Byzantine fault tolerance is identified as another feasible
solution. In [39], a privacy-preserving announcement network
enabled vehicles to forward and receive information by using
reputation points and the Byzantine fault tolerance consensus
algorithm. In [40], Hu et al. introduced an authentication based
on an improved Byzantine consensus algorithm for the Internet
of vehicles. In [41], Liu et al. combined the Byzantine-fault-
tolerant consensus algorithm for connected vehicles (BFCV)
with the concept of Proof-of-Eligibility challenge to ensure
information security with compromised vehicles and without
privileged members. Wegner et al. [42] in their paper proposed
an innovative consensus called BFT-ARM, which can fit real
sensor values and guarantee that the decisions only require
median validity instead of strong validity [43].

However, despite the validity of all approaches, there are
still gaps. As previously mentioned, PoW/PoS consensus

mechanisms have high computational complexity, can be quite
slow, and can also generate competition among vehicles for
their rewards, while other consensuses such as PBFT do not
scale up very well. Moreover, traditional consensus mecha-
nisms were primarily designed for stable environments, not
for unreliable or fast-paced applications such as the ones
involving vehicles or a wireless channel. Based on that, it is
clear that novel consensus mechanisms that take into account
the instability of the wireless channel as well as the stringent
constraints of V2V networks need to designed.

III. THE DISTRIBUTED CONSENSUS FOR AUTONOMOUS
DRIVING

In this section we briefly introduce PBFT, a distributed
consensus mechanism. Based on PBFT, we explore the use of
distributed consensus for joint decision making in autonomous
systems and introduce a proposal-based mechanism. Then, we
discuss the use of a vehicle cluster as an organisation for the
consensus, and discuss its size, threshold and self-organization
scheme. After that, we analyze the shortcomings of PBFT
applied to V2V consensus networks, i.e., the inability to
perform a one-vote veto and the incapability to guarantee that
all nodes are aware of the result of the consensus, and propose
a novel solution. For a more efficient consensus, we introduce
the plan tree, which packages multiple related operations
together and make decisions through a single consensus. Our
detailed consensus protocol for autonomous driving based on
these discussions is then proposed in Section IV. Note that
in this context, each vehicle in V2V networks is equivalent to
one node in the consensus algorithms, so the term node/replica
and vehicle have the same meaning.

A. PBFT-based Distributed Consensus for Autonomous Sys-
tems

The practical Byzantine fault tolerance (PBFT) is a three-
phase state machine replication (SMR) protocol widely used
in distributed systems [24]. It based on a partially synchronous
network assumption that the message delivery is guaranteed
but with an uncertain amount of delays. As a Byzantine fault
tolerance algorithm, it is capable of reaching a consensus in
the presence of up to 1/3 of Byzantine nodes (i.e., malicious
or faulty nodes) in a network. Here we briefly describe the
conventional process of PBFT.

In a PBFT consensus network there are many replicas
among which one is designated as the primary node, and
the others are considered as backups. Let us assume that
there are N replicas in the consensus network and f is the
maximum number of faulty replicas. To ensure safety and
liveness, N ≥ 3f + 1. In a normal-case consensus process,
the consensus is triggered by a client sending a request
to the primary node. On receiving the request, the primary
node enters the pre-prepare phase by broadcasting pre-prepare
messages. After receiving the pre-prepare message from the
primary node, the replicas broadcast the prepare message and
enter the prepare phase, if the pre-prepare message is valid.
Then in the prepare phase, if a replica receives more than
N − f valid prepare messages from the consensus network, it



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

reaches the prepared state and broadcasts the commit message.
Similarly, a node reaches a committed state once more than
N − f valid commit messages are received. The node is then
able to execute the request and reply the execution result to
the client. Fig. 2 (normal PBFT consensus process) illustrates
the details of this process.

However, despite its success, the traditional PBFT algorithm
needs improvements, especially when applying to joint deci-
sion making in autonomous systems. To enable the consensus
reaching process involving the preferences of nodes instead
of solely relying on executing requests from a client, we
introduce a proposal-based mechanism, which is different
from the traditional request-based mechanism of PBFT. In this
proposal-based mechanism, the request from the client can be
regarded as a proposal of an action that the client expects
everyone to implement. The client can be one of the replicas,
and the consensus process is a procedure that all replicas vote
on the proposal. Also, there is no need for the replicas to return
the execution result back to the client node. For example, in
autonomous driving, a vehicle (i.e., a client in the consensus
process) in a cluster makes a proposal to increase the group’s
speed. After receiving the proposal, the consensus network
that is composed of the nearby vehicles will evaluate if this
proposal is reasonable. After reaching the committed state, the
proposal is considered to be agreed by the network members
and the vehicles in the consensus network can execute the
contents of the proposal (i.e., increase the vehicles’ speed).

B. Ordinary Consensus and Full Consensus

Typically, consensus defines that a majority (or a certain
percent) of nodes agree on the requested information. For
example, in PBFT, up to 1/3 of the nodes can be malicious
nodes or faulty nodes (if more than that, then the consensus
cannot be performed completely or collaboratively). In such
an ordinary consensus protocol, some nodes (e.g., due to
communication failure) cannot notice whether the consensus
has been achieved or not. Whereas, in static systems where the
client does not participate in, but only triggers the consensus
reaching process, it does not matter that some nodes do not
know the consensus result. Let us take vehicle navigation in
autonomous driving as an example. In this case, when a vehicle
requests map data from other vehicles, the cluster reaches a
consensus on the request and returns a map to the client.
However, the act of sending the map to the client does not
affect the behavior of a vehicle in real time, so whether a
committed state is reached or not has no effect on the vehicles
in the consensus network. However, there are scenarios that
each node can be affected by the consensus result. Consider the
previous example of lane change in Section III-D, however this
time, let us assume that there is no danger in changing lanes
to overtake. In order to ensure that every vehicle performs
the lane change operation, we have to make sure all nodes
are aware of the results of the decision, even though there
is communication uncertainty. We call this a full consensus,
in such case, we propose that there is a synchronization
step following the consensus, where the consented nodes
send the consensus result to other nodes that are not aware

of the result. This can be done either through broadcasting
communication or point to point communications. Thus a
successful full consensus is only achieved if and only if all
nodes are synchronized. We introduce a gossip algorithm in
Section V-B as a possible synchronization method.

