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Acute high-altitude diseases, including acute mountain sickness (AMS), high-altitude
cerebral edema (HACE), and high-altitude pulmonary edema (HAPE), have been
recognized as potentially lethal diseases for altitude climbers. Various
preconditioning stimuli, including hyperbaric oxygen (HBO), have been proposed
to prevent acute high-altitude diseases. Herein, we reviewed whether and how HBO
preconditioning could affect high-altitude diseases and summarized the results of
current trials. Evidence suggests that HBO preconditioning may be a safe and
effective preventive method for acute high-altitude diseases. The proposed
mechanisms of HBO preconditioning in preventing high-altitude diseases may
involve: 1) protection of the blood-brain barrier and prevention of brain edema,
2) inhibition of the inflammatory responses, 3) induction of the hypoxia-inducible
factor and its target genes, and 4) increase in antioxidant activity. However, the
optimal protocol of HBO preconditioning needs further exploration. Translating the
beneficial effects of HBO preconditioning into current practice requires the
“conditioning strategies” approach. More large-scale and high-quality randomized
controlled studies are needed in the future.
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1 Introduction

With the rapid development in transportation from low to high altitudes and the growing
interest in adventure travel, more than 100 million people now travel to high altitudes for work
or pleasure annually. The decreased barometric pressure and ambient oxygen tension at high
altitudes can trigger a range of physiological responses, leading to maladaptive reactions and
acute altitude illness (Luks, 2015), including acute mountain sickness (AMS), high-altitude
cerebral edema (HACE), and high-altitude pulmonary edema (HAPE) (Clark and Sheraton,
2021). AMS is by far the most common high-altitude disease, with a reported incidence of more
than 25% and 50% in people ascending to 3,500 and above 6,000 m, respectively (Meier et al.,
2017). HACE rarely occurs at altitudes lower than 4,000 m, with an incidence of 0.5%–1%
between 4,200 and 5,500 m. The incidence of HAPE is less than 0.2% if individuals spend
three days climbing to an altitude of 4,000–5,000 m, but can be up to 7% in a single-day climb
(Luks et al., 2017). Moreover, 85%–100% of individuals diagnosed with HACE also develop
HAPE (Turner et al., 2021).
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Hyperbaric oxygen therapy (HBOT) refers to the inhalation of
100% oxygen at a pressure higher than normal atmospheric pressure
(Jain, 2016). A growing body of studies demonstrated that HBO
preconditioning might prevent high-altitude diseases. Therefore,
this review aimed to address whether and how hyperbaric oxygen
(HBO) preconditioning may affect acute high-altitude diseases, and to
summarize the results of current trials.

2 High-altitude diseases

2.1 Clinical manifestation and diagnosis

According to the 2018 Lake Louise AMS Score (Roach et al.,
2018), AMS was defined as the presence of headache in an
unacclimatized person who had recently arrived at an altitude
above 2,500 m, along with the presence of one or more of the
following: gastrointestinal symptoms (anorexia, nausea, or
vomiting), fatigue or weakness, dizziness or light-headedness.
HACE, which usually occurs between 24 and 72 h at altitudes
above 4,000 m, is characterized by neurological findings such as
ataxia, decreased consciousness, and slurred speech (Jensen and
Vincent, 2022). The classic evaluation of HACE includes an
abnormal neurological examination, in which ataxia is usually
the earliest finding. Laboratory tests may reveal an increased
white blood cell count and lumbar puncture may show open
pressure elevation. Magnetic resonance imaging may
demonstrate a distinct swelling and hypertonicity of the
posterior spleen and of the corpus callosum on T2 images
(Hackett and Roach, 2004).

HAPE may occur within one to five days after reaching an altitude
above 2,500 to 3,000 m, with the symptoms of excessive exertional
dyspnea, cough, chest tightness, and decreased exercise performance
(Luks et al., 2017). It would also have any two of the following findings:
tachycardia, central cyanosis, rales/hiss, and shortness of breath. If
detectable, a chest x-ray (CXR) may demonstrate patchy alveolar
infiltration with normal mediastinal/cardiac size, and an ultrasound
may demonstrate B-lines indicating pulmonary edema.
Electrocardiogram might show right axis deviation and/or signs of
ischemia. Rapid correction of clinical status and percutaneous arterial
oxygen saturation with supplemental oxygen is a pathognomonic
feature of HAPE in patients with infiltrates on CXR films. Even
with laboratory tests, their role is limited and clinicians should
always take into account the coexistence of AMS and/or HACE
(Jensen and Vincent, 2022).

