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Abstract

Few-shot image classification is a challenging problem that aims to achieve

the human level of recognition based only on a small number of training

images. One main solution to few-shot image classification is deep metric

learning. These methods, by classifying unseen samples according to their

distances to few seen samples in an embedding space learned by powerful

deep neural networks, can avoid overfitting to few training images in few-

shot image classification and have achieved the state-of-the-art performance.

In this paper, we provide an up-to-date review of deep metric learning meth-

ods for few-shot image classification from 2018 to 2022 and categorize them

into three groups according to three stages of metric learning, namely learn-

ing feature embeddings, learning class representations, and learning distance

measures. Under this taxonomy, we identify the trends of transitioning from
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learning task-agnostic features to task-specific features, from simple com-

putation of prototypes to computing task-dependent prototypes or learning

prototypes, from using analytical distance or similarity measures to learn-

ing similarities through convolutional or graph neural networks. Finally, we

discuss the current challenges and future directions of few-shot deep metric

learning from the perspectives of effectiveness, optimization and applicability,

and summarize their applications to real-world computer vision tasks.

Keywords: Few-shot learning, Metric learning, Image classification, Deep

neural networks

1. Introduction1

Image classification is an important task in machine learning and com-2

puter vision. With the rapid development of deep learning, recent years3

have witnessed breakthroughs in this area [1, 2, 3, 4]. Such progress, how-4

ever, hinges on collecting and labeling a vast amount of data (in the order5

of millions), which can be difficult and costly. More severely, this learning6

mechanism is in stark contrast with that of humans, where one or few ex-7

amples suffice for learning a new concept [5]. Therefore, to reduce the data8

requirement and imitate human intelligence, many researchers started to fo-9

cus on few-shot classification [6, 7, 8], i.e., learning a classification rule from10

few (typically 1-5) labeled examples.11

The biggest challenge in few-shot classification is a high risk of model12

overfitting to the few labeled training samples. To alleviate this problem,13

researchers have proposed various approaches, such as meta-learning meth-14

ods, transfer learning methods, and metric learning methods. Meta-learning15
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methods train a meta-learner on many different classification tasks to extract16

generalizable knowledge, which enables rapid learning on a new related task17

with few examples [7, 9]. Transfer learning methods presume shared knowl-18

edge between the source and target domains, and fine-tune the model trained19

on abundant source data to fit few labeled target samples [10, 11]. Metric20

learning methods learn feature embeddings [6] and/or distance measures (or21

inversely, similarity measures) [12] and classify an unseen sample based on22

its distance to labeled samples or class representations; samples of the same23

class are expected to locate close together in the embedding space and sam-24

ples of different classes should be far apart. Note that the above methods25

can be applied simultaneously, for example learning feature embeddings of26

metric learning methods by using a meta-learning strategy [7].27

In this paper, we present a review of recent deep metric learning methods28

for few-shot image classification. Metric learning methods deserve special at-29

tention as they do not require learning additional parameters for new classes30

once the metric is learned, and thus able to avoid overfitting to the few labeled31

samples of new classes in few-shot learning. They have also demonstrated32

impressive classification performance on benchmark datasets. Moreover, in33

this review we decouple metric learning into three learning stages, namely34

learning feature embeddings, learning class representations, and learning dis-35

tance measures. Such decomposition facilitates exchange of ideas between36

researchers from two underpinning communities: few-shot image classifica-37

tion and deep metric learning. For example, latest developments in learning38

generalizable feature embeddings can be adopted for few-shot image classifi-39

cation, and the idea of learning prototypes, one type of class representations,40
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can be extended for long-tailed visual recognition [13].41

A number of surveys on few-shot learning (FSL) have been published or42

preprinted. [14] is the first survey on small sample learning, summarizing43

methods for different small sample learning scenarios, including zero-shot44

learning and FSL, and for various tasks, such as image classification, object45

detection, visual question answering, and neural machine translation. Since46

the survey was conducted early in 2018, it includes relatively limited work47

on few-shot classification, particularly metric learning methods. [15] provides48

the first comprehensive review on FSL. In addition to defining FSL and dis-49

tinguishing it from related machine learning problems, the authors discuss50

FSL from the fundamental perspective of error decomposition in supervised51

learning and classify all methods in terms of augmenting the training data52

for reducing the estimation error, learning models from prior knowledge for53

constraining the hypothesis space and reducing the approximation error, and54

learning initializations or optimizers which improve the search for the optimal55

hypothesis within the hypothesis space. The survey has limited coverage on56

metric learning methods and categorize them all under learning embedding57

models, which does not fully describe the merits of these methods. [16] is an-58

other comprehensive survey, reviewing literature over a long period from the59

2000s to 2020 as well as summarizing applications of FSL in various fields. It60

includes early, non-deep approaches of metric learning methods and, since the61

survey emphasizes on meta-learning methods, categorizes most recent, deep62

approaches under meta-learning as learning-to-measure. Compared with [16]63

which links different meta-learning metric learning methods to three classi-64

cal methods, our review provides a deeper insight into how metric learning65
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Conferences Journals

AAAI Conference on Artificial Intelligence (AAAI) IEEE Trans. on Circuits and Systems for Video Technology (TCSVT)

Int. Conference on Artificial Intelligence and Statistics (AISTATS) IEEE Trans. on Image Processing (TIP)

Conference on Computer Vision and Pattern Recognition (CVPR) IEEE Trans. on Multimedia (TMM)

European Conference on Computer Vision (ECCV) IEEE Trans. on Neural Networks and Learning Systems (TNNLS)

Int. Conference on Computer Vision (ICCV) IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)

Int. Conference on Learning Representations (ICLR) Pattern Recognition (PR)

Int. Joint Conference on Artificial Intelligence (IJCAI)

Conference on Neural Information Processing Systems (NeurIPS)

Keywords: few-shot/one-shot learning, few-shot/one-shot classification, few-shot/one-shot image recognition

Table 1: Selected conferences and journals (listed in alphabetical order of their abbreviations). Papers that

include at least one of the keywords were considered for further investigation.

methods evolve in order to generalize better and be more applicable in the66

settings that mimic the reality more closely. Moreover, the rapid develop-67

ment of FSL leads to a considerable amount of methods proposed since the68

publications of [15] and [16]. These new approaches have been discussed in69

this review. [17] is the latest review on FSL published in 2021, but it is en-70

tirely devoted to meta-learning approaches and has very little overlap with71

our work. In short, this paper provides an up-to-date review of deep metric72

learning methods for few-shot image classification and a careful examination73

of different components of these methods to understand their strengths and74

limitations. The conferences and journals being surveyed are listed in Ta-75

ble 1. Papers that include at least one of the keywords are considered for76

further investigation on their relevance and contribution.77

The rest of this review is organized as follows. Firstly for completeness,78

in Section 2 we give the definition of few-shot classification and introduce the79

evaluation procedure and commonly used datasets. Secondly, in Section 380
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we review classical few-shot metric learning algorithms and recent influential81

