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Abstract—Deep neural networks have outperformed humans
on some image recognition and classification tasks. However,
with the emergence of various novel classes, it remains a chal-
lenge to continuously expand the learning capability of such
networks from a limited number of labeled samples. Metric-
based approaches have been playing a key role in few-shot image
classification, but most of them measure the distance between
samples in the metric space using only a single metric function.
In this paper, we propose a Dual Prototypical Network (DPN)
to improve the test-time robustness of the classical prototypical
network. The proposed method not only focuses on the distance
of the original features, but also adds perturbation noise to the
image and calculates the distance of noisy features. By enforcing
the model to predict well under both metrics, more representative
and robust class prototypes are learned and thus lead to better
generalization performance. We validate our method on three
fine-grained datasets in both clean and noisy settings.

I. INTRODUCTION

With the development of deep learning, the recognition
performance of machines has surpassed that of humans in
many large-scale image classification tasks. However, when
the amount of data that can be learned from is small, the
machine’s recognition ability is not satisfactory [1, 2]. There-
fore, image classification based on a very small number of
labeled samples, often referred to as few-shot classification,
has attracted considerable research attention in recent years.
Few-shot classification usually includes two types of data with
disjoint label spaces, namely, base class data and novel class
data. It aims to use the knowledge learned from base class data
and a small number of labeled samples from novel class data to
learn classification rules and accurately predict the categories
of unlabeled samples from the same novel classes.

Few-shot classification is a challenging machine learning
task, and common approach to this problem include data
augmentation, feature alignment and metric learning. Data
augmentation algorithms aim to generate image features to
compensate for the problem of insufficient labeled data. For
example, Wang et al. [3] proposed to meta-learn a parametric
hallucinator network on the base data to generate more training
samples. Zhang et al. [4] proposed a saliency network to
separate foregrounds and backgrounds of support images (i.e.,
training samples in the classical machine learning settings)
and then mix foregrounds and backgrounds to generate more
support-query pairs (i.e., training-test pairs). Feature alignment
methods are often used for fine-grained image classification.

Huang et al. [5] proposed a novel low-rank pairwise bilinear
pooling operation to reduce dimension and a feature alignment
layer to capture and match subtle differences between support
images and query images. Wertheimer et al. [6] proposed to
reconstruct local query features from local support features,
thus modelling the spatial details and discarding the location
constraints.

Metric-based approaches aim to learn an embedding func-
tion that map images to a metric space such that the relevance
between a pair of images is determined based on their distance;
smaller distances indicate higher probability for the two images
belonging to the same class. Vinyals et al. [7] proposed the
matching network, which embeds support and query images
via two separate networks and then calculates the cosine
similarity between the query and each support image. Snell
et al. [8] proposed the classical prototypical network, which
calculates the squared Euclidean distance between the query
image with the prototype of each class. The prototype is
calculated as the mean of support images and serve as the class
representation, which has been demonstrated to be particularly
effective in the case of scarce labeled images. Simon et al. [9]
proposed to represent the class by a subspace and use the
projection distance as the classification criterion. Wang et al.
[10] proposed an ensemble metric learning method, which
calculates the similarity by the fusion of multiple metrics.
Asagawa et al. [11] used the Euclidean distance and cosine
similarity as a measure of high-precision deep network models.
Instead of using a fixed distance metric, Sung et al. [12] pro-
posed the relation network which parameterizes the distance
function as a neural network and uses it to compute the relation
score for the support-query pair.

Prior metric-based methods learn the metric space on the
base class data and do not require fine-tune the metric, thus
avoiding overfitting to the few labeled novel samples. However,
these methods often only seek for a single metric to measure
the similarity between features, which may lack generalization
ability and robustness to test-time noises. Therefore, it is
particularly important to find a metric-based method permit-
ting multiple metrics for different features. In this paper, we
propose a Dual Prototypical Network in which we input two
sets of images to an embedding module at the same time, one
for the original clean images and the other for the noisy images
perturbed by Gaussian noise, and calculate the Euclidean
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Fig. 1. The proposed Dual Prototypical Network (DPN) framework. Clean images and noisy images, perturbed by Gaussian noise N , are sent to the feature
embedding module fφ. Distances are computed on both clean and noise prototype-query pairs, and the classification decision is made based on the combined
distances.

distance between query and prototypes separately for each
set of features. Consequently, the final classification is made
based on two distance functions, with one of them aiming to
improve the network’s robustness to noises which may exist in
unseen query images. The key benefit of our approach is that
the method introduces only one additional parameter compared
with the prototypical network [8]. In other words, improvement
in robustness is achieved through the designed of the network,
rather than training a more complicated model. We evaluate
the proposed method on three benchmark fine-grained few-
shot classification datasets and results suggest that our method
consistently outperforms the prototypical network in both clean
and noisy settings, demonstrating its good generalizability and
robustness.