C. Proposal Combination

Another issue in wireless distributed consensus network
for autonomous driving is that of complicated maneuvers.
The more complicated the maneuver, the less likely it is to
coordinate the whole process by a single proposal. As such, an
intuitive approach is to decompose one maneuver into multiple
actions, then propose and execute them in a specific sequence.
Yet, this leads to an increase in delay as a consensus process
is required for each action. To avoid that hazard, the proposals
for a series of actions may be combined together and processed
within one consensus as shown in Fig 1.

Since the combination of actions are executed in a specific
sequence, any action that fails to pass the consensus process
would result in the fail of the whole maneuver. As such, the
failure probability increases as it gets more complicated, since
there are more actions to consider in the consensus. Further-
more, there may be different solutions for one maneuver with
similar effects that can be implemented. Thus, it is necessary to
propose multiple plans for one maneuver simultaneously and
collect preferences from network members, which constructs a
plan set similar to a decision tree, referred to as the plan tree
in this paper. With this plan tree, the consensus network may
select the best plan among different proposals at one time. The
detailed protocol about this plan tree synthesis is introduced
in Section IV-G.

Req 3, Type 1

Req 1, Type 2

Msg 1

Req 2, Type 1

Propose

Consensus
Process

Vehicles

Vehicles

Vehicles

Vehicles

Vehicles

Msg 1, Type 2

Msg 2, Type 1

Msg 3, Type 1

Consensus
Process

Consensus
Process
Consensus
Process

Consensus
Process

ExecuteExecute

Execute

ProposePropose

Propose

Propose

Execute

Fig. 1. Combine a series of actions into one proposal.

D. One-vote Veto

A challenge to apply traditional BFT consensus protocol in
autonomous systems such as autonomous driving is that it does
not take the “one-vote veto” into consideration. For example, a
member at the back of the cluster has proposed a lane change
maneuver to overtake another vehicle. Yet, another member at
the front of the cluster detects that there is a vehicle in the
target line, and this lane change action may lead to a collision.
Therefore, the member at the front may need a one-vote veto



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

to terminate this consensus, thus stopping the lane merging
action. However in traditional BFT protocols, a vehicle that
opposes a proposal cannot vote against it, but is rather absent
from voting when collecting responses in intermediate phases.
Therefore, consensus may still be reached and an accident
may occur. Due to the lack of the “one-vote veto” in tradition
PBFT, few but critical objections may be overlooked.

Recognizing the above challenge, a V2V consensus network
should retain the ability for its members to have a right of this
kind of rejection. Based on that, we introduce a feasibility
proofing procedure before the normal consensus process to
address this issue. In this procedure, a member in the network
puts forward a proposal to the leader like normal. On receiving
the proposal, the leader does not go directly to the pre-
prepare phase of PBFT, but requires the rest of the cluster
to prove the feasibility of this proposal in a new phase called
veto-collection phase. Here we use a cryptography method:
threshold signature [44] to perform this process. In a (k,N)-
threshold signature algorithm, there is a single public key held
by all replicas, while N replicas hold a different private key
fragment. If there are at least k replicas that signed a partial
signature to the proposal, the k partial signatures can then be
combined into a complete signature, which can be verified
by the public key held by all members. In the veto-collection
phase, the replicas sign a partial signature to the proposal if
they have no objections, and then unicast the signature back to
the primary node. The feasibility proofing can be proved by the
feedback from replicas if there are N partial signatures, i.e.,
all vehicles agree on the proposal. Then, the primary vehicle
combines the partial signatures to a complete one and send as
evidence in the following consensus procedures.

The potential hazards can be avoided by feasibility proofing,
but this comes at a cost. On the one hand, it consumes more
time than a normal PBFT, and on the other hand, the malicious
nodes may keep voting against the consensus to prevent it from
being reached. As a result, one-vote veto is recommended only
for operations that require the awareness and consent of all
nodes, e.g., dangerous but necessary operations. Meanwhile,
ordinary PBFT still has its advantages (e.g. less time con-
suming and higher consensus success rates) and can be used
in relatively common situations. For simplicity, we define the
following two types of proposals:

• Type 1: A proposal that requires a number of proofs from
other members.

• Type 2: A proposal that requires no veto from other
members.

In the above two types, type 1 proposals only need to satisfy
the PBFT threshold (more than 2/3 nodes agree), while type
2 needs to use the veto-collection phase to ensure that there
are no negative votes.

E. Vehicle Clustering

A wireless distributed consensus network for autonomous
driving requires high reliability and low latency. This be-
comes increasingly challenging as the number of vehicles
increase, as vehicles are geographically distributed. Moreover,
because of high communication complexity, PBFT is proven

to not scale up very well [45]. Thus, instead of managing
all vehicles in a V2V network, one common approach is to
manage vehicles in different clusters. Clustering is an effective
technique to manage and organize vehicle networks while
keeping the system decentralized. It limits the signaling and
routing overhead, and the links within a cluster are more stable
if well chosen [46] [47]. In terms of its structure, each cluster
can be composed of a leader and multiple members, where
the leader plays a management role. By comparison, PBFT
also has a primary node (can be regarded as the leader),
which invokes and manages the consensus reaching process
and several replicas (group members). In other words, the
consensus mechanism is able to be mapped to a clustered
vehicle network. For the above reasons, vehicle clustering
techniques can be used in a distributed consensus network.

Regarding the cluster size, we propose that it is based on the
consensus reliability and communication reliability require-
ments. For example, larger network sizes are generated if the
consensus reliability requirement is high, while a smaller sizes
are considered if the consensus reliability requirement is low.
However, we should also consider the latency and the wireless
communication range between vehicles. For instance, if the
task requires a lower latency or high communication successful
rate, smaller networks can be built, and vice versa. Meanwhile,
the size of a cluster can also influence the threshold of
a voting-based BFT consensus. When the vehicles are far
away, the success rate of communication between vehicles is
relatively low. For a vehicle, failing to receive responses from
others can be regarded as Byzantine behaviours. Moreover,
considering time-varying network conditions, the vehicle may
calculate a threshold for a consensus process based on the non-
faulty response probability between itself and other vehicles
in a period of time. Details of the cluster size and dynamic
threshold are discussed in Section V-A.

In terms of self-organization scheme of consensus networks,
in a static distributed system, all nodes are typically static,
thus the consensus network can also be static. As a result, the
grouping and degrouping can be done in the initial instalment.
In the case of a dynamic environment that the nodes are
moving (either physically or logically), e.g., in autonomous
driving, initial grouping to form a consensus network is
required, this can be done either by a broadcasting or peer to
peer network communication. In the case of a certain period
without consensus tasks or a consensus cannot be achieved in
a determined period of time (in case vehicles are too far from
each other, thus communication links cannot be established),
the consensus network can be degrouped. In the case of
an emergency, such as a vehicle breakdown, e.g., is unable
to keep up with the cluster’s speed, the vehicle may leave
the cluster. Also, when merging, there may be new vehicles
wishing to join the already existing cluster. The protocol
related to dynamic change of cluster members is introduced
in Section IV-F.