works published from 2018 to 2022. In the light of the procedure of met-82

ric learning, these methods are classified into learning feature embeddings,83

learning class representations, and learning distance or similarity measures.84

Finally, we discuss some remaining challenges, future directions, and real-85

world applications in Section 4 and conclude this review in Section 5.86

2. The framework of few-shot image classification87

2.1. Notation and definitions88

We first establish the notation and give a unified definition of various89

types of few-shot classification by generalizing the definition of few-shot learn-90

ing [12].91

Few-shot classification involves two datasets, base dataset and novel92

dataset. The novel dataset is the dataset on which the classification task93

is performed. The base dataset is an auxiliary dataset used to facilitate94

the learning of the classifier by transferring knowledge. We use Dbase =95

{(Xi, Yi);Xi ∈ Xbase, Yi ∈ Ybase}Nbase
i=1 to denote the base dataset, where Yi is96

the class label of instance Xi; in the case of image classification, Xi denotes97

the feature vector of the ith image. The novel dataset is denoted similarly98

by Dnovel = {(X̃j, Ỹj); X̃j ∈ Xnovel, Ỹj ∈ Ynovel}Nnovel
j=1 . Dbase and Dnovel have99

no overlap in the label space, i.e., Ybase ∩ Ynovel = ∅. To train and test100

the classifier, we split Dnovel into the support set DS and the query set DQ.101

Definition 1. Suppose the support set DS is available, and the sample size102

of each class in DS is very small (e.g., from 1 to 5). The few-shot classi-103

fication task aims to learn from DS a classifier f : Xnovel → Ynovel that can104
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correctly classify instances in the query set DQ. In particular, if DS contains105

C classes andK labeled examples per class, the task is called C-way K-shot106

classification; if the sample size of each class in DS is one, then the task is107

called one-shot classification.108

Before presenting the next definition, we introduce the concept of domain.109

A domain consists of two components, namely a feature space X and a110

marginal distribution P (X) over X [18].111

Definition 2. A few-shot classification task is called cross-domain few-112

shot classification if the base dataset and the novel dataset come from two113

different domains, i.e., Xbase ̸= Xnovel or P (X) ̸= P (X̃), where X ∈ Xbase114

and X̃ ∈ Xnovel.115

Definition 3. The generalized few-shot classification task aims to learn116

a classifier f : Xnovel ∪ Xbase → Ynovel ∪ Ybase that can correctly classify117

instances in the query set DQ, where DQ includes instance-label pairs from118

Dbase in addition to existing pairs from Dnovel.119

2.2. Evaluation procedure of few-shot classification120

We provide a general procedure to evaluate the performance of a classifier121

for C-way K-shot classification in Algorithm 1. The evaluation procedure122

includes many episodes (i.e., tasks). In each episode, we first randomly select123

C classes from the novel label set, and then randomly select K samples from124

each of the C classes to form a support set andM samples from the remaining125

samples of those C classes to form a query set. Let X(e) and Y(e) denote the126

set of instances and the set of labels in the query set at the eth episode,127

respectively. A learning algorithm returns a classifier f(·|Dbase,D(e)
S ) upon128
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Algorithm 1 Evaluation procedure of C-way K-shot classification

Input: Dbase = {(Xi, Yi);Xi ∈ Xbase, Yi ∈ Ybase}Nbase
i=1 ;Dnovel = {(X̃j, Ỹj);

X̃j ∈ Xnovel, Ỹj ∈ Ynovel}Nnovel
j=1 ; number of episodes E.

1: for e = 1, · · · , E do

2: Randomly select C classes from Ynovel.

3: Randomly select K samples from each class as the support set D(e)
S .

4: Randomly select M samples from the remaining samples of C classes

as the query set {(X(e),Y(e))}.

5: Record predicted labels Ŷ(e) = f(X(e)|Dbase,D(e)
S ).

6: Compute accuracy a(e) = 1
M

∑M
j=1 1[Ŷ(e) = Y(e)]a.

7: end for

8: return mean accuracy 1
E

∑E
e=1 a

(e).

a1 denotes the element-wise indicator function.

129

130

receiving the base dataset and the eth support set, which predicts labels of131

query instances as Ŷ(e) = f(X(e)|Dbase,D(e)
S ). Let a(e) denote the classification132

accuracy on the eth episode. The performance of a learning algorithm is133

measured by the classification accuracy averaged over all episodes.134

2.3. Datasets for few-shot image classification135

In this section, we briefly introduce benchmark datasets for few-shot im-136

age classification. Statistics of the datasets and commonly used experimental137

settings are listed below, and sample images are shown in Figure 1.138

Omniglot [19] : one of the most widely used datasets for evaluating few-shot139

classification algorithms. It contains 1623 characters from 50 languages. The140

dataset is often augmented by rotations of 90, 180, 270 degrees, resulting in141
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6492 classes, which are split into 4112 base, 688 validation, and 1692 novel142

classes. The validation classes are used for model selection. The dataset is143

used less often in the latest studies as many methods can attain over 99%144

accuracy on the 5-way 1-shot classification task.145

Mini-ImageNet and Tiered-ImageNet : another two widely used datasets de-146

rived from the ImageNet dataset [20]. Mini-ImageNet consists of 100 selected147

classes with 600 images for each class. This dataset was first proposed by148

Vinyals et al. [7], but recent studies follow the experimental setting provided149

by Ravi and Larochelle [21], which splits 100 classes into 64 base, 16 val-150

idation, and 20 novel classes. Tiered-ImageNet is a larger dataset with a151

hierarchical structure [22]. It is constructed from 34 super-classes with 608152

classes in total and include 779,165 images. These super-classes are split153

into 20 base, 6 validation, and 8 novel super-classes, which correspond to 351154

base, 97 validation, and 160 novel classes, respectively.155

CIFAR-FS and FC100 : two datasets derived from CIFAR-100 [23]. CIFAR-156

FS [24] contains 100 classes with 600 images per class, and it is split into 64157

base, 16 validation, and 20 novel classes. FC100 [25] divides 100 classes into158

20 super-classes, with five classes in each super-class. The dataset is split159

into 12 base, 4 validation, and 4 novel super-classes.160

Stanford Dogs [26] : one of the benchmark datasets for fine-grained classifi-161

cation task, which contains 120 breeds (classes) of dogs with a total number162

of 20,580 images. These classes are divided into 70 base, 20 validation, and163

30 novel classes.164

CUB-200-2010/2011 : another fine-grained dataset of 200 bird species. The165
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Fewshot-CIFAR100

CUB-200-2011

Mini-ImageNet

Stanford Dogs

Omniglot

Figure 1: Sample images of some benchmark datasets for few-shot image classification.