2.2 Pathophysiological processes

The hypobaric hypoxic environment at high altitudes has a great
impact on human physiological functions and physical activities
(Agrawal et al., 2017). Hyperventilation, polycythemia, hypoxic
pulmonary vasoconstriction, alterations in the oxygen affinity of
hemoglobin, a rise in oxidative enzymes, and an increased
concentration of capillaries in peripheral muscle are classical
responses of the body to high altitude. For AMS patients, arterial
oxygen saturation (SaO2) and tension (PaO2) are a bit lower and the
alveolar-arterial oxygen tension is a bit greater at high altitudes
compared to healthy controls (Luks et al., 2017).

The pathogenesis of AMS and HACE remains controversial, but
some evidence suggests that it is induced by elevated intracranial pressure
(Dipasquale et al., 2016). Some experts believe that increased cerebral
blood flow raises central nervous system pressure. Low arterial PaO2 leads
to cerebral vasodilation, despite the opposite effect of reduced arterial
partial pressure of carbon dioxide that accompanies
hyperventilation. Other causes such as increased microvascular
permeability and abnormal sodium and water balance may also
cause AMS (West, 2012). Matrix metalloproteinase-9 (MMP-9)
causes blood-brain barrier (BBB) destruction, brain edema, and
neuroinflammation (Pan et al., 2020).

HAPE occurs as a response of the vasculature of the lungs to
hypoxia. At high altitude, the body reacts to hypoxia by
hyperventilating, which is known as the hypoxic ventilatory
response. In hypoxic conditions, the reduced supply of nitric oxide
(NO) and prostaglandin E2 (Bian et al., 2022) can cause excessive rise
in pulmonary artery pressure (PAP). Increased PAP prior to the
development of edema is the key pathophysiological factor of
HAPE (Mulchrone et al., 2020).

3 Measures to improve high-altitude
endurance

A slow ascent is the primary strategy for preventing altitude diseases
(Luks et al., 2017). Furthermore, pharmaceutical agents (Ritchie et al.,
2012) such as acetazolamide, calcium-channel blockers, and
phosphodiesterase 5 inhibitors contribute to the prevention and
treatment of acute high-altitude diseases. The Wilderness Medical
Society has published guidelines on the use of hyperbaric chambers for
treating severe AMS and HACE (Luks et al., 2019), but symptoms can
recur when the patient leaves the chamber on the highlands. Therefore, the
question remains whether it would be better to use HBO preconditioning
to improve individual high-altitude endurance and prevent AMS.

4 HBO preconditioning for high-altitude
diseases

Numerous studies have explored the effectiveness of HBO
preconditioning for high-altitude diseases (study characteristics are
shown in Table 1).

4.1 HBO preconditioning for human
responses to high-altitude and AMS

HBO preconditioningmay alleviate the body’s hypoxic response at
high altitudes, improve cognitive and physical function, and
prevent AMS.

First, HBO preconditioning could improve the SaO2 (Wang et al.,
2009; Yang et al., 2014) and PaO2 level, reduce heart rate and pulse
rates, alleviate AMS symptoms in humans, and the effects could last
for a week (Ma G. Q. W. et al., 2008). Moreover, under hyperbaric
conditions, one can dissolve enough oxygen, that is 6 vol% in the
plasma, to satisfy the typical physical needs (Jain, 2016). HBO
preconditioning increases plasma expression of dopamine,
epinephrine, and adrenocorticotropic hormone, and then
accelerates the establishment of a new homeostasis that promotes
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TABLE 1 Studies on hyperbaric oxygen preconditioning in preventing acute high-altitude diseases.

Author Study
subject

Intervention
(N)

Control
(N)

HBO regimen Outcome Result

Pressure Duration Frequency Number

Cui et al.
(2007c)

Animal 41 28 2.0 ATA 60 min Once per day 2 to 5 NO, NOS HBO-PC increased NO levels, improved blood circulation and
reduced damage to hypoxic tissues.