IV. V2V NETWORK CONSENSUS PROTOCOL

In this section, we propose a practical wireless distributed
consensus protocol for autonomous driving. This is a proposal-
based protocol (as discussed in Section III-A), where each



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

vehicle declares its plan and executes the corresponding ve-
hicle operation if it is approved by the distributed consensus
network1. It is also worth noting that the proposed protocol
can not only be used in vehicular networks, but can be applied
in other general scenarios that is composed of multiple parties,
from multi-agent robots and cooperative UAVs control to data
update of servers clusters and block-chain applications. As
the application of vehicular networks are emerging and the
coordination in V2V networks are an exemplar of multi-agent
coordination, we mainly focus on vehicular application in this
paper.

The protocol is based on PBFT, and we consider uninten-
tionally incorrect decisions made by nodes based on sensor
errors or failures as Byzantine errors. As the vehicular appli-
cations requires high reliability for safety issue, we classify
the proposals with different validation requirements into three
modes, which will be shown in Section IV-A. The maneuvers
for vehicles can be regarded as combinations of multiple
proposals in different modes and have been executed by the
network in a commonly agreed sequence, as discussed in
Section III-C. We also consider the actual case for the one-
vote veto of the proposal and propose a veto-collection phase
before the pre-prepare phase.

We assume the total number of vehicles in a cluster is N .
f is the number of replicas that may be faulty and can be
calculated as f = ⌊(N − 1) /3⌋. Typically, the threshold is
the minimum T that satisfies the inequality 2T −N − f ≥ 1.
However, in the case of large networks or high sensor failure
rates, the threshold for nodes to proceed to the next phase can
be calculated using the method in Section V-A. We show a
complete V2V network consensus process in Fig. 2 below.

Proposal

Gossip

Veto
Collection Pre-prepare Prepare Commit

Primary

Post
Commit

Backup

Backup

Backup

Normal PBFT Consensus Process

Fig. 2. Full PBFT consensus protocol with veto collection and gossip.

In the following content, we will focus the details of the
protocol, including the operations of each phase, three sub-
protocols (view change, dynamic grouping, and plan tree
synthesis) and the proof of safety and liveness.

A. Client Proposal

When a situation arises that requires a consensus, any
vehicle can be the initiator of the consensus, which refers to
the proposal-based consensus in Section III-A. Based on the
type and structure of the proposal, we divide the proposal into
the following three modes2:

1Note that the network can be composed of vehicles, or also road side units,
such as cellular base stations, or a mixture of them.

2Note that the mode defined here is not the same as the types defined in
Section III-D.

• Mode 1: A proposal that requires a number of proofs
from other members, i.e. normal PBFT requirements.

• Mode 2: A proposal that requires feasibility proofing in
the veto-collection phase, i.e., no veto is collected.

• Mode 3: A plan tree, which is discussed in detail in
Section IV-G.

We design the format of a proposal as [mode, o, r, t, (texec)
]proposal, which contains the proposal mode, a vehicle’s
operations requiring consensus o, the reason to propose this
proposal in standardized expression r, current timestamp t,
and appointed execution time of the operation texec (optional).
The parameter texec is the absolute time set by the proposer
according to the average time needed for consensus (with
a margin), in order to make each car perform operations
at the same time and to better unify the behavior of each
vehicle. After generation, the proposal messages are multicast
to the primary node, which then differentiates the modes and
performs different actions.

B. Veto-collection Phase

The veto-collection phase aims to provide the ability of “one
vote veto” and will only be activated when required. When the
leader (i.e., the primary of PBFT) receives a proposal M =
[mode, o, r, t, (texec)]proposal, it authenticates the proposal as
well as the client’s identity. If the proposal is of mode 1, it
omits the veto-collection phase and enters the normal PBFT
consensus process (Section IV-C). Instead, if the message is
of mode 2, the nodes enter the veto-collection phase, in which
the primary node calculates the message’s digest d generated
by collision-resistant hash functions, and multicast message
[mode, o, r, t, (texec), d]veto−collection. Mode 3 is for plan tree
synthesis and details will be discussed in Section IV-G.

On receiving a veto-collection phase message, the vehicle
invokes sensors or in-vehicle data to verify that the actual
situation and in-message reason r are consistent to make
decisions. If the in-message operation o is not considered
problematic and is accepted by the vehicle, it signs a partial
signature ps of this veto message (mentioned in Section III-D,
threshold signature algorithm) and unicast message’s digest
and partial signature together as [d, ps]veto−reply to the pri-
mary node. Else, if there is a conflict between the operation
o and its own situation or the car is unable to execute
the command, the vehicle rejects this message by unicasting
[d, V ETO]veto−reply to the primary node.

Only when the primary node has received N valid veto −
reply messages (including the primary node itself) and there is
no veto, can the primary node implement the following normal
consensus process, otherwise the consensus is terminated by
the primary. After validation, partial signatures from all N
vehicles are combined into a complete signature noted as sig
in the following sections.

C. Normal Consensus Process

After successfully proving the feasibility of the veto-
collection phase (i.e., a valid complete signature sig is com-
bined by the primary), the protocol proceeds to the normal



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 7

consensus process of the PBFT protocol. The normal con-
sensus process includes the pre-prepare, prepare and commit
stages. Here, we integrate the vehicular decision-making and
implementation into the normal PBFT process.

1) Pre-prepare: Assume that the primary node, after re-
ceiving the message, has checked the authenticity of the
message, classified, and completed the relevant steps of the
veto-collection phase. In the pre-prepare phase, the primary
node assigns a serial number n to the proposal, packages it
into a pre-prepare message and broadcasts it to the cluster. The
pre-prepare message is Mpp = [v, n, d,M, (sig)]pre−prepare,
where v is the current view, d is the digest of the proposal
M and sig is the complete signature, if the request message
belongs to mode 2.

When receiving pre-prepare messages, the node validates
the message in the following steps: 1) First, it checks if
signatures and digits are correct; 2) Then, it checks if the
view is the same as this node; 3) In view v, it checks if
it has not accepted a pre-prepare message with sequence
number n containing a different digest. Once the validation
passes, the pre-prepare message is accepted, and the node
enters the prepare phase, broadcasting the prepare message
[v, n, d, i]prepare where i is the vehicle’s serial number.

