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We present the result of lattice QCD calculation of the scalar, vector and tensor form factors for the
B → Klþl− decay, across the full physical range of momentum transfer. We use the highly improved
staggered quark (HISQ) formalism for all valence quarks on eight ensembles of gluon-field configurations
generated by the MILC collaboration. These include four flavors of HISQ quarks in the sea, with three
ensembles having the light u=d quarks at physical masses. In the first fully relativistic calculation of these
form factors, we use the heavy-HISQ method. This allows us to determine the form factors as a function of
heavy-quark mass from the c to the b, and so we also obtain new results for the D → K tensor form factor.
The advantage of the relativistic formalism is that we can match the lattice weak currents to their continuum
counterparts much more accurately than in previous calculations; our scalar and vector currents are
renormalized fully nonperturbatively and we use a well-matched intermediate momentum-subtraction
scheme for our tensor current. Our scalar and vector B → K form factors have uncertainties of less than 4%
across the entire physical q2 range and the uncertainty in our tensor form factor is less than 7%. Our heavy-
HISQ method allows us to map out the dependence on heavy-quark mass of the form factors and we can
also see the impact of changing spectator quark mass by comparing to earlier HPQCD results for the same
quark weak transition but for heavier mesons.
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I. INTRODUCTION

Here we study the B → Kll̄ decay, where l can be a
charged lepton or a neutrino. The decay involves the b → s
flavor-changing neutral current (FCNC) and is highly
suppressed in the Standard Model (SM) since it must
proceed through loop diagrams with at least one off-
diagonal (and hence small) element of the Cabbibo-
Kobayashi-Maskawa (CKM) matrix [1,2]. This means that
the process is highly sensitive to the existence of “new”
particles which may appear in the loops.
The increasing quantity of experimental data being

collected [3–15] allows for much stronger bounds to be
placed on rare decays such as this one, which often rely on
huge numbers of collisions to be observed to register just a

handful of events. In order to take advantage of this
improved precision in our search for new physics beyond
the SM [16–23], we must meet these results with improved
theoretical uncertainty. At present, lattice quantum chromo-
dynamics (QCD) is the only model-independent method
for calculating hadronic form factors for such decays. The
form factors can be used to construct the dominant con-
tribution to the differential branching fraction, for compari-
son to experiment, in regions of q2 away from cc̄ and uū
resonances.
Previous full-lattice QCD calculations used gluon-field

configurations generated by the MILC collaboration that
include the effect of 3 flavors of sea quarks in the asqtad
formalism [24]. Reference [25] used the nonrelativistic
(NRQCD) [26] formalism for the b quarks and highly
improved staggered quarks (HISQ) [27] for other valence
flavors. Similarly, [28] used Fermilab b quarks [29] and the
asqtad formalism for other flavors. Both of these calcu-
lations used OðαsÞ perturbation theory to match the lattice
weak current operators to their continuum counterparts.
Missing higher-order effects in the matching are then a
significant source of uncertainty in the form factors. In
addition the calculations were done at relatively low values
of the K meson spatial momentum in the B meson rest
frame (i.e. close to zero recoil).
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In this paper we present the first fully relativistic
calculation, using HISQ formalism for all valence quarks
and working on MILC Nf ¼ 2þ 1þ 1 gluon-field ensem-
bles that include HISQ quarks in the sea [30,31]. The
calculation mirrors the heavy-HISQ approach used suc-
cessfully in several other recent HPQCD calculations (e.g.
[32–35]). By using a relativistic treatment we eliminate the
matching errors arising from effective theory treatment of
the b quark in previous methods. We are also able to cover
the full physical q2 range of the decay process directly.
Our method involves calculating the form factors for a

range of heavy-quark masses from that of the c quark up to
that of the b. We thus obtain results for form factors for both
D → K decay and for B → K decay and the functional form
in heavy-quark mass that connects them. The vector and
scalarD → K form factors were recently used in an analysis
of the D → Klν̄ weak semileptonic decay process and,
combined with experimental results, gave a 1%-accurate
determination of the CKM element Vcs [36]. That analysis
showed very good agreement between the q2 dependence of
the vector form factor calculated in lattice QCD and that
inferred from the experimental results for the differential
decay rate. This provides a very solid test that our lattice
QCD form factors at the c quark mass end of our heavy-
quark mass range describe experimental results for a case
(D → Klν̄) where no new physics is expected. Here we
give the tensor form factor for D → K decay, not calculated
in [36].
In this work we will focus on the calculation of the form

factors themselves, while an accompanying article [37] will
study the phenomenological implications from our results.
Section II sets out the calculational framework and then
Sec. III describes the fits and data analysis. Section IV
shows the results as a function of q2, detailing the changes
between D → K and B → K, as well as comparing B → K
form factors with those for Bc → Ds [38], which differ in
spectator quark mass. We also provide complete error
budgets for the form factors and compare to expectations
from heavy quark effective theory. Section V gives our
conclusions.

II. LATTICE CALCULATION

A. Form factors

The quantities of interest here are the scalar, vector and
tensor form factors f0ðq2Þ, fþðq2Þ, and fTðq2Þ, which are
functions of q2 ¼ ðpB − pKÞ2. We can construct these form
factors from hadronic matrix elements between the B andK
which we calculate on the lattice.
Our heavy-HISQ approach works by determining a set

of matrix elements for mesons in which the b quark is
replaced by a heavy quark with mass mh < mb. The
heaviest mass on the finest ensemble we use is close to
the b mass (mh=mb ≈ 0.85). We denote the resulting
pseudoscalar heavy-light mesons generically by H.

We compute these matrix elements for a variety of masses
ranging from that of the charm quark upwards, across the
range 0 ≤ q2 ≤ q2max ¼ ðMH −MKÞ2, which is the full
physical range of q2 for the decay of a heavy-light meson
of mass MH. As mh → mb this becomes the full range for
the B → K decay.
The connection between the matrix elements of the

lattice scalar, vector and tensor currents and the form
factors is

ZVhKjVμ
lattjĤi ¼ fþðq2Þ

�
pμ
H þ pμ

K −
M2

H −M2
K

q2
qμ
�

þ f0ðq2Þ
M2

H −M2
K

q2
qμ; ð1Þ

hKjSlattjHi ¼ M2
H −M2

K

mh −ms
f0ðq2Þ; ð2Þ

ZTðμÞhK̂jTk0
lattjĤi ¼ 2iMHpk

K

MH þMK
fTðq2; μÞ: ð3Þ

Here qμ is the 4-momentum transfer and q2 its square. We
work in the rest frame of the H such that p0

H ¼ MH. The K
meson is given spatial momentum p⃗K in the (1, 1, 1)
direction, making all spatial directions equivalent, and we
take spatial component k ¼ 1 for the tensor form factor. ZV
and ZT are renormalization factors for the lattice vector and
tensor currents that we discuss below. Note that the tensor
form factor has a renormalization scale μ associated with it.
mh and ms in Eq. (2) are the lattice valence quark masses
for the h and s quarks.
Requiring that the matrix elements are finite as q2 → 0

gives the constraint

fþð0Þ ¼ f0ð0Þ: ð4Þ

We will make use of this condition later.
Bilinears constructed from staggered quarks have a

“taste” degree of freedom, ξ, and we need to arrange the
tastes of mesons and lattice currents appropriately so that
tastes cancel in the correlation functions that we calculate.
Here we follow the approach used in [36], where the
rationale is described in more detail. We aim to have local
operators for all of the currents (with ψ and ψ̄ at the same
point) because these are least noisy and have no tree-level
discretization errors. This means that we must use point-split
operators for the meson creation and annihilation operators
in some cases. In spin-taste notation [27], the lattice scalar,
vector and tensor currents are S ¼ ψ̄ s1 ⊗ 1ψh, Vμ ¼
ψ̄ sγ

μ ⊗ ξμψh and Tk0 ¼ ψ̄ sγ
kγ0 ⊗ ξkξ0ψh. H ¼ ψ̄ lγ

5 ⊗
ξ5ψh and Ĥ ¼ ψ̄ lγ

5γ0 ⊗ ξ5ξ0ψh denote Goldstone and
local non-Goldstone heavy-light pseudoscalar mesons,
respectively. Similarly for the kaons, K ¼ ψ̄ sγ

5 ⊗ ξ5ψ l
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and K̂ ¼ ψ̄ sγ
5 ⊗ ξ5ξ1ψ l denote Goldstone and point-

split non-Goldstone strange-light pseudoscalar mesons,
respectively.
We use the local temporal component of the vector

current, V0, for most results but we also include some
additional spatial current data with the local vector current
Vk in the k ¼ 1 direction. The reason for this is that the
vector form factor determined from the temporal vector
current has a numerical problem at large q2 from the way
that it is constructed [34]. Rearranging Eq. (1) we have

fþðq2Þ ¼
1

Aμ − Bμ ðZVhKjVμjĤi − f0ðq2ÞBμÞ; ð5Þ

where Aμ ¼ pμ
H þ pμ

K and Bμ ¼ M2
H−M

2
K

q2 qμ. Both numerator

and denominator vanish as q2 → q2max amplifying the
uncertainties and leading to large statistical errors in fþ
at large q2. One solution to this issue is to use a spatial
component of the vector current, with spin taste γ1 ⊗ ξ1.
This component requires a point-split γ5 ⊗ ξ5ξ1 kaon (K̂),
which we have already used in the tensor case, and the
Goldstone heavy-light pseudoscalar (H). At low q2 the
point-split kaon makes this component noisier than
the temporal case which we predominantly use, but at
large q2 the resulting fþ does not suffer from the same
dramatic growth in uncertainties and so is to be preferred.
We include in our dataset a handful of V1 matrix elements,
at large q2 and mass, on our two finest ensembles to
supplement our comprehensive V0 data. We use the same
ZV for both V0 and V1 since any difference between the two
cases for our relativistic action is purely a discretization
effect. We will denote the form factors obtained in the two
cases fV

0

þ and fV
1

þ where the distinction is relevant. We
discuss a comparison of the two cases in Sec. III.

B. Current normalization

The fact that the partially conserved vector current
(PCVC) relation holds for the HISQ action means that
the scalar form factor f0ðq2Þ can be obtained from the
matrix element of the local scalar current using Eq. (2) with
absolute normalization [39]. We would also need no
renormalization for the vector current if we used the
conserved current [40]. Here, however, we use the much
simpler local vector current and this requires renormaliza-
tion. The renormalization factor, ZV , can be calculated fully
nonperturbatively using the PCVC relation [39,41]. We
apply it in the temporal vector case at zero recoil, where
both the H and K mesons are at rest and it gives the most
accurate results [34],

ZV ¼ ðmh −msÞhKjSjHi
ðMH −MKÞhKjV0jĤi

����
q2¼q2max

: ð6Þ

We also calculate the tensor form factor and the tensor
current requires renormalization. ZT in Eq. (3) takes the
lattice local tensor current to that in the MS scheme at a
specific renormalization scale μ. ZT can be determined
accurately for the HISQ action [42] using an intermediate
momentum-subtraction scheme, called RI-SMOM, that can
be matched through Oðα3sÞ to MS [43]. This makes the
renormalization factor much more accurate than the OðαsÞ
renormalization factors used in previous calculations of the
B → K tensor form factor [25,28]. Note that the inter-
mediate momentum-subtraction scheme is implemented
nonperturbatively on the lattice and so attention must be
paid to nonperturbative artifacts (“condensates”) that can
appear as inverse powers of the intermediate renormaliza-
tion scale. These are analyzed using fits to multiple
intermediate scales in [42]. We use corrected ZT values
from Table VIII of [42] in which these artifacts have been
removed. We will give final results for fT for B → K at a
scale μ ¼ 4.8 GeV appropriate tomb (taken as the approxi-
mate value of the b quark pole mass); for D → K we will
give values at a lower scale (μ ¼ 2 GeV). fT values can be
run between scales straightforwardly [42].

C. Simulation details

The calculation was run on MILC gluon-field ensembles
[30,31] that include in the sea two degenerate light quarks,
strange and charm quarks, with masses msea

l ; msea
s ; msea

c ,
using the HISQ action [27]. The eight ensembles used have
parameters listed in Table I. Sets 1, 2 and 3 have physical
light-quark masses, whilst sets 4–8 have msea=val

l ¼ 0.2msea
s .

Note that the valence light-quark masses are the same as
those in the sea; the valence strange-quark masses are tuned
more accurately than the sea strange-quark masses and so
differ slightly from them. The valence strange-quark masses
are tuned [44] to give the physical value for the mass of the
ss̄ pseudoscalar meson known as the ηs (which does not
appear in the real world), whose mass is determined in terms
of the pion and kaon masses in [45]. The gluon action is
Symanzik improved to remove discretization errors through
Oðαsa2Þ [46].
A significant portion of the data used here overlaps with

those used for D → K form factors in [36]. Sets 1 and 2 are
identical, while other sets share the lowest mass (the
charm), but include additional masses and the extra tensor
current insertion. This means that, while the calculation
produced a slightly different set ofD → K scalar and vector
form factors, these are correlated to those in [36] and as
such should not be viewed as an independent calculation.
TheD → K tensor form factor, however, was not calculated
in [36] and will be presented here. The valence heavy-quark
masses used on each ensemble are given in Table II.
In order to compute the matrix elements needed for our

form factors, we must extract the amplitudes from three-
point correlation functions built on the lattice. A schematic
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of our setup is shown in Fig. 1. An h “parent” quark
propagator is generated as an “extended” propagator from a
source at timeslice t0 þ T; the source is constructed from a
light ‘spectator’ quark propagator originating from time

slice t0. The h-quark propagator is combined with an s
“daughter”-quark propagator from t0 at time t0 þ t, where
current J is inserted. The propagators are combined with
appropriate color and spin (i.e. staggered spin taste) for the
quantum numbers of a pseudoscalar to pseudoscalar
transition via current J. Our calculation is set up in this
“backwards” arrangement for computational convenience,
as the physics is unchanged by a time reversal.
For each gluon-field configuration multiple values of t0,

uniformly placed on the lattice, with the first being
randomly selected to reduce autocorrelation, are used to
increase our statistics. To improve the statistics on each
ensemble further and to better fit the T dependence,
multiple values of the source-sink separation T are also
used for each t0 value, with odd and even values included to
capture oscillations in t. On most ensembles, we average
the correlation functions for different t0 values. On the
finest ensemble (set 8), however, we do not do this. On this
ensemble we have only four source t0 values which are very

TABLE II. Masses in lattice units used for the valence heavy
quarks on each set from Table I. The lightest heavy mass in each
case corresponds to a well-tuned value for the charm quark mass
[48].mh=mc then reaches 4.1 on our finest lattices, set 8. Column
3 gives normalisation constants for the vector current from our
results. ZV is calculated using Eq. (6). Zdisc in column 4 is a small
tree-level discretisation correction, beginning at ðamhÞ4, that we
make to all the matrix elements, see Eq. (10). It is defined in [49].