Datasets include Onimiglot, Mini-ImageNet, Fewshot-CIFAR100, Stanford Dogs, and

CUB-200-2011.

initial version in 2010 collects 6033 images [27] and is extended in 2011 to166

11,788 images [28]. The CUB-200-2010 dataset is commonly split into 130167

base, 20 validation, and 50 novel classes [29], while the CUB-200-2011 dataset168

is commonly split into 100 base, 50 validation, and 50 novel classes [30].169

Mini-ImageNet → CUB : a dataset used for cross-domain few-shot classifica-170

tion. Mini-ImageNet serves as the base dataset, 50 classes of CUB-200-2011171

serve as the validation classes, and the remaining 50 classes serve as novel172

classes.173

Meta-Dataset : a new, large-scale dataset for evaluating few-shot classifica-174

tion methods, particularly cross-domain methods. It initially consists of 10175

diverse image datasets [31], e.g., ImageNet, CUB, and MS COCO [32], and176

later expanded with three additional datasets [33]. There are two train-177
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ing procedures and two evaluation protocols. In the more commonly used178

setting of training on all datasets (multi-domain learning) [33, 34, 35], the179

methods are trained on the official training splits of the first eight datasets,180

and they are evaluated on the test splits of the same datasets for in-domain181

performance and the remaining five datasets for out-of-domain performance.182

The other setting is training only on the Meta-Dataset version of ImageNet183

(single-domain learning), and evaluating on the test split of ImageNet for in-184

domain performance and the rest 12 datasets for out-of-domain performance.185

3. Few-shot deep metric learning methods186

The goal of supervised metric learning is to learn a distance metric to187

measure the similarity among samples such that it is optimal for the subse-188

quent learning tasks. For example, for classification, samples from the same189

(different, resp.) class should be assigned with a small (large, resp.) dis-190

tance. In the case of few-shot classification, the metric is learned on the191

base dataset; query images of the novel class are classified by computing192

their distances to novel support images with respect to the learned mea-193

sure, followed by applying a distance-based classifier such as the k-nearest194

neighbor (kNN) algorithm. Traditional metric learning methods learn a Ma-195

halanobis distance, which is equivalent to learning a linear transformation of196

original features [36]. However, in deep metric learning, the distance mea-197

sure and feature embeddings are often learned separately so as to capture198

the nonlinear data structure and generate more discriminative feature repre-199

sentations. Moreover, instead of comparing with individual samples, many200

few-shot metric learning methods compare query samples with class repre-201
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sentations such as prototypes and subspaces. In the remainder of this section,202

we provide a review of representative approaches, which are categorized into203

three groups according to the aspect they are improving on, namely 1) learn-204

ing feature embeddings, 2) learning class representations, and 3) learning205

distance or similarity measures. A summary of these methods is provided in206

Figure 2.207

3.1. Learning feature embeddings208

Methods of learning feature embeddings implicitly assume that the net-209

work is powerful to extract discriminative features and can generalize well210

to novel classes. Early approaches aim at a task-agnostic embedding model211

that is effective for any task. More recently, endeavors are made to learn a212

task-specific embedding model for better distinguishing the classes at hand.213

Furthermore, techniques for data augmentation and multi-task learning are214

leveraged to address the issues of data scarcity and overfitting.215

3.1.1. Learning task-agnostic features216

The Siamese Convolutional Neural Network [6] is the first deep metric217

learning method for one-shot image classification. The Siamese Network, first218

introduced in [37], consists of two sub-networks with identical architectures219

and shared weights. [6] adopted the VGG-styled convolutional layers as the220

sub-network to extract high-level features from two images and employed221

the weighted L1 distance as the distance between the two feature vectors.222

Weights of the network, as well as those of component-wise distance, are223

trained using the conventional technique of mini-batch gradient descent.224

The Matching Network [7] encoded support and query images using225
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FSL with embedded class models

[78, 2019]

LMPNet [79, 2021]

Two-stage FSL [80, 2020]

TapNet [81, 2019]

FSL with global classes [82, 2019]

KGTN [83, 2020]

KGGR [84, 2020]

SOC [85, 2021]

PHR [86, 2022]

ABPML [87, 2021]

Learning task-agnostic features

Siamese Network [6, 2015]

Matching Network [7, 2016]

TPN [40, 2019]

Cross-domain FSL [41, 2020]

URL [42, 2021]

MSML [43, 2020]

PARN [44, 2019]

ConstellationNet [45, 2021]

Attentive Prototype [46, 2020]

Learning with data augmentation

Hallucinator [62, 2018]

Saliency Network [63, 2019]

BPL [64, 2020]

Learning task-specific features

TADAM [25, 2018]

LGM-Net [38, 2019]

TPMN [52, 2021]

CTM [53, 2019]

FEAT [39, 2020]

XtarNet [54, 2020]

Unified FSL [55, 2018]

Learning via multi-task learning

TADAM [25, 2018]

Self-supervised FSL [65, 2019]

infoPatch [66, 2021]

SCL [67, 2021]

FSL with contrastive learning [68, 

2022]

AGFL [70, 2020]

Auto-ACNet [71, 2021]

Learning point-based prototypes

Learning Distance/Similarity

Measures
Learning Class Representations

Prototypical Network [72, 2017]

CovaMNet [73, 2019]

Semi-supervised Prototypical 

Network [22, 2018]

IMP [74, 2019]

Attentive Prototype [46, 2020]

CTX [75, 2020]

RapNets [76, 2020]

CCVD [77, 2022]

Mean feature embeddings

Learning Feature Embeddings

Learning fine-grained features

DN4 [29, 2019]

ATL-Net [48, 2020]

COMET [49, 2021]

LRPABN [47, 2020]

TOAN [51, 2021]

Learning distribution or subspace-

based representations

Variational FSL [88, 2019]

DSN [89, 2020]

Temperature Network [91, 2021]

Variational scaling [92, 2020]

Simple CNAPS [34, 2020]

TEAM [93, 2020]

SEN [94, 2020]

DeepEMD [96, 2020]

BDC [97, 2022]

Meta-learning for semi-supervised few-

shot classification

Learning or selecting an analytical 

distance/similarity measures

Relation Network [12, 2018]

BSNet [98, 2020]

ArL [98, 2021]

SAML [100, 2018]

GNN-FSL [102, 2018]

EGNN [101, 2019]

TRPN [103, 2020]

HGNN [104, 2021]

DPGN [105, 2020]

Learning similarity via 

neural networks

Figure 2: Taxonomy of few-shot deep metric learning methods reviewed in this paper.

Some methods contribute to two aspects of metric learning and thus appear twice.

