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1. Introduction

Current miniature portable and implantable devices rely on bat-
teries that need replacement and are hazardous to patients.[1–3]

Surgical removal is required when replacing batteries in implant-
able devices, which may be inconvenient for patients.[4,5]

Moreover, implantable biomedical devices are often powered
using wires, which may cause discomfort, skin infections, and
other hazards to patients.[6] The key issues with implanting

batteries include metal poisoning for
patients due to battery degradation, thus
leading to malfunction in generating signals
and the damage of electronic circuits.[7]

Due to their high energy density, scav-
enging solar energy using photovoltaic
(PV) cells has emerged as a potential and
feasible solution to power miniature porta-
ble devices.[8,9] In general, the architecture
of these solar cells can be designed as reg-
ular, inverted, mesoporous, or planar struc-
tures. Furthermore, solar cells combine
various materials to enable efficient photon
absorption, electron transport, and electron
extraction to an external circuit. This means
there are vast opportunities for discovering
solar cell materials and architectures.[10]

In fact, solar cell fabrication techniques
involve optimizing different coating mate-
rials, thermal annealing conditions, encap-
sulation methods, etc., which often take
place in the research laboratory.[11] In spite

of their benefits, solar energy harvesters still have a number of
limitations, such as poor efficiency, rigidity, and stability.[12]

Despite these issues, there are a number of promising PV tech-
nologies that are working to overcome issues with high cost, effi-
ciency, and durability, such as perovskite solar cells (PSC),
organic solar cells (OSC),[13] and dye-sensitized solar cells
(DSSCs)[14,15] The stability and efficiency of these low-cost,
thin-film solar cells is still mainly poor due the effects of mois-
ture and temperature.[16] However, rapid progress in machine
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Machine learning (ML) and artificial intelligence (AI) methods are emerging as
promising technologies for enhancing the performance of low-cost photovoltaic
(PV) cells in miniaturized electronic devices. Indeed, ML is set to significantly
contribute to the development of more efficient and cost-effective solar cells. This
systematic review offers an extensive analysis of recent ML techniques in
designing novel solar cell materials and structures, highlighting their potential to
transform the low-cost solar cell research and development landscape. The
review encompasses a variety of ML approaches, such as Gaussian process
regression (GPR), Bayesian optimization (BO), and deep neural networks
(DNNs), which have proven effective in boosting the efficiency, stability, and
affordability of solar cells. The findings of this review indicate that GPR combined
with BO is the most promising method for developing low-cost solar cells. These
techniques can significantly speed up the discovery of new PV materials and
structures while enhancing the efficiency and stability of low-cost solar cells. The
review concludes with insights on the challenges, prospects, and future direc-
tions of ML in low-cost solar cell research and development.
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learning (ML) and artificial intelligence (AI) technologies sug-
gests that they can be used to improve the performance and accel-
erate the discovery of these low-cost solar cells.[17]

Moreover, the term “low-cost” solar cells generally refers to
thin-film solar cells since they are less expensive to produce than
conventional crystalline silicon solar cells. The production of low-
cost solar cells involves depositing a thin coating of semiconduc-
tor material (organic, inorganic, or a combination of both) onto a
glass or plastic substrate. Low-cost solar cells are cheaper than
crystalline silicon solar cells because they use less material and
do not need expensive machinery and processing techniques to
make them. Therefore, low-cost solar cells are becoming increas-
ingly popular for both large-scale solar power plants and for min-
iature portable electronic devices due to their affordability.[18]

Innovation in developing new low-cost solar cells is needed,
which can be achieved with the help of experimentally validated
finite-element modeling using software tools such as Sentaurus
TCAD.[19] However, this is a time-consuming effort, and leverag-
ing the power of AI can be a game changer in discovering new
materials and fabrication techniques to help expedite the process
of selection, design, and optimization.[20] In fact, the literature
suggests that low-cost thin-film solar cell performance can be
optimized using a variety of efficient computational and statisti-
cal methods.[21] From the systems perspective, ML algorithms
can also help develop reconfigurable PV cells based on switchable
CMOS addressable switches.[4]

Additionally, conjugation is a key characteristic of organic
materials, which are frequently used in such devices, and it plays
a crucial part in low-cost solar cells. Conjugated polymers or tiny
molecules with alternate single and double bonds frequently
make up the organic components in solar cells. For the effective
conversion of solar energy, conjugation enables the organic
materials to absorb light in the visible region of the spectrum.
An exciton, which is an excited state produced when a conjugated
substance absorbs light, can be split into electrons and holes to
produce an electrical current. The performance of low-cost solar
technology depends highly on conjugated materials’ capacity to
transport these electrons and holes through the device effectively.[22]

Furthermore, the distribution of electron density in the energy
levels of materials used in solar cell architecture, known as the
highest occupied molecular orbital (HOMO) and lowest unoccu-
pied molecular orbital (LUMO) pattern, is a crucial factor that
affects the solar cell’s efficiency in capturing photons and pro-
ducing electrical energy. Matching the HOMO and LUMO levels
of different materials used in the cell is a significant challenge in
solar cell design to optimize charge separation efficiency and
minimize recombination, which result in energy loss and decreased
efficiency.[23,24]

To investigate the characteristics of charge carriers (electrons
and holes) in solar cell materials, researchers use a method called
transient decay measurement (TDM) analysis. This analysis
involves monitoring the decay rate of photogenerated carriers
over time following a transient pulse of light. When sunlight
is absorbed by the material, it creates electron–hole pairs that
produce a photocurrent in the solar cell. The TDM analysis tracks
the time it takes for the photocurrent, which is related to the
recombination of electron–hole pairs, to decay. During the
recombination process, charge carriers combine and cancel each

other out, causing energy loss and reducing the efficiency of the
solar cell.[25]

Furthermore, in the literature, ML relates to the development
and ability of the model to learn to adapt, forecast, and predict the
independent variables.[26] ML algorithms consist of three types,
namely, supervised learning, unsupervised learning, and rein-
forcement learning.[27] The supervised ML approach takes the
input data from the user to learn from past experiences and,
accordingly, trains the model.[28] However, the unsupervised
ML train model depends upon the real-time data generated
and outputs depending on the information given by the user.
In contrast, reinforcement learning is the subset of ML that ena-
bles an AI-driven system (also known as an agent) to learn by
performing tasks and receiving feedback from its trials and
errors.[29] Herein, we discuss the various ML techniques in depth
that are applied to find an optimized structure for solar cells.[30]

Examples of ML techniques reported in the literature include
linear regression, logistic regression, k-nearest neigh- bours
(KNN), random forest (RF), etc.[31,32] However, every problem
requires a unique ML algorithm.[33] Every algorithm has unique
abilities and data requirements. For instance, due to nonlinear
relations in solar cells, linear regression would not be very help-
ful. For logistic regression, we have to assume that factors are inde-
pendent of each other, which might not be the case in solar cells.
Similarly, the purpose of KNN is to locate the nearest neighbors with
the best possible value. However, it is more suitable for continuous
variables. So, the use of ML in optimizing solar cells depends upon
the type of experiment, optimizing variables, and data type.

