Heat transfer in cavities: configurative systematic review

Saha, G., Al-Waaly, A. A.Y., Paul, M. C. and Saha, S. C. (2023) Heat transfer in cavities: configurative systematic review. Energies, (doi: 10.3390/en16052338)

[img] Text
291565.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

This study is a systematic review of research on heat transfer analysis in cavities and aims to provide a comprehensive understanding of flow and heat transfer performance in various kinds of cavities with or without the presence of fins, obstacles, cylinders, and baffles. The study also examines the effects of different forces, such as magnetic force, buoyancy force, and thermophoresis effect on heat transfer in cavities. This study also focuses on different types of fluids, such as air, water, nanofluids, and hybrid nanofluids in cavities. Moreover, this review deals with aspects of flow and heat transfer phenomena for only single-phase flows. It discusses various validation techniques used in numerical studies and the different types and sizes of mesh used by researchers. The study is a comprehensive review of 297 research articles, mostly published since 2000, and covers the current progress in the area of heat transfer analysis in cavities. The literature review in this study shows that cavities with obstacles such as fins and rotating cylinders have a significant impact on enhancing heat transfer. Additionally, it is found that the use of nanofluids and hybrid nanofluids has a greater effect on enhancing heat transfer. Lastly, the study suggests future research directions in the field of heat transfer in cavities. This study’s findings have significant implications for a range of areas, including electronic cooling, energy storage systems, solar thermal technologies, and nuclear reactor systems.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Paul, Professor Manosh and Saha, Goutam
Authors: Saha, G., Al-Waaly, A. A.Y., Paul, M. C., and Saha, S. C.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Energies
Publisher:MDPI
ISSN:1996-1073
ISSN (Online):1996-1073
Copyright Holders:Copyright © 2023 The Authors
First Published:First published in Energies 16(5): 2338
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record