2) Prepare: In the prepare phase, nodes check whether
there is a message M , a pre-prepare message Mpp of M ,
and T prepare messages from other nodes in its logs.

If all of the above points are satisfied, in the case of
the mode 1 of the proposal, then the vehicles detect the
surrounding area using their information (typically, by their
own sensors) to see if it matches the description in the
message and check the validity of the operation instructions.
If all checks passes, the node reaches the prepared state,
enters the commit phase and multicasts the commit message
[v, n, d, i]commit.

Unlike mode 1, in the case of mode 2 proposals, the vehicle
has already checked the surroundings and acknowledged the
reasonableness of the proposal in the veto-collection phase,
so another inspection is not necessary. Instead, it verifies the
signature sig provided by the primary node to confirm the
consent of all other nodes for this proposal. If verification
passes, it passes to the commit phase and multicasts the
commit message [v, n, d, i]commit.

3) Commit: If a node is prepared and more than T commit
messages from other nodes have been received (possibly
including its own) for a proposal, the consensus of the validity
of the operations in the proposal is confirmed by the consensus
network and the node reaches the committed state, so operation
can be done by the vehicles immediately or in the appointed
time if texec is defined.

D. Post-commit

The post-commit phase can be considered as a synchroniza-
tion step for better reaching the full consensus (as defined in
Section III-B). It utilizes the gossip algorithm proposed in Sec-
tion V-B to spread post-commit messages in the V2V network
and synchronize consensus results. When a vehicle reaches
the committed state for a proposal message, it broadcasts a

post-commit message [Mpp, C, i]post−commit to other nodes
where C is the collection of at least T commit messages this
vehicle has received. Then, the vehicles that receive the post-
commit message also reach a committed state and continue to
broadcast this message to other vehicles. This action continues
until all nodes reach the committed state.

The post-commit message has two main functions. First, it
enables replicas which did not receive the pre-prepare message
to regain the pre-prepare information. Second, it let other
nodes that fail to collect enough messages in previous phases
enter the committed state directly by proving adequate commit
messages.

E. View Change

Consistent with the original PBFT protocol, when a node
detects a timeout on a proposal, it sends a view change
proposal in the following format: [v+1, n, C, P, i]view−change.
The parameter n is the sequence number of the last stable
checkpoint, C is the set of valid T messages in that checkpoint
and P is a set of Pm, where Pm is the set of messages with the
serial number m (m > n) that have reached the prepared state.
When a vehicle with serial number v+1 receives T valid view
change messages, it broadcasts [v + 1, V,O]new−view where
V is the set of view-change messages, and O is the set of
pre-prepare messages. In the new view, the vehicles are in
the consensus process based on the prepared state of each
vehicle in the previous view, which ensures that the message
serial number does not change before and after view change.
Through view change, the safety of the consensus network can
be guaranteed.

F. Dynamic Grouping Protocol

In a V2V network, the vehicle cluster may change dy-
namically, as vehicles may join or leave the network at any
time. For a consensus, the current number of vehicles N
of the network stored in each node’s memory should be
the same in order to ensure the safety and liveness of the
consensus. To ensure that all nodes have the same N , allowing
vehicles to join or leave also requires consensus, so nodes
can update N based on the consensus result. For the above
reason, a dynamic grouping is designed on the basis of our
V2V network consensus protocol. Considering that there are
no strict requirements or restrictions, for a faster consensus
process, the accession and exit proposal belongs to mode 1
proposal which only requires number of proofs.

1) Vehicle Accession: The format of an accession proposal
from a vehicle outside the network can be expressed as
Maccession = [mode1, info, t, texec]accession−request, where
info contains information of the vehicle and t is the current
timestamp. The accession request message is then unicast to
the nearest vehicle which is already in the network. This
vehicle plays the role of the client and forwards the request
to the primary node. Since the accession proposal belongs to
mode 1, a normal PBFT consensus process is executed, and
in this process the vehicles determine if the current network
is too large or not. If enough positive responses are collected
and the vehicles in the network reach a committed state, it



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

renews its N ′ = N + 1 at t = texec. The vehicle that
served as client also replies to the requesting vehicle the
consensus result and the value of N ′. After t = texec, the
vehicle automatically becomes a member of the network and
participates in the consensus. However, if there are any other
consensus in progress, where the request timestamp t < texec,
the consensus is still calculated with the previous value of N .

2) Vehicle Exit: When a vehicle needs to leave the V2V
consensus network, it sends an exit request Mexit = [mode1,
t, texec]exit−request where t is the current timestamp. After a
normal consensus process, if it reaches the committed state, the
vehicles in the network renew its N ′ = N − 1 at t = texec.
The vehicle that requests to leave stops participating in the
consensus after t > texec. Similarly to the previous case, any
other consensus in progress where request timestamp t < texec
is still calculated with the previous N . When a vehicle leaves
silently and does not make an exit request, any other vehicle
in the cluster can make a request to remove the vehicle that
has left. As vehicles in the cluster collect broadcast messages
from other vehicles, once they found that one of the vehicles
has been out of contact for a long time, it may propose the
removal of that vehicle.

G. Plan Tree Synthesis

As mentioned in Section III-C, proposal combination can
decrease the delay caused by multiple proposals and is vital
for complex maneuvers. However, when combining the veto-
collection phase with the proposal combination, even if one
sub-proposal in the combination is voted against, the whole
maneuver cannot be executed. Therefore, the acceptance rate
of the combined proposal might be low for complex maneu-
vers. Besides, considering that the vehicles are closely oper-
ated with each other in dense traffic, executing inappropriate
decisions may pose a threat to adjacent vehicles. For instance,
an obstacles is detected in front and the platoon can either
breaks or switches lane. If one vehicle in the platoon is heavily
loaded, a breaking may lead to rear-end collision. To overcome
these two problems, we propose a plan tree synthesis protocol
which synthesises multiple plans composed of basic proposals
of two modes (mode 1 and 2 defined in Section IV-A). For the
former problem, as the number of alternatives increases with
each consensus, the probability of infeasibility of all options
decreases, thus the success probability of a single consensus
increases. For the second case, the plan tree synthesis can
combine multiple proposals (line switching and breaking in the
example), and infeasible proposals (breaking in this example)
can be voted against by nodes who detected the anomaly. We
define a plan tree as a mode 3 proposal.