different networks in the context of the entire support set, and it first intro-226

duced episodic training to few-shot classification. A support image is em-227

bedded via a bidirectional LSTM network, which takes account of not only228

the image itself but also other images in the set; a query image is embedded229

via an LSTM with an attention mechanism to enable dependency on the230

support set. However, the sequential nature of bidirectional LSTM results in231

feature embeddings that will change with different ordering of samples in the232

support set. This issue can be sidestepped, such as by applying a pooling233

operation [38] or using self-attention [39]. The classification mechanism of234

Matching Network is suitable for few-shot learning. The network outputs a235

label distribution by computing a convex combination of one-hot label vec-236

tors of all support samples, with coefficients defined by using a softmax over237
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cosine similarities; the class with the highest probability is selected as the238

predicted class. Another valuable contribution of [7] is the episode-based239

training strategy, which has been adopted by many subsequent works. Fol-240

lowing meta-learning, the training phase on the base dataset should mimic241

the prediction phase where only few support samples are available. That is,242

gradient updates should be performed on episodes with C classes randomly243

sampled from the base label set and K examples for each class.244

The episodic training strategy closes the gap between training and test245

distributions and thus alleviates the issue of overfitting to few labeled train-246

ing images. The overfitting issue can be further addressed by utilizing query247

instances (i.e., excluding query labels) via transductive inference. Transduc-248

tive Propagation Network (TPN) [40] is the first work adopting transductive249

inference for few-shot learning and introduced the idea of label propagation.250

Concretely, the network contains a feature embedding module and a graph251

construction module. The graph construction module, taking feature em-252

beddings as inputs, learns a label propagation graph to exploit the manifold253

structure of support and query samples. Based on the learned kNN graph,254

labels are propagated from the support set to the query set; a closed-form255

solution of label propagation is used to speed up the prediction procedure.256

While transductive learning takes advantage of query instances, it is unsuit-257

able for online learning where data arrive sequentially.258

The aforementioned methods, designed for classifying novel data from the259

same domain, degrade when novel data comes from different domains [30].260

Tseng et al. [41] noticed that this is caused by the large discrepancy between261

the feature distributions in different domains and proposed to simulate var-262
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ious feature distributions in the training stage as a general solution to en-263

hance the domain generalization ability of metric learning methods. This264

is achieved by inserting multiple feature-wise transformation layers into the265

feature extractor; each transformation simulates one distribution, and the266

hyperparameters of affine transformations can be tuned via a meta-learning267

approach so that they are optimal to a particular metric learning method268

and capture the complex variation in feature distributions. Li et al. [42] pro-269

posed to learn a universal feature representation that works well for multiple270

domains. The technique of knowledge distillation is applied, where a multi-271

domain network is learned to generate universal features which align with272

features from multiple single-domain networks up to a linear transformation.273

Motivated by the observation that the interested object may locate only274

in a region of an image and at different positions across images, a series of275

improvements on feature embedding have been proposed, such as by learning276

local features [29] and multi-scale features [43] and encoding the position in-277

formation [44]. Local feature-based methods, while can be applied to generic278

few-shot image classification, are particularly effective for fine-grained im-279

age classification and thus will be discussed separately in the next subsec-280

tion. Jiang et al. [43] proposed the Multi-Scale Metric Learning (MSML)281

network, which constructs multiple feature embeddings corresponding to dif-282

ferent scales of the image. The similarity between support and query features283

at each scale is computed using the Relation Network (which will be intro-284

duced in Section 3.3.2). Wu et al. [44] proposed the Position-Aware Relation285

Network (PARN) to reduce the sensitivity of Relation Network to the spatial286

position of semantic objects. PARN adopts deformable convolutional layers287

15



to extract more effective features which filter out unrelated information like288

the background, and a dual correlation attention module to incorporate each289

spatial position of an image with the global information about the compared290

image and the image itself, so that the subsequent convolution operations,291

even subject to local connectivity, can perceive and compare semantic fea-292

tures in different positions. Compared with standard ways of overcoming293

position sensitivity, such as by using larger kernels or more layers, PARN294

is more parameter efficient. Xu et al. [45] proposed the ConstellationNet295

which extracts part-based features and encodes the spatial relationship be-296

tween these representations by using self-attention with an explicit, learnable297

positional encoding. The spatial relationship between different parts of the298

image has also been encoded in [46] by using a capsule network.299

3.1.2. Learning task-agnostic features for fine-grained image classification300

Fine-grained image classification aims to distinguish different sub-categories301

under the same basic-level category. It is particularly challenging due to the302

subtle differences between different sub-categories and large variance in the303

same sub-category which may result from variations in the object’s pose,304

scale, rotation, etc. Therefore, for effective classification, several methods305

have been proposed to extract local features and second-order features.306

In deep nearest neighbor neural network (DN4) [29], the feature embed-307

ding module extracts multiple local descriptors from an image, which are308

essentially the feature maps learned via CNNs prior to adding the final image-309

level pooling layer. The classification is performed at an image-to-class level,310

meaning that the local descriptors from support images of the same class311

are put into one pool, kNNs in each class pool are searched for each query312
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local descriptor, and the total distance over all local descriptors and kNNs313

is the distance between the query image and the corresponding class. The314

method is shown to be particularly effective on fine-grained datasets, and315

the idea of learning local descriptors has been adopted in other fine-grained316

classification methods [47]. The Adaptive Task-aware Local representations317

Network (ATL-Net) [48] improved DN4 by selecting local descriptors with318

learned thresholds and assigning them different weights based on episodic319

attention, which brings more flexibility than using kNNs and adjusts for the320

discriminability between classes, respectively. In contrast to learning one321

feature embedding over spatially local patches, COMET [49] learns multiple322

embedding functions over various parts of input features. A set of fixed bi-323

nary masks, termed concepts, are applied to input features to separate an324

image into human-interpretable segments. For each concept, a feature em-325

bedding is learned to map masked features into a new discriminative feature326

space. The query image is classified according to the distances aggregated327

from all concept-specific spaces.328

Huang et al. [47] proposed the Low-Rank Pairwise Alignment Bilinear329

Network (LRPABN) which aligns features spatially and extracts discrimi-330

native, second-order features. After learning first-order features from base331

images, the method trains a two-layer multi-layer perceptron network with332

two designed feature alignment losses to transform the positions of image333

features of a query image to match those of a support image, and designs a334

low-rank pairwise bilinear pooling layer which adapts the self-bilinear pool-335

ing [50] to extract second-order features from a pair of support and query336

images. The classification is performed as in the Relation Network. In the337
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follow-up work, [51] improves the spatial alignment part by using the cross-338

channel attention to generate spatially matched support and query features339

and groups features in the convolutional channel dimension before the pool-340

ing layer as each group corresponds to a semantic concept.341

3.1.3. Learning task-specific features342

Methods reviewed in the preceding sections generate the same feature em-343

bedding for an image, regardless of the subsequent classification task. While344

this avoids the risk of overfitting, these generic features may not be suffi-345

ciently discriminative to distinguish novel classes. To this end, task-specific346

embedding models have been proposed to adapt features to the particular347

task; it should be noted that the adaptation is learned on the base dataset348

and does not involve any re-training on the novel dataset.349

TADAM [25] is the first metric learning method which explicitly performs350

task adaptation. Exploiting the technique of conditional batch normaliza-351

tion, it applies a task-specific affine transformation to each convolutional352

layer of a task-agnostic feature extractor. The task is represented by the353

mean of class prototypes, and the scale and shift parameters of the affine354

transformation are generated from a separate network, called the Task Em-355

bedding Network (TEN). As TEN introduces more parameters and causes356

difficulty in optimization, the training scheme is revised to add the standard357

training, i.e., to distinguish all classes in the base dataset, as an auxiliary358

task to the episodic training.359

Li et al. [38] proposed a meta-learning approach that can adapt weights360

of Matching Network to novel data. The proposed LGM-Net consists of a361

meta-learner termed MetaNet and a task-specific learner termed TargetNet.362
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The MetaNet module learns to produce a representation of each task from363