Since the fabrication of OSCs is cheap, most experimental
work is carried out via trial and error, which does not guarantee
the best performance.[34] Instead, researchers are now turning
their attention to data-driven techniques for material design
and discovery.[35] ML is one of the vital data-driven techniques
that is increasing to prominence in discovering new solar cells,
forecasting electrical characteristics, and performance prediction
without any experimentation.[36,37] ML uses algorithms to visu-
alize and analyze data that has several advantages over traditional
programming techniques.[38] This article reviews the different
ML algorithms used to find an optimized structure of a low-cost
solar cell. The output power can be optimized for different light
conditions and shading depending on the positioning of the solar
cells.[39] In our article, we discuss the integration of ML methods
for designing low-cost solar cells and, consecutively, explore the
literature on using different ML techniques for the advanced dis-
covery of solar cells.

1.1. Contributions to the Literature

In our systematic review, we analyzed the role of ML in the field
of solar cell design and material discovery. We conducted a sys-
tematic review of the applications of ML in the optimization, fab-
rication, and discovery of new photovoltaic materials. Our article
is the first effort to provide a systematic review in this domain.
The following are the major contributions of this article. 1) We
conduct a review of 58 papers from a total of 18 380 research
articles involving solar cell discovery, optimization, and fabrica-
tion using ML techniques. 2) We shortlist all ML models that can
help in the discovery of newmaterials. 3) We review the literature
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on low-cost high-performance solar cells using ML techniques.
4) Various ML techniques facilitating the discovery of solar cells
were considered in the study. 5) We investigate the techniques
used for the optimization of solar cells with the help of ML. 6) We
highlight the challenges associated with using ML techniques for
solar cell design.

1.2. State of the Art

During the past 5 years, there has been a surge in the use ofML and
AI techniques for designing new solar cells.[40,41] In this subsection,
we review previously published systematic review papers on this
field using ML techniques, and we discuss their limitations as well
as the contributions that this review provides to the literature.

Qiuling et al.[42] reviewed the ML techniques for only perov-
skite materials design and discovery. However, their review lacks
a comprehensive comparison of ML techniques for other low-
cost solar cells, such as organic, inorganic, hybrid, and
DSSCs. Additionally, Hannes et al.[43] discussed the challenges
of ambient hybrid solar cells for IoT devices, while the article
presented by Hannes et al.[44] reveals the study on solar cell
cracks using statistical parameters of electroluminescent images
using ML. However, both studies presented limited ML algo-
rithms to explore solar cell electrical characteristics.

Furthermore, Yongjie et al.[45] reviewed recent advances in
computational chemistry for OSC discovery and mentioned
the density functional theory (DFT), time-dependent DFT, all-
atomic molecular dynamics, and coarse-grained molecular
dynamics. Although their review covered OSCs, it lacked the
ML techniques to expedite the process. Next, Florian et al.[46]

reviewed the literature on designing light-harvesting devices
using ML, but the review was limited to only OSCs. Likewise,
a review paper presented by Sheng et al.[47] covered only ML
optimization of PCSs. The studies presented by Anton
et al.,[48] Min-Hsuan et al.,[49] and Cagla et al.[20] explored ML
approaches to discover solar cell performance analysis.
However, a major drawback in these studies was that limited
ML approaches were discussed and did not involve the scope
for optimization as well as the fabrication of solar cells in the
real environment.

Therefore, based on the above, state-of-the-art review articles
on ML for solar cell discovery focused mainly on a single ML
technique with a set of input data. In this work, we instead
aim to systematically review the range of ML techniques for
developing solar cells. These ML techniques include the proce-
dure to preprocess the input data, various ML algorithms, opti-
mization, and fabrication of the solar cell in a real environment.
In this context, our systematic review goes beyond existing liter-
ature as it showcases how various ML techniques can be used to
screen large numbers of materials for potential solar cell appli-
cations and to optimize the design of low-cost solar cells.

1.3. Organization of the Article

The rest of the article is organized as follows. The adopted meth-
odology in reviewing the literature is discussed in Section 2, and
the overall results of our systematic review in response to our
research questions are presented in Section 3. In Section 4,

we discuss areas of further study, future outlook, recommenda-
tions, and open research issues. Finally, summarizing remarks
are included in the conclusions section.

2. Review Methodology

In this section, we discuss our research objectives and our meth-
odology in collecting and synthesizing the literature on ML algo-
rithms for designing and fabricating low-cost, high-performance
solar cells.

2.1. Research Objectives

The four key objectives of our systematic review article are as
follows. 1) To review the range of ML techniques for designing
low- cost solar cells using historical data. 2) To identify the ML
techniques used specifically for the discovery of new PV materi-
als. 3) From a device perspective, identify the specific ML and
optimization techniques used for designing efficient solar cell
architectures. 4) To identify ML algorithms specifically used
for the fabrication of low-cost PV cells from the circuits and sys-
tems perspective.

Figure 1 maps our four research objectives and the process
involved in shortlisting the research articles. Initially, we focused
on extracting and preprocessing the historical data, followed by
the discovery of new materials and optimization of solar cells.
Finally, we reviewed the research articles that discussed the inte-
gration of ML for fabricating solar cells. Accordingly, in our sys-
tematic review, we defined these research objectives to target a
set of questions that are the need for the study. Additionally, we
shortlisted a set of research articles using the search engines
available on Google for extracting the recent research articles
published in this domain. This search was subsequently vali-
dated using the IBM Watson Studio tool.

2.2. Research Questions

Our systematic review aims to answer the following four
research questions.

RQ1: What are the data-driven approaches for designing low-
cost high-performance solar cells?

RQ2: How can ML algorithms facilitate the discovery of new
low-cost solar cell materials?

RQ3: What are the optimization techniques used for design-
ing an efficient low-cost solar cell architecture?

RQ4: What ML algorithms are used for fabricating low-cost
solar cells from a circuits and systems perspective?