One complete process is depicted in Fig. 3. The vehicle that
is about to execute one maneuver proposes several candidate
plans, and it then synthesizes them into a plan tree. When there
is more than one option after one action, branches are created.
Every path which starts from the root node to the leaf node
represents a plan. Then the plan is packed into one message
and handled as in Fig. 2. Instead of voting for one proposal,
a member votes for each action that is possible on its view in
the plan tree, with the preferences of members being expressed

Proposes

Plan 1

Optimized
Plan Tree

Pruned
Plan Tree

Optimized
Plan Tree

Plan 3Plan 1

Pruned Plan Tree

Plan 4

Plan 1 Plan 3

Plan 2

Plan TreePlan 4Plan 3Plan 2Plan 1

Generates

Synthesises

Action

Condition

Pruned Branch

Consensus Process
Message

Optimizes

OptimizesOptimizes

End
Executes

End

Fig. 3. Complete plan tree consensus process.

as vetoes in the veto-collection phase. When one member has
identified one action in a plan is impossible to be executed, it
gives out a veto. Thus, the sub-tree below that condition node
is therefore pruned.

In terms of protocols, the client generates a proposal
[mode3, tree− structure, tree− content, t, (texec)]proposal,
where mode3 indicates that this proposal belongs to a plan
tree. Apart from t for the current timestamp and texec for
the appointed execution time for coordination, there are two
parameters that are different from a normal proposal. Param-
eter tree− structure contains the structure of the plan tree,
and tree − content contains the operations and reasons of
different plans in a plan tree. Then, the message is sent to
the primary node and enters the veto-collection phase. After
receiving all veto-collection messages, the vehicles evaluate
the reasonableness of each action of this plan tree and veto
the actions that are considered to be unreasonable. The result
is then unicast back to primary node with format [d,marked−
tree, ps]veto−reply, where marked− tree stores the veto for
each action in the plan tree. The primary node then collects
N valid veto − reply messages from all nodes, packages
them as mark − collection and enters the normal consensus
process with pre-prepare message Mpp = [v, n, d,M,mark−
collection, sig]pre−prepare.

The chances are that more than one plan survives after the
consensus process (which is desired since it does not require
further retries). After receiving the preferences of all nodes
packed by the primary node, to ensure that all vehicles execute
one identical plan at a time, an optimization mechanism should
be predefined on each vehicle. For example, the plan with
the shortest execution duration can be chosen. However, if
there still exists more than one plan, the final decision could



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

be based on predefined priorities. With plan tree synthesis
and optimization, the preferences and opinions from other
members are considered in the consensus process to some
extent. However, the detailed optimization depends on specific
application scenarios thus is not covered in this paper.

H. Proof of Safety and Liveness

Safety of the protocol guarantees that all non-faulty vehicles
agree on the sequence numbers of proposals that commit
locally. In a system where at most f out of 3f + 1 nodes
is faulty, the threshold/quorum size is set to 2f + 1. Thus
for two consecutive rounds of communication, there exists
an intersection of at least f + 1 nodes. Since there are at
most f faulty nodes, there must be at least one non-faulty in
this intersection. This is how the safety can be guaranteed.
If a dynamic threshold mentioned in the following V-A is
implemented, the algorithm also guarantees that there is at
least one non-faulty node in the intersection.

Liveness means that the consensus continues without get-
ting stuck. If we consider the communication failures of the
vehicles as Byzantine errors, the network can be considered
to be a partially synchronous network, which is similar with
traditional PBFT algorithm. In this case, the view change
replaces fault primary nodes to keep the consensus going, so
the liveness can also be guaranteed.

V. CONSENSUS REFINEMENT

The PBFT is introduced in our consensus scheme. However,
it is impractical to predetermine a fixed cluster and threshold
size under wireless connection quality varies. It is also no-
ticeable that a extra synchronization is required to reach full
consensus as discussed in Section III-B. Therefore, we try
to improve the performance and reliability of our consensus
scheme in this section by introducing the group and threshold
size selection as well as epidemiology gossip [48].

A. Cluster and Threshold Size Selection

In the traditional PBFT, the upper-limit of faulty nodes
is a known fixed number. Thus, the threshold/quorum size
is set as N − f to ensure non-faulty nodes intersection.
In practice, however, sensor and communication failure is
more practically to be modelled as a probability rather than
determining number assumed in the original PBFT protocol.
Note that here communication failures could be caused by
either the communication link is too weak (only affects the
communication link with a particular node) or the node is
faulty (thus all communication with the node will fail).

Similarly, to reach a consensus in an autonomous driving
network, both the cluster and the threshold size should meet
certain conditions (i.e., larger than certain numbers) for achiev-
ing required minimum possibility of existing an intersection
(i.e., minimum consensus reliability). In this subsection, we
will first derive the analytical relationship between the size of a
cluster and the probability that a non-faulty vehicle exist in the
intersection. Then we derive the relationship between the size
of the threshold for a vehicle to proceed into the next phase of

PBFT protocol and the probability that at least one feedback is
received from a non-faulty vehicle in the intersection. Assume
that the success rate of point-to-point communication between
two nodes is Pc, the probability that one vehicle replies a faulty
response (node failure rate) is Pr and the size of vehicles in
a cluster is chosen as NC . The probability of such existence
is denoted as PCint(NC).

If a vehicle produces an incorrect response due to sensor
failure, this vehicle is said to be faulty, therefore, the proba-
bility that then number of feedbacks from non-faulty vehicles
in each round of communications Nb equals to nb is given as

P(Nb=nb) =

(
NC

nb

)
(PcPr)

nb(1− PcPr)
(NC−nb). (1)

The existence of vehicles with correct response in the
intersection indicates 2nb − N ≥ 1. The probability that the
intersection PCint(N) exists is given as

PCint(NC) =

NC∑
nb=

NC+1

2

P (Nb = nb). (2)

Equation (2) gives an indication when selecting size of a
vehicle cluster, and can be used as a criterion for accepting
other vehicles to join the consensus network. For one who
expects the probability that the existence of an intersection
to be higher than a level ∆C , NC should be chosen so that
PCint(NC) ≥ ∆C .