Set amval
h ZV Zdisc

1 0.8605 1.0440(87) 0.99197
2 0.643 1.0199(54) 0.99718
3 0.433 1.0016(81) 0.99938

0.683 1.011(10) 0.99648
0.8 1.017(12) 0.99377

4 0.888 1.0376(52) 0.99050
5 0.664 1.0221(41) 0.99683

0.8 1.0300(47) 0.99377
0.9 1.0365(51) 0.99063

6 0.449 0.9977(67) 0.99892
0.566 1.0033(80) 0.99826
0.683 1.0091(85) 0.99648
0.8 1.055(32) 0.99377

7 0.274 0.9901(94) 0.99990
0.45 0.992(12) 0.99928
0.6 0.996(13) 0.99783
0.8 1.006(14) 0.99377

8 0.194 0.984(10) 0.99997
0.45 0.993(12) 0.99928
0.6 0.998(13) 0.99783
0.8 1.006(16) 0.99377

TABLE I. Gluon-field ensembles used in this work, numbered in column 1, with gauge coupling values, β, in column 2. The Wilson
flow parameter [47] is used to calculate the lattice spacing a via values for w0=a [35] in column 3. We use w0 ¼ 0.1715ð9Þ fm,
determined from fπ in [45]. Column 4 gives the approximate value of a for each set. Column 5 gives the spatial (Nx) and temporal (Nt)
dimensions of each lattice in lattice units and column 6, the number of configurations and time sources used in each case. Columns 7–11
give the masses of the valence and sea quarks in lattice units, noting that mu ¼ md ¼ ml and the valence and sea masses are the same in
the case ofml. The valence s-quark masses are tuned to giveMηs ¼ 0.6885ð22Þ GeV [44,45]. We include the values of amval

c in column
11, since this is always the lightest of the heavy-valence quark masses that we work with. A complete list of the heavy-quark masses
used on each set is given in Table II. Column 12 shows values for the tensor normalization ZT at scalemb ¼ 4.8 GeV ([42], Table VIII).
Sets 1 and 2 did not include calculation of the tensor 3-point functions, so this is omitted in those cases.

Set β w0=a a (fm) N3
x × Nt ncfg × nsrc amsea=val

l amsea
s amsea

c amval
s amval

c ZTðmbÞ
1 5.8 1.1367(5) 0.15 323 × 48 998 × 16 0.00235 0.0647 0.831 0.0678 0.8605 � � �
2 6.0 1.4149(6) 0.12 483 × 64 985 × 16 0.00184 0.0507 0.628 0.0527 0.643 � � �
3 6.3 1.9518(7) 0.088 643 × 96 620 × 8 0.00120 0.0363 0.432 0.036 0.433 1.0029(43)

4 5.8 1.1119(10) 0.15 163 × 48 1020 × 16 0.013 0.065 0.838 0.0705 0.888 0.9493(42)
5 6.0 1.3826(11) 0.12 243 × 64 1053 × 16 0.0102 0.0509 0.635 0.0545 0.664 0.9740(43)
6 6.3 1.9006(20) 0.09 323 × 96 499 × 16 0.0074 0.037 0.440 0.0376 0.449 1.0029(43)
7 6.72 2.896(6) 0.059 483 × 144 413 × 8 0.0048 0.024 0.286 0.0234 0.274 1.0342(43)
8 7.0 3.892(12) 0.044 643 × 192 375 × 4 0.00316 0.0158 0.188 0.0165 0.194 1.0476(42)

FIG. 1. Schematic of our three-point correlation function.
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widely spaced and tests confirm that correlations between
them are negligible. It is then useful to keep the correlation
functions for different t0 as separate data to improve our
determination of the covariance matrix.
The H meson is at rest on the lattice and momentum is

given to the K meson. This momentum, p⃗K , is generated in
the (1, 1, 1) direction using twisted boundary conditions
[50] for the s-quark propagator. The momentum in lattice
units is related to the twist, θ, by jap⃗Kj ¼ θð ffiffiffi

3
p

πÞ=Nx,
where Nx is the spatial extent of the lattice in lattice units.
Different values of momentum are chosen so as to cover the
full physical range of momentum transfer, q, on each lattice
for the different heavy masses used. The corresponding
twists are listed in Table III. Because we have a variety of
heavy masses on each gluon-field ensemble, the coverage
of the momenta cannot be optimized for each mass—we
settle for values which give the best coverage overall. This
means that some masses can generate negative q2 values at
large twist. Whilst these points are unphysical, they are
easily accommodated in our fit form, as we shall see below.
As well as the aforementioned three-point functions, we

also generate two-point correlation functions in the stan-

dard way for each of the H
ð∧Þ

and K
ð∧Þ

masses and momenta, in
order to extract energies and amplitudes for the mesons.
In addition to theH → K results discussed above we also

include results forHs → ηs correlation functions from [32].
TheHs → ηs results are for sets 6 and 7 (called sets 1 and 2
in [32]) and include scalar and temporal vector current
insertions in the three-point functions only. We do not
include results on set 3 (set 8 here) from [32] as the
statistics are much lower than for our H → K data, nor do
we include the continuum f0ðq2maxÞ data point used in that
paper. The heavy masses and twists used there are the same
as those used here and given in Tables I, III, and II. Instead
of the spectator light quark that we have here, the earlier

results have a spectator strange quark. For further details of
the Hs → ηs data see [32]. The Hs → ηs data were fitted
simultaneously with the H → K data on each of the two
sets 6 and 7 in order to preserve correlations between the
two. This helps us to pin down the chiral extrapolation
for the spectator quark to the physical light mass by giving
a third light-mass value: ml ¼ ms, ml ¼ ms=5 and
ml ≈mphys

l . The effect of this extra light-mass value on
the overall results will be discussed in Sec. III B.
Our ensembles contain a range of different amh values

(see Table II), as well as values for MH=MB which are
correlated between the masses on a given ensemble. This is
demonstrated in Fig. 2, and makes it possible for our fit to
distinguish between amh-dependent discretization effects
and MH dependence. In particular, all ensembles have data
points at the physical charm mass, which differ only in their
amh values, and some amh values, such as amh ¼ 0.8, are
common to multiple ensembles with different MH values.
Additionally, the included Hs → ηs data discussed above
provide an increased lever arm in the MH dependence, via
MHs

, for a range of amh values.

III. FITS AND ANALYSIS

A. Correlator fits

Using a standard Bayesian approach, as outlined in [51],
we perform a simultaneous, multiexponential fit to both the
two- and three-point correlation functions. This allows us to
extract the ground-state energies, ground-state amplitudes
and ground-state–to–ground-state current matrix elements
with uncertainties that allow for any unresolved excited-
state contamination. Fit quality is judged using χ2 per
degree of freedom (d.o.f.) values and the log of the
Gaussian Bayes factor, log(GBF). As discussed in [32]
and the Appendix to [52], χ2 values are artificially reduced
by singular value decomposition (SVD) cuts and broad
priors for the parameters. This means that χ2 values should

TABLE III. Details of the twists used for the K meson momenta
on each gluon field ensemble. Momenta can be obtained from
twist, θ, via jap⃗K j ¼ θð ffiffiffi

3
p

πÞ=Nx, where Nx is the spatial
dimension of the lattice in lattice units, given in Table I. p⃗K is
in the (1, 1, 1) direction. Column 3 gives the T values used for
time extent, in lattice units, for the three-point correlation
functions on each ensemble, see Fig. 1.

Set θ T

1 0, 2.013, 3.050, 3.969 9, 12, 15, 18
2 0, 2.405, 3.641, 4.735 12, 15, 18, 21
3 0, 0.8563, 2.998, 5.140 14, 17, 20

4 0, 0.3665, 1.097, 1.828 9, 12, 15, 18
5 0, 0.441, 1.323, 2.205, 2.646 12, 15, 18, 21
6 0, 0.4281, 1.282, 2.141, 2.570 14, 17, 20
7 0, 1.261, 2.108, 2.946, 3.624 20, 25, 30
8 0, 0.706, 1.529, 2.235, 4.705 24, 33, 40

FIG. 2. The range of amh values used in this work (Table II),
and their corresponding MH=MB values. Ensembles with physi-
cal light quarks are shown in blue.
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not be taken at face value, but rather as a relative measure,
comparable across fits where the SVD cut and priors are the
same. The fitting packages we use [53–55] contain an in-
built noise test [52], under which we check that our fits are
stable and have an acceptable χ2=d:o:f: value close to unity
when appropriately modified by the inclusion of prior and
SVD noise. The log(GBF) value penalizes overfitting, so
by also using this measure, we are able to confirm that our
fits describe the data without overfitting.
We fit two-point correlators for a meson M to a set of

exponentials representing a tower of possible states of
energy EM

i and amplitude dMi ,

CM
2 ðtÞ ¼

XNexp

i¼0

ðjdM;n
i j2ðe−EM;n

i t þ e−E
M;n
i ðNt−tÞÞ

− ð−1ÞtjdM;o
i j2ðe−EM;o

i t þ e−E
M;o
i ðNt−tÞÞÞ: ð7Þ

The ground state is specified by i ¼ 0. Because of the nature
of staggered quarks, states which oscillate in time (labeled
“o” as opposed to “n” for nonoscillating states) are also
present and are accounted for in the fit. Discarding the first
tmin data points allows us to fit to a finite number, Nexp, of
exponentials, and tmin takes values in the range 2 to 7 for
different correlators and different lattice spacings. We
estimate priors for the ground-state energies and amplitudes
using the effective mass and effective amplitudes, as in
[32,36], and give each a broad uncertainty, ensuring that the
final result of the fit is much more precisely determined than
this prior. We use log-normal parameters throughout to
enforce positive values on energy splittings and amplitudes.
Amplitudes are guaranteed to be positive becausewe use the
same interpolating operator at the source and sink. Priors for
excited-state nonoscillating and all oscillating amplitudes
are based on previous experience of amplitude sizes in
similar fits [32,36]. Some priors are slightly adjusted by trial
and error to maximize log(GBF), as well as to ensure that
the fit does not find spurious states, which have amplitudes
consistent with zero but interfere with the ground-state
determination. Priors for the oscillating ground-state energy

of the H
ð∧Þ

and K
ð∧Þ

are taken to be 0.4 and 0.25 GeV larger
than the nonoscillating ground states respectively, with prior
widths on nonoscillating ground states typically in the range
2–10% and oscillating ground states 5–20%. In both cases
prior widths vary by ensemble, and the posteriors are much
better determined than their priors. The energy splitting
between excited states is taken as 0.50(25) GeV. Other
priors are are listed in Table IV.
For the kaons with nonzero twist, as in [36], we use the

dispersion relation to inform our ground-state priors,
allowing for discretization effects using the following
ansatz:

P½aEK
ð∧Þ

0;p⃗� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P½aEK

ð∧Þ

0;0⃗
�2 þ ðap⃗Þ2

r �
1þ P½c2�

�
ap⃗
π

�
2
�
;

P½dK
ð∧Þ

0;p⃗� ¼
P½dK

ð∧Þ

0;0⃗
��

1þ ðap⃗=P½aEK
ð∧Þ

0;0⃗
�Þ2

�
1=4

�
1þ P½d2�

�
ap⃗
π

�
2
�
:

ð8Þ
Here P½d� and P½aE� represent the priors of the relevant
amplitudes and energies. We take priors for c2 and d2 as
0� 1 based on observations of dispersion relations in
similar fits [25,32,36]. We find their posteriors to fall
comfortably within their priors in all fits, typically with a
magnitude less than 0.5.
We perform three-point fits (for mother and daughter

mesons M2 and M1) with scalar, vector and tensor current
insertions to the following form:

CM1;M2

3 ðt; TÞ ¼
XNexp

i;j¼0

ðdM1;n
i Jnnij d

M2;n
j e−E

M1 ;n
i te−E

M2 ;n
j ðT−tÞ

− ð−1ÞðT−tÞdM1;n
i Jnoij d

M2;o
j e−E

M1 ;n
i te−E

M2 ;o
j ðT−tÞ

− ð−1ÞtdM1;o
i Jonij d

M2;n
j e−E

M1 ;o
i te−E

M2 ;n
j ðT−tÞ

þ ð−1ÞTdM1;o
i Jooij d

M2;o
j e−E

M1 ;o
i te−E

M2 ;o
j ðT−tÞÞ:

ð9Þ

TABLE IV. Priors used in the fit on each set. Priors are based on
previous experience and given large widths. Sometimes, initial
priors are tightened or loosened in order to find a fit with an
acceptable χ2. These changes are balanced against the resulting
change in log(GBF) (see text). On rare occasions, the fit finds
spurious states (with zero amplitude). This renders the fit very
obviously wrong, and is easily remedied with an adjustment to
the offending priors. The effect of doubling and halving the
standard deviation on all priors on the final fit result is shown in
Fig. 3. dMi≠0 indicates the amplitudes for oscillating and non-

oscillating H mesons and for nonoscillating kaons. dK;o
i is the

amplitude for oscillating kaons, which we expect to be smaller,
particularly in the case of zero momentum. P½Sklij≠00� ¼
P½V0;kl

ij≠00� ¼ 0.0ð5Þ and P½V1;kl
ij≠00� ¼ P½Tkl

ij≠00� ¼ 0.0ð1Þ in all

cases, whilst P½V1;kl≠nn
00 � ¼ 0.0ð3Þ.