2.3. Review Protocol

For structuring our systematic review, we instigated a review pro-
tocol, and the following are the perquisites of the adopted anal-
ogy. In this section, we discuss the search strategy, inclusion
criteria, exclusion criteria, and screening mechanisms for select-
ing relevant research papers.
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2.3.1. Search Strategy

Our review considered the latest research articles from major pub-
lishing houses that include IET, Science Direct, Nature, AIP, Wiley,
IEEE explorer, IoP science, ACS publications, and MDPI. Our
search also included non-prereviewed articles from arXiv.
Thus, we performed the critical appraisal using the AACODS
(Authority, Accuracy, Coverage, Objectivity, Date, Significance)
checklist as an evaluation and critical appraisal tool of grey literature
(publications and research created by groups not affiliated with con-
ventional academic or commercial publishing institutions).

We begin with queering all the repositories with different
research items. We defined the keywords such as “Machine
Learning,” “Data-driven approach,” “PV cell architecture,”
“Solar cells,” “Low-cost,” “Optimization,” and “fabrication” shown
in Table 1 for collecting our research articles. In Figure 2, we dem-
onstrate the Preferred Reporting Items for Systematic Review and
Meta-Analysis (PRISMA) model showing a screening of the short-
listed publications depending on our research questions. Articles
were scanned based on their title and abstract as well as a full-text
read of the publications. In addition, we developed search strings
using Boolean operators (AND, OR) to connect these keywords.

2.3.2. Inclusion Criteria

The following are the parameters used in the inclusion criteria.
1) We included only English-language articles involving the

data-driven approaches of designing solar cells using ML techni-
ques and were pertinent to the study issues such as poor data
quantity and data quality. 2) We included the pertinent articles
facilitating the discovery of only low-cost solar cells using ML
methods before determining their eligibility. 3) We included
comparative studies involving the optimization and robustness
of solar cells designed from ML services. 4) We targeted only
articles that discussed ML for solar cells, solar cell optimization,
and publications on ML integration on solar cells.

2.3.3. Exclusion Criteria

The following is a list of the exclusion criteria for shortlisting the
research papers based on our research objectives and targeted
research questions. 1) Research articles published in languages
other than English. 2) Research papers that are not available in
full text. 3) Editorials, survey reviews, abstracts, and brief papers
involving secondary studies are excluded. 4) Articles that did not
address the integration of ML approaches with solar cells and the
ones that involved the expensive manufacturing of solar cells.
5) The research articles published before 2018 were also excluded
due to the unavailability of quality input data that resulted in poor
implementation of ML techniques.

2.3.4. Screening Phase

Articles were further screened in two phases. In the first phase,
we examined the title and the abstract of each research article to

Figure 1. The objectives of our research are fourfold. The first objective, O1, involves identifying all the literature on low- cost solar cell designs using ML
techniques. Our second objective, O2, involves reviewing the literature onmaterials discovery, whereasO3 identifies specificML techniques used for optimizing
solar cell architectures. Finally, O4 involves classifying the range of ML algorithms for designing low-cost PV cells from a circuits and systems perspective.

Table 1. Keywords and their definitions used for our search from January’2018 to August’2022.

“Machine learning” The development of computer systems to adapt and learn without being given explicit instructions by analyzing data patterns. [142]

“Data-driven approach” The computer can personalize the information by using data to guide its activities. [143]

“PV cell architecture” The different combination layers, doping, meshing, contacts, thickness, etc. [144]

“Solar cells” Electronic devices capable of converting solar radiation directly into electricity. [145]

“Low-cost” All solar cells whose manufacturing process is less expensive than traditional crys-talline silicon solar cells. [18]

“Optimization” To utilize a situation or resource in the greatest or most efficient way possible. [146]

“Fabrication” The process of creating something (solar cells) through invention or production. [147]
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check whether they satisfied our inclusion criteria. In the sec-
ond phase, we further shortlisted our articles based on their
full text. It is worth mentioning that the same piece of writing
frequently appeared in various publications. For example,
conference papers frequently appear in journals. We take into
account the original writing each item was reviewed through-
out the screening stage two. At least two of the contributors of
this paper who were entrusted with classifying the items as
either pertinent or not pertinent might require more
research, as finalized until any such item is either published
or the authors have a discussion tagged as relevant or not.
Survey and review papers were excluded from our review.
Finally, each article was carefully classified and evaluated
thematically.

2.4. Review Results

In this section, we discussed the results that we obtained from
shortlisting the research articles. The publication trends such as
the number of articles published over a period of 5 years, the
number of articles per research question, and publishing houses
are discussed in detail in this section. In addition, we presented a

new state-of-the-art of approach to validate the research articles
using the IBM Watson Studio.

2.4.1. Publication Trends

Based on the information presented in the title and abstract, we
screened 82 manuscripts that satisfied our search criteria.
Following a second screening phase, only 58 papers were rele-
vant to our inclusion criteria.

In terms of publication trends, it appears that the majority of
research articles (67%) were focused on addressing research
questions RQ1 and RQ2, as demonstrated from Figure 3a.
Moreover, only 2 articles were published in IEEE Xplore confer-
ence proceedings, as shown in Figure 3b. Consequently,
Figure 3c represents the bar chart of the distribution of selected
publications according to their types for each year. Based on our
analysis, we can fairly comment that the maximum number of
papers are published in Science Direct in 2019, followed byWiley
in 2019; however, the least number of articles are published in
IET, IOP Sciences, IEEE Xplore Conferences, AIP, and Springer.
Furthermore, most articles were published with Science Direct,
Wiley, and ACS, as demonstrated in Figure 3c.

PHRASES

ML for solar cells’, ’Data driven approach for 

optimized, solar cells’, ’PV cell architecture’, 

’ML for enhancing the efficiency of solar cells’ 

and ’Detecting Low- cost Solar cells

using ML’ and ’PV optimisation for cost or 

efficiency trade off’
i

Total reviewed articles = 18,380
TOTAL ARTICLES Google Scholar = 17,543 

Web of science = 837

Articles Scanned on 
the basis of TITLE

Total Shortlisted = 428 
Google Scholar = 54 
Web of science = 21

ii

Articles Scanned on 
basis of ABSTRACT

Total Shortlisted = 82

iii
Articles Scanned on 

the basis of 
FULL TEXT

Total Shortlisted = 58

Number of Research 
QUESTIONS

Q1 Q2 Q3 Q4

22 17 11 8

Figure 2. The PRISMA model shows the process of shortlisting the research articles, including the screening phase based on our assigned research
questions from January 2018 to August 2022. The screening of the research articles was done on search engines such as Google Scholar and Web of
Science. The respective combination of keywords and phrases was added to the advanced search and subsequently, the articles were shortlisted from
manual screening. Further, the total research articles were manually screened based on reading the title, abstract, and full text of the research papers.
Therefore, the four questions, Q1, Q2, Q3, and Q4, resulted in a total of 22, 17, 11, and 8 research articles, respectively.
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2.4.2. Validation of Papers

Further, in order to validate the shortlisted research papers, we
used IBM’s Watson Studio tool which involves the process of
experimentation to deployment, as well as data exploration,
model development, and training. IBM Watson Studio is a data
science IDE tool designed to help data scientists develop ML
models. Moreover, using Watson Studio’s “smart suggestions,”
we simplified the shortlisted papers from predictions and push
models with the Watson ML platform across any cloud.