Bu et al. (2021) Human 29 31 0.11 MPa 90 min Once per day 1 attention network test HBO-PC improved orientation attention, but not alert or
conflict attention.

Feng et al.
(2017)

Human 6 2.0 ATA 120 min Once per day 7 Tei index, LVEF, cTnI HBO-PC can abate postexercise myocardial damage and
enhance cardiac function.

Xiao and Hu.
(2017)

Human 10 10 0.22 MPa 120 min Once per day 5 LLSS HBO-PC could improve the oxygen tolerance of the human
body at high altitudes and have a preventive effect on AMS.

Cui et al.
(2009)

Human 10 0.2 MPa 60 min Once per day 1 pH, PaCO2, AaDO2, SaO2 HBO-PC can improve gas exchange, enhance oxygenate
function, and accelerate the clearance of stacked lactic acid in
the human body at high altitudes.

Wang et al.
(2008)

Human 20 20 unknown 4 h Once per day 3 GJB 1098-91, vital signs SaO2, Hb HBO-PC could improve physiological function, inhibit the
generation of free radicals of the body in hypoxic conditions,
and reduce the incidence of AMS.

Hu et al. (2006) Animal 14 14 14 0.25 MPa 60 min Once per day 5 rCBF, PbtiO2 HBO-PC is neuroprotective against craniocerebral injury at
high altitude, it increases rCBF and PbtiO2, reduces brain
edema and improves neurological function.

Liu et al.
(2007)

Animal 24 26 8 2.0 ATA 75 min Once per day 3 IL-6, MMP-9 HBO-PC had no significant effect on the intra-arterial IL-6
and MMP-9 levels in rats exposed to acute hypobaric hypoxic
conditions compared to the hyperbaric and normobaric
preconditioning groups.

Cui et al.
(2007b)

Human 41 48 2.0 ATA 60 min Once per day 2-5 SOD, MDA, BLA, BUN HBO-PC improved antioxidant activity and reduced blood
lactate in altitude climbers.

Cui et al.
(2008)

Human 21 28 2.0 ATA 60 min Once per day 2-5 SOD, MDA, BLA, BUN, NO, NOS HBO-PC could enhance the activity of anti-oxidase and the
clearance of lactic acid, and anti-fatigue effect could last for
eight days.

Liu et al.
(2011)

Animal 16 16 8 2.0 ATA 75 min Once per day 3 IL-6, MMP-9 HBO-PC had no preventive effect against AMS.

Ma G. et al.
(2008)

Human 21 18 2.2 ATA 60 min Once per day 2 PR, SaO2, GJB 1098-91 In the control group, the AMS score and PR increased, and
SaO2 decreased compared to the HBO-PC group; HBO-PC
had a preventive effect on AMS.

Liang et al.
(2007)

Animal 16 16 16 2.0 ATA 75 min Once per day 3 IL-6, NE HBO-PC could improve oxygen dispersion, enhance aerobic
metabolism, produce more ATP, improve hypoxic tolerance
and alleviate injury in the body.

Ma. (2007) Human 20 20 2.0 ATA 70 min Once per day 2 memory test, hypoxia challenge test and
retinal circulation changes, dark adaptation,
SaO2

Patients with HBO-PC had a better performance on the
memory test and dark adaptation than untreated patients,
which can retain for about one week. HBO-PC could
prevent AMS.

(Continued on following page)

Fro
n
tie

rs
in

P
h
ysio

lo
g
y

fro
n
tie

rsin
.o
rg

0
3

Y
o
u
e
t
al.

10
.3
3
8
9
/fp

h
ys.2

0
2
3
.10

19
10

3

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1019103


TABLE 1 (Continued) Studies on hyperbaric oxygen preconditioning in preventing acute high-altitude diseases.

Author Study
subject

Intervention
(N)

Control
(N)

HBO regimen Outcome Result

Pressure Duration Frequency Number

Ma Y et al.
(2008)

Human 30 30 2.0 ATA 70 min Once per day 2 dark adaptation, SaO2, health state of retina HBO could effectively improve brain-body physiological
functions of individuals at altitude of 3700m and over 5000 m,
and effectively relieve hypoxic status.