Set P½dMi≠0� P½dK;o
i � P½Skl≠nn00 � P½V0;kl≠nn

00 � P½Tkl≠nn
00 �

1 0.15(20) 0.05(5) 0.0(1.0) 0.0(1.0) � � �
2 0.15(10) 0.05(5) 0.0(1.0) 0.0(1.0) � � �
3 0.10(10) 0.05(5) 0.0(1.5) 0.0(1.5) 0.0(3)
4 0.20(20) 0.05(5) 0.0(1.0) 0.0(1.0) 0.0(3)
5 0.20(20) 0.03(3) 0.0(1.0) 0.0(1.5) 0.0(3)
6 0.10(10) 0.05(5) 0.0(1.5) 0.0(1.5) 0.0(3)
7 0.05(5) 0.02(2) 0.0(1.0) 0.0(2.0) 0.0(3)
8 0.08(10) 0.01(2) 0.0(1.0) 0.0(2.0) 0.0(2)
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Here Jklij (i; j ∈ f0; 1;…; Nexp − 1g, and k; l ∈ fn; og) are
matrix elements of J ¼ SðVÞ½T� for the scalar (vector)
[tensor] currents. For example, Jnoij , gives the matrix
element for J between the ith nonoscillating (n) state of
M1 and the jth oscillating (o) state ofM2. T and t appear as
in Fig. 1 (where we have taken t0 ¼ 0), and T is not to be
confused with the tensor current insertion. The key param-
eters that we want to determine are the Jnn00 for each current.
Priors for Jnn00 are estimated by dividing the three-point

correlation function by the relevant two-point correlators
and multiplying by their effective amplitudes (as in
[32,36]). A broad uncertainty (typically 20–50%) is then
given to this effective amplitude. Other Jklij priors are listed
in Table IV.
On each ensemble, using the CORRFITTER package,

[53–55], we perform a simultaneous fit to all of the two-
point and three-point functions for all ap⃗K and T values,
selecting Nexp for each lattice spacing such that it gives an
acceptable χ2 and maximizes the log(GBF). We use Nexp ¼
4 for all ensembles except set 8 where we use Nexp ¼ 5. In
the case of sets 6, 7 and 8, the fits are very large because of
the number of heavy masses and twists, as well as the
increasing number of time slices. To handle this, we split
them up, fitting each heavy mass sequentially and taking a
correlated weighted average of any shared parameters at the
end. This is especially necessary in the case of sets 6 and 7,
where combining theHs → ηs data with theH → K data as
described in Sec. II C makes the fits even larger. Tests across
the range of J, p⃗K and mh show that this method preserves
correlations between Jnn00 very well. These correlations are
small, typically less than 0.3.
Since our fits involve a large number of different

correlation functions with a finite number of samples there
is a bias in the small eigenvalues of the covariance matrix.
We address this by applying an SVD cut to these eigen-
values; see Appendix D of [52]. This is a conservative move
which increases errors. As discussed above, it also leads to
an artificial reduction in χ2, something which we check for
by introducing SVD noise, again using CORRFITTER (see
documentation for further details [53–55]).
We check stability of our fitted results for the ground-

state parameters to a variety of changes to the fit. An
illustration of such tests is given in Fig. 3 for set 8,
showing the results for the ground-state–to–ground-state
tensor current matrix element at one twist value at one
heavy-quark mass along with the ground-state Ĥ-meson
mass at a different heavy-quark mass and the ground-state
K-meson energy for a different twist (thus showing a
broad range of results). A stability plot for a lower mass
(mc) on set 5 with the vector current matrix element is
given in [36]. We check stability against changing the
number of excited states included, doubling and halving
all of the prior widths, doubling and halving the SVD cut
(compared to the recommended cut given by the LSQFIT

package [53]) and changing tmin. We also show the result
of doing a single fit, rather than a simultaneous fit to
multiple correlators. This figure aims to give a represen-
tative range of examples on one ensemble; other ensem-
bles were similarly well behaved, showing stable fits in all
cases. We also check that the momentum-dispersion

relation for our K
ð∧Þ

fit results agrees with the twists
specified in the lattice calculation. The two should differ
by discretization effects only and this is confirmed in [36]
which uses the same kaon data on all ensembles as here.
We can also infer this from the modest values we find for
c2 and d2 from Eq. (8) in all cases.
Our fit parameters Jnn00 are converted into matrix elements

for the corresponding lattice currents according to

FIG. 3. Stability plot for different correlator fit choices on set
8, showing the mass of the ground-state non-Goldstone Ĥ
meson for amh ¼ 0.6, the ground-state energy of the K with
twist θ ¼ 4.705 and Tnn

00 for amh ¼ 0.45, θ ¼ 2.235. Test 0 is the
final result, corresponding to Nexp ¼ 5 exponentials. Tests 1 and
2 use one fewer and one more exponential respectively. Tests
3–6 double and halve the prior widths and SVD cut. Test 7
increases tmin by 2 across the whole fit. The final test, 8, is when
the fit is done on its own, or in the case of the Tnn

00, just with the Ĥ
and K̂ two-point correlators required, as opposed to being part of
one big simultaneous fit. The χ2 per degree of freedom and log
(GBF) value for each test are shown in the bottom pane in blue
and red respectively. For the later tests (5–7), data are removed
from the fit, resulting in a lower log(GBF) which is not
comparable with the others and not displayed. As discussed
in Sec. III A, χ2 values are artificially lowered by our SVD cut
and priors so are only meaningful relatively. χ2 values for tests
3–6, which change prior width and SVD, are thus not directly
comparable with other tests. The final fit gives a χ2=d:o:f: close
to 1 with SVD and prior noise.
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hKjJlattjH
ð∧Þ

i ¼ 2Zdisc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MHEK

p
Jnn00: ð10Þ

These matrix elements can then be converted into values for
the form factors using Eqs. (1), (2), and (3). We have
included a factor Zdisc to account for small (OðamhÞ4) tree-
level discretization effects. Values for Zdisc are given in
Table II. We always use the mass of the Goldstone H
pseudoscalar for the conversion as the non-Goldstone mass
is the same in the continuum limit. The difference is a small
discretization effect, less than 0.1% in [36], which is
accounted for in our extrapolation to the physical point
(Sec. III B).
Numerical results for the left-hand side of Eq. (10) on

each of our ensembles are summarized in Tables X, XI, and
XII in Appendix C. The vector current results must be
multiplied by values of ZV from Table II and the tensor
current results by values of ZT from Table I before values
for the form factors can be obtained. The form factors
values are also given in the tables in Appendix C.

B. Extrapolating form factors using a modified
z expansion

Once we have our form factors over a range of q2 values
and on all ensembles, we perform a fit in q2 space, heavy
mass, light-quark mass and lattice spacing. We can then
evaluate our form factors at the physical quark masses, and
zero lattice spacing, at any heavy-light meson mass from
the physical D mass to the physical B mass. Following the
method successfully employed in [32,35,36], we fit the
form factors on the lattice using the Bourreley-Caprini-
Lellouch (BCL) parametrization [56],

f0ðq2Þ ¼
L

1 − q2

M2
H�
s0

XN−1

n¼0

a0nzn

fþðq2Þ ¼
L

1 − q2

M2
H�
s

XN−1

n¼0

aþn

�
zn −

n
N
ð−1Þn−NzN

�

fTðq2Þ ¼
L

1 − q2

M2
H�
s

XN−1

n¼0

aTn

�
zn −

n
N
ð−1Þn−NzN

�
: ð11Þ

This uses a mapping of q2 to z, so that the physical q2 range
0 ≤ q2 ≤ ðMH −MKÞ2 is mapped to a region within the
unit circle in z:

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p : ð12Þ

tþ ¼ ðMH þMKÞ2 is the beginning of a branch cut in the
complex t ¼ q2 plane corresponding to HK production in
the crossed channel. We choose to take t0 ¼ 0, which

permits a simple enforcement of the kinematic constraint
in Eq. (4) as it means zðq2 ¼ 0Þ ¼ 0. Fit results were
compared for different values of t0 in [36] and good
agreement was found.
The first term in the fit forms of Eq. (11) removes poles in

the form factor that appear from production of heavy-strange
mesons with squared masses below tþ (but above t−). These
mesons are the scalarH�

s0 and vectorH
�
s states. In our fits we

need to use a mass for these mesons that is simply related to
masses that we have measured in our calculation. We take
MH�

s0
to be MH þ Δ with Δ ¼ 0.45 GeV. As discussed in

[32] the exact value used here is unimportant. The value ofΔ
is taken from experimental results for theD system; there are
no experimental results for the B system but we expect the
splitting to be largely independent of mh. The vector mass
MH�

s
can be estimated, as in [32,35], with the PDG [57]

valuesMphys
D�

s
¼ 2.1122ð4Þ GeV,Mphys

B�
s

¼ 5.4158ð15Þ GeV.
We use

MH�
s
¼ MH þMphys

D

MH
ΔðDÞ þMphys

B

MH

�
MH −Mphys

D

Mphys
B −Mphys

D

×

�
ΔðBÞ −Mphys

D

Mphys
B

ΔðDÞ
��

; ð13Þ

where ΔðHÞ ¼ Mphys
H�

s
−Mphys

H . The physical masses used

are those for the isospin averages ðK0 þ K�Þ=2, ðB0 þ
B�Þ=2 and ðD0 þD�Þ=2 (all from [57]), corresponding to
the fact that our lattice results have mu ¼ md ¼ ml. We also
need to consider isospin breaking effects and we will do
this below.
The form factor, with sub-threshold poles removed, can

be expanded as an order N polynomial in z, where z < 1
for the physical region. On the lattice the coefficients of zn

in Eq. (11) contain discretisation effects, which appear as
powers of the squared lattice spacing for the HISQ action.
Since we are fitting results for multiple values of the heavy
quark mass here the coefficients will carry dependence on
the heavy quark mass. We must also allow for dependence
on the light quark (spectator and sea quark mass) and
we do this using a chiral logarithm factor L as well as
analytic terms. For each form factor and each power, n, of
z we take

a0;þ;T
n ¼

�
MD

MH

�
ζn
�
1þ ρ0;þ;T

n log

�
MH

MD

��
× ð1þN 0;þ;T

n Þ

×
XNijkl−1

i;j;k;l¼0

d0;þ;T
ijkln

�
ΛQCD

MH

�
i
�
amval

h

π

�
2j

×

�
aΛQCD

π

�
2k
ðxπ − xphysπ Þl ð14Þ
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and will discuss the different pieces of this expression
below. Note that the coefficients for each power of z are
independent in our fit.

1. Discretisation effects

Discretisation effects are accounted for in two ways in
Eq. (14). We allow for discretisation effects that vary with
the heavy quark mass through the terms in amh with power
2j. The size of these terms will vary between results for
differentmh on a given ensemble. Discretisation effects that
do not vary with heavy quark mass but instead are set by
some other scale (for example associated with the K
mesons) are allowed for in the powers of aΛQCD. These
terms will be the same for all heavy quark masses on a
given ensemble. We take ΛQCD ¼ 0.5 GeV.
We also consider the possibility of logarithmic cutoff

effects [58] via the addition of an ðamhÞ2 logðamhÞ term,
discussed in Sec. III B 6.

2. Dependence on heavy quark mass

We include several terms in Eq. (14) to model the
physical dependence of the form factors on heavy quark
mass, using as a proxy for this the heavy-light meson mass,
MH. This dependence connects the form factors forD → K
to those for B → K and we can use insights from Heavy
Quark Effective Theory (HQET) to suggest a functional
form for it. We take a power series in inverse powers ofMH
(with power i and ΛQCD as above) multiplying a prefactor
ðMD=MHÞζn , with fitted power ζn, and a logarithmic term.
The ðMD=MHÞζn term models behaviour predicted by
Large Energy Effective Theory (LEET) [59]. The LEET
expectation is for all form factors for a specific heavy to
light transition to exhibit common ∽ M−3=2

H behaviour in
the region of q2 ¼ 0 (where the light meson energy is close
to MH=2). This behaviour was observed in lattice QCD
results for the closely related Bs → ηs decay [32], with an
MH power between −1.5 and −1 towards q2 ¼ 0. In that
case the behaviour was modelled with a logðMDs

=MHs
Þ

term multiplied by a series in inverse powers of MH. Here
we allow for this behaviour explicitly.
Because we have taken t0 ¼ 0, the form factors at q2 ¼ 0

are set by the z0 terms in the z-expansion. We therefore take
a prior P½ζ0� ¼ 1.5ð5Þ as a common prior for the a0
coefficients but set ζn≠0 ¼ 0 for the other an. MK=MH

corrections to LEET can be accounted for in the form factor
dependent ðΛQCD=MHÞi terms in our fit, as MK ≈ ΛQCD.
We find that including this term in our fit increases log
(GBF), reduces uncertainty at q2 ¼ 0, particularly for fT,
and returns a posterior of ζ0 ¼ 1.43ð12Þ. Allowing a
broader prior P½ζ0� ¼ 1.0ð1.0Þ returns a posterior consis-
tent with 1.5 (1.42(12)) and does not change the form factor
result. Allowing ζ0 to vary between form factors simply
increases the uncertainty on fTð0Þ, whilst leaving the
central values unchanged. These tests confirm that our

fit is not overly constrained by ζ and is flexible with regard
to MH dependence. They will be discussed further in
Sec. III B 6, along with a test allowing ζ0;þ;T

n≠0 ≠ 0.
For both the n ¼ 0 and the n ≠ 0 coefficients we include

the logarithmic term in Eq. (14), with priors on ρn of
0.0(1.0). This term is motivated by the matching of HQET
to QCD, as in [32,35]. For n ¼ 0 this effectively allows for
different form factors to have different powers ζ as well as
allowing for sub-leadingMH dependence from LEET [59].
For n ≠ 0 this term allows for an adjustable pre-factor non-
integer power of MH for different dependence on MH in
different regions of the q2 range. The heavy mass depend-
ence of the continuum form factors will be discussed below
in Sec. IV C.