To perform this validation, details of each shortlisted paper
were first tabulated in a spreadsheet. Parameters such as the year
of the publication, the first author, the publisher, type of manu-
script (journal or conference) were fed as input data to Watson
Studio’s Auto AI tool. Further, to validate the papers, we run a
new project under the AutoAI experiment which allows the user
to build a fully automated ML model to predict or forecast the
parameter under consideration. However, we need to associate
different ML or Natural language Program- ming services and
compute the configuration of 8 vCPU and 32 GB RAM. Once
the configuration to run an ML model was set, then we uploaded
our data file (IBM3.csv) to our Watson Studio project. Uploading
the dataset also gives us an opportunity to visualize the dataset in
the form of charts and the Watson Studio tool automatically
arranges the dataset to avoid any null values in the data.
Therefore, once the input is provided to the Watson Studio
model, it processes for the ML algorithm automatically. Thus,
we set the predicted parameter, that is, the output result under
consideration to be the year of the publication.

In the AutoAI experiment, the tool automatically uses various
ML techniques after the analysis of the data. Here, for our model,
AutoAI applied Multiple Classification prediction types and the
model was optimized for root mean square error (RMSE) and
run time. After the experiment is run on the Watson Studio tool,
the dataset is read, split holdout (10%), read training data (90%),
preprocessing, and model selection are performed.
Consequently, the relationship map presented in Figure 4
describes the best feature transformers, pipelines used, and

the top algorithms. Moreover, the relationship map gives an indi-
cation of the best algorithm that is used by the AutoAI model and
highlights the path in terms of pipeline. Herein, pipeline 8
achieved top position due to its least computational time and
reduced path for feature transformers.

Accordingly, the progress map in Figure 5 shows the selected
algorithm, hyperparameter optimization, feature engineering,
and the most optimized feature transformers. Additionally,
the most optimized ML model used was Snap Logistic Regres-
sion, having pipeline 8 showing the accuracy of the shortlisted
papers, and finally, presenting the feature transformers such
as the principal component analysis, univariate feature selection,
and the product. There is a slight discrepancy in the accuracy of
the model due to the fact that the research articles highlighted in
different search engines, such as Google Scholar, Web of Sciences,
IEEE Xplore, etc., display research articles that are out of the scope
of our defined research questions in the methodology section. Also,
most of the research articles are repeated at different search engines
and whilst doing our manual search of the research paper, we sub-
tracted those articles.

3. Results and Analysis

This section of the systematic review discusses our shortlisted
research articles and how they are aligned with our research
objectives and questions. Figure 6 shows the workflow of the
planning (data extraction and data preprocessing), training
(applying various ML techniques and comparing the model’s
accuracy), testing (optimization), and execution (fabricating solar
cells in the laboratory) for discovering new solar cell architec-
tures. As previously mentioned, our review focuses on low-cost
solar cells such as PSCs, OSCs, and hybrids. Moreover, in
Figure 6, the block data synthesis discusses the data extraction
in a statistical form, Pearson’s correlation coefficient matrix,
solar cell architecture with layer combinations, and data prepro-
cessing for classification problems. Whereas the second block of
ML algorithms were supervised learning as well as unsupervised
learning for classification, support vector regression (SVR), KNN,

Figure 3. The figure demonstrates the publication trends for the defined research questions. a) Number of papers shortlisted as per the research ques-
tions from 2018 to 2022. b) Numerical count of research articles published in the conference or journal consecutively from 2018 to 2022 according to our
shortlisted questions. c) Periodic distribution of achieved articles, research articles, and peer-reviewed publications shortlisted depending upon our
research questions and research objectives according to the different publishers from 2018 to 2022.
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LR, support vector machine (SVM), and ANN. Furthermore, the
third block discusses the optimization techniques, for instance,
bandgap versus PCE curve, ternary contour plots, predicted ver-
sus calculated PCE, predicted versus ground truth curve, pre-
dicted accuracy of the ML model, and the total energy
dissipation versus time curve. Finally, the fourth block discusses
the fabricated solar cells.

3.1. Data-Driven Approaches for Designing Low-Cost
Solar Cells

Solar cells are typically designed with specific objectives, such as
reliability, affordability, efficiency, and stability. To predict the
structure of low-cost solar cells, research is ongoing to gather
and analyze data from previous solar cell fabrication experiments

in real-world environments. The quantity and quality of the
extracted dataset are crucial to the effectiveness of ML algo-
rithms. Based on the literature, larger input datasets generally
result in higher accuracy and lower functional error values.
Consequently, this section focuses on addressing RQ1.

3.1.1. Perovskite Solar Cells

Jino et al.[50] explored the application of the gradient boost regres-
sion trees (GBRT) ML technique[51] in the development of lead-free
perovskites. They compiled a dataset comprising electronic struc-
tures of potential halide double perovskites and employed GBRT
to estimate the bandgaps of these materials. Their results demon-
strated that GBRT could accurately predict the materials’ bandgaps,
enabling the identification of promising candidates for subsequent

Figure 5. The pipeline representation of the ML algorithms used to validate the shortlisted papers using the IBM Watson studio tool. Accordingly, the
algorithm uses ML techniques such as Snap Logistic Regression, Hyperparameter optimization, feature engineering, and another hyperparameter opti-
mization to determine the most optimized algorithm for predicting the shortlisted research papers.

Figure 4. This figure illustrates a relationship map that predicts the number of research articles published annually using the IBMWatson Studio tool. The
figure also provides valuable insights into the feature transformers, pipelines, and the top ML algorithms used to validate the shortlisted research papers.
To generate this map, we manually shortlisted research articles from Google Scholar and Web of Science and provided them as input data to the IBM
Watson tool. The AutoAI experiment tool then provided information on the research articles published based on our defined research questions for the
study at hand. Overall, this figure highlights the efficacy of using ML algorithms and tools like IBM Watson Studio for analyzing and predicting research
trends in various fields.
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investigation. Initially, they generated the dataset using two space
groups of the crystal structure with 540 hypothetical chemical com-
pounds of A2B

1þB3þX6. Finally, they conducted statistical analysis
on the attributes that were chosen to determine design principles
for the development of fresh lead-free perovskites.