In the consensus reaching process, one node steps into the
next phase once the number of valid feedbacks it receives
exceeds a threshold. Correspondingly, the threshold for each
node to proceed into the next phase should also be considered,
since the exact number of faulty responses is unknown to
a vehicle. Here we derive the relationship between the size
of the threshold T and the probability of the existence of a
non-faulty intersection PTint(T ). Assume that one vehicle has
already received Nr feedbacks, and that the number of faulty
feedbacks, F , is unknown to that vehicle. To ensure at least
one non-faulty feedback intersection, the parameters T , Nr

and F should satisfy the inequality 2T−Nr−F≥1. Therefore
we obtain

F≤2T −Nr − 1, (3)

where the right side of the inequality is the upper limit of the
number of faulty nodes (to ensure the non-faulty intersection
existence). For simplicity, we denote the limit as L(T ) = 2T−
Nr−1. Assuming that P(NF=nF ) indicates the probability that
the number of faulty feedbacks NF equals to nF , P(NF=nF )

can be expressed as follows

P(NF=nF ) =

(
Nr

i

)(
PNr−i
r (1− Pr)

i
)
. (4)

Since the existence of a non-faulty intersection requires the
number of faulty vehicles to be less than L(T ), PTint(T ) is
then calculated by summing up the node failure rate PNF=nF

from nF = 0 to nF = L(T ), as

PTint(T ) =

L(T )∑
nF=0

P(NF=nF ). (5)



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 10

For a vehicle that expects the probability of the existence of
correct feedbacks in an intersection to be higher than a level
∆T , the threshold T should be chosen so that PTint(T ) ≥ ∆T .
Apart from a unified Pr, this probability can also be distinct for
each vehicle. It is noticeable that the value of (5) is not always
close to the threshold expectation T = 2fexp + 1, where fexp
is summation of each vehicle’s Pr. As an example, we ran-
domly generate Pr for each vehicle and combine them into a
vector PR =[0.0152, 0.0133, 0.0849, 0.0954, 0.0251, 0.0015,
0.0632, 0.0619, 0.0447, 0.0726, 0.0905, 0.0868, 0.0141,
0.0450, 0.0578, 0.0137, 0.0464, 0.0703, 0.0735, 0.0006], the
threshold T calculated by expectation is T = 3. This threshold
expectation is impractical since it is less than the no intersec-
tion limit, i.e. half of the number of nodes. On the other hand,
the intersection of ∆T = 0.999 is guaranteed at T = 13 as
shown in Fig. 4.

2 4 6 8 10 12 14 16 18 20

Threshold Size T

10-15

10-10

10-5

100

P
ro

b
a

b
lit

y
 o

f 
N

o
 I

n
te

rs
e

c
ti
o

n
 1

-P
in

t

Interset Probablity

Threshold Expectation

No Intersection Limit

Fig. 4. Dynamic threshold under specific Pr with N = 20, ∆T = 0.999.

B. Consensus Reaching and Execution

Full consensus is necessary as vehicles may require to
take identical course of actions under V2V scenarios, yet
PBFT does not provide this property. Therefore, we utilize
a Gossip algorithm epidemiology [48] to make up for the
deficiencies in PBFT. In our design, the node who has reached
consensus (committed) is considered to be infected, and thus is
contagious. Then, contagious nodes communicate with others
to spread the committed information. After that, the nodes
that receive the committed information from a contagious
node turn contagious as well, while the previous contagious
node becomes immune and stops broadcasting committed
information. Nodes repeat the process described above until
all the nodes in the network are infected with this information.
Generally, there are two schemes to implement this infection
process. A node can either passively wait for an information
update from others, or it actively contacts others for an update.
The mathematical analysis of the two schemes are given in
the following. In addition, since the performance differences
are negligible with relatively high communications quality, the
passive scheme is chosen in our protocol to reduce inter-node
communications.

1) Passive:: in a passive gossip, nodes without the infor-
mation passively wait for the communication from those who
have the committed message. The probability of a node to
be uninfected in the ith round of infection is denoted as Pi.
The number of total nodes is N and the success rate of point-
to-point communication is Pc. Here we consider the average
number of infected nodes to be N(1−Pi) for simplicity. In a
round of infection, an uninfected node passively waits for the
messages from infected nodes. If this node is still uninfected
in the (i + 1)th round, all the infected nodes have failed to
establish the connection, which yields

Pi+1 = (1− Pc)
N(1−Pi). (6)

It is clear that there exists an asymptote by plotting the iter-
ation results (passive in Fig. 5). Since limi→∞ Pi+1−Pi = 0,
we force Pi+1 = Pi to derive the expression of the asymptote.
By denoting (1 − Pc)

N as a, substituting Pi+1 with (6), and
multiplying both sides with aPi , gives

a = Pia
Pi . (7)

One obvious solution for (7) is Pi = 1 for (7). To find
the real solution, we choose the principal branch W0 of the
Lambert W function [49] then substitute a with (1−Pc)

N to
derive expression of Pi, given as

Pi =
W0(N(1− Pc)

N ln(1− Pc))

Nln(1− Pc)
. (8)

From (8), we conclude that the asymptote of the uninfected
probability, Pi, is solely affected by the success rate of
communication Pc for a fixed number of nodes N .

2) Active:: in an active gossip, the node without informa-
tion actively asks for it. If an uninfected node at the ith round
of infection is still uninfected in the (i + 1)th round, this
implies that all nodes it communicated with in the ith round
must be uninfected as well. The average number of nodes it
can communicate with in the ith round is NPc, which yields:

Pi+1 = PNPc
i . (9)

Fig. 5. Uninfected probability under active and passive gossip with N=4, 5
and Pc=0.4, 0.9.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

Fig. 6. Execution failure rate per vehicle against number of Faulty vehicles with N = 7.

When the initial value of Pi is less than 1, it approaches to
zero as the infection proceeds. For comparison, we plot both
uninfected probabilities under active and passive in Fig 5, for
N = 4, 5, Pc = 0.4, 0.9 and Pi=0 = 0.9.

Though the performance difference do exist between the
passive and active schemes, this difference rapidly drops to
negligible numbers as N increases (even slightly). The change
in the success rate of communication Pc, also shows a signif-
icant impact. Considering the communication complexity, we
chose the passive mode as the adopted scheme in this paper.
We notice that even if some nodes crash or fail (Byzantine
nodes), the status of these nodes are consistent with that
of others over a period of time. That is to say, the Gossip
algorithm itself has the natural advantage of distributed fault
tolerance.

VI. PERFORMANCE ANALYSIS

To verify the feasibility of applying a PBFT-based consen-
sus in autonomous driving and study the impact of gossip
algorithm on full consensus, a simulation is conducted. It op-
erates under a general wireless condition where each node ran-
domly dominates the channel and broadcasts information. The
simulation reproduces the complete process including client
proposal generation, consensus reaching, consensus messages
decoding on vehicle and proposal execution. The simulation
considers a platoon of 7 vehicles achieves consensus on the
platoon leader’s proposal, aiming to reflect the performance
enhancements brought by gossip algorithm.