the support set and construct a mapping from the representation to weights364

of TargetNet. The TargetNet module, set as the Matching Network, em-365

beds support and query images and performs classification. The proposed366

meta-learning strategy can be potentially implemented to adapt network pa-367

rameters of other metric learning methods. Wu et al. [52] also proposed to368

learn task-specific parameters, but they combined the idea with local fea-369

tures. The proposed Task-aware Part Mining Network (TPMN) learns to370

generate parameters of filters used for extracting part-based features.371

Different from the above two works which generate parameters for task-372

specific embedding layers, Li et al. [53] proposed to modify the generic fea-373

tures output from the task-agnostic embedding layers. A task-specific fea-374

ture mask is generated from the Category Traversal Module (CTM), which375

includes a concentrator unit and a projector unit to extract features for intra-376

class commonality and inter-class uniqueness, respectively. It is noted that377

CTM can be easily embedded into most few-shot metric learning methods,378

such as Matching Network, Prototypical Network, and Relation Network; the379

latter two methods will be introduced in the following sections. Ye et al. [39]380

also proposed to adjust features directly, but instead of applying a mask,381

set-to-set functions are used to transform a set of task-agnostic features into382

a set of task-specific ones. These functions can model interactions between383

images in a set and hence enable co-adaptation of each image. Four set-to-set384

function approximators are presented in [39], and the one with Transformer,385

termed FEAT, is shown to be most effective.386

Yoon et al. [54] proposed XtarNet to learn task-specific features for a new387
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setting of generalized few-shot learning, where the model is trained on the388

base dataset, adapted given the support set of the novel dataset, and used to389

classify instances from both base and novel classes. XtarNet contains three390

meta-learners. The MetaCNN module adapts feature embeddings for each391

task. The MergeNet module produces weights for mixing pre-trained features392

and meta-learned features. As the classification is performed by comparing393

the mixed features with class prototypes, the TconNet module adapts pro-394

totypes of base and novel classes to improve discriminability. Rahman et395

al. [55] proposed a unified approach for zero-shot learning, generalized zero-396

shot learning and few-shot learning, which classifies a query image based on397

the similarity between its semantic representation and the textual features398

of each class. The semantic representation is a combination of two parts –399

one is a linear combination of base samples’ semantic features, and the other400

one is based on the linear mapping learned from support images.401

3.1.4. Feature learning with data augmentation402

Data augmentation is a strategy that expands the support set in an ar-403

tificial or model-based way with label preserving transformations, and thus404

is well-suited when the support samples are limited. One commonly used405

method is deformation [56, 57, 58], such as cropping, padding, and hori-406

zontal flipping. Besides this, generating more training samples [59, 60] and407

pseudo labels [61] are also popular techniques to augment data.408

In few-shot learning, there is one class of works which places the data409

augmentation process into a model, that is, they embed a generator that can410

generate the augmented data to learn or imagine the diversity of data. Wang411

et al. [62] constructed an end-to-end few-shot learning method, in which the412
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training data goes through two streams to output – one is from the original413

data to the classifier directly, and the other one is from the original data to a414

‘hallucination’ network to augment data and then from the augmented data415

to classifier. Zhang et al. [63] developed a saliency-based data generation416

strategy. The Saliency Network obtains foregrounds and backgrounds of an417

image, which are used to achieve the hallucination for the image. In [64],418

a much simpler feature synthesis strategy was proposed, which synthesizes419

novel features by perturbing the semantic representations (i.e., word vectors420

of class labels) and projecting them into the visual feature space. In addition,421

when learning the projection function, a competitive learning formulation is422

adopted to push the synthesized sample towards the center of the most likely423

unseen class and away from that of the second best class.424

3.1.5. Multi-task feature learning425

Besides generating more training data, some works tried to exploit auxil-426

iary information of samples to perform multi-task learning, which creates a427

regularization effect and helps learn discriminative features.428

As briefly discussed above, TADAM [25] used an auxiliary task of training429

a normal global classifier on the base dataset to co-train the few-shot classi-430

fier; the task is sampled with a probability during the training process. An431

alternative auxiliary task is to exploit generative [65] or contrastive [66] self-432

supervised learning, which adopts self-defined pseudo labels as supervision433

to learn generalizable feature embeddings. In [65], support samples are arti-434

ficially rotated to different number of degrees. A shared feature embedding is435

learned through two branches of networks, one for the original classification436

task and the other for identifying the rotation degree. In [66], infoPatch was437

21



proposed, which trains the embedding network episodically according to the438

standard classification loss and an auxiliary contrastive loss. The contrastive439

pairs are constructed for each query image, with the positive pair using sup-440

port images of the same class and the negative pair using supports of different441

classes. To generate hard pairs, random blocks are applied to support im-442

ages to mask parts of the image, and a query image is split into patches with443

one of them exchanged with a patch of another image. Not only in episodic444

training, contrastive learning can also be introduced in pre-training [67] or445

in both training stages [68]. In particular, in the episodic training stage446

of [68], the entire episode is regarded as the shared context, and two data447

augmentation strategies are applied to construct contrastive episodes. How-448

ever, as noted by Xiao et al. [69], these contrastive learning methods require449

hand selecting augmentations and carefully tuning the hyperparameters to450

control the strength of augmentation. More severely, they implicitly assume451

invariance to particular transformations, e.g., rotation and color, which may452

be beneficial to some downstream tasks but harmful to others. One solution453

proposed in [69] is to use a multi-head network with a shared backbone to454

learn several embedding spaces, one for invariance to all augmentations and455

the others for invariance to all but one augmentation. The downstream task456

can flexibly utilize the optimal set of invariant features. The solution was457

proposed in a transfer learning setting; more research is needed for metric458

learning.459

Zhu et al. [70] suggested that base and novel classes, despite being dis-460

joint, can be connected by some visual attributes. Based on this insight,461

they used attribute learning as an auxiliary task. Visual attributes are pro-462
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vided as additional information during training, and the embedding network463

is learned to correctly predict both attribute labels and class labels. [71] also464

utilized attribute information, but in a richer way which requires an addi-465

tional prediction of common and different attributes between an image pair.466

Moreover, the neural architecture search was first introduced to few-shot467

learning for automatically identifying the optimal operation from max pool-468

ing, convolution, identity mapping, etc for layers in the feature embedding469

network and attribute learning network.470

3.2. Learning class representations471

Early few-shot metric learning methods such as Siamese Network and472

Matching Network classify a query sample by measuring and comparing its473

distance to support samples. However, since support samples are scarce, they474

have limited capacity in representing the novel class. To alleviate this issue,475

some researchers propose to use class prototypes, which serve as reference476

vectors for each class. Prototypes can be constructed by taking simple or477

weighted average of feature embeddings, or learned in an end-to-end manner478

so as to further improve their representation ability. Besides point-based pro-479

totypes, some works consider the distribution of each class or use subspaces480

as class representations.481

3.2.1. Feature embeddings-based prototypes482

Prototypical Network [72] is a classical method that performs classifica-483

tion by calculating the Euclidean distance to class prototypes in the learned484

embedding space. It builds on the hypothesis that there exists an embedding485

space in which each class can be represented by a single prototype and all486
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instances cluster around the prototype of their corresponding classes. In [72],487