Moreover, a study presented by Jinxin et al.[52] showed how
333 data points from nearly 2000 peer-reviewed papers were used
to build ML models for designing PSCs. Their ML models
included linear regression, KNN, RF, and artificial neural net-
works (ANN) for building two forecasting models, material prop-
erty characteristics and device performance prediction. The
higher R-value proves that the expected trend is consistent with
actual experiments and PSC physics. The highest theoretically
computed solar cell efficiency curve depending on the solar

spectrum has a bandgap area in the range of 1.15–1.35 eV,
and this bandgap region predicts a PCE of above 25%.

Moreover, Felipe et al.,[34] demonstrated a new data-driven
optimization framework to bridge the mismatch between R&D
and industrial production of solar cells. Further, their framework
incorporated scalable inference and technoeconomic analysis using
ML approaches to predict the root cause of the underperformance
in PSCs. They also compared traditional R&D optimization versus
their proposed total revenue optimization framework using linear,
binned, and nonlinear functions. Consequently, they presented
a case study for fabricating 144 PSCs choosing 12 various
combinations of dominant processes. In addition, they proposed
a surrogate-based blackbox model such as Gaussian process
regression (GPR) and Bayesian optimization (BO).[53]

(a)

(b)

(c)

(d)

Figure 6. The figure demonstrates the general workflow of the process of discovering low-cost solar cells using ML algorithms. The block diagram is
divided into four groups, (a) data synthesis, (b) ML algorithms, (c) optimization, and (d) fabrication. The first group (a) represents data synthesis, (i)
Discusses the data extraction in a statistical form, Reproduced with permission.[57] Copyright 2022, Elsevier. (ii) Pearson’s correlation coefficient matrix,
(iii) Solar cell architecture with layer combinations,[56] (iv) data-preprocessing for classification problems[57] and (v) Gradient-based extraction of data.[58]

The second group (b) represents ML algorithms, including (i) Classification, (ii) Regression, (iii) Clustering,[59] (iv) K-nearest neighbors (KNN), (v) Linear
regression, (vi) Support Vector Machine (SVM) and (vii) Artificial Neural Network (ANN). Reproduced with permission.[60] Copyright 2022, Nature. The
third group (c) discusses the optimization techniques, (i) Ideality Factor, Reproduced with permission.[61] Copyright 2023, Wiley-VCH GmbH. (ii) Ternary
contour plots, Reproduced with permission.[62] Copyright 2022, Elsevier. (iii) Predicted versus Calculated PCE. Reproduced with permission.[82] Copyright
2023, Wiley-VCH GmbH. (iv) Speed versus Temperature curve, Reproduced with permission, 2022, Joule, Elsevier. (v) Predicted accuracy of ML model.
Reproduced with permission[63]. Copyright 2023, Wiley-VCH GmbH. The fourth block discusses the fabricated solar cells. (vi) Reproduced with permis-
sion.[64] Copyright 2019, Elsevier and Reproduced with permission.[65–66] Copyright 2022, Wiley-VCH GmbH.
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In a conference, Maniell et al.[54] demonstrated how the opto-
electronics properties of PSCs can be predicted using ML meth-
ods. A model was developed for testing the bandgap of new
different types of PSCs, and the bandgap was capable of predict-
ing the chemical properties and material composition.
CSxMA1�xP bI3, CSP (IxBr1�x)3, and MAP b1�xSnxI3 were the
perovskite materials used for testing and resulted in bandgaps
ranging from 1.3 to 2.3 eV. In addition, their study presented
a curve showing the predicted PCE values from the ML model
versus the actual PCE from fabricated samples. Moreover,
another result showed that the predicted value of the fabricated
CSSnI3 was 1.15 eV whereas the fabricated sample had a
bandgap of 1.25 eV. Finally, their research article discussed vari-
ous ML models such as ANN, RF algorithm, and support vector
regression.

In addition, Li et al. demonstrated how ML can accelerate the
discovery and investigation of PSCs.[55] Their algorithms were
based on inverse temperature crystallization (ITC) and were used
to automate the process of evaluating single crystals of metal
halide perovskites, which allowed the researchers to quickly iden-
tify and perfect the conditions for the synthesis of high-quality
single crystals. Using 45 organic ammonium cations, 8172 metal
halide perovskite syn- thesis processes were carried out. The
screening enhanced the number of metal halide perovskite mate-
rials by five times and resulted in designing a new combination
of PSCs such as [C2H7N2][P bI3] and [C7H16N2][P bI4]. In addi-
tion, to enable experiment generation and data management,
they used a software pipeline called Experiment Specifica- tion,
Capture and Laboratory Autonomous Technology (ESCALATE).
Further, their research added 17 newmaterials (a 400% increase)
of metal halide perovskites, which are accessible via ITC. This
helped identify conditions that lead to the formation of perovskite
single crystals consisting of 19 of 45 target perovskite compositions.

In 2020, Yun et al.[36] investigated the ML lattice con-stants for
cubic perovskite A2XY6 compounds. Their dataset included a
broad spectrum of Fmm group perovskite halides and a total
of 79 samples. With lattice constants ranging from 8.109 A to
11.790 A, 79 cubic perovskite compounds were investigated.
The ionic radii of [K, Cs, Rb, Tl], [Ge, Mn, Ni, Pd, Pt, Si, Cr,
Pd, Ir, Mo, Pb, Re, Se, Ta, Sn, Te, Ti, W, Zr, Ru, Tc, Po, U,
Os, Hf], and [F, Cl, Br, I] were among those used as descriptors.
The GPR was used for determining the relation between the
ionic radii and the lattice constants for cubic perovskites. They
used MATLAB for the computational exploration of the model
and achieved CC, RMSE, and mean absolute error (MAE) of
99.72%, 65%, and 0.44%, respectively.

In addition, Chenglong et al.[56] presented a two-step ML
approach for PSC design, which was based on 2006 PSC data
points taken from peer-reviewed articles published between
2013 and 2020. The authors developed heuristics for high-
efficiency PSC, thus, improving PCE dependent on doping of
the electron transport layers (ETL). The main characteristic of
their study was to determine the development of high-perfor-
mance PCEs of PSCs. Their research showed that using SnO2

and TiO2 ETLs, mixed-cations perovskites, dimethyl sulfoxide,
and dimethyl- formamide, as well as antisolvent treatment, led
to even higher PCEs. Finally, they predicted that FA-MA-based
PSC with a Cs-doped TiO2 ETL and a Cs-FA-MA-based PSC with

S-doped SnO2 ETL were also expected to show PCEs of up to
30.47% and 28.54%.

To expedite the identification of prospective PV cells from 2D
perovskites, Hong-Jian et al.[57] integrated atomic-level prediction
withML and DFT. Their model implemented a gradient boosting
regressor (GBR), RF regressor, and an extra tree regressor
(EXTR) ML for training a dataset of 2303 perovskite materials.
Further, the trained model screened out 4828 materials and also
pre-screened using DFT structural relaxation validation from
29 285 artificial perovskites. In fact, a maximum PCE of
30.35% and 26.03% was achieved for Sr2V ON and Ba2V ON.