3. Dependence on spectator quark mass

The dependence of the form factors on spectator quark
mass is also a physical effect which connects B → K form
factors (with a light spectator quark) smoothly to those for
Bc → Ds [38] (with a charm spectator quark). We will
discuss this comparison in Sec. IV. Here we include
spectator quark masses varying from the physical value
of ml up to ms (the latter corresponding to Bs → ηs form
factors) in our dataset and aim to describe them all with our
functional dependence on the spectator quark mass. This
region of spectator masses is amenable to chiral perturba-
tion theory [60] and we use this to fix the chiral logarithm
term, L in Eq. (14). We also include analytic terms to be
discussed below. L takes the form

L ¼ 1 −
9g2

8
xπðlog xπ þ δFVÞ −

�
1

2
þ 3g2

4

�
xK log xK

−
�
1

6
þ g2

8

�
xη log xη; ð15Þ

where xM ¼ M2
M

ð4πfπÞ2 and g is the coupling between H, H�

and the light mesons. The form of L is appropriate for the
vector and scalar form factors and, as in [61], we make use
of the fact that fT and fþ in HQET are the same up to
Oð1=MHÞ terms to use the same L for the tensor form
factor. Any corrections to this are easily absorbed by our
HQET expansion. In fact L does not have a big impact on
our fit and we find no appreciable difference to the fit if we
set L ¼ 1 (see Sec. III B 6).
xπ in Eq. (15) is constructed from the meson mass for a

pseudoscalar meson made from the spectator quarks. This
corresponds to the π meson for the B → K case (albeit with
an unphysically heavy light quark on some ensembles) but
an ηs meson in the Bs → ηs case. Likewise xK corresponds
to a “K” meson constructed from a strange quark and a
spectator quark. The value of Mη appearing in xη is given
by M2

η ¼ ðM2
π þ 2M2

ηsÞ=3. Since not all of these meson
masses are available in our calculation we use leading-order
chiral perturbation theory to rescale meson masses in
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proportion to the masses of the quarks they contain. Taking
the ratio of 4πfπ to Mphys

ηs ¼ 0.6885ð22Þ GeV [45], we use
a proxy for xπ of the form

xπ ≈ 2
mspectator

5.63ms
; ð16Þ

where the factor of 2 accounts for the definition of f2π in
[60]. xK and xη are constructed in an analogous way. The
finite volume correction, δFV , adjusts the π chiral logarithm
(Eq. 47 of [62]), and we include an error of ð0.7%Þ2 to
account for higher order terms.
In order to capture the heavy mass dependence of g, we

take

gðMHÞ ¼ g∞ þ C1

ΛQCD

MH
þ C2

Λ2
QCD

M2
H

; ð17Þ

with g∞ ¼ 0.48ð11Þ [63], gðMDÞ ¼ 0.570ð6Þ [64] and
gðMBÞ ¼ 0.500ð33Þ, an average of the values in [65–67].
Priors P½C1� ¼ 0.5ð1.0Þ and P½C2� ¼ 0.0ð3.0Þ are broad
and based on a trial fit to just the g data points given above.
Our final fit has a slightly tighter value for g∞ giving
posterior g∞ ¼ 0.457ð56Þ with coefficients C1 ¼ 0.73ð62Þ
and C2 ¼ −1.2ð1.7Þ.
As well as the chiral logarithm term L that is common to

all terms in the z-expansion, we include analytic terms in
the spectator quark mass that can vary for different form
factors and with the power of z, n. These appear through
powers of ðxπ − xphysπ Þ in Eq. (14) (with power l). xphysπ is
defined as for xπ in Eq. (16) and using

mphys
s

mphys
l

¼ 27.18ð10Þ ð18Þ

from [68].
We will quote our final form factors at the physical value

of ml i.e. at the average of the physical u and d quark
masses. We will discuss tests of isospin-breaking effects in
Sec. III B 6 below.

4. Mistuning effects for other quark masses

We must also account for any possible mistuning of the
strange daughter quark and for mistuning of the quark
masses in the sea. These are wrapped up in the quark mass-
mistuning term, N , in Eq. (14). The mass of the strange
daughter quark is always the valence s quark mass, listed in
Table I. We take

N 0;þ;T
n ¼ cval;0;þ;T

s;n δvals þ csea;0;þ;T
s;n δseas þ 2csea;0;þ;T

l;n δl

þ csea;0;þ;T
c;n δseac ð19Þ

For the s and l quarks we use:

δq ¼
mq −mtuned

q

10mtuned
s

. ð20Þ

Dividing by mtuned
s here makes this a physical, scale-

independent ratio and the factor of 10 matches this
approximately to the usual expansion parameter in chiral
perturbation theory. As discussed in Sec. II C, our valence s
quark masses are all well-tuned using the physical value of
the ηs mass to derive mtuned

s [44,45]; this is less true for the
sea s quarks. We include uncertainties in mtuned

s by defining
it from the ηs masses corresponding to our valence s quark
masses through

mtuned
s ¼ mval

s

�
Mphys

ηs

Mηs

�
2

: ð21Þ

mtuned
l is then defined from Eq. (18). For the sea charm

quarks we define

δseac ¼ msea
c −mtuned

c

mtuned
c

ð22Þ

with mtuned
c fixed from the ηc meson mass [48]. These

values, on each ensemble, correspond well with the lowest
heavy valence mass that we have used (see Table II).

5. Prior choices

We need to set priors for the parameters that appear in
the an coefficients of Eq. (14). As noted in Sec. III B 2
we include a parameter for an inverse power of MH as a
prefactor for n ¼ 0 only, and take the prior for ζ0 as 1.5(5).
For ρn and dijkln we take values of 0.0(1.0) in all cases
except for terms which are Oða2Þ. We know such terms
are highly suppressed in the HISQ action because it is
a2-improved [27], so we take a reduced width prior of 0.0
(0.3) for di10ln and di01ln terms. Using such priors, we test
the fit with different choices of Nijkl ≡ ðNi; Nj; Nk; NlÞ,
and we find that the combination preferred by log(GBF) is
Nijkl ¼ ð3; 2; 2; 3Þ. Note that the sum over each index, i,
runs from 0 to Ni − 1 in Eq. (14). We show below in
Sec. III B 6 that increasing all of the entries in Nijkl by 1
makes almost no difference to the final results.
We also conduct an Empirical Bayes study in order to

confirm that the priors listed above are of the right size. We
do this using the facility built into lsqfit [53]. It works by
varying a factor w which multiplies all prior widths (or a
subset of them) in order to find the w choice which
maximises log(GBF). In our case, we perform two such
studies, on the whole set of 0.0(1.0) and 0.0(0.3) priors
respectively. We find that our priors are conservative in
both cases, with priors of 0.00(55) and 0.000(72) giving
the optimal log(GBF). Taking these priors results in a log
(GBF) increase of ≈2, which is not considered to be very
significant, so we opt for our original, more conservative
priors. The effect of doubling and halving the priors will be
shown in Fig. 4, discussed in Sec. III B 6.
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FIG. 4. Stability tests for the z-expansion fit evaluated at the physical B mass. Test 0 is the final result, 1 and 2 take different priors for
ζ0, test 3 allows ζ0 to vary between the form factors and test 4 (see text) allows for ζn≠0 ≠ 0. Test 5 drops the term containing ζ entirely.
Test 6 increases the number of the terms in the z expansion,N, by 1 (to 4) and test 7 does the same for each component ofNijkl in each an
coefficient. Test 8 doubles the width of ζn and all d and ρ priors, and 9 halves them. Test 10 removes the chiral logarithm term by setting
L ¼ 1, and 11 tightens the prior on the ρ coefficients considerably. Test 12 allows for logarithmic heavy-mass dependence
ðamhÞ2 logðamhÞ in the fit. Test 13 removes the f0ð0Þ ¼ fþð0Þ constraint; in this case the black point is f0ð0Þ and the red is
fþð0Þ. Tests 14, 15 and 16 remove all the lattices with physical light masses, all of set 8 data, and results withml ¼ ms respectively. Test
17 removes the spatial vector data, and 18 removes the largest mass from all ensembles with multiple masses. The χ2 per degree of
freedom and log(GBF) value for each test are shown in the bottom panel in blue and red respectively. For the latter tests, data are removed
from the fit, resulting in a lower log(GBF) which is not comparable with others and so not displayed. As in our correlator fits, χ2 values
are artificially lowered by our SVD cut and priors so are only meaningful relatively. χ2 values for tests 7 and 8, which change widths on
many priors, are thus not directly comparable with other tests. No SVD cut is required, and our final fit has a χ2=d:o:f: of 0.3 when prior
noise is included.
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The prior for the daughter strange quark mistuning
parameter in N , cvals;n, is taken as 0.0(1.0) for each n and
each form factor. This size is based on the variation seen
between B → K and B → π form factors [20]. We expect
smaller effects from sea quark mass mistuning and so take
the cseas;n and cseal;n parameters to have priors of 0.0(0.5) and
the cseac;n parameters to have prior 0.0(1).
The choice of t0 ¼ 0 and the use of xπ − xphysπ (which

takes value 0 at the physical point) in Eq. (14) makes it easy
to apply the constraint that fþð0Þ ¼ f0ð0Þ at the physical
point for all heavy masses [Eq. (4)]. We achieve this by
setting ρþ0 ¼ ρ00 and dþi0000 ¼ d0i0000. We take N ¼ 3 in
Eq. (11) so that the maximum power of z corresponding to
a fit parameter in the z-expansion is z2. We show below in
Sec. III B 6 that increasing N by 1 makes no appreciable
difference to the final results.

6. Tests of the fits

We perform a variety of tests of the stability of our fits
and these are summarised in Fig. 4. This shows how the
final B → K form factors at each end of the q2 range (0 and
q2max) vary as we change fit choices. Figure 4 demonstrates
that our preferred fit result is stable against reasonable
variations and simultaneously optimises log(GBF) and
χ2=d:o:f:. The only variations with a larger log(GBF) than
our preferred fit are those which set L ¼ 1 (test 10) and
which halve the prior widths on ζ0 and all d and ρ
parameters. However, L is theoretically motivated and
we prefer to keep more conservative priors. Our final fit
has an acceptable χ2=d:o:f: (0.3) when prior noise is
included. No SVD cut is used in the fit.
Tests 1–5 address variations of the power ζ0 ofMH in the

pre-factor term for the heavy-quark expansion in Eq. (14).
Tests 1 and 2 change the prior for ζ0, whilst test 3 allows ζ0
to vary between form factors. Test 4 examines the effect
of introducing ζ away from q2 ¼ 0. We take the usual
correlated prior P½ζ0� ¼ 1.5ð5Þ, but allow uncorrelated
priors for each of the form factors for n ≠ 0: P½ζ0n≠0� ¼
1.5ð5Þ and P½ζþ;T

n≠0� ¼ 0.5ð5Þ. This allows approximately
for the expected scaling at q2max from HQET [69], allowing
for the single power of MH from the pole term. This is
discussed in more detail below (Sec. IV C). The scaling is
not perfectly accounted for, as we are working in z space,
but we find that the output of the fit agrees very well with
our preferred result, and indeed has smaller uncertainties,
smaller χ2=d:o:f: and larger log(GBF). We do not wish to
constrain our fit so tightly, however, so we take the more
conservative approach of only using ζ0. Test 5 drops this ζ
term entirely.
Test 6 adds additional z3 terms to the z-expansion and

test 7 adds additional discretisation, heavy quark expansion
and ml terms to each an. These do not change the fit output
in any appreciable way. Tests 8 and 9 double and halve,
respectively, the prior widths on ζ0 and all d and ρ priors.

Again these make little difference, but we note that the log
(GBF) grows for the case of smaller widths, indicating that
our choice is conservative, as discussed in Sec. III B 5. Test
10 drops the chiral logarithm term, L and we see little
difference in this case as noted in Sec. III B 3. The analytic
terms included in the an are then capable of modelling the
dependence that we see for the range of spectator quark
masses that we have.
In test 12, we allow for logarithmic terms ðamhÞ2

logðamhÞ in the heavy mass [58]. We do this by including
a term ð1þ ω0;þ;T

n logðamhÞÞ in Eq. (14) when j ¼ 1 with
prior P½ω0;þ;T

n � ¼ 0ð1Þ. We find that the posteriors returned
are consistent with zero, and the final form factors are not
changed significantly.
With test 13 we show that removing the constraint of

Eq. (4) also has little effect beyond a slightly larger
uncertainty for fþ at q2 ¼ 0.
The tests from 14 upwards miss out various sets of data

from the fit and some of these have a sizeable impact on the
uncertainties. Dropping the results with the highest heavy
quark mass from each ensemble (test 18), unsurprisingly
increases the uncertainties considerably at q2max since these
results are the ones closest to the b quark (and therefore
closest to the physical q2max for B → K). This is also
reflected in the contribution to the error budget from the
HQET part of the expansion of the an. This will be
discussed in Sec. IV.
Dropping all the results from our finest lattice, set 8, also

has a significant effect on uncertainties (test 15) because
this set allows us to get closest to the b mass. The gluon
field ensembles on set 8 show only a slow variation of
topological charge in Monte Carlo time. This could
introduce a bias on this ensemble if the quantities we
are studying are sensitive to topological charge. A study
was made of this effect for decay constants in [70] and it
was found that the impact of ‘topology freezing’ was 1%
for fK=fπ on set 8 and 1% for fD. To allow for these
effects, we therefore include an additional (correlated)
uncertainty of 1% on all set 8 results in our final fit (this
is already incorporated in test 0 of Fig. 4). We do this via a
factor with prior 1.00(1), which returns a fit posterior of
0.993(5), showing that our set 8 results are consistent with
those on our other sets.
Test 14 drops the data with physical ml from the fit; in

that case the fit uses the results with ml ¼ ms=5 and ml ¼
ms to arrive at the physical light quark mass. This gives
very similar central values but somewhat larger uncertain-
ties. Test 16 instead drops the ml ¼ ms results; this has less
impact on the uncertainties but shifts the central values at
q2 ¼ 0 by about 1σ.
Test 17 looks at the inclusion of results from the spatial

vector current as well as the temporal vector current. As
expected from the discussion in Sec. II A, the use of the
spatial vector current improves the vector form factor at
large values of q2. Dropping these results, as in test 17,
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increases uncertainties on the vector form factor value at
q2max by a factor of 2.5. Figure 5 (top plot) shows the results
for the form factor from spatial and temporal vector
currents on sets 7 and 8 where we have both correlation
functions (see Table XII in Appendix C). The plot shows
the good agreement between the two sets of results and the
considerably smaller uncertainties for the spatial vector
current case, in agreement with what was seen in [38].
As discussed in Sec. II A, there is the possibility for fV

0

þ
and fV

1

þ to differ by q2-dependent discretisation effects. To
address this explicitly we plot the ratio fV

1

þ =fV
0

þ against
ðaqÞ2 in the lower plot of Fig. 5, taking into account the
correlations between the two values from the fits. We see
no evidence of discretisation effects at the ∼10% level
nor any q2 trend in the results. We include terms in the
fit to account for such effects for each ensemble and
heavy mass,

fV
1

þ ðq2Þ ¼ ð1þ Ca;mh × ðaqÞ2ÞfV0

þ ðq2Þ; ð23Þ

where the priors for all Cs are 0.0(1). We find that our fits
do not constrain these coefficients and including such
terms makes no difference at all to the results of our fit, in
keeping with Fig. 5. We include these terms in our final fit
(test 0 of Fig. 4) nevertheless.
As noted above, we will quote our final form factors here

at the physical value ofml i.e. at the average of the physical
u and d quark masses and in pure QCD (i.e. neglecting
QED effects). The physical processes correspond either
to a charged B meson decay with a u spectator quark, or a
neutral B meson decay with a d spectator quark, however.
As a test of isospin-breaking effects we can monitor the
change in our results as we change the physical ratio of
ms=ml [Eq. (18)] so that it matches that of ms=mu or
ms=md. To do this we takemd=mu ≈ 2 [57]. We also switch
to using the correct physical B and K masses, as opposed to
using the average of the charged and neutral cases. We find
that our form factors change by at most 0.5%, or 0.2σ. Note
that this test is in fact an overestimate of strong isospin-
breaking effects because it also changes the sea l masses to
match either u or d which is not correct; the average of the
light sea quark masses should remain ml. No uncertainty is
included in the form factors presented here to allow for
QED effects or the isospin breaking effect discussed—both
of these uncertainties will be addressed in the accompany-
ing phenomenology paper.