the prototype of each class is set as the mean of feature embeddings of sup-488

port samples in the class. Feature embeddings, and thus class prototypes,489

are learned using episodic training with the objective of minimizing the cross490

entropy loss. In [73], the class prototype is represented using the covariance491

matrix of feature embeddings. A covariance-based metric is also proposed to492

measure the similarity between the query and the class.493

To make use of both labeled support samples and unlabeled samples,494

Ren et al. [22] proposed semi-supervised Prototypical Network, which is the495

first work of semi-supervised few-shot learning. The method adopts soft k-496

means to compute assignment score of unlabeled samples and computes the497

prototype as the mean of weighted samples based on assignment scores.498

Considering that the dataset may exhibit multi-modality and multiple499

prototypes would be more suitable in this scenario, Infinite Mixture Proto-500

types (IMP) [74] was proposed to model multiple clusters in each class, and501

each cluster is modeled as a Gaussian distribution. Concretely, the probabil-502

ity that a sample follows the Gaussian distribution of each cluster determines503

which cluster the sample is assigned into. Moreover, the cluster variance of504

the Gaussian distributions, which needs to be learned, can affect the number505

of class prototype and performance of IMP.506

Wu et al. [46] proposed to compute query-dependent prototypes. An507

attentive prototype is computed for each query as the weighted average of508

support samples and the weights are given by the Gaussian kernel with the509

Euclidean distance between the query and the support samples. As sup-510

port samples that are more relevant to the query have greater influence on511
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the classification, the method is more robust to outliers in support sam-512

ples. Query-dependent prototypes have also been studied in CrossTransform-513

ers (CTX) [75], but they are computed separately for each spatial location.514

In other words, a local region of a query image is compared with an attentive515

prototype specific to this query and region, and the overall distance between516

the query and the prototype is the averaged distances over all local regions.517

Moreover, self-supervised episodes are constructed to train CTX.518

Lu et al. [76] proposed the Robust attentive profile Networks (RapNets)519

to enhance the robustness of prototypes against outliers and label noises.520

The network transforms raw feature embeddings into correlation features in521

a nonparametric way and then inputs these features into a parametric bidirec-522

tional LSTM and fully-connected network to generate attention scores which523

serve as weights to combine support images. Moreover, training episodes are524

revised to include noisy data, and a new evaluation metric is proposed to525

evaluate the robustness of few-shot classification methods.526

Ma et al. [77] provided a geometric interpretation of Prototypical Net-527

work, regarding it as a Voronoi diagram. In addition, the authors extended528

this perspective and proposed the Cluster-to-Cluster Voronoi Diagram (CCVD),529

which can ensemble models learned with different data augmentation, built530

on single or multiple feature transformations, and using linear or nearest531

neighbor classifier.532

3.2.2. Point-based learnable prototypes533

Ravichaandran et al. [78] adopted an implicit way to learn class repre-534

sentation instead of determining class prototypes as in the aforementioned535

methods. The prototype is modeled as a learnable and parameterized func-536
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tion of feature embedding of labeled samples in the class and is obtained by537

minimizing a loss which measures the distance between the feature embed-538

ding of a sample and the class prototype. Meanwhile, the function is shot539

free, that is, it allows sample sizes of classes in novel data to be unbalanced.540

In [79], prototypes are represented as weighted averages of feature embed-541

dings, but different from [22, 46] discussed in the previous section, weights are542

learned end-to-end via episodic training. Moreover, instead of using image-543

level features, [79] combines local descriptors of one class following the idea of544

DN4 and learns multiple weight vectors to generate multiple prototypes per545

class. Das and Lee proposed a two-stage approach for generating class pro-546

totypes [80]. In the first stage, feature embeddings are learned, from which547

coarse prototypes of base and novel classes can be obtained from mean em-548

beddings. In the second stage, the novel class prototype is refined through a549

meta-learnable function of its own prototype and related base prototypes.550

Besides the above methods, TapNet [81] explicitly modeled class pro-551

totypes as learnable parameters. Prototypes and feature embeddings are552

learned simultaneously on the base dataset following the training procedure553

of Prototypical Network. In addition, to make prototypes and feature em-554

beddings more specific to the current task, both of them are projected into555

a new classification space via a linear projection matrix. The projection556

matrix is obtained by using a linear nulling operation and does not include557

any learnable parameter. Luo et al. [82] proposed to learn prototypes of558

base and novel classes simultaneously by including the support set of novel559

classes in the training process. In each episode, local prototypes are gener-560

ated from the sample synthesis module, which aims to increase the diversity561
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of novel classes. They are then used in the registration module to update562

the global prototypes towards better separability. The query image is clas-563

sified by searching for the nearest neighbor among global prototypes. As564

both base and novel prototypes are learned, the method can be readily ap-565

plied to the generalized few-shot learning setting. Chen et al. [83] shared the566

same aim of learning base and novel prototypes, but additionally took advan-567

tage of the semantic correlations among these classes. A Knowledge Graph568

Transfer Network (KGTN) is proposed, which employs a gated graph neural569

network to represent class prototypes and correlations as nodes and edges,570

respectively. By propagating through the graph, information from correlated571

base classes is used to guide the learning of novel prototypes. This work is572

extended in [84] to the multi-label classification setting, which employs the573

attention mechanism and an additional graph for learning class-specific fea-574

ture vectors. In [85], the Shared Object Concentrator (SOC) algorithm was575

proposed to learn a series of prototypes for each novel class from local fea-576

tures of support images. The first prototype is learned to have the largest577

cosine similarity with one of the local features, the second prototype has the578

second largest value, and so forth. The query image is classified according to579

the weighted sum of similarities between its local features and all prototypes,580

with weights decaying exponentially to account for the decreasing influence581

of prototypes. Zhou et al. [86] proposed the Progressive Hierarchical Refine-582

ment (PHR) method to update prototypes iteratively using all novel data.583

In each iteration, support images and a random subset of query images are584

embedded into features at local, global and semantic levels, and a loss func-585

tion defined over these hierarchical features is used to refine prototypes for586
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better inter-class separability. As each update is based on a random subset587

of queries, the method is less likely to overfit to noisy query samples, though588

it implicitly assumes the availability of a large number of queries.589

Sun et al. [87] proposed to treat prototypes as random variables. The590

posterior distributions of latent class prototypes are learned by using amor-591

tized variational inference, a technique which enables prototype learning to592

be formulated as a probabilistic generative model without encountering se-593

vere computational and inferential difficulties.594

3.2.3. Distribution or subspace-based representations595

Considering that single point-based metric learning is sensitive to noise,596

Zhang et al. [88] proposed a variational Bayesian framework for few-shot597

learning and used the Kullback-Leibler divergence to measure the distance598

of samples. The framework can compute the confidence that a query image599

is assigned into each class by estimating the distribution of each class based600

on a neural network.601

Simon et al. [89] proposed Deep Subspace Network (DSN) to represent602

each class using a low-dimensional subspace, constructed from support sam-603

ples via singular value decomposition. Query samples are classified according604

to the nearest subspace classifier, that is to assign the query to the class which605