Likewise, Elif et al.[58] predicted the overall performance and
bandgap in PSCs. In her analysis, she used eight different PSCs
to forecast the bandgap and PCE of perovskites. Initially, they
performed the bandgap estimation of perovskites from Tauc
plots on UV–vis spectroscopy using the RF regression ML model
with more than one decision tree and experimental approach.
Later, they developed a model showing that the J–V spectra pre-
dicted values for calculating the PCE. Their results showed that
perovskites with bandgaps exceeding 0.99 eV could be used to
model various new lead halide structure perovskites depending
on the accurately predicted value of the bandgap.

Another case study presented by Xia et al.[59] combined ML
techniques with an efficient forward-inverse method to research
MASnxP b1xI3 material and explored high- performance PSCs.
With 14 physicochemical parameters and the Sn–Pb ratio as
inputs, the Eg model ofMASnxP b1xI3 was first developed for for-
ward analysis, and the asymmetrically bowing relationship
between the Sn–Pb ratio and the Eg of OMHP was used. The
established NN-based models for PSC performance models
showed good predictions for the data points and offered signifi-
cant insights for PSC devices. Further, for the performance
model, a comparison of the prediction model was made with
the ML algorithms such as LR, SVR, KNR, RFR, and GBR. In
fact, ML models with GBR performed best with values of R2,
RMSE, and MAE reaching 0.9172, 0.0386, and 0.0325.

3.1.2. Organic Solar Cells

A rigorous framework involving the classification of the chemical
structures in materials discovery was presented by Shinji et al.[60]

Further, the dataset of 249 Organic donor–acceptor pairs were
computed based on equilibrium geometries and electronic prop-
erties such as DFT simulations. Initially, their study discussed
predictions using Scharbar’s model and resulted in a small-
energy bandgap of 1.5 eV between the experimental and the
computational energy bands. Moreover, they implemented k-
NN regression for predicting OSCs characteristics and their
PCEs. Finally, the study concluded that k-NN results in correla-
tions of 0.6, which were further improved to 0.7 by implement-
ing nonlinear kernel methods.

In addition, Harikrishna et al.[61] investigated the PCE of OSCs
using ML techniques. They developed a dataset of 280 small-
molecule OSCs with 270 distinct donors. First, they analyzed
the significance of orbitals in the energy conversion process
and developed ML models using the characteristics of organic
compounds to estimate the PCE for high-through- put virtual
screening. In another study, they implemented ML methods
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to study the correlations between the molecular properties and
the device characteristics of an OSC.[62] The authors designed
ML methods based on 13 molecular properties as descriptors
to predict the three device parameters such as VOC, JSC, and
the fill factor. In addition, the calculations were carried out on
Gaussian 09 package for a computational server having Intel
Xeon 5115 CPUs. They combined multiple regres sion trees
along with RF and GBRT to incorporate the ML methods.
Further, screening of the potential compounds by these models
results in high predictive ability (r= 0.7).[63]

In a study by Daniele et al.,[64] they performed computer-aided
screening of polymer-based OSCs using ANN and RF models.
Their dataset included 1000 experimental features, such as
PCE, molecular weight of organic compounds, and various elec-
tronic properties. While the correlation coefficient of the ANN
model was low, the RF model yielded higher accuracy in predic-
tions. In another study, Min-Hsuan et al.[65] applied RF regression
to analyze nonfullerene-based OSCs, aiming to predict their over-
all efficiency. They compiled a dataset of 135 nonfullerene accep-
tor/donor pairs (117 nonfullerene acceptor materials and 30 donor
materials) based on OSCs to investigate their electronic properties
and device performance. Their ML model demonstrated high pre-
dictive power, achieving a coefficient of determination (R2) of 0.85
for the training set and 0.80 for the testing set.[66]

Furthermore, Xiaoyan et al.[67] demonstrated an optimization
technique to assess the potential of organic photovoltaic (OPV)
materials and solar cell devices for industrial production. They
presented an automated characterization of OPV materials,
device performance, and photostability. The GPR ML technique
drove the optimization method with optical absorption character-
istics and indicated better prediction accuracies for PV electrical

characteristics. Moreover, the efficiency and photostability
screening for 100 process conditions were completed in 70 h.
They also proposed a model material system of PM6:Y6;
completely automated device fabrication in air resulted in a max-
imum PCE of 14%.

In one of the latest papers published by Ahmad et al.,[68] they
discuss the implementation of ML to screen small-molecule
donors for OSCs and molecular descriptors feed ML methods.
The coauthors collected a dataset of 340 OSC devices with donors
represented as small molecules, while acceptors as fullerenes for
the ML-assisted pipeline suitable for small-molecule donors for
Y6 (an electron acceptor). In addition, they performed ML analy-
sis on an open-source platform called Konstanz Information
Miner (KNIME). Further, for training the model, the dataset
was divided into training sets, validating sets and external test
sets. Also, the descriptors and experimental PCE were used as
input to the ML model. They compared the result depending
on various regression techniques, such as RF, LR, SVM, and
k-NN, for the prediction of PCE. Using data from small donors
paired with fullerenes, the SVM model was trained and showed
higher prediction ability. The PCE of a few small-molecule
donors linked with Y6 was predicted using their approach and
developed are more than 1000 new small-molecule donors.
Accordingly, the PCEs were anticipated, and the top 10 applicants
with a PCE of over 13% were chosen in their study.

In addition, Figure 7 shows the information on input data for
various materials that were reviewed based on our defined
research questions for three types of solar cells such as PSCs,
OSCs, and hybrid. Most of theML algorithms used in the process
are highlighted to determine the resultant output in terms
of electrical characteristics of reconfigurable solar cells.

[10]
A B B X

[12]

144 PSCs with12
combinations

[11]

333data
points

[17]

8 different
PSCs

[13]
C MA PBI

[14]

8172Metal
halide

Cost

[18]
MASn Pb1

[15]
SnO ,TiO

ETLs

[16]

Sr VON Overall Performance

Ba VON

PerovksiteSolar Cells Optimization

[20]
270 distinct
donors

Organic Solar Cells PowerConversionEfficiency

Hybrid Solar Cells

[19]
249Organic

donor-acceptor

[26] [27]
70Tandem 6 Hyper

OSCs parameters

[28]
566 donor-

acceptor

Accuracy
of

MLmodel

LossFunctions/Error
[21]

13Molecular
properties [31]
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I

[30]
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[23] [22]
135non - 1000
fullerene experimental

Figure 7. Information on input data for various materials that are reviewed based on our defined research questions for three types of solar cells such as
PSCs, OSCs, and hybrid. The majority of ML algorithms used in the process are highlighted to determine the resultant output in terms of electrical
characteristics of reconfigurable solar cells. The numbers in the box of the input data section are linked with reference numbers answering our RQ1 for
PSCs, OSCs, and hybrid solar cells.
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The numbers in the box of the input data section are accordingly
linked with reference numbers answering research question 1
(RQ1) for PSCs, OSCs, and hybrid solar cells.