The probability for each vehicle to successfully achieve
consensus and execute the proposal Pex is calculated based
on the statistics. Results in Fig. 8 plot the failure rate 1−Pex

with gossip and without gossip against the communication
link failure rate 1− Pc in a log scale. In terms of the impact
of wireless communication, significant improvements can be
observed for Pc greater than 0.8, which is very easy to be
achieved in many communication networks. With the help of
gossip, the failure probability drops to 3× 10−5.

The impact of byzantine vehicles is further investigated
by intentionally setting part of these vehicles to be faulty,
where the faulty vehicles are assumed to support the faulty

option based on their incorrect observation. The V2V network
consensus protocol is compared with relay and centralized pro-
tocol. For our protocol, the leader’s proposal is a combination
of non-faulty and faulty options as described in section IV-G,
forming a single layer binary tree. For the relay scenario, the
information is acquired from the immediate adjacent vehicles.
The proposal decision is made by the head of the platoon
and relayed through the platoon. Notice that the tolerance
of faulty detection is involved in relay information flow. To
evaluate the effect of fault tolerance mechanism, we designed
a centralized protocol, where the central vehicle generates a
similar proposal with two options. The central vehicle then
selects and broadcasts one option based on its observation.
Other vehicles execute the action accordingly if it is consistent
with their observation, otherwise, it is rejected.

0 1 2 3 4 5 6 7 8 9 10

Number of vehicles achieving consensus

0

10

20

30

40

50

60

70

80

90

P
ro

b
a
b
ili

ty
 o

f 
O

c
c
u
rr

e
n
c
e
 i
n
 P

e
rc

e
n
ta

g
e
 (

%
)

Without Gossip

With Gossip

Fig. 7. Percentage of certain number of vehicles achieved consensus in each
round of simulation with N = 10, Pc = 0.9.

As illustrated in Fig. 6, the failure rate indicates the prob-
ability of incorrect observation on one of 7 vehicles. The
failure rate increase from 0.05 to 0.4 with 0.05 increment. The
probability of executing non-faulty action is compromised by
incorrect observations of the vehicle for all three protocols. For
low failure Rate the non-faulty action execution probability of



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 12

proposed protocol is highest action is our proposed protocol
(75.41%, 75.01% and 58.62% for proposed, relay and cen-
tralized protocol respectively at failure rate equals to 0.25). It
decreases more rapidly for proposed and centralized protocol
compared with relay protocol for higher failure rate. The faulty
action may be executed as the percentage of faulty vehicles
increases. However, with the fault tolerance mechanism, this
potential risk is partially mitigated by allowing vehicles to
take no action by rejecting execution in both centralized and
our protocol. For instance, the vehicles could be programmed
with with default protective behaviour. So that no action does
not necessarily lead to accident. Our protocol further reduce
the probability of faulty actions by half compared with the
centralized protocol (9.50% and 19.65% for proposed and
centralized protocol respectively at failure rate equals to 0.4).
In contrast, the probability of faulty action for relay protocol
is significantly higher.

We also notice that the gossip algorithm largely improves
the consistency across the vehicles to the full consensus status.
In Fig. 7, we present the statistics of a cluster of 10 vehicles
that achieves the consensus with Pc = 0.9. The probability
of occurrence indicates the likelihood that a such number of
vehicles achieve consensus in one round of the consensus
reaching process. For instance, the bars of 0 vehicles indicate
the probability that all vehicles failed to reach consensus, while
the bars of 10 vehicles indicate the probability that the whole
cluster of 10 vehicles reach consensus. The results show that
the gossip promotes the achievement of full consensus (all 10
vehicles achieving consensus in this case). As shown in Fig. 7,
when gossip is considered, it is highly likely (88.5%) that the
all vehicles reach consensus, while without gossip, only 16.6%
of vehicles are capable of achieving full consensus.

10-310-210-1100

Failure Probability for Single Transmission 1-P
c

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
x
e
c
u
ti
o
n
 F

a
ilu

re
 P

ro
b
a
b
lit

y
 1

-P
e
x

Without Gossip

With Gossip

Fig. 8. Execution failure rate per vehicle against success rate of communi-
cation with N = 7.

VII. CONCLUSION

In this paper, we provide a proposal-based decision-making
solution dedicated to wireless V2V networks for vehicular pla-
toon control. A novel PBFT-based consensus protocol for the
joint decision making of vehicles is proposed. The simulation
results reveals that the proposed protocol is able to reach

a decision in the presence of faulty vehicles and suppress
the execution of faulty actions. Besides, the communication
reliability is significantly improved through the gossip algo-
rithm which facilitates full consensus reaching. Compare the
consensus performance without gossip and with gossip, the
result shows the failure rate is reduced from around 10−3

to less than 10−6, with communication reliability of 10−3.
The single-layer binary tree scenario experiment also suggests
that The protocol is capable to select optimal solutions from
multiple possible candidates through plan tree synthesis, as
such binary is the building block for any complex plan tree.

REFERENCES

[1] D. Yu, W. Li, H. Xu, and L. Zhang, “Low reliable and low latency
communications for mission critical distributed industrial internet of
things,” IEEE Communications Letter, vol. 25, no. 1, pp. 313–317, 2021.

[2] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, “Decision
making for autonomous driving considering interaction and uncertain
prediction of surrounding vehicles,” in 2017 IEEE Intelligent Vehicles
Symposium (IV), 2017, pp. 1671–1678.

[3] S. Gibbs, “Google sibling waymo launches fully autonomous ride-
hailing service,” The Guardian, 2017.

[4] H. Somerville, P. Lienert, and A. Sage, “Uber’s use of fewer safety
sensors prompts questions after arizona crash,” Reuters, 2018.

[5] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[6] Baidu, “Apolloauto,” https://github.com/ApolloAuto/apollo, 2021.
[7] Tesla, “Full self-driving capability,” htps://www.tesla.com/autopilot,

2021.
[8] Y. Danny and T. Dan, “Tesla driver dies in fatal crash while using

autopilot mode,” The Guardian, 2016.
[9] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-

to-everything (v2x) services supported by lte-based systems and 5g,”
IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 70–76,
2017.

[10] M. Torrent-Moreno, J. Mittag, P. Santi, and H. Hartenstein, “Vehicle-
to-vehicle communication: Fair transmit power control for safety-critical
information,” IEEE Transactions on Vehicular Technology, vol. 58, no. 7,
pp. 3684–3703, 2009.

[11] X. Cheng, C. Chen, W. Zhang, and Y. Yang, “5g-enabled cooperative
intelligent vehicular (5genciv) framework: When benz meets marconi,”
IEEE Intelligent Systems, vol. 32, no. 3, pp. 53–59, 2017.