Li et al. (2015) Human 8 - 2.0 ATA 80 min Once per day 7 DA, E, NE, ACTH HBO-PC can elevate the plasma expression of DA, E, NE, and
ACTH, and then speed up the establishment of a new balance
of homeostasis to adapt to the acute hypoxia at high altitude.

Li et al. (2011a) Animal 24 33 33 2.0 ATA 60 min Once per day 5 AQP1, AQP5, HBO-PC could decrease AQP1 and AQP5 levels in the lung,
thus prevent high-altitude pulmonary injury.

Gao et al.
(2008)

Human 20 29 20 2.0 ATA 60 min A session
per day

5 SOD, MBA HBO-PC could increase SOD and decrease MDA, thus
prevent AMS.

Cui et al.
(2008)

Animal 6 7 0.25 MPa 60 min A session
per day

2 HR, PAP, RVSP, RVEDP, ±dp/dtmax HBO-PC decreased the HR, RVSP, PAP significantly, and
increased dp/dtmax in rats, thus improve the haemodynamics
and protect cardiopulmonary function in acute hypoxia rats.

Pan et al.
(2008)

Animal 44 10 8 0.2 MPa 60 min A session
per day

5 CGRP, ET HBO-PC did not affect CGRP, but increased ET, which may
promote the body’s high-altitude acclimatization.

Wang et al.
(2009)

Human 10 10 0.2 MPa 60 min A session
per day

2 Cognitive and physical test, SaO2, PR HBO-PC group had improved cognitive and physical
performance, higher SaO2 and lower PR.

Li et al. (2010) Animal 15 15 8 0.2 MPa 60 min A session
per day

5 AQP-1, wet-to-dry weight ratio and
morphology of the lung

The lung injury scores of the HBO-PC group were much lower
than those of the HAPE group, and that AQP-1 and AQP-1
mRNA for the HBO group were significantly higher than
those of the HAPE group.

Li et al. (2011b) Animal 15 15 8 0.2 MPa 60 min A session
per day

5 AQP-5, wet-to-dry weight ratio and
morphology of the lung

The lung injury scores of the HBO-PC group were much lower
than those of the HAPE group, and that AQP-5 and AQP-5
mRNA for the HBO group were significantly higher than
those of the HAPE group.

Ma et al.
(2008)

Human 14 14 14 0.2 MPa 70 min A session
per day

2 HR, SaO2, GJB 1098-91 HBO-PC reduced HR and increased SaO2, and alleviated the
AMS symptoms.

Wang et al.
(2012)

Animal 12 12 8 0.2 MPa 45 min A session
per day

5 AQP-1, AQP-5, morphology of the lung HBO-PC could upregulate AQP-1 and AQP-5, and prevent
HAPE.

Cui et al.
(2014)

Animal 30 20 0.2 MPa 60 min A session
per day

7 Water contents, morphology of the lung and
heart

The water contents were decreased markedly in HBO-PC
group, and the morphology of lungs and heart were more
intact in HBO-PC group.

Xiao and Hu.
(2017)

Human 10 19 0.22 MPa 60 min A session
per day

5 AMS incidence The incidence of AMS of HBO preconditioning group and
control group was 30% and 90%.

Abbreviations: AMS, acute mountain sickness; HBO, hyperbaric oxygen therapy; HBO-PC, hyperbaric oxygen preconditioning; NO, nitric oxide; NOS, nitric oxide synthase; LVEF, left ventricular ejection fraction; CK-MB, serum creatine kinase isoenzymes-MB; cTnI,

cardiac troponin I; LLSS, the lake louise acute mountain sickness scoring system; PaO2, partial pressure of oxygen; PaCO2, partial pressure of carbon dioxide; AaDO2, alveoli - arterial oxygen differential pressure; SaO2, oxygen saturation; Hb, hemoglobin; rCBF, regional

cerebral blood flow; PbtiO2, brain tissue oxygenation; IL-6, interleukin 6; MMP-9, matrix metalloproteinase-9; SOD, superoxide dismutase; MDA, malondialdehyde; BLA, blood lactic acid; BUN, blood urea nitrogen; NE, neutrophilic granulocyte; GJB, 1098-91, the principle