IV. RESULTS

A. Evaluating form factors at the physical point

When it comes to evaluating form factors at the physical
point and in the continuum limit, we simply need to take
physical inputs for values in Eq. (11). Taking the valence
and sea quark masses to their tuned values setsN 0;þ;T

n ¼ 0,
and sending the lattice spacing a → 0 means that, for any
chosen MH (in GeV),

a0;þ;T;ðcontÞ
n ðMHÞ ¼

�
Mphys

D

MH

�
ζn
�
1þ ρ0;þ;T

n log

�
MH

Mphys
D

��

×
XNi−1

i¼0

d0;þ;T
i000n

�
ΛQCD

MH

�
i
; ð24Þ

where ΛQCD ¼ 0.5 GeV as usual. These are the values for

an which are given in Tables V and VIII for MH ¼ Mphys
B

and MH ¼ Mphys
D respectively. As already discussed, our

results are for mu ¼ md ¼ ml so we use the average of the
charged and neutral B, K and D masses from [57] when
required. These masses can be used in Eq. (12) to obtain z
from any given q2 andMH. Finally, LcontðMHÞ [Eq. (15)] is
evaluated using xphysπ , xphysK , xphysη , δFV ¼ 0 and evaluating g
[Eq. (17)] at MH. The resulting LðMHÞ values at MH ¼
Mphys

B andMH ¼ Mphys
D are also given in Tables Vand VIII.

FIG. 5. Upper plot: A comparison of values and their statistical
errors for the vector form factor derived from matrix elements for
the spatial and temporal vector currents on ensembles where both
are available. The filled symbols are the temporal vector results
and the open symbols the spatial vector results. We have offset
spatial vector results slightly on the q2-axis for clarity. Lower plot:
The ratio of the fþ values for the spatial and temporal vector cases.
We see no evidence of any differences between them (within our
uncertainties) that would indicate discretisation effects.
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Putting all of this together,

fcont0 ðq2;MHÞ ¼
LcontðMHÞ
1 − q2

M2
H�
s0

XN−1

n¼0

a0;ðcontÞn ðMHÞzn

fcontþ ðq2;MHÞ ¼
LcontðMHÞ
1 − q2

M2
H�
s

XN−1

n¼0

aþ;ðcontÞ
n ðMHÞ

×

�
zn −

n
N
ð−1Þn−NzN

�

fcontT ðq2;MHÞ ¼
LcontðMHÞ
1 − q2

M2
H�
s

XN−1

n¼0

aT;ðcontÞn ðMHÞ

×

�
zn −

n
N
ð−1Þn−NzN

�
; ð25Þ

where the two pole masses are evaluated using MH�
s0
¼

MH þ Δ and Eq. (13) as usual, working in GeV and not
lattice units. These pole masses are also given in Tables V
and VIII. We have used the superscript ‘cont.’ here to
emphasise that these expressions are valid in the continuum
(with tuned quark masses) only, but we drop this super-
script in the results tables and numerical results which
follow, noting that all results are presented in this limit. For
details on loading our results from the supplied python
script, see Appendix A.

B. B → K form factor results

Figures 6, 7, and 8 show our lattice results and fit
functions in z space. The points plotted correspond to
ð1 − q2=M2Þf where ð1 − q2=M2Þ is the pole factor on the
right-hand side of Eq. (11) for each form factor. The figures
show results on each ensemble for each value of amh,

joined by the line from the fit corresponding to those
parameters. The final result in the continuum, at the Bmass
and physical quark masses is shown by the solid band. We
see that the lattice results lie on approximately linear curves
in all cases. This is particularly clear for the scalar form
factor case in Fig. 6. This makes for a benign z expansion
and justifies our choice of N ¼ 3, as is also confirmed by
the log(GBF) value. Dark blue data points correspond to
the charm quark mass on each ensemble. We can see here
that, at this mass, discretization effects are small with very
good agreement between data on different ensembles,
particularly in the scalar and vector cases. Otherwise we
can see data points arranged according to mass, moving
towards the b mass, which is close to the amh ¼ 0.8 value
on our finest ensemble, set 8. This is shown from the
proximity of set 8 data to the physical band in the plots. We
see that the twist choices on our finest ensemble also give
good coverage of the full z range (shown by the physical
band curves) at the physical point.
We present our final scalar, vector and tensor form

factors evaluated at the physical B mass, physical quark
masses, and in the continuum limit, across the full range
of physical q2 values in Fig. 9. The similarity of fþ and
fTðμ ¼ 4.8 GeVÞ is very obvious, an assumption that was
often used to estimate fT from fþ before reliable fT
calculations existed.
A breakdown of the percentage error contributions to

each form factor across the q2 range is given in Fig. 10. The
largest contribution in all cases is from statistics, followed
by the expansion in the heavy mass. All other errors, from
quark mistuning (including the chiral logs L and analytic
chiral terms), discretization effects and input masses are
small. As noted above, the contribution of the heavy-mass
expansion to the error is also apparent in Fig. 4.
Further error analysis is displayed in Fig. 11, which gives

a breakdown of the contributions of each of the ensembles

TABLE V. Values of fit coefficients a0;þ;T
n , pole masses, and the L term with correlation matrix below, evaluated at the physical point

and the Bmass. Note that aþ0 ¼ a00. Masses are in GeV. The pole masses and L are very slightly correlated due to the way the fit function
is constructed. These correlations are too small to have any meaningful effect on the fit, but we include them for completeness. See
Appendix A for details of reconstructing our results.

a0=þ0 a01 a02 aþ1 aþ2 aT0 aT1 aT2 Mphys
B�
s0

Mphys
B�
s L

0.2545(90) 0.210(76) 0.02(17) −0.71ð14Þ 0.32(59) 0.255(18) −0.66ð23Þ 0.36(84) 5.729495(85) 5.4158(15) 1.304(10)

1.00000 0.80619 0.56441 0.30543 0.04776 0.42939 0.19136 0.06240 −0.00032 −0.00197 −0.19815
1.00000 0.91180 0.35256 0.06186 0.31091 0.16899 0.05677 0.00006 −0.00250 0.02839

1.00000 0.28531 0.08655 0.18297 0.09938 0.04827 0.00005 −0.00181 0.03245
1.00000 0.84649 0.06813 0.09633 0.05829 0.00074 −0.01316 0.09126

1.00000 −0.02470 0.02366 0.04442 −0.00054 0.00963 0.00353
1.00000 0.59841 0.32316 −0.00030 0.00167 −0.11487

1.00000 0.85349 0.00032 −0.00574 0.04788
1.00000 −0.00046 0.00825 0.00184

1.00000 0.00003 −0.00003
1.00000 0.00052

1.00000
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FIG. 6.
�
1 − q2

M2
H�
s0

	
f0ðzÞ data points and final result at the physical point (blue band). Data points are labelled by heavy quark mass,

where e.g. m0.8 indicates amh ¼ 0.8 on that ensemble. Lines between data points of a given heavy mass are the result of the fit evaluated
on this ensemble and mass with all lattice artefacts present. Sets 9 and 10 are the Hs → ηs data from sets 1 and 2 in [32], which were
fitted simultaneously with sets 6 and 7 respectively.

FIG. 7.
�
1 − q2

M2
H�
s

	
fþðzÞ data points and final result at the physical point (red band). Data points are labelled by heavy quark mass,

where e.g. m0.8 indicates amh ¼ 0.8 on that ensemble. Lines between data points of a given heavy mass are the result of the fit evaluated
on this ensemble and mass with all lattice artefacts present. Sets 9 and 10 are the Hs → ηs data from sets 1 and 2 in [32], which were
fitted simultaneously with sets 6 and 7 respectively. At large jzj (large q2), data obtained from both temporal and spatial components of
Vμ are shown, the latter with end caps specifying the associated uncertainty. As discussed in Sec. II, errors for fþ at large q2 are
significantly smaller when obtained from spatial vector components.
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listed in Table I to the statistical uncertainty of each form
factor at its extremal values of q2. The contributions are
normalized to a total variance of 1 in each case, and we note
that sets 6 and 7 include contributions from the additional
Hs → ηs data on those ensembles. We see that sets 7 and 8
make the largest contributions to the uncertainties of all
form factors across the q2 range, with set 1 making the
smallest contribution in all cases. This error could be
reduced with better statistics on the superfine and ultrafine
ensembles (sets 7 and 8), perhaps also including an addi-
tional heavier mass at amh ¼ 0.9 on set 8, or with a further,
even finer ensemble, at the bottom mass. This would be a

numerically expensive, but straightforward, exercise to
reduce uncertainty in future.

1. Results at q2max

In order to test the ability of our fit to handle MH

dependence independently of q2 dependence we perform a
simpler fit in MH at a fixed q2 point for comparison to our
full fit. For this we use our values for f0 at q2max (only) and
fit them to the functional form:

fMHfit
0 ðq2maxÞ ¼

L

1 − q2max
M2

H�
s0

�
1þ ρ00 log

�
MH

MD

��
× ð1þN 0

0Þ

×
XNijkl−1

i;j;k;l¼0

d0ijkl0

�
ΛQCD

MH

�
i
�
amval

h

π

�
2j

×

�
aΛQCD

π

�
2k
ðxπ − xphysπ Þl; ð26Þ

taking the same choices forNijkl and priors as for our full fit
using Eqs. (11) and (14). Figure 12 shows the f0ðq2maxÞ
data on each ensemble, as well as the result of our
standard “full” fit to all data and the fit of the f0ðq2maxÞ
alone [Eq. (26)].
Since Fig. 12 is a plot of results and a fit that depend only

on MH, it is easier to see here that we have good coverage
ofMH values fromMD toMB. The dashed lines connecting

FIG. 8.
�
1 − q2

M2
H�
s

	
fTðzÞ data points and final result at the physical point (green band). Data points are labelled by heavy quark mass,

where e.g. m0.8 indicates amh ¼ 0.8 on that ensemble. Lines between data points of a given heavy mass are the result of the fit evaluated
on this ensemble and mass with all lattice artefacts present.

FIG. 9. Final B → K form factor results at the physical point
across the full q2 range.
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FIG. 10. The contributions to the total percentage error (black line) of B → K form factors f0ðq2Þ (top) and fþðq2Þ (middle) and
fTðq2Þ (bottom) from different sources, shown as an accumulating error. The red dashed line (‘inputs’) includes values for parameters,
such as masses, taken from the particle data group (PDG) [57] and used in the fit as described above. The purple dotted line
(“q mistunings”) adds, negligibly, to the inputs of the error contribution from the quark mistunings associated with c fit parameters and
errors from the light-quark chiral extrapolation, while the solid blue line (“statistics”) further adds the error from our correlator fits. The
green dotted-dashed line (“HQET”) includes the contribution from the expansion in the heavy-quark mass, and, finally, the thick black
line (“Discretization), the total error on the form factor, also includes the discretization errors. In the case of the tensor form factor, the
difference here is so small as to obscure the HQET line. The percentage variance adds linearly and the scale for this is given on the left-
hand axis. The percentage standard deviation, the square root of this, can be read from the scale on the right-hand side.

FIG. 11. Breakdown of the contributions to the statistical
uncertainty of the B → K form factors at their extremes from
data on each ensemble. Uncertainty from each ensemble σi is
added in quadrature, normalized by the total uncertainty squaredP

i σ
2
i . Sets 6 and 7 include contributions from Hs → ηs data.

FIG. 12. The f0ðq2maxÞ data points on each ensemble, plotted
against MH. Points in blue have physical ml values, black have
ml ¼ ms=5 and red have ml ¼ ms. The blue band indicates the
continuum result from our full fit [i.e. Eq. (25)]. The green band
indicates the continuum results of a fit of just the f0ðq2maxÞ data to
Eq. (26). Dashed lines between data points indicate the full fit
evaluated at that lattice spacing.
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results at a fixed lattice spacing make clear how the
discretization effects behave, peeling away from the con-
tinuum curve for larger amh values. Our range of amh
values (see Sec. II C) allows our fit to track the discretiza-
tion effects. The smaller fit fMHfit

0 ðq2maxÞ agrees well with
our full fit result, indicating that we do indeed have good
control of both q2 and MH dependence in our fit. We
repeat this test with versions of Eq. (26) which include
ðMD=MHÞζ0 terms, where we trial P½ζ0� ¼ 1.5ð0.5Þ and
P½ζ0� ¼ −0.5ð0.5Þ. In both cases, the fit agrees within 1σ
with our full fit and the fit of Eq. (26). Indeed, we find that
the fit output hardly changes when we fix the power ζ0 in
Eq. (26) to be exactly 1.5, showing that the output is
determined by the lattice results and is not constrained by
the presence or absence of the initial power term.