3.1.3. Hybrid Solar Cells

Another article presented by Min-Hsuan et al.[49] investigated the
performance and matching band structure for Tandem OSCs by
implementing two ML methods, RF and the SVR. The ML tech-
niques were initially developed using 70 tandem OSCs (37 con-
ventional and 33 inverted tandem OSCs), which were used as the
data points. Furthermore, to understand the structure, they cal-
culated Pearson’s correlation coefficient.

Among the two ML methods, the efficient method for fore-
casting solar efficiency was the RF regression having eight elec-
tronic features of selection.[69]

Moreover, to address the stability concerns with PSCs, Tian-
min et al.[70] used a progressive ML algorithm to investigate the
impact of input data by providing a reliable and accurate
approach for deep mining of the hidden hybrid organic–
inorganic solar cells. To predict the electronic bandgaps of hybrid
organic-inorganic perovskites (HOIP), they implemented GBR,
SVR, and KRR using material property. The best results from
six hyperparameters were chosen. They also used DFT calcula-
tions for the chosen hybrid inorganic organic (HIO) perovskites
and incorporated them into the Vienna Ab-initio simulation
package (VASP). Their results show that the GBR model per-
forms with the highest level of accuracy (R2= 0.943,
MAE= 0.203, MSE= 0.086) when compared to the SVR
(R2= 0.826, MAE= 0.367, MSE= 0.276) and KRR
(R2= 0.819, MAE= 0.387, MSE= 0.288) models.[71]

The effect of enhancing the descriptors using ML prediction
for small-molecule-based OSCs was discussed by Zhi-Wen et al.
in his study.[72] The dataset consists of a total of 566 organic
donor–acceptor (D/A) pairs found from the literature search,
with 513 unique donors and 33 unique acceptors (including
C60, P C61BM, P C71BM, ITIC, IDTBR, IDIC, PDIs, etc.) among
the donors. Further, they implemented ML models including the
k-NN, KRR, and SVR to predict the PCE of hybrid solar cells.
Also, the study examined Pearson’s correlation coefficient for
the combinations of descriptors, including donor molecules
and device parameters.

In another study presented by Yao et al.,[73] five different ML
algorithms were used and gave 565 donor–acceptor combina-
tions for training the dataset. Furthermore, to implement the
material design and donor–acceptor pairs, the screening of non-
fullerene in OSCs was performed. They used 565 donor/acceptor
(D/A) combinations as training data sets in their study to assess
the viability of these ML algorithms for use in directing material
design and the screening of D/A pairs. Therefore, the ML
techniques RF and BRT offer the best prediction capacities.
Additionally, RF and BRT models are screened and estimated
to be more than 32 million D/A pairs, respectively. Finally, six
photovoltaic D/A couples are picked and synthesized so that their
experimental and predicted PCEs can be used for critical
comparison.

In an investigation presented by Kakaraparthi et al.,[74] the co-
authors used the RFmodel on an experimental dataset consisting

of 0.85 correlation coefficient for the ML of nonfullerene and
polymer OSCs. Moreover, 200 932 conjugated polymers pro-
duced by the combinatorial coupling of acceptor and donor units
were screened virtually. Additionally, a number of conjugated
polymers centered on benzodithiophene and thiazolothiazole
were created, produced, and studied using various alkyl chains
in order to assess the efficacy of the ML model. In terms of
the selection of alkyl chains, PBDTTzEH: IT-4F demonstrated
a PCE of 10.10% and, thus, shows good predictions while using
ML techniques.

One of the primary concerns with perovskites is their stability.
As a result, Shijing et al.[75] demonstrated how to discover themost
stable organic–inorganic alloyed perovskites using a sequential
learning framework. They introduced a data-fusion approach
for estimating Gibbs free energy of mixing from DFT and experi-
mentally analyzed degradation using aging tests. Moreover, they
appliedML probabilistic constraints in an end-to-end BO approach
to combine data from high-throughput degradation testing and
first-principle simulations of phase thermodynamics. The results
showed that perovskites centered at CS0.17MA0.03F A0.80P bI3
exhibit low optical change with increased temperature, moisture,
and light having more than17-fold stability improvement over
MAP bI3 by sampling 1.8% of the discretized CSxMAyF A1xyP
bI3 compositional space (MA, methylammonium; F A, formami-
dinium; P bI3, lead halide).

3.2. ML to Facilitate the Discovery of Solar Cells (Q2)

This section discusses the research articles and peer-reviewed jour-
nals related to the discovery of solar cells using ML techniques.

3.2.1. Discovery of Organic Structures

Tianmin et al.[76] presented a goal-oriented approach to expedite
the identification of hybrid organic–inorganic perovskites
(HOIPs) suitable for photovoltaic applications from a pool of
230 808 HOIP candidates. They integrated ML techniques with
density functional theory (DFT) calculations. After applying charge
neutrality and stability criteria, 686 orthorhombic-like HOIPs with
suitable bandgaps were selected and further screened using ML.
The ensemble learning approach employed three ML models—
GBR, SVR, and KRR—to predict the bandgaps of 38 086 HOIP
candidates. Ultimately, DFT calculations confirmed 132 stable,
nontoxic orthorhombic-like HOIPs (devoid of Cd, Pb, and Hg)
with appropriate bandgaps for solar cell applications.

Oleksandr et al.[77] employed ML in a feedback loop to learn
from experimental data, recommend exploration of experimental
parameters, and identify areas in the synthetic parameter space
that would allow for highly monodispersed PbS quantum dots.
Their findings revealed that a method that yields a record-large
bandgap (611 nm exciton) of PbS nanoparticles with a well-
defined excitonic absorption peak half-width at half-maximum
(HWHM) of 145meV which enables nucleation to prevail over
growth by incorporating a growth-inhibiting precursor (oleyl-
amine). They also enhanced monodispersity at longer wave-
lengths with HWHM values of 55meV at 950 nm and 24meV
at 1500 nm, surpassing the best-reported values of 75 and
26meV, respectively.
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Double chalcogenide perovskites were investigated in a study
presented by Michael et al.[78] to find new photovoltaic absorbers
that can take the place of CH3NH3PbI3. ML approaches were used
to categorize materials as potential pho tovoltaic absorbers using
information from the periodic table, thus avoiding unnecessary
computation due to the wide range of possible compounds.
On the created data set, a random forest method obtains a
crossvalidation accuracy of 86.4%. Traditional and statistical
approaches are used to identify over 450 potential alternatives,
with Ba2AlNbS6, Ba2GaNbS6, Ca2GaNbS6, Sr2InNbS6, and
Ba2SnHfS6 emerging as the most promising options when ther-
modynamic stability, kinetic stability, and optical absorption are
taken into account.