II. METHODOLOGY

Dual Prototypical Network (DPN) adopts a dual network
as the main structure of the network, as shown in Figure 1.
The robustness of the model is improved by using noisy
feature perturbed by Gaussian noise, and the structure of
parallel integration with the prototype network ensures that the
accuracy is not compromised. In this section, we will describe
the network structure of DPN in detail.

A. Problem Definition

Given a dataset with data-label pairs D = {(xi, yi), yi ∈
C}, where C denotes the set of classes, we partition C into
base classes Cb, validation classes Cv , and novel classes Cn.
Note that in few-shot classification, Cb ∩ Cν ∩ Cn = ∅. The
goal is to train a model on the data from the base classes so that
the model can generalize well on tasks sampled from the novel
classes. In order to evaluate the fast adaptation ability or the

generalization ability of the model, there are only a few labeled
samples available for each task τ . We followed the classic N -
way K-shot classification setting in few-shot classification. In
each task τ , the few available labeled data forms the support
set, S = {(xi, yi)}N×K

i=1 , and the model is evaluated on another
query set, Q = {(xi, yi)}N×(K+q)

i=N×K+1, where every class in the
task has q test images. The performance of a model is evaluated
as the averaged accuracy on (the query set of) multiple tasks
sampled from the novel classes.

B. Overview

Prototypical network [8] and many other metric-based ap-
proaches classify samples based on a single metric function,
which may be incapable of resisting potential noises in query
images and enforcing sufficient regularization to learn highly
discriminative features. Therefore, we propose a Dual Proto-
typical Network (DPN) with controllable noise and a parallel
structure for bi-similarity calculation.

As shown in Figure 1, our framework first inputs two sets
of images into the embedding module fφ – one clean set and
one noisy set which adds Gaussian noise with controllable
magnitude to original images. The embedding network, sharing
the same set of parameters, then produces two different sets of
support features and query features. The two sets of features
are used to calculate their respective similarity scores via the
Euclidean distance, and finally the scores are summed to get
the final score.

C. Disturbance Noise

To reduce the sensitivity of the model to noisy data and
improve its generalization from base to novel data, we add
Gaussian noise to the original images. Meanwhile, in order



to prevent the distortion of the image due to the inclusion of
too large noise, we add a parameter that can control the noise
magnitude; the setting of this parameter size will be evaluated
in the ablation experiment.

Given a support image xi and a query image xj , we can
obtain their embedded features as follows:

x̂clean
i = fφ (xi) , (1)

x̂clean
j = fφ (xj) , (2)

x̂noisy
i = fφ (xi + µN(0, 1)) , (3)

x̂noisy
j = fφ (xj + µN(0, 1)) , (4)

where fφ(·) denotes the feature embedding function with
learnable parameters φ, x̂clean

i and x̂clean
j are the support and

query feature vectors obtained from the original image re-
spectively, and x̂noisy

i and x̂noisy
j are the support and query

feature vectors generated from the image with Gaussian noise
respectively. N(0, 1) denotes the standard Gaussian noise, and
µ is the parameter that controls the magnitude of Gaussian
noise. After several comparison studies, we finally set its value
to 0.01 in all our experiments.

D. Metrics Module

After feature extraction, we adopt a parallel structure for
computing the prototypes and calculating the similarity. In
other words, the network consists of two branches, and each
branch has its corresponding prototype; clean queries are
compared with prototypes constructed from clean support
features and noisy queries are compared with prototypes from
noisy support features. Following prototypical network [8], the
prototype is set as the mean vector of the embedded features
of the support set of the class:

cclean
k =

1

|K|
∑

{i:yi=k}

x̂clean
i

cnoisy
k =

1

|K|
∑

{i:yi=k}

x̂noisy
i ,

(5)

where cclean
k and cnoisy

k denotes the prototype of class k con-
structed from clean support features and noisy support features,
respectively.