C. Connecting B → K and D → K form factors

Our heavy-HISQ approach allows us to study in detail
the behavior of the form factors at fixed q2 with a change in
heavy-quark mass from the c to the b. Figure 13 illustrates
this smooth variation with a plot of the continuum form
factors, at extremal q2 values, plotted against heavy-mass
MH from Mphys

D to Mphys
B . This allows us to compare with

previous calculations, both for B → K and D → K, which

we will discuss below. Firstly, however, we take a moment
to address the running normalization of fTðq2; μÞ.
In our calculation of the tensor form factor, we used

ZTðμ ¼ 4.8 GeVÞ, calculated in [42]. The scale μ is taken
to be approximately equal to mpole

b . While this is appro-
priate for the B → K results, we use a smaller scale,
μ ¼ 2 GeV, for D → K to compare to previous results.
In order to produce results at arbitrary MH, we use a linear
interpolation of μ between these two values,

μðMHÞ½GeV� ¼ 2þ 2.8

Mphys
B −Mphys

D

ðMH −Mphys
D Þ: ð27Þ

Following [42], we then run from μðMBÞ ¼ 4.8 GeV to our
desired μ scale. The maximal extent of this running is down
to 2 GeV (i.e. forMH ¼ MD), and this results in a factor of
1.0773(17) multiplying fTðq2; 4.8 GeVÞ.
Returning to Fig. 13 and focusing on the B → K end of

the results, we see very good agreement with previous work
in general, adding confidence in the heavy-HISQ method.
We find improvements in precision across the form
factors, particularly at q2 ¼ 0, which is the important
region for comparison to experiment in this case. At
q2max our precision is not as high as that achieved in

FIG. 13. The form factors at q2max and q2 ¼ 0 evaluated across the range of physical heavy masses from the D to the B. Other lattice
studies [25,28,71,72] of both D → K and B → K are shown for comparison. We also include some B → K results at q2 ¼ 0 from
Gubernari et al. [73], a calculation using light-cone sum rules. We do not include HPQCD’s D → K results that share data with our
calculation here [36]; see text for a discussion of that comparison. At the B end, data points are offset fromMB for clarity. Note that we
have run ZT to scale μ in this plot, where μ is defined linearly between 2 GeVandmb ¼ 4.8 GeV, according to Eq. (27). The full running
to 2 GeV from mb results in a factor of 1.0773(17), applied to fD→K

T .
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[28]. Our results have not been optimized for the q2max
region, however, so improvement there is readily possible.
We also have the advantage that our renormalization
constants are more accurately calculated, which can other-
wise be a source of systematic uncertainty. In [28], one-
loop perturbation theory is used to determine the current
renormalization factors and estimates made of the impact
of missing α2s terms in these factors. Table VI provides
numerical values for our B → K (as well as D → K; see
Sec. IV E) form factors at the q2 extremes shown in Fig. 13.
Figure 13 shows that the form factors at q2 ¼ 0 as well as

f0ðq2maxÞ fall slowly as MH is increased. In contrast fþ and
fT at q2max increase. We can isolate the effective leading
power of MH dependence by determining Xeff ¼ MH=f×
df=dMH, which returns X for f ∝ MX

H. Our results for the
form factors at q2 ¼ 0 and q2max are plotted in Fig. 14. We
see that at q2max for MH → MB, the dependence is Xeff ≈
−0.3 for f0, and Xeff ≈þ0.7 for fþ=T. This is roughly
consistent with the values of −0.5 andþ0.5 predicted in the

infinite mass limit by HQET [69]. It is clear that our fit is
flexible enough to allow for MH dependence to vary with
q2. This flexibility arises from the fact that we are fitting in
z space with independent coefficients for different powers
of z [see Eq. (14)]. Our lattice QCD results then have
sufficient coverage of z=q2 and MH space (in the range of
masses from MD up to 0.9MB) to give a robust fit result at
MB across the full kinematic range. The effective powers of
MH that we obtain at the two ends of the range, q2 ¼ 0 and
q2max, when MH ¼ MB provide a test of HQET. Note that
Fig. 14 is essentially unchanged under the different fit
possibilities that we test in Fig. 4 for the ðMD=MHÞζ terms
in our fit. Thus the effective powers ofMH that we obtain at
MB are not dependent on the details of the fit form that we
use, including how much input from HQET we impose.
A similar plot is presented in Appendix B (Fig. 22), for

fixed q2 ¼ M2
D.

1. HQET tests of B → K results

Returning to our B → K form factors, HQET expect-
ations [Ref. [69], Eqs. (19) and (20)] give relations

MB

MB þMK
¼ ðfþðEKÞ − f0ðEKÞÞ

M2
B

q2fTðEKÞ
; ð28Þ

MB

MB þMK
¼

��
1 −

EK

MB

�
fþðEKÞ −

f0ðEKÞ
2

�
M2

B

q2fTðEKÞ
:

ð29Þ

Both Eqs. (28) and (29) are expected to be valid at small
recoil (i.e. for EK → MK ≈ 0.5 GeV), while only Eq. (28)
[Ref. [69], Eq. (19)] should be valid for large recoil.
Figure 15 plots the form factor combinations (using
fTðμ ¼ 4.8 GeVÞ) as a function of EK. It shows the
expected constant value of the form factor combination

FIG. 14. The leading power of MH dependence in the form
factors at q2 ¼ 0 and q2max. The scale associated with the tensor
form factor, μ, is varied using Eq. (27).

FIG. 15. Combinations of B → K form factors, f0, fþ and
fTðμ ¼ 4.8 GeVÞ in Eqs. (28) and (29) compared with expect-
ations MB

MBþMK
from HQET [69] (dashed line). Uncertainties on the

HQET expectations are not included.

TABLE VI. Form factor results at the q2 extremes. As
described in the text, the fD→K

0 and fD→Kþ share data with the
results in [36] (included for comparison) so should not be viewed
as an independent calculation.

q2 ¼ 0 q2 ¼ q2max

This work

fB→K
0 ðq2Þ 0.332(12) 0.849(17)

fB→Kþ ðq2Þ 0.332(12) 2.78(11)
fB→K
T ðq2; μ ¼ 4.8 GeVÞ 0.332(24) 2.72(15)

fD→K
0 ðq2Þ 0.7441(40) 1.0136(36)

fD→Kþ ðq2Þ 0.7441(40) 1.462(16)
fD→K
T ðq2; μ ¼ 2 GeVÞ 0.690(20) 1.374(33)

c.f. D → K [36]

fD→K
0 ðq2Þ 0.7380(44) 1.0158(41)

fD→Kþ ðq2Þ 0.7380(44) 1.465(20)
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of Eq. (28) across the full q2 range. It also shows the
failure of Eq. (29) at large recoil (large EK).

D. Connecting B → K to other form factors

Figures 16 and 17 show the effect of changing spectator
quark mass on the b → s pseudoscalar meson to pseudo-
scalar meson form factors. We compare our B → K results
to the Bs → ηs results in [32], which differ only in the light
spectator quark becoming a strange quark, and Bc → Ds
results [38], where the spectator is a heavy (charm) quark.
We see very mild spectator quark dependence for the
light/strange quarks, at most a deviation of ≈1σ, which
is roughly consistent with the modest effect of setting
L ¼ 1 in Fig. 4. The transition to a heavy c spectator leads
to a much larger change. The heavier spectator gives a
smaller form factor at q2 ¼ 0 that rises more steeply to
q2max, which has a smaller value. The behavior of fT shown
in Fig. 17 is similar, but with a smaller shift at q2 ¼ 0.
We can also conduct a test of our chiral extrapolation

by comparison with the Bs → ηs in [32]. By setting

ml=ms ¼ 1, Mphys
B → Mphys

Bs
, Mphys

D → Mphys
Ds

, and Mphys
K →

Mphys
ηs in our evaluation of Eq. (25), we can obtain results

for Bs → ηs. These are not completely independent of the
results in [32] as they include shared data on two sets (see
Sec. II C). However, the correlator and z-expansion fits
used here and in that work are very different, and we do not
include data on set 8 (set 3 in [32]), nor the continuum
f0ðq2maxÞ data point that was added there. This makes
comparison of our results a strong test of our fit, particu-
larly the chiral perturbation theory element. Table VII gives
the results of our form factors evaluated at Bs → ηs, at
extremal q2 values. We see that they are in good agreement
with the results in [32], supporting our extrapolation in the
spectator mass. Additionally, we note that they agree very
well with the f0ðq2maxÞ value given in [74]. This point was
included in the analysis in [32], and here we demonstrate
that we are able to obtain a very similar result independ-
ently of this point.

FIG. 16. Comparison of our B → K scalar and vector form
factors with those of Bs → ηs [32] and Bc → Ds [38] to show the
impact of changing the spectator quark mass. In the lower panel,
we have multiplied the form factors by their common pole factors
to reduce the y-axis range and highlight the variation between the

form factors. We take P0ðq2Þ ¼ 1 − q2

M2
B�
s0

, Pþðq2Þ ¼ 1 − q2

M2
B�s
,

using the central values of the masses in Table V.

FIG. 17. Comparison of our B → K tensor form factor (at
μ ¼ 4.8 GeV) with those of Bc → Ds [38] to show the impact of
changing the spectator quark mass.

TABLE VII. A comparison of form factor results for Bs → ηs at
the q2 extremes, obtained here and in earlier work. As described
in the text, the f0 and fþ obtained here share data with the results
in [32] (included for comparison) so should not be viewed as an
independent calculation.

q2 ¼ 0 q2 ¼ q2max

This work

fBs→ηs
0 ðq2Þ 0.3191(85) 0.819(17)

fBs→ηsþ ðq2Þ 0.3191(85) 2.45(19)

fBs→ηs
T ðq2; μ ¼ 4.8 GeVÞ 0.370(78) 2.32(56)

c.f. Bs → ηs [32]

fBs→ηs
0 ðq2Þ 0.296(25) 0.808(15)

fBs→ηsþ ðq2Þ 0.296(25) 2.58(28)

c.f. Bs → ηs [74]

fBs→ηs
0 ðq2Þ � � � 0.811(17)
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E. D → K form factors

By evaluating our form factors at the D mass, we are
able to calculate scalar, vector and tensor form factors
for the D → K decay. The scalar and vector form factors
are in agreement with those in [36] (see Table VI for a
comparison). While these two calculations share a con-
siderable amount of raw correlator data, these data (except
for sets 1 and 2) are subject to very different and much
larger correlator fits here, involving more masses as well
as tensor three-point data, and the accompanying non-
Goldstone kaons. As well as these different correlator fits,
our heavy-HISQ method uses a very different modified z
expansion from that in [36], in order to include heavy-
mass dependence. That we see agreement here, with a
maximal difference of 1σ (assuming correlations are
modest), indicates that our uncertainties are of an appro-
priate size.
Our fit coefficients for the D → K form factors, along

with their correlations, are given in Table VIII. Our form
factors can be reconstructed from these values, or the
PYTHON script described in Appendix A can be used. As
discussed above, we run the scale of ZT down to 2 GeV for
the D → K results, as used in [72]. Following [42] this
involves multiplying by 1.0773(17), a factor which is
included in the aTn values in Table VIII and in our results
quoted in Table VI. Note that this is the same value used at
the MD end of results in Fig. 13.
Returning to the D → K end of the results in Fig. 13, we

again see good agreement with previous work, with the
exception of fTðq2max; 2 GeVÞ and fþðq2maxÞ where we are
in tension with ETMC [71,72]. This was found previously
for fþðq2maxÞ in [36].
Our tensor form factor is compared to that from [72]

in Fig. 18. We see that the uncertainty is reduced by
roughly a factor of 2 across the q2 range in our results.
Good agreement is seen with [72] at low q2. Additionally,

we report the ratio fD→K
T ð0; μ ¼ 2 GeVÞ=fD→Kþ ð0Þ ¼

0.928ð27Þ, which agrees with the 0.898(50) given in
[72]. However, our tensor form factor has a steeper slope
in q2 and at q2max there is disagreement at a level of 3.1σ.
Figure 19 gives the breakdown of statistical uncertainty

from each ensemble for the D → K form factors. It is clear
from Fig. 19 that, unlike in the B → K case above (Fig. 11),
the errors on all D → K form factors across the q2 range
are dominated by the coarser lattices, specifically the
physical sets 2 and 3, while again set 1 makes the smallest
contribution in all cases except fþðq2maxÞ. This makes
sense, as the physical charm mass is easily accessed on
all ensembles, so the heavy-quark extrapolation does not
play much of a role here. The extrapolation to physical
light-quark mass is relatively more important, so sets 1, 2
and 3 play a bigger role. Sets 1 and 2 do not contain
any tensor data; hence, set 3 is especially dominant in the
case of fT .

TABLE VIII. D → K values of fit coefficients aTn , the pole
mass in GeV, and the L term with correlation matrix below (see
Eq. (25) for fit form). The pole mass and L are very slightly
correlated due to the way the fit function is constructed. These
correlations are too small to have any meaningful effect on the
form factor values, but we include them for completeness. For
details on reconstructing our results, see Appendix A. aTn values
include a factor of 1.0773(17) from running ZT to μ ¼ 2 GeV.

aT0 aT1 aT2 Mphys
D�

s
L

0.522(15) −0.74ð13Þ 0.38(84) 2.11220(40) 1.3234(24)

1.00000 0.34687 0.03704 −0.00005 −0.06075
1.00000 0.61200 −0.01018 0.01148

1.00000 0.00069 −0.00046
1.00000 0.00003

1.00000

FIG. 19. Breakdown of the contributions to the statistical
uncertainty of the D → K form factors at their extremes from
data on each ensemble. Uncertainty from each ensemble σi is
added in quadrature, normalized by the total uncertainty squaredP

i σ
2
i . Sets 6 and 7 include contributions from Hs → ηs data.