[12] J. Joy and M. Gerla, “Internet of vehicles and autonomous connected
car - privacy and security issues,” in 2017 26th International Conference
on Computer Communication and Networks (ICCCN), 2017, pp. 1–9.

[13] L. Yang and H. Li, “Vehicle-to-vehicle communication based on a
peer-to-peer network with graph theory and consensus algorithm,” IET
Intelligent Transport Systems, vol. 13, no. 2, pp. 280–285, 2019.

[14] L. Lamport, “The part-time parliament,” in Concurrency: the Works of
Leslie Lamport, 2019, pp. 277–317.

[15] D. Dolev, “The byzantine generals strike again,” Journal of Algorithms,
vol. 3, no. 1, pp. 14–30, 1982.

[16] C. Shen and F. Pena-Mora, “Blockchain for cities—a systematic litera-
ture review,” IEEE Access, vol. 6, pp. 76 787–76 819, 2018.

[17] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication
for the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, 2014, pp.
355–362.

[18] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[19] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 3–16.

[20] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” Self-published Paper, vol. 19, no. 1, 2012.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

[21] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended abstract]
y,” ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 3,
pp. 34–37, 2014.

[22] F. B. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys (CSUR), vol. 22,
no. 4, pp. 299–319, 1990.

[23] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Concurrency: the Works of Leslie Lamport, 2019, pp. 179–
196.

[24] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” OSDI
1999: Proceedings of the Third Symposium on Operating Systems Design
and Implementation, vol. 99, pp. 173–186, 1999.

[25] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of
blockchain consensus algorithms,” in 2018 41st International Conven-
tion on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2018, pp. 1545–1550.

[26] Z. Wang, G. Wu, and M. J. Barth, “A review on cooperative adaptive
cruise control (cacc) systems: Architectures, controls, and applications,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), 2018, pp. 2884–2891.

[27] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A survey on platoon-
based vehicular cyber-physical systems,” IEEE Communications Surveys
and Tutorials, vol. 18, no. 1, pp. 263–284, 2016.

[28] D. Helbing, “Traffic and related self-driven many-particle systems,”
Reviews of Modern Physics, vol. 73, no. 4, p. 1067, 2001.

[29] W. Ren, “Consensus based formation control strategies for multi-vehicle
systems,” in 2006 American Control Conference, 2006, p. 6.

[30] T.-S. Dao, C. M. Clark, and J. P. Huissoon, “Distributed platoon
assignment and lane selection for traffic flow optimization,” in 2008
IEEE Intelligent Vehicles Symposium, 2008, pp. 739–744.

[31] P. Fernandes and U. Nunes, “Platooning with ivc-enabled autonomous
vehicles: Strategies to mitigate communication delays, improve safety
and traffic flow,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 13, no. 1, pp. 91–106, 2012.

[32] D. Jia and D. Ngoduy, “Enhanced cooperative car-following traffic
model with the combination of v2v and v2i communication,” Trans-
portation Research Part B: Methodological, vol. 90, pp. 172–191, 2016.

[33] Y. Li, C. Tang, K. Li, X. He, S. Peeta, and Y. Wang, “Consensus-
based cooperative control for multi-platoon under the connected vehicles
environment,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 6, pp. 2220–2229, 2018.

[34] M. Porfiri, D. G. Roberson, and D. J. Stilwell, “Tracking and for-
mation control of multiple autonomous agents: A two-level consensus
approach,” Automatica, vol. 43, no. 8, pp. 1318–1328, 2007.

[35] J. Kang, Z. Xiong, D. Niyato, D. Ye, D. I. Kim, and J. Zhao, “Toward
secure blockchain-enabled internet of vehicles: Optimizing consensus
management using reputation and contract theory,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 3, pp. 2906–2920, 2019.

[36] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang,
“Blockchain for secure and efficient data sharing in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4660–4670, 2018.

[37] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. Leung, “Blockchain-based
decentralized trust management in vehicular networks,” IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 1495–1505, 2018.

[38] H. Liu, Y. Zhang, and T. Yang, “Blockchain-enabled security in electric
vehicles cloud and edge computing,” IEEE Network, vol. 32, no. 3, pp.
78–83, 2018.

[39] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, and Z. Zhang,
“Creditcoin: A privacy-preserving blockchain-based incentive announce-
ment network for communications of smart vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 19, no. 7, pp. 2204–2220,
2018.

[40] W. Hu, Y. Hu, W. Yao, and H. Li, “A blockchain-based byzantine
consensus algorithm for information authentication of the internet of
vehicles,” IEEE Access, vol. 7, pp. 139 703–139 711, 2019.

[41] H. Liu, C.-W. Lin, E. Kang, S. Shiraishi, and D. M. Blough, “A
byzantine-tolerant distributed consensus algorithm for connected vehi-
cles using proof-of-eligibility,” in Proceedings of the 22nd International
ACM Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2019, pp. 225–234.

[42] M. Wegner, W. Xu, R. Kapitza, and L. Wolf, “Byzantine consensus
in vehicle platooningvia inter-vehicle communication,” in Fachgespräch
Inter-Vehicle Communication 2016, 2016, pp. 20–23.

[43] D. Stolz and R. Wattenhofer, “Byzantine agreement with median va-
lidity,” in 19th International Conference on Principles of Distributed
Systems (OPODIS 2015), vol. 46, 2016, p. 22.

[44] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantino-
ple: Practical asynchronous byzantine agreement using cryptography,”
Journal of Cryptology, vol. 18, no. 3, pp. 219–246, 2005.

[45] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A
scalable multi-layer pbft consensus for blockchain,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1146–1160,
2021.

[46] A. Hajami, K. Oudidi, and M. ElKoutbi, “An enhanced algorithm for
manet clustering based on multi hops and network density,” in 2010 10th
Annual International Conference on New Technologies of Distributed
Systems (NOTERE), 2010, pp. 181–188.

[47] A. Benslimane, T. Taleb, and R. Sivaraj, “Dynamic clustering-based
adaptive mobile gateway management in integrated vanet—3g het-
erogeneous wireless networks,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 3, pp. 559–570, 2011.

[48] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the Sixth Annual
ACM Symposium on Principles of Distributed Computing, 1987, pp. 1–
12.

[49] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth,
“On the lambertw function,” Advances in Computational Mathematics,
vol. 5, no. 1, pp. 329–359, 1996.


	Enlighten Accepted coversheet
	291780