of diagnosis and treatment of acute mountain sickness in China; DA, dopamine; E, epinephrine; NE, norepinephrine; ACTH, adrenocorticotropic hormone; AQP1, aquaporin 1; AQP5, aquaporin 5; CGRP, calcitonin gene related protein; ET, endothelin; PR, pulse rate; HR,

heart rate.
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the acclimatization of the organism in a high-altitude environment (Li
et al., 2015). Pan et al. (2008) compared the preconditioning effects
between hypoxia preconditioning and HBO preconditioning, and
observed that both methods increased endothelin and promoted
altitude acclimatization.

Second, HBO preconditioning could improve individuals’
cognitive and physical performance at high altitudes. Studies (Ma,
2007; Wang et al., 2009) found that people receiving HBO
preconditioning twice had better memory and responsiveness
ability compared to control group. HBO preconditioning could also
reduce lactic acid levels in the body, help in reducing fatigue and
refresh the workers. Shi et al. (Shi Lu et al., 2015) observed that three to
seven sessions of HBO preconditioning increased glucose levels after
physical loading and reduced blood lactate (BLA), lactate
dehydrogenase and Na + -K + -ATPase levels at the same time.
Moreover, three-day HBO preconditioning showed the best efficacy. It
turns out that short-term HBO preconditioning can significantly
improve energy metabolism in individuals under physical load at
high altitude, accelerate glycogenolysis, and lead to better utilization of
oxygen by muscles, thus alleviating fatigue and enhancing work
efficiency.

Regarding body organs, the photoreceptor system of the eye is
the most sensitive to hypoxia. Previous studies showed that HBO
preconditioning could improve the health of the retina, dark
adaptation, and orienting attention (Ma G. Q. W. et al., 2008;
Shi Lu et al., 2015). There is a functional decline in coordinated
movement when cerebral hypoxia occurs, and HBO
preconditioning can enhance body coordination. A study of
Liang et al. (2007) showed that HBO preconditioning can
improve the body’s blood oxygen dispersion, enhance aerobic
metabolism, and generate more ATP. Therefore, it can enhance
the body’s ability to tolerate hypoxia and reduce body damage. Two
HBO pretreatments reversed tissue hypoxia and improved post-
exercise haemodynamic indexes (Cui et al., 2007a), and this effect
lasted for approximately a week. Xiao and Hu. (2017) found that
the incidence of AMS was lower after five HBO pre-treatments
compared to the control group (30% vs. 90%). Liu et al. (2011)
found that three HBO pretreatments reduced the levels of
interleukin 6 (IL-6) and MMP-9 in mice with AMS, but the
difference was not significant. Therefore, further studies are
needed to confirm the prophylactic effect of HBO preconditioning.

4.2 HBO preconditioning for HACE and HAPE

Studies on the prevention of HACE and HAPE with hyperbaric
oxygen preconditioning are mainly animal studies.

Previous studies found that heat shock protein (HSP) 70-mediated
HBO preconditioning could prevent high-altitude brain edema, cognitive
deficits, and hippocampal oxidative stress in rats (Lin et al., 2012a; Lin et al.,
2012b). Zhou et al. (2017) found that HBO preconditioning significantly
alleviated the increase of BBB permeability and water content in rats caused
by high-altitude hypoxia, and had a preventive effect on HACE.

As for the preventive effects of HBO preconditioning on HAPE,
the mechanisms may involve HSP70 and aquaporin (AQP) (Tsai
et al., 2014; Lin et al., 2015). AQP1 and AQP5 provide the main
pathway for water transport through the pulmonary microvascular
endothelium and are involved in the pathogenesis of pulmonary
edema. Studies showed that HBO preconditioning alleviated the

upregulation of AQP1 and AQP5 in the lung, thus preventing
HAPE (Li et al., 2010; Li et al., 2011a; Li et al., 2011b). Cui et al.
(2008) reported that HBO preconditioning significantly increased
heart rate, PAP, right ventricular systolic pressure, right ventricular
end-diastolic pressure, and the maximum rate of rise/decline of
right ventricular pressure in rats at high altitude. In another study
by Cui et al. (2014), water contents in the tissues of the rats in the
HBO preconditioning groups were all decreased markedly than
those in the control groups. In addition, the morphology of lungs
and heart were more intact in HBO preconditioning group. These
studies may suggest that HBO preconditioning can improve
hemodynamics and protect cardiopulmonary function in acute
hypoxic rats.