FIG. 18. The green band gives our D → K tensor form factor at
μ ¼ 2 GeV, across the physical q2 range. Results from [72] are
included for comparison.
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F. Connecting D → K to other form factors

As with b → s decays above, we now have sufficient
information from accurate lattice QCD calculations to test
the impact on the pseudoscalar-to-pseudoscalar meson
form factors of changing the quark mass for the spectator
quark that accompanies the c → s decay. Figure 20 shows
this effect. We compare our D → K results to the Ds → ηs
results from [32] and, as for b → s, see a very gentle
dependence when we change the spectator from light to
strange. This agrees with the conclusions of [41] but is
much more compelling here because of the high precision
of both sets of form factors. The biggest deviation is for f0,
at the maximum q2 for Ds → ηs, where Ds → ηs is larger
than D → K by ≈2σ (or about 2%).
We can also compare with Bc → Bs form factors [34],

where the spectator quark is a b quark. This is a very big
change in spectator quark mass (roughly a factor of 1000)
and unsurprisingly we see a much bigger change. The form
factors for Bc → Bs have smaller values at q2 ¼ 0 (but only
by ∼20%) and rise much more steeply with q2 than is the
case with lighter spectator quarks. This trend is exactly the
same, but magnified by the larger quark mass change, as
that seen for the b → s case as we change from a light to a
charm spectator (compare Fig. 16).

V. CONCLUSIONS

We have performed the first Nf ¼ 2þ 1þ 1 lattice
QCD calculation of the scalar, vector and tensor form
factors for semileptonic B → K decay. As well as including
charm quarks in the sea and physical u=d quarks, our
calculation improves on earlier work in several ways.
We use the relativistic HISQ action for all valence quarks
(as well as the sea quarks), extending further the use of
HPQCD’s heavy-HISQ technique. In contrast to earlier
approaches, this method allows us to normalize the weak
currents accurately. The scalar and vector currents are
completely nonperturbatively normalized here, and the

tensor current uses an α3s-accurate matching from the lattice
to MS via a symmetric momentum-subtraction scheme in
which nonperturbative artefacts are fitted and removed
[42]. The heavy-HISQ approach combines results from
multiple heavy-quark masses with multiple values of the
lattice spacing and multiple momenta for the daughter
meson. The range of possible (physical) heavy-meson
masses grows on finer lattices as does the range of
daughter-meson momentum. Because the daughter-meson
momentum needed to reach q2 ¼ 0 is linear in the heavy-
meson mass, this means that we can cover the full q2 range
from q2max down to q2 ¼ 0 in our lattice QCD calculation.
This is also in contrast to earlier approaches that were
restricted to a q2 region close to q2max. Our form factors can
be reconstructed using the results in Table V, or by using the
code provided, and referring to Appendix A.
Our form factors are compared at the extremes of q2 to

earlier values in Fig. 13. This shows that our uncertainties
are a factor of 3 smaller at q2 ¼ 0, and comparable to
previous results at q2max. For B → K, our uncertainties on f0
and fþ are now below 4% across the whole physical q2

range and for fT the uncertainty is below 7% across the same
range (see Fig. 10).Our calculational strategy is optimized
for q2 ¼ 0 by the use of the temporal vector current. Results
using the spatial vector current are more accurate at large q2

(because of kinematic factors) and we show that in Fig. 5.
Uncertainties at large q2 in our results could straightfor-
wardly be reduced by calculating more correlation functions
with the spatial vector current. The important kinematic
region for phenomenology is that of small q2, however, so
we have concentrated on that here. Our statistical uncer-
tainties are dominated by our two finest (and most computa-
tionally costly) ensembles (see Fig. 11), and we have
demonstrated that our overall uncertainties are dominated
by these statistics. They could then be straightforwardly
reduced with more computing resources in the future.
Because the heavy-HISQ approach requires multiple

values of the heavy-quark mass, a map of the form factors
as a function of heavy-meson mass is obtained, connecting
those for D to those for B. The form factors are smooth
functions of heavy-meson mass in QCD and this is
illustrated most clearly by Fig. 13. We can also test
expectations from HQET (see Figs. 14 and 15).
Our results here for the vector and scalar form factors for

D → K are not independent of, and agree with, those given
in a recent HPQCD publication [36] based on D → K
correlators only. Here we give in addition the tensor form
factor. For fTðq2; μ ¼ 2 GeVÞ we have an uncertainty
below 3% across the full q2 range, roughly halving the
uncertainty given in earlier calculations [72]. Our results for
fTðq2; μ ¼ 2 GeVÞ for D → K are significantly higher
than those of [72] at large q2 values. Our form factors
can be reconstructed using the results in Table VIII, or from
the code provided (see Appendix A).

FIG. 20. Comparison of our D → K scalar and vector form
factors with those forDs → ηs [32] and Bc → Bs [34] to show the
effect of changing spectator quark mass.
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The smooth connection between B → K and D → K
form factors obtained in the heavy-HISQ approach is a
useful one, because at least the D → K vector form factor
can be compared to accurate experimental results for the
semileptonic D → K decay process. In [36] it was shown
that the shape of the D → K vector form factor obtained
from lattice QCD using HISQ agrees well with that
inferred from the experimental differential decay rate.
Since we do not expect new physics in the tree-level
D → K decay, this is a stringent test of (lattice) QCD. It
also provides a firm basis for the B → K form factors that
we obtain here as an extension to heavier mass of the
D → K results.
As well as being a smooth function of heavy- (parent)

quark mass, form factors in QCD are also a smooth
function of spectator quark mass. With accurate form
factors covering the full q2 range now available for a
range of processes using the HISQ formalism for all quarks,
we can make comparisons that show the impact of
changing the spectator quark mass. The conclusion is that
very large changes in mass are needed to achieve sizable
effects (see Figs. 16 and 20); very little is seen on
substituting a strange quark for a light one. Increasing
the spectator quark mass by a larger factor (substituting a
charm- or bottom quark for a light one) makes the trend
clearer, pushing the form factor downwards at q2 ¼ 0 and
compressing the q2 range. More comparisons of this kind
will become possible also for pseudoscalar to vector meson
decay channels as further sets of form factors become
available from lattice QCD. This will yield a more complete
picture of form factor behavior with implications for our
understanding of meson internal structure.
In an accompanying paper we will lay out in detail the

phenomenological implications of the improved form
factors for B → K that we have calculated here.
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APPENDIX A: RECONSTRUCTING
OUR RESULTS

Tables V and VIII should allow the reader to reconstruct
our form factors using details given in Sec. IVA and
Eq. (25). However, to make this easier, we attach an
ancillary PYTHON script and text file [75], which will
reproduce our fully correlated B → K and D → K form
factors at any q2 value chosen. The reader should only need
a PYTHON installation with the packages GVAR [54] and
NUMPY to run this script.
The PYTHON script make_BK_DK_ffs.py loads data

and correlations from BtoKandDtoKformfacs.txt and
contains functions make_fX_Y(qsq), where “X” can be
“0,” “p” or “T” f0, fþ and fT respectively and “Y”
values of “B” or “D” give the B → K or D → K
form factors. Running ‘python3 make_BK_DK_ffs.py’
with BtoKandDtoKformfacs.txt in the same directory
(and NUMPY and GVAR installed) should produce as
terminal output a number of tests. These give the form
factors obtained by evaluating the functions at various q2

values, and compare them with saved results (which are
given in the form “c.f. value”). These numbers should
agree, and you may also wish to compare the relevant ones
with Table VI as a sanity check. After this, using
make_BK_DK_ffs.py as a module and calling the func-
tions make_fX_Y(qsq) from another PYTHON script will
report the form factors for any chosen float or GVAR q2

value. Our form factors are only valid over the physical q2

range. Values of q2 outside of the range will result in a
warning but will still work, providing they do not cause z
to be imaginary.

APPENDIX B: ADDITIONAL COMMENTS
ON FORM FACTOR MH DEPENDENCE

As well as the heavy-mass dependence shown in Fig. 13,
we also provide information on the heavy-mass depend-
ence of our form factors at fixed q2 ¼ M2

D. This depend-
ence for B → π form factors, which are related to ours by
SU(3) flavor symmetry, is of interest in QCD factorization
studies of B → Dπ (e.g. [76]), where the heavy-
mass dependence of fB→πðq2 ¼ M2

DÞ is expected to be
fB→π ∝ M−3=2

H . We are able to test this behavior explicitly
by varying MH to reveal the MH dependence of
fB→Kðq2 ¼ M2

DÞ, relevant for a similar analysis to [76],
for the B → KD decay.
Figure 21 shows the heavy-mass dependence of the form

factors at q2 ¼ 0 and q2 ¼ M2
D. As above, the scale μ is

given by Eq. (27). The lower bound on the mass range
accessible to us is set at the point where q2max ¼ M2

D. We
see that towardsMH ¼ MB, the heavy-mass dependence of
the form factors at the two different q2 is similar, but that
this diverges quite rapidly at lower values of MH, particu-
larly for the vector and tensor form factors.
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The dominant power in theMH dependence is isolated in
Fig. 22, by plotting ðMH=fÞ × df=dMH (i.e. returning X if
f ∝ MX

H). The MH dependence of the form factors evalu-
ated at q2 ¼ 0 is relatively unchanged (i.e. nearly constant
X) for the plotted range of MH, while the form factors
evaluated at q2 ¼ M2

D show a more variable exponential
dependence.

APPENDIX C: CORRELATOR FIT RESULTS

Table IX gives the results of our correlator fits for the
Goldstone kaon, K, for each twist (momentum) on each
ensemble listed in Table I. The non-Goldstone kaon (K̂)
differs from the Goldstone by discretization effects which
we account for in our fit and does not feature directly in our
analysis. Likewise, in the last two columns of Table IX we
present for each energy the raw fit result Efit

K , as well as the
theoretical value, Etheory

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K þ jp⃗j2
p

, which again dif-
fers only by discretization effects. In practice, we only need
to consider EK in our analysis when we calculate q2. In this
case, we use the theoretical value as it is more precise, and

we account for discretization effects elsewhere in our fit.
Tables X, XI, and XII contain numerical results from our
two- and three-point correlator fits, across all eight gluon
ensembles listed in Table I. For each heavy mass and at
each q2 value, we provide the Goldstone heavy-mass MH,
as well as the matrix elements and the form factor values
obtained from these via Eqs. (2), (1), and (3). As before
with the kaon above, the non-Goldstone heavy-meson mass
does not feature directly in our analysis.

TABLE IX. Goldstone kaon energies from fits to correlators
on all gluon ensembles. The first column, θ, is the twist
value applied, which is converted to jap⃗j (shown in column 2)
using jap⃗K j ¼ θð ffiffiffi

3
p

πÞ=Nx. We then provide the theoretical
Etheory
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K þ jp⃗j2
p

, which is the value used in our analysis.
The fit result, Efit

K , which differs from this only by discretisation
effects, is given in the final column.

Set θ jap⃗j Etheory
K Efit

K

1 0 0.0000 0.37886(17) 0.37886(17)
2.013 0.3423 0.51059(13) 0.50984(54)
3.05 0.5186 0.64227(10) 0.6411(17)
3.969 0.6749 0.773970(85) 0.7702(53)

2 0 0.0000 0.303983(49) 0.303983(49)
2.405 0.2726 0.408334(36) 0.40820(25)
3.641 0.4128 0.512611(29) 0.51204(97)
4.735 0.5368 0.616870(24) 0.6148(23)

3 0 0.0000 0.218672(66) 0.218672(66)
0.8563 0.0728 0.230473(62) 0.230482(89)
2.998 0.2549 0.335841(43) 0.33554(88)
5.140 0.4370 0.488669(29) 0.4884(30)

4 0 0.0000 0.41621(18) 0.41621(18)
0.3665 0.1246 0.43447(17) 0.43443(19)
1.097 0.3731 0.55894(13) 0.55735(72)
1.828 0.6217 0.748141(99) 0.7451(33)

5 0 0.0000 0.33311(11) 0.33311(11)
0.441 0.1000 0.34780(11) 0.34790(12)
1.323 0.3000 0.448262(83) 0.44816(35)
2.205 0.4999 0.600744(62) 0.6001(19)
2.646 0.5999 0.686193(54) 0.6850(36)

6 0 0.0000 0.24238(11) 0.24238(11)
0.4281 0.0728 0.25308(10) 0.25306(12)
1.282 0.2180 0.325993(79) 0.32565(34)
2.141 0.3641 0.437369(59) 0.43642(86)
2.570 0.4370 0.499729(52) 0.4986(14)

7 0 0.0000 0.160189(88) 0.160189(88)
1.261 0.1430 0.214698(66) 0.21405(30)
2.108 0.2390 0.287691(49) 0.28712(73)
2.946 0.3340 0.370397(38) 0.3693(14)
3.624 0.4108 0.440952(32) 0.4390(25)

8 0 0.0000 0.118509(63) 0.118509(63)
0.706 0.0600 0.132843(57) 0.132953(97)
1.529 0.1300 0.175909(43) 0.17617(22)
2.235 0.1900 0.223949(34) 0.22405(39)
4.705 0.4000 0.417213(18) 0.4177(31)

FIG. 22. The dominant power of the MH dependence of our
form factors at q2 ¼ 0 and q2 ¼ M2

D, isolated using ðMH=fÞ×
df=dMH .

FIG. 21. TheMH dependence of our form factors at q2 ¼ 0 and
q2 ¼ M2

D.
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TABLE X. Results from fits to correlators on sets 1, 2, and 3, all of which have approximately physical light quark masses. For each
heavy quark mass there are four values for the K momentum, giving four different values for q2. For each of these values we give the
current matrix elements (the matrix elements for the vector and tensor are given before their respective normalisations ZV and ZT have
been applied). The final three columns give the values for f0ðq2Þ, fþðq2Þ (in this case only data from V0 is available) and
fTðq2; μ ¼ 4.8 GeVÞ, determined using Eqs. (1), (2), and (3). No tensor data was calculated on sets 1 or 2.