has the shortest Euclidean distance between the query and its projection onto606

the class-specific subspace. The method is shown to be more robust to noises607

and outliers than Prototypical Network.608

3.3. Learning distance or similarity measures609

Methods reviewed in Sections 3.1 and 3.2 focus on learning a discrimi-610
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native feature embedding or obtaining an accurate class representation. For611

classification, they mostly adopt a fixed distance or similarity measure, such612

as the Euclidean distance [72] and the cosine similarity [7]. More recently,613

researchers propose to learn parameters in these fixed measures or define614

novel measures so as to further improve the classification accuracy. Moreover,615

considerable effort has been made to learn similarity scores by using fully-616

connected neural networks or Graph Neural Networks (GNNs).617

3.3.1. Learning or selecting an analytical distance or similarity measure618

In TADAM [25], Oreshkin et al. mathematically analyzed the effect of619

metric scaling on the loss function. Since then, many works tune the scal-620

ing parameter via cross-validation [48, 90]. Zhu et al. [91] proposed to use621

two different scaling parameters for the ground-truth class and other classes622

to enforce the same-class distance is much smaller than the different-classes623

distance. Moreover, the scaling parameters are gradually tuned every few624

episodes, which implements the idea of self-paced learning to learn from easy625

to hard. Chen et al. [92] proposed to learn the scaling parameter in a Bayesian626

framework. By assuming a univariate or multivariate Gaussian prior and ap-627

plying the stochastic variational inference technique for approximating the628

posterior distribution, a scaling parameter or a scaling vector can be learned629

respectively, which scales the distance equally over all dimensions or differ-630

ently for each dimension. Task-specific scaling vectors can also be learned631

by learning a neural network from the task to variational parameters.632

The traditional Mahalanobis distance decorrelates and scales features us-633

ing the inverse of the covariance matrix. In Simple CNAPS [34], after extract-634

ing features using the architecture of Conditional Neural Adaptive Processes635

29



(CNAPS) [33], the classification is performed based on the Mahalanobis636

distance between query instances and class prototypes. Task-specific class-637

specific covariance matrices are estimated as convex combinations of sample638

covariance matrices estimated from instances of the task and instances of the639

class and regularized toward an identity matrix. Transductive Episodic-wise640

Adaptive Metric (TEAM) [93] learned task-specific metric from support and641

query samples. TEAM contains three modules, namely a feature extractor, a642

task-specific metric module, and a similarity computation module. The task-643

specific metric module learns a Mahalanobis distance to shrink the distance644

between similar pairs and enlarge the distance between dissimilar pairs, fol-645

lowing the objective function of the pioneering metric learning method [36].646

Nguyen et al. [94] proposed a dissimilarity measure termed SEN, which647

combines the Euclidean distance and the difference in the L2-norm. Minimiz-648

ing this measure will encourage feature normalization and consequently ben-649

efit the classification performance [95]. DeepEMD [96] combined a structural650

distance over dense image representations, Earth Mover’s Distance (EMD)651

and convolutional feature embedding to conduct few-shot learning. The op-652

timal matching flow parameters in EMD and the parameters in the feature653

embedding are trained in an end-to-end fashion. Xie et al. [97] introduced654

the Brownian Distance Covariance (BDC) metric, a new distance measure655

founded on the characteristic function of random vectors. The metric has656

a closed-form expression for discrete feature vectors and can be computed657

easily by first computing the BDC matrix for every image and then calculat-658

ing the inner product between two BDC matrices. The computation of BDC659

matrices also only involves standard matrix operations and can be formu-660
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lated as a pooling layer, thus endowing the method with high computational661

efficiency and ease of integrating with other few-shot classification methods.662

3.3.2. Learning similarity scores via neural networks663

The Relation Network [12] is the first work of introducing a neural network664

to model the similarity of feature embeddings in few-shot learning. It con-665

sists of an embedding module and a relation module. The embedding module666

builds on convolutional blocks for mapping original images into an embed-667

ding space, and the relation module consists of two convolutional blocks and668

two fully-connected layers for computing the similarity between each pair of669

support and query images. The learnable similarity measure enhances the670

model flexibility. Li et al. [98] pointed out that a single similarity measure671

may not be sufficient to learn discriminative features for fine-grained image672

classification and thus proposed the Bi-Similarity Network (BSNet), which673

integrates the proposed cosine module with existing similarity measures such674

as the relation module, forcing features to adapt to two similarity measures675

of diverse characteristics and consequently generating a more compact fea-676

ture space. In principle, the method can be further developed to ensemble677

multiple metrics, and more importantly, an elegant way to determine the678

optimal set of metrics to be combined is needed. Relation Network and sub-679

sequent methods all use class labels to form binary supervision, indicating680

whether the image pair comes from the same class. Zhang et al. [99] argued681

that such binary relations are not sufficient to capture the similarity nu-682

ance in the real-world setting and therefore proposed a new method termed683

Absolute-relative Learning (ArL) which, in addition to binary relations, con-684

structs continuous-valued relations from attributes of images, such as colors685
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and textures.686

Different from Relation Network, Semantic Alignment Metric Learning687

(SAML) [100] adopted the Multi-Layer Perceptron (MLP) network for com-688

puting the similarity score. Specifically, SAML contains a feature embedding689

module and a semantic alignment module. In the semantic alignment mod-690

ule, a relation matrix at the level of local features is first computed by using691

fixed similarity measures and an attention mechanism, and then fed into a692

MLP network which outputs the similarity score between the query and the693

support class. Due to the use of relation matrix as the input, the MLP net-694

work has more parameters than Relation Network, thus increasing the risk695

of overfitting.696

Recently, some researchers adopt Graph Neural Networks (GNNs) to im-697

plement few-shot classification. Like the above reviewed works, GNN-based698

methods also use a neural network to model the similarity measure, while699

its advantage lies in the rich relational structure on samples [101]. Garcia700

et al. [102] proposed the first GNN-based neural network for few-shot learn-701

ing, short for GNN-FSL here. It contains two modules, a feature embedding702

module and a GNN module. In the GNN module, a node represents a sam-703

ple, and more specifically, equals the concatenation of features of the sample704

and its label. For a query sample, its initial label in the first GNN layer705

uses uniform distribution over K-simplex (K is number of classes), and its706

predicted label in the last GNN layer is used for computing the loss func-707

tion. Like GNN-FSL, Edge-labeling Graph Neural Network (EGNN) [101]708

also contains a feature embedding module and a GNN module with three709

layers. However, rather than labeling nodes, EGNN learns to label edges in710
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GNN layers so that it can cluster samples explicitly by employing the intra-711