4.3 The proposed mechanisms of HBO
preconditioning in preventing high-altitude
diseases

Based on the existing evidence, we propose some potential
mechanisms for HBO preconditioning in the prevention of high-
altitude disease (Figure 1).

4.3.1 Inhibiting inflammatory responses
HBO preconditioning may play an important role in inhibiting

inflammatory responses to prevent high-altitude diseases. Qi et al.
(2013) reported that HBO preconditioning reduced inflammatory
factors such as interleukin 1, tumor necrosis factor-α, and IL-6 in
rats. HBO provides oxygen and thus promotes NO synthesis. Cui et al.
(2007c) found that HBO preconditioning could boost blood
circulation, increase NO concentrations, and reduce hypoxic tissue
injury in the human body at high altitudes, and this effect can last for
more than eight days.

4.3.2 Generating HIF-1α
HIF-1 is a crucial modulator for inducing genes that promote

cellular adaptation and survival under hypoxic conditions (Semenza,
1998). Some pharmacotherapies have been proven to prevent AMS by
regulating the HIF-1 signaling pathway (Wang et al., 2019; Yan et al.,
2021). Recent studies have shown that HBO can increase the
expression of HIF-1α by stabilizing and activating it (Salhanick
et al., 2006; Duan et al., 2015; Salmón-González et al., 2021).

Theoretically, hyperoxia should reduce HIF, then this raises a
question regarding how HBO increases HIF. The specific mechanisms
remain unclear, but the following hypotheses have been discussed.
First, the brain tissue undergoes relative hypoxia following HBO
preconditioning, as the oxygen level is reduced to 21% of normal
levels after the 100% O2 level in the HBO chamber. Hence, repeated
HBO preconditioning may generate a hyperoxia and hypoxia cycle
and induce an accumulation of HIF-1α (Fratantonio et al., 2021).
Second, in addition to hypoxia, other stimuli such as cytokines, growth
factors, hormones, and viral proteins can induce HIF-1 (Gu et al.,
2008). Third, a possible mechanism is the production of ROS by HBO
preconditioning. The stabilization of HIF-1α is related to increased
ROS (Guzy et al., 2005). Intermittent hyperoxia produces a state that
mimics hypoxia through a reduced ROS/clearance capacity ratio
(Hadanny and Efrati, 2020). These findings suggest that HBO
preconditioning may increase HIF in a delayed manner to promote
altitude acclimation.
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4.3.3 Increasing antioxidant activity
Acute hypobaric hypoxia increased the malondialdehyde (MDA) level

(Agrawal et al., 2017). Previous studies found that HBO preconditioning
could reduceMDA, blood urea nitrogen levels, andBLA inhigh altitudes. In
addition, HBO preconditioning could increase superoxide dismutase, thus
we can infer that HBO preconditioning could increase the activity of
antioxidants and degrade serum lactate levels, and has a preventive effect on
AMS (Cui et al., 2007b; Gao et al., 2008).

4.4 The protocol of preconditioning for
preventing acute high-altitude diseases

The common HBO preconditioning pressure in these included
studies was two ATA. The number of HBO preconditioning sessions
ranged from one to seven, while two to five sessions were the common
choices. Almost every study chose to do the HBO preconditioning once a
day. The neuroprotective effect induced byHBOpreconditioning is short-
term and usually disappears in approximately two weeks (Qi et al., 2020).
Therefore, climbers should preferably be exposed to HBO
preconditioning within two weeks before climbing. The optimal
regimen of HBO preconditioning for preventing high-altitude diseases
still needs further exploration.