Set
amh ðaqÞ2 hKjSjHi hKjV0jĤi hK̂jT10jĤi f0ðq2Þ fV

0

þ ðq2Þ fTðq2Þ
aMH

1 1.1443(10) 2.524(13) 1.792(16) � � � 1.0236(49) � � � � � �
0.8605 0.76263(88) 2.236(12) 1.605(14) � � � 0.9066(46) 1.133(29) � � �
1.44857(46) 0.38113(75) 2.033(18) 1.480(21) � � � 0.8243(72) 0.912(14) � � �

−0.00042ð62Þ 1.861(54) 1.425(59) � � � 0.755(22) 0.755(22) � � �
2 0.72338(50) 2.1519(74) 1.4643(83) � � � 1.0240(31) � � � � � �
0.643 0.48244(44) 1.9015(60) 1.3104(68) � � � 0.9049(26) 1.123(13) � � �
1.15450(30) 0.24166(38) 1.713(10) 1.193(11) � � � 0.8154(49) 0.9029(90) � � �

0.00092(32) 1.561(21) 1.093(22) � � � 0.7428(98) 0.7430(98) � � �
3 0.37848(37) 1.6554(59) 1.0665(83) � � � 1.0149(33) � � � � � �
0.433 0.35880(36) 1.6209(59) 1.0463(81) 0.0796(30) 0.9937(34) 1.39(32) 1.199(46)
0.83388(30) 0.18307(30) 1.371(12) 0.900(15) 0.1959(72) 0.8405(71) 0.978(31) 0.843(31)

−0.07181ð21Þ 1.128(34) 0.776(42) 0.238(17) 0.692(21) 0.661(19) 0.597(42)

3 0.80193(77) 1.8293(87) 1.307(13) � � � 0.9916(43) � � � � � �
0.683 0.77563(76) 1.7896(85) 1.279(13) 0.1051(46) 0.9701(43) 1.67(72) 1.501(66)
1.11418(43) 0.54084(67) 1.504(14) 1.080(19) 0.2522(99) 0.8155(78) 1.154(85) 1.028(41)

0.20028(54) 1.242(41) 0.930(54) 0.300(22) 0.673(22) 0.738(43) 0.714(52)

3 1.03474(98) 1.905(10) 1.407(16) � � � 0.9837(49) � � � � � �
0.8 1.00557(97) 1.863(10) 1.376(15) 0.1164(55) 0.9620(48) 1.82(97) 1.634(77)
1.23589(48) 0.74512(87) 1.562(16) 1.154(22) 0.276(11) 0.8067(81) 1.25(12) 1.109(46)

0.36736(72) 1.293(44) 1.002(59) 0.330(25) 0.667(23) 0.771(65) 0.773(58)
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TABLE XI. Results from fits to correlators on sets 4, 5 and 6, all of which have ml ¼ ms=5. For each heavy quark mass there are
several values for the K momentum, giving different values for q2. For each of these values we give the current matrix elements (the
matrix elements for the vector and tensor are given before their respective normalisations ZV and ZT have been applied). The final three
columns give the values for f0ðq2Þ, fþðq2Þ (in this case only data from V0 is available) and fTðq2; μ ¼ 4.8 GeVÞ determined using
Eqs. (1), (2), and (3).

Set
amh ðaqÞ2 hKjSjHi hKjV0jĤi hK̂jT10jĤi f0ðq2Þ fV

0

þ ðq2Þ fTðq2Þ
aMH

4 1.16024(75) 2.5539(63) 1.8680(99) � � � 1.0150(22) � � � � � �
0.888 1.10569(74) 2.5089(58) 1.8358(95) 0.1413(37) 0.9972(20) 1.41(12) 1.192(32)
1.49335(38) 0.73394(65) 2.243(10) 1.660(13) 0.3420(75) 0.8913(40) 1.080(20) 0.964(21)

0.16885(52) 1.969(34) 1.530(39) 0.430(18) 0.782(13) 0.807(16) 0.727(31)

5 0.73640(43) 2.1641(51) 1.5039(56) � � � 1.0083(21) � � � � � �
0.664 0.70142(42) 2.1254(49) 1.4775(54) 0.1124(23) 0.9903(20) 1.40(14) 1.214(26)
1.19125(26) 0.46206(37) 1.9046(63) 1.3326(76) 0.2647(47) 0.8874(28) 1.088(18) 0.953(17)

0.09877(30) 1.673(20) 1.182(24) 0.322(11) 0.7797(94) 0.811(12) 0.694(23)
−0.10481ð25Þ 1.557(28) 1.107(33) 0.327(15) 0.725(13) 0.697(12) 0.588(27)

5 1.00245(58) 2.2493(62) 1.6260(68) � � � 1.0044(24) � � � � � �
0.8 0.96327(57) 2.2085(59) 1.5966(66) 0.1249(27) 0.9862(23) 1.51(20) 1.316(29)
1.33434(30) 0.69516(51) 1.9761(71) 1.4356(87) 0.2925(55) 0.8824(31) 1.155(27) 1.028(20)

0.28823(43) 1.733(22) 1.269(26) 0.354(12) 0.7738(99) 0.856(19) 0.747(25)
0.06019(38) 1.610(31) 1.187(36) 0.361(17) 0.719(14) 0.733(15) 0.635(30)

5 1.21276(70) 2.3094(69) 1.7106(79) � � � 1.0031(27) � � � � � �
0.9 1.17065(69) 2.2672(66) 1.6791(76) 0.1335(30) 0.9848(26) 1.59(24) 1.388(32)
1.43437(33) 0.88243(62) 2.0265(77) 1.5073(96) 0.3118(60) 0.8803(32) 1.205(35) 1.081(21)

0.44500(53) 1.771(23) 1.329(28) 0.376(13) 0.769(10) 0.886(26) 0.782(27)
0.19987(47) 1.647(33) 1.242(39) 0.384(18) 0.715(14) 0.760(21) 0.665(31)

6 0.38668(32) 1.6875(52) 1.1190(74) � � � 1.0089(29) � � � � � �
0.449 0.36819(31) 1.6571(51) 1.0994(75) 0.0830(27) 0.9907(28) 1.40(32) 1.268(41)
0.86422(27) 0.24216(27) 1.4757(74) 0.980(13) 0.1958(50) 0.8823(44) 1.096(41) 0.999(26)

0.04966(22) 1.279(14) 0.872(25) 0.2405(91) 0.7644(84) 0.791(11) 0.735(28)
−0.05813ð19Þ 1.210(26) 0.864(46) 0.254(14) 0.723(16) 0.701(16) 0.646(36)

6 0.57131(47) 1.7721(64) 1.2348(98) � � � 0.9986(33) � � � � � �
0.566 0.54996(46) 1.7395(62) 1.2124(99) 0.0949(34) 0.9802(32) 1.51(54) 1.407(51)
0.99823(32) 0.40439(41) 1.5451(85) 1.077(16) 0.2218(63) 0.8707(47) 1.181(73) 1.098(32)

0.18203(35) 1.336(16) 0.951(30) 0.270(11) 0.7531(91) 0.840(25) 0.801(33)
0.05753(31) 1.268(28) 0.928(50) 0.282(16) 0.714(16) 0.735(19) 0.698(40)

6 0.78019(63) 1.8513(75) 1.341(11) � � � 0.9888(37) � � � � � �
0.683 0.75611(62) 1.8165(72) 1.315(11) 0.1054(38) 0.9702(35) 1.62(71) 1.529(55)
1.12566(37) 0.59195(57) 1.6103(94) 1.165(17) 0.2453(70) 0.8601(49) 1.26(10) 1.188(34)

0.34121(49) 1.392(18) 1.026(32) 0.297(12) 0.7434(94) 0.889(41) 0.861(36)
0.20081(45) 1.322(31) 0.999(54) 0.310(18) 0.706(17) 0.771(34) 0.748(43)

6 1.00992(80) 1.9254(85) 1.385(42) � � � 0.9805(40) � � � � � �
0.8 0.98324(79) 1.8886(82) 1.361(40) 0.1186(82) 0.9618(38) 1.5(2.4) 1.69(12)
1.24733(40) 0.80134(73) 1.672(10) 1.211(49) 0.273(14) 0.8515(50) 1.27(35) 1.299(65)

0.52349(64) 1.444(19) 1.065(76) 0.330(22) 0.7355(96) 0.92(13) 0.941(63)
0.36793(59) 1.372(33) 0.967(98) 0.337(28) 0.699(17) 0.853(84) 0.800(66)
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TABLE XII. Results from fits to correlators on sets 7 and 8, both of which have ml ¼ ms=5. For each heavy quark mass there are
five values for the K momentum, giving five different values for q2. For each of these values we give the current matrix elements
(the matrix elements for the vector and tensor are given before their respective normalisations ZV and ZT have been applied). The final
four columns give the values for f0ðq2Þ, fþðq2Þ (from both V0 and V1 where present) and fTðq2; μ ¼ 4.8 GeVÞ determined using
Eqs. (1), (2), and (3).

Set
amh ðaqÞ2 hKjSjHi hKjV0jĤi hK̂jV1jHi hK̂jT10jĤi f0ðq2Þ fV

0

þ ðq2Þ fV
1

þ ðq2Þ fTðq2Þ
aMH

7 0.16548(20) 1.1890(57) 0.7398(68) � � � � � � 1.0073(45) � � � � � � � � �
0.274 0.10367(17) 1.0435(72) 0.6559(85) � � � 0.1241(44) 0.8841(60) 1.071(45) � � � 0.997(35)
0.56698(25) 0.02090(14) 0.923(20) 0.591(25) � � � 0.1502(76) 0.782(17) 0.808(21) � � � 0.722(37)

−0.072889ð96Þ 0.816(34) 0.529(39) � � � 0.156(14) 0.691(29) 0.620(28) � � � 0.535(49)
−0.152895ð62Þ 0.741(55) 0.507(60) � � � 0.163(23) 0.628(46) 0.523(49) � � � 0.455(65)

7 0.38171(46) 1.3252(88) 0.922(10) � � � � � � 0.9753(60) � � � � � � � � �
0.45 0.29690(42) 1.1584(95) 0.810(11) � � � 0.1605(59) 0.8525(68) 1.25(12) � � � 1.213(45)
0.77802(37) 0.18332(36) 1.021(24) 0.723(29) � � � 0.193(10) 0.751(18) 0.923(75) � � � 0.871(47)

0.05462(30) 0.902(43) 0.647(51) � � � 0.200(19) 0.664(31) 0.702(43) � � � 0.645(62)
−0.05516ð25Þ 0.823(68) 0.616(76) � � � 0.207(30) 0.606(50) 0.579(42) � � � 0.545(79)

7 0.61475(71) 1.426(11) 1.051(13) � � � � � � 0.9493(67) � � � � � � � � �
0.6 0.51181(66) 1.243(11) 0.920(13) 0.1917(48) 0.1870(72) 0.8277(74) 1.38(19) 1.381(28) 1.371(53)
0.94425(46) 0.37396(60) 1.092(28) 0.815(33) 0.2278(92) 0.224(12) 0.727(19) 1.02(14) 1.005(26) 0.980(55)

0.21777(52) 0.965(50) 0.724(58) � � � 0.231(23) 0.643(34) 0.770(92) � � � 0.724(72)
0.08453(46) 0.891(81) 0.698(96) � � � 0.240(35) 0.593(54) 0.627(74) � � � 0.613(90)

7 0.9854(11) 1.544(14) 1.199(16) � � � � � � 0.9199(77) � � � � � � � � �
0.8 0.8597(10) 1.344(14) 1.046(15) 0.2224(62) 0.2177(83) 0.8009(79) 1.55(30) 1.562(38) 1.554(59)
1.15285(54) 0.69140(93) 1.179(32) 0.917(35) 0.263(11) 0.260(14) 0.703(19) 1.16(22) 1.126(34) 1.109(61)

0.50070(84) 1.040(57) 0.798(64) � � � 0.264(26) 0.620(34) 0.89(17) � � � 0.806(80)
0.33802(77) 0.969(94) 0.78(11) � � � 0.275(39) 0.578(56) 0.70(15) � � � 0.682(98)

8 0.09183(13) 0.9331(48) 0.5553(58) � � � � � � 1.0120(48) � � � � � � � � �
0.194 0.07974(13) 0.8903(44) 0.5328(57) � � � 0.0616(22) 0.9657(45) 1.25(11) � � � 1.192(43)
0.42154(22) 0.04344(11) 0.7833(71) 0.4727(91) � � � 0.0995(39) 0.8496(77) 0.979(29) � � � 0.890(35)

0.002933(86) 0.699(18) 0.435(22) � � � 0.1109(55) 0.758(19) 0.764(20) � � � 0.678(34)
−0.1600035ð19Þ 0.53(11) 0.337(93) � � � 0.134(29) 0.58(12) 0.40(11) � � � 0.389(84)

8 0.37432(52) 1.137(10) 0.808(10) � � � � � � 0.9491(79) � � � � � � � � �
0.45 0.35338(51) 1.0813(94) 0.7705(94) 0.1036(30) 0.0973(36) 0.9026(72) 1.66(43) 1.743(43) 1.708(64)
0.73033(43) 0.29048(47) 0.943(12) 0.675(13) 0.1660(55) 0.1546(60) 0.7868(97) 1.26(15) 1.295(30) 1.254(49)

0.22031(43) 0.842(27) 0.620(30) � � � 0.1687(86) 0.703(23) 0.92(12) � � � 0.936(48)
−0.06198ð27Þ 0.63(14) 0.46(12) � � � 0.182(42) 0.53(11) 0.488(90) � � � 0.48(11)

8 0.60243(79) 1.229(14) 0.922(13) � � � � � � 0.9121(95) � � � � � � � � �
0.6 0.57678(78) 1.168(12) 0.877(12) 0.1205(41) 0.1139(45) 0.8667(86) 1.83(70) 1.976(61) 1.949(77)
0.89467(51) 0.49972(73) 1.016(14) 0.766(15) 0.1911(70) 0.1798(72) 0.754(10) 1.40(25) 1.453(42) 1.421(57)

0.41376(68) 0.911(32) 0.704(35) � � � 0.195(10) 0.676(24) 1.00(22) � � � 1.056(56)
0.06795(49) 0.70(17) 0.54(15) � � � 0.214(52) 0.52(12) 0.55(16) � � � 0.55(13)

8 0.9670(12) 1.341(18) 1.055(17) � � � � � � 0.875(11) � � � � � � � � �
0.8 0.9354(12) 1.273(16) 1.003(16) 0.1411(55) 0.1344(58) 0.831(10) 2.0(1.1) 2.273(86) 2.250(98)
1.10185(60) 0.8405(11) 1.105(18) 0.873(18) 0.2218(91) 0.2114(92) 0.722(11) 1.58(42) 1.657(60) 1.634(71)

0.7346(11) 0.991(37) 0.799(40) � � � 0.228(13) 0.647(24) 1.10(37) � � � 1.203(67)
0.30870(82) 0.65(15) 0.55(15) � � � 0.218(53) 0.421(98) 0.50(25) � � � 0.55(13)
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