cluster similarity and inter-cluster dissimilarity. In EGNN, each GNN layer712

has its own loss function that is computed based on edge values in the layer,713

and the total loss is the weighted sum of loss functions of all GNN layers.714

The Transductive Relation-Propagation graph neural Network (TRPN) [103]715

explicitly modeled the relation of support-query pairs by treating them as716

graph nodes. After relation propagation, a similarity function is learned to717

map the updated node to a similarity score, which represents the probability718

that the support and query samples are of the same class. The class with the719

highest sum of scores is the predicted class. The Hierarchical Graph Neural720

Network (HGNN) [104], aimed at modeling the hierarchical structure within721

classes, first down-samples support nodes to build a hierarchy of graphs and722

then performs up-sampling to reconstruct all support nodes for prediction.723

The previous GNN-based methods focus simply on the relation between a724

pair of samples. In Distribution Propagation Graph Network (DPGN) [105],725

the global relation between a sample and all support samples is considered by726

generating a distribution feature from the similarity vector. A dual complete727

graph is built to proceed sample-level and distribution-level features inde-728

pendently, and a cyclic update policy is used to propagate between the two729

graphs. Information from the distribution graph refines sample-level node730

features and hence improves the classification based on edge similarities.731

Table 2 summarizes few-shot deep metric learning methods, listing the732

backbone network for feature embedding, classification mechanism, similarity733

measure, training strategy, datasets studied in the experiment, and classifica-734

tion performance. As the methods were implemented with different backbone735
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networks and tested on different datasets, for a fair comparison, we select736

Conv-4 and ResNet-12 backbones whenever possible and report the 5-way737

1-shot and 5-way 5-shot classification accuracy on Mini-ImageNet. More-738

over, we notice that some methods were trained with higher ways or higher739

shots, which may lead to better performance, and thus this information is740

included under training strategy. Nevertheless, there are other factors which741

may affect the performance, such as the use of data augmentation techniques,742

optimization strategy, and the number of test episodes. Table 3 is a summary743

for few-shot fine-grained image classification. Here we note that the CUB744

dataset was split into training, validation and test sets in multiple ways.745

4. Further research746

Even though few-shot metric learning methods have achieved the promis-747

ing performance, there remains several important challenges that need to be748

dealt with in the future. In this section, we will discuss issues related to gen-749

eralization and robustness of few-shot learning methods, training strategy,750

and applicability, as well as listing some promising applications of few-shot751

metric learning methods.752

4.1. Challenges and future directions753

1. Improving generalized feature learning on few samples. In the existing few-754

shot metric learning methods or even the entire few-shot learning methods,755

researchers mostly try to learn discriminative feature based on the attention756

mechanism, data augmentation, multi-task learning, and so on. To learn757

feature with good generalization ability from few labeled examples, new ways758

of evaluation and feature learning need to be developed.759
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2. Enhancing stability to support samples and robustness to adversarial per-761

turbations and distribution shifts. Despite the continuous improvement in762

classification accuracy, few-shot classification methods are vulnerable in var-763

ious scenarios, hindering their usage in safety-critical applications such as764

medical image analysis. Prior works show that existing methods are non-765

robust to input or label outliers [76], adversarial perturbations (i.e., small, vi-766

sually imperceptible changes of data that fool the classifier to make incorrect767

predictions) added to support [106] or query images [107], and distribution768

shift between support and query datasets [108]. In [109], it is demonstrated769

that even non-perturbed and in-distribution support images can significantly770

deteriorate the classification accuracy of several popular methods. Further771

exploration of vulnerability in existing approaches and design of robust and772

stable models will be very valuable.773

3. Rethinking the use of episodic training strategy. While episodic training is774

a common practice to train metric learning methods in the few-shot learning775

setting, it is rigid to require each training episode to have the same number of776

classes and images as the evaluation episode; in fact, [72] observed the benefit777

of training with a larger number of classes. Moreover, the model gets updated778

after receiving an episode without regard to its quality and thus is prone to779

poorly sampled images like outliers. [110] is the first attempt to alleviate780

this problem by exploiting the relationship between episodes; more solutions781

are needed to identify episodes that are high-quality and useful to the novel782

task. Furthermore, we notice that episodic training can result in models783

that underfit the base dataset. One possible reason is that, by using episodic784

training, methods adopt continual learning on plenty of tasks sampled from785
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the base dataset and suffer from catastrophic forgetting [111, 112], i.e., the786

model learned from previous tasks is supplanted after learning on a new task.787

Therefore, how to avoid this problem and enhance the model fitting ability of788

metric learning methods on both base and novel datasets remains a challenge.789

4. Developing metric learning methods for cross-domain few-shot classifi-790

cation. While base and novel datasets may come from different domains in791

practice, currently only few works focus on cross-domain few-shot classi-792

fication. More recently and severely, [113] reported that all meta-trained793

methods, including the reviewed work [41], are outperformed by the simple794

transductive fine-tuning in the presence of a large domain shift, specifically,795

when training on natural images and evaluating beyond them, such as on796

agriculture and satellite images. The difficulty is that the base data and the797

novel data usually have different metric spaces. Therefore, how to alleviate798

domain shift between the training and evaluation phases needs to be explored799

in the future.800

4.2. Applications801

The superior performance of deep metric learning methods for few-shot802

image classification motivates researchers to extend these methods to non-803

natural images from various disciplines. For example, the methods have been804

developed for diagnosing and classifying diseases based on dermoscopic [114]805

images and computerised tomography (CT) images [115], classifying plant806

diseases based on leaf images collected in the field [116], scene classification807

in aerial images [117] and remote sensing images [118], and hyperspectral808

image classification [119, 120].809
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Deep metric learning has also been applied beyond image classification, to810

more challenging computer vision applications. A notable example is person811

re-identification (Re-ID), whose aim is to retrieve a person of interest across812

multiple non-overlapping cameras [121, 122]. Metric learning is particularly813

effective for Re-ID, as this is an open-set classification task with different814

people in the training and test classes and often there is only one image815

available for the query person [123]. Metric learning also shows impressive816

results on face recognition, in both closed-set [124] and open-set [125] set-817

tings, and content-based image retrieval [126, 127], which can be formulated818

as a ranking problem.819

5. Conclusions820

This paper presents a review of recent few-shot deep metric learning meth-821

ods. After providing the definitions and a general evaluation framework for822

few-shot learning and expounding on the widely used datasets and their set-823

tings, we review the novelty and limitations of existing methods. In partic-824

ular, there is a pattern of progressing towards learning task-specific feature825

embeddings, task-dependent prototypes, and more flexible similarity mea-826

sures. In addition, we list applications where few-shot deep metric learning827

prevails and suggest future research on improving feature generalizability,828

method robustness, training strategy, and applicability to cross-domain set-829

tings.830
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to compose domain-specific transformations for data augmentation, in:1010

Advances in Neural Information Processing Systems, 2017, pp. 3236–1011

3246.1012

[58] L. Perez, J. Wang, The effectiveness of data augmentation in im-1013

age classification using deep learning, arXiv preprint arXiv:1712.046211014

(2017).1015

[59] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, R. Webb,1016

Learning from simulated and unsupervised images through adversar-1017

ial training, in: IEEE Conference on Computer Vision and Pattern1018

Recognition, 2017, pp. 2242–2251.1019

[60] A. Antoniou, A. Storkey, H. Edwards, Data augmentation generative1020

adversarial networks, International Conference on Learning Represen-1021

tations Workshop (2018).1022

[61] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, C. Ré, Data program-1023
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