4.5 Safety of HBO preconditioning

HBOT is used in an increasing number of conditions and is seen to
be a generally safe treatment. The possible side effects of HBO involve
barotrauma, oxygen poisoning, visual abnormalities, and claustrophobia
(Jain, 2016). Middle ear barotrauma, which has been reported in up to

2% of treated individuals, is by far the most common and benign side
effect. It can be avoided or decreased by teaching autoinflation skills or by
inserting tympanostomy tubes. Claustrophobia is another common
symptom that calls for assurance, counseling, and even medication.
Progressive myopia is typically temporary and reversible after stopping
HBO sessions. Pulmonary dyspnea with cough and inspiratory pain are
caused by oxygen toxicity, from the multiple exposures required for
chronic treatments. Rarely, at greater oxygen pressures, during acute
therapies in acidotic patients do more severe seizures occur. A
retrospective analysis found that rigorous operational procedures
(chamber monitoring and assessment prior to HBO treatment) were
essential to increase the safety of patients. When used properly, HBOT
could be one of the safest medical techniques (Hadanny et al., 2016).

5 Discussion

To translate HBO preconditioning paradigm to the clinic, it is
critical to identify vulnerable groups at high risk for acute high-
altitude diseases. Previous studies have shown that AMS history,
level of residence, or recent high-altitude exposure and ascending
rate are significant predictors of high-altitude diseases (Erik and
Swenson, 2014). Obesity (Yang et al., 2015), age, and gender may
be associated with the incidence of high-altitude disease (Maloney and
Broeckel, 2005). However, exact risk factors are yet to be identified.

For climbers, it is convenient to take HBO preconditioning.
Hyperbaric chambers can be categorized into monoplace chambers
and multiplace chambers. The monoplace chamber can only
accommodate one person, and the multiplace chamber allows for
the treatment of several patients at the same time (Lind, 2015). There
are also portable chambers (Butler et al., 2011). Those portable

FIGURE 1
The proposed mechanisms of HBO preconditioning in preventing high-altitude disease (1) Effects of HBO preconditioning on physiology and
metabolism against acute high-altitude diseases; (2) HBO preconditioning may inhibit inflammatory responsiveness by reducing apoptosis and shifting
mitochondria; (3) HBO preconditioning may induce HIF-1α and its target genes; (4) HBO preconditioning could increase antioxidant activity. Abbreviations:
HBO-PC, hyperbaric oxygen preconditioning; PaO2, partial pressure of oxygen; SaO2, oxygen saturation; AQP-1, aquaporin 1; AQP-5, aquaporin 5; AQP-
4, aquaporin 4; IL-6, interleukin 6; HIF-1α, hypoxia-inducible factor-1α; GLUT1, glucose transporter 1; EPO, erythropoietin; MMP-9, matrixmetalloproteinase-
9; GLUT3, glucose transporter 3; NOS, Nitric oxide synthase; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; CAT, catalase; HSP, heat-
shock protein; BLA, blood lactic acid; MDA, malondialdehyde; BUN, blood urea nitrogen.
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chambers are for single use and can fit into a backpack when deflated,
which are carried on most high-altitude expeditions. The drawback is
that they are very limited in the pressure, and the highest common
pressure that can be achieved is about 1.4 ATA. The portable chamber
is mainly used in the treatment of high-altitude diseases. As it is an
U.S. Food and Drug Administration-approved indication, HBOT can
be implemented quickly once the treatment has been optimized for
humans (Lippert and Borlongan, 2019).

To date, HBOT has been widely used in the treatment of high-altitude
disease; however, the preventive role of HBOT pretreatment has been
largely overlooked. To the best of our knowledge, this is the first study to
review the effect of HBO preconditioning in preventing acute high-altitude
diseases. Both animal studies and clinical studies showed that HBO
preconditioning may be an effective modality to prevent high-altitude
diseases. The proposed mechanism of HBO preconditioning in preventing
high-altitude diseases may involve: 1) the protection of the BBB and
prevention of brain edema, 2) the inhibition of inflammatory responses, 3)
the induction of HIF-1α and its target genes, and 4) the increase in
antioxidant activity. Based on the current results, multi-sessions of
hyperbaric oxygen preconditioning may have a better preventive effect
on acute altitude disease compared to a single session. The combined effect
of pre- and post-climbing HBO use also warrants further study. With
further confirmed role and the development of an optimal protocol of
hyperbaric oxygen preconditioning, it will be beneficial to lower the
morbidity of altitude diseases, and reduce the life, health and economic loss.
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