Nastaran et al.[79] in a study showed that ML techniques were
used by computationally intensive DFT simulations to quickly
and precisely estimate the properties of OPV materials. One-
hot descriptors, OPV PCE, open-circuit potential (), short-circuit
density (JSC), HOMO energy, LUMO energy, and the HOMO–
LUMO gap were all quantified in the study. With a standard error
of 0.5 for a percentage of PCE for both the training and test sets,
the most reliable and predictive models were able to predict PCE.
Their methodology helps to expedite the design of OPVs for use
in green energy applications by prescreening possible donor and
acceptor materials.

An ML framework introduced by Noor et al.[80] involved opti-
mizing the capping layer of perovskite degradation. They fea-
tured 21 organic halide salts, used them as capping layers on
(MAPbI3) films, aged them rapidly, and implemented supervised
ML and Shapley values to identify factors deter- mining stability.
They discovered a correlation between higher MAPbI3 film
stability and organic molecules’ limited number of hydrogen
bonding donors and tiny topological polar sur- face area.
Phenyltriethylammonium iodide (PTEAI), the best organic
halide, successfully increases the stability lifespan of MAPbI3
by 4 2 times over bare MAPbI3 and 1.3 0.3 times over cutting-
edge octylammonium bromide (OABr).

Zhilong et al.[81] developed a goal-oriented approach that lev-
erages ML to accelerate ab initio predictions of undiscovered
spinels in the periodic table. Utilizing this method, they success-
fully identified eight spinels with direct bandgaps and room-
temperature thermal stability out of 3,880 unknown spinels
(CaAl2O4, CaGa2O4, SnGa2O4, CaAl2S4, CaGa2S4, CaAl2Se4,
CaGa2Se4, CaAl2T e4). They created a semiconductor
classification model based on the XGBoost technique, which
demonstrated a strong structure–property relationship, a high
prediction accuracy of 91.2%, and low computational cost of
just a few milliseconds. This proposed goal-oriented strategy
facilitates the design of a broad range of energy materials, reduc-
ing the research time required for spinel screening by almost
3.4 years.

The accuracy for predicting the bandgap of an OSC is a vital
factor in terms of the characterization of solar cell devices.
Accordingly, Yiming et al.[82] used ML algorithms to predict
the performance of different architectures for the compound
ABX3 type in PSCs. Also, they gathered 227 experimental data-
sets consisting of the bandgap of perovskites extracted from
recently published 1254 publications. For their model, they used
ML methods such as RF, XGBoost, LR, k-NN, SVR, and multi-
layer perceptron (MLP). Their prediction analysis from ML

models showed that B-site metal and the X-site halogen ion have
a significant impact on bandgaps of the ABX3-type perovskites
from SHAP explanations.

Muhammad et al.[83] did the critical analysis of the small- mol-
ecule donors for OSCs such as fullerene using the ML methods.
In order to train the ML model, they used molecular descriptors
as an input and consecutively, they implemented a number of
ML techniques to measure the best ML algorithm for the desired
outcome. The dataset used in the study consists of 250 OSCs
having a combination of acceptors and donors as fullerenes
(P C61BM and P C71BM). They used the platforms like
Konstanz Information Miner (KNIME) and Weka platforms to
implement the ML model and thus, the RF model resulted in
the best predictive model with Pearson’s coefficient as 0.93.
Finally, to determine the most efficient materials, the PCE value
for the small-molecular donor was predicted.

3.2.2. Discovery of Hybrid Halide Structures

With multiple newly developed, computationally economical,
and high-performing (Pearson’s correlation coefficient= 0.7–
0.8) ML models employing pertinent descriptors, Harikrishna
et al.[84] carried out high-throughput virtual screening of 10 170
candidate compounds, assembled from 32 distinct building
blocks. Furthermore, to create effective molecules, crucial build-
ing elements are recognized, and new design principles are
implemented. Additionally, 126 candidates are suggested for syn-
thesis and device fabrication with theoretically projected effi-
ciency >8%.

Moreover, Shohei et al.[85] devised a rapid material search
scheme based on materials informatics for PSC materials
following the existence of viable alternative perovskites
Table 2. In fact, more than 28 million double-perovskite-like
compounds were screened using this method. Additionally, five
organic–inorganic tin–halide perovskites as well as 17 potas-
sium-, sodium-, and ammonium-based tin–halide perovskites
were among the 24 most promising possibilities found.
Promising solar cell materials included two perovskites based
on transition metals.

Further, Lifei et al.[86] constructed N-annulated perylene sen-
sitizers and put forth one goal-directed approach that combined
quantum chemical analysis with data mining approaches. Using
MLR to build the robust quantitative structure–property relation-
ship (QSPR) model, they were able to identify the key character-
istics using genetic algorithm (GA). The potential dyes were then
created using the model’s recommendations. The proposed
molecules’ overall PCEs were anticipated by the model to be
15.7%, up 22.0% from reference dyes C281.

For the electrical characteristics of metal halide perovskites
(MHPs), which possess a vast materials design space in the
billions range, Wissam et al.[87] employed CNN to create a pre-
dictive model. Furthermore, they demonstrated that as compared
to simple techniques, a well-designed hierarchical ML strategy
offers a higher degree of predictability in terms of MHP features.
The bandgaps for the MHPs’ lattice constants, octahedral angle,
and RMSE were all calculated using the hierarchical ML
scheme, and the corresponding RMSE values were 0.01 eV,
5 degrees, and 0.01.
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Yaping et al.[88] combined ML with computational quantum
chemistry results in the establishment of an accurate, reliable,
and interpretable QSPR model. The predictive model was used
to perform virtual screening and assess synthetic accessibility in
order to discover novel, efficient, and easily synthesized organic
dyes for DSSCs. Finally, out of almost 10 000 candidates, eight
promising organic dyes with high PCE and synthetic accessibility
were eliminated.

Moreover, Zongmei et al.[89] investigated the discovery of PSC
materials via ML stability and calculated the bandgap of lead-free
halide perovskite materials. They performed a comparative
analysis of four different ML techniques such as the RF, ridge
regression, SVR, and the GBR tree. Among these four ML tech-
niques, XGBoost gave