Next, we compute the Euclidean distance between the query
and class prototypes separately for the clean and noisy cases
as follows:

d1j,k = ∥xclean
j − cclean

k ∥2
d2j,k = ∥xnoisy

j − cnoisy
k ∥2

(6)

For brevity, we will omit the index j hereafter.
Finally, the two distance functions are combined, from

which we can obtain the probability of assigning the query
image into class k:

dk = ω1d
1
k + ω2d

2
k (7)

P (y = k | x) = exp(−dk)∑
k′ exp(−dk′)

. (8)

ω1 and ω2 are trainable parameters, which denote the weights
of the two distances respectively.

The network is optimized by using the SGD optimizer with
the objective of minimizing the negative log probability L of
the true class k:

L = − log(P (y = k | x)) (9)

The training process uses the episodic training approach [7],
which selects N classes randomly from the base class data and
K samples for each class to mimic the support set, and selects
another q samples from each class as the query set.

III. EXPERIMENTS

A. Datasets

In this paper, we use three fine-grained datasets, CUB-
200-2011 [13], Stanford-Dogs [14]. For each dataset we
proportionally split into a training set, a validation set, and
a test set. CUB-200-2011 is a classical fine-grained image
classification dataset containing 11,788 images from 200 bird
species. Stanford-Dogs contains 20,580 annotated images from
120 dog species around the world. Stanford-Cars contains a
total of 16,185 images of different car models.

B. Implementation Details

We conduct experiments under shallow network architec-
tures, Conv-4 [19, 20]. we preprocess the images with stan-
dard data enhancement, including random cropping, random
flipping and color dithering. The normalized images allow
us to obtain better training stability. We trained all Conv-4
models for 1,200 epochs. The initial learning rate is set to 0.1
and the weight decay is set to 5e-4. After every 400 epochs,
the learning rate decreases by a factor of 10. We train the
model using the 30-way 5-shot setting in the three fine-grained
datasets mentioned above. In addition, we selected the best-
performing model based on the validation set and validated it
every 20 epochs. For all experiments, we report the average
accuracy of 10,000 randomly generated tasks on datasets with
95% confidence intervals on the standard 5-way 1-shot and
5-way 5-shot settings.

C. Comparison with State-of-the-arts

The proposed method is compared with 10 few-shot image
classification methods and results are reported in Table I. We
see that our method is consistently better than the baseline
prototypical network on all datasets and in all settings. More-
over, our model achieves superior performance on 5-way 5-
shot tasks, outperforming the state-of-the-art methods.

D. Evaluation of Robustness

In order to demonstrate the robustness of our experiments,
we use the trained model fφ as the embedding module and
add Gaussian noise to query images of the novel dataset. The
noise level is set as µ = 0.1, 0.5. For comparison, we add the
same noise to prototypical network.

Before presenting the results, we visualize the effect of
Gaussian noise. Figure 2 show some randomly selected images



TABLE I
TABLE 1: 5-WAY FEW-SHOT CLASSIFICATION PERFORMANCE ON THE CUB, DOGS AND CARS DATASETS.

Model
CUB Dogs Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MAML[15] 55.92 ± 0.95 72.09 ± 0.76 46.67 ± 0.87 62.56 ± 0.80 48.37 ± 0.81 65.41 ± 0.77

MatchingNet[7] 60.06 ± 0.88 74.57 ± 0.73 46.10 ± 0.86 59.79 ± 0.72 44.73 ± 0.77 64.74 ± 0.72
ProtoNet[8] 63.64 ± 0.23 84.23 ± 0.15 45.12 ± 0.21 69.16 ± 0.16 48.42 ± 0.22 71.38 ± 0.18

RelationNet[12] 63.94 ± 0.92 77.87 ± 0.64 47.35 ± 0.88 66.20 ± 0.74 46.04 ± 0.91 68.52 ± 0.78
Baseline++[16] 62.36 ± 0.84 79.08 ± 0.61 44.49 ± 0.70 64.48 ± 0.66 46.82 ± 0.76 68.20 ± 0.72
DeepEMD[17] 64.08 ± 0.50 80.55 ± 0.71 46.73 ± 0.49 65.74 ± 0.63 61.63 ± 0.27 72.95 ± 0.38

DSN[9] 71.57 ± 0.92 83.51 ± 0.60 44.33 ± 0.81 60.04 ± 0.68 48.16 ± 0.86 60.77 ± 0.75
LRPABN[5] 63.63 ± 0.77 76.06 ± 0.58 45.72 ± 0.75 60.94 ± 0.66 60.28 ± 0.76 73.29 ± 0.58
MixFSL[18] 53.61 ± 0.88 73.24 ± 0.75 43.96 ± 0.77 64.43 ± 0.68 44.56 ± 0.80 59.63 ± 0.79

Ours 63.68 ± 0.23 85.18 ± 0.15 45.95 ± 0.21 70.14 ± 0.16 49.02 ± 0.22 73.31 ± 0.18

TABLE II
COMPARISON OF PROTOTYPICAL NETWORK AND THE PROPOSED METHOD ON 5-WAY FEW-SHOT CLASSIFICATION WITH GAUSSIAN NOISE ADDED TO

QUERY IMAGES; NOISE MAGNITUDE IS CONTROLLED BY µ (µ = 0.1 – LOW NOISE, µ = 0.5 – HIGH NOISE).

Model
CUB Dogs Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNet[8] (µ=0.1) 60.72 ± 0.23 81.58 ± 0.16 40.82 ± 0.20 62.49 ± 0.17 44.41 ± 0.22 67.57 ± 0.18

Ours (µ=0.1) 61.39 ± 0.23 82.19 ± 0.16 41.46 ± 0.20 63.40 ± 0.17 44.84 ± 0.21 67.74 ± 0.18
ProtoNet[8] (µ=0.5) 28.48 ± 0.15 34.93 ± 0.19 21.19 ± 0.06 23.26 ± 0.08 22.82 ± 0.80 25.93 ± 0.10

Ours (µ=0.5) 30.78 ± 0.16 38.02 ± 0.19 21.76 ± 0.06 23.70 ± 0.08 24.00 ± 0.10 28.22 ± 0.12

Original image Images with noise disturbance

Fig. 2. The left image is the original unprocessed CUB image, and the right
image is the image with Gaussian noise added.

TABLE III
CLASSIFICATION ACCURACY UNDER DIFFERENT TYPES OF NOISES ON THE

CUB DATASET.

Model Backbone 1-shot 5-shot
ProtoNet[8] (Gaussian) Conv-4 60.72 ± 0.23 81.58 ± 0.18

Ours (Gaussian) Conv-4 61.39 ± 0.23 82.19 ± 0.15
ProtoNet[8] (Possion) Conv-4 62.20 ± 0.23 83.86 ± 0.16

Ours (Possion) Conv-4 63.89 ± 0.23 84.24 ± 0.16

from the CUB dataset, with the left panel displaying the
original images and the right panel displaying noisy images.
As we can see, images with Gaussian noise will show some
more obvious pixel dots, which appear randomly at various

locations of the image.
Table II lists the classification accuracy of the baseline

prototypical network and our method in the presence of
Gaussian noise. Both methods deteriorate when facing noisy
queries, particularly in the case of a high level of noise (i.e.,
µ = 0.5). The proposed method achieves higher accuracy than
the baseline in all scenarios, indicating its effectiveness to
withstand test-time noises.

In addition to Gaussian noise, we also explore the robustness
of our method to other types of noises, aiming to understand if
it has the capacity to defend noises which are unseen before.
Table III lists the performance of ProtoNet and our method
under Gaussian and Poisson noise on CUB; µ = 0.1 is used
for both types of noises. In turns out the influence of Poisson
noise is weaker than the Gaussian noise at the same noise
magnitude. Still, our method is more robust than ProtoNet.

IV. CONCLUSION

In this paper, we propose a Dual Prototypical Network
(DPN) to enhance the robustness of the prototypical network
when facing different levels of noise perturbation. By adding
noise perturbation to images and adopting a dual network
to generate two distance functions, the class prototypes in
the metric space become more representative and thus im-
proving the overall performance of the model. Experiments
show that on CUB, Dogs and Cars datasets, the proposed
method achieves better classification accuracy and robustness
than prototypical network in all settings, and it is superior
to the state-of-the-art methods in the 5-way 5-shot setting,
demonstrating its effectiveness. This work is a metric-based



approach for few-shot classification, and in the future, we
will incorporate different metric methods or feature alignment
methods to further improve the generalization ability and
robustness of few-shot classification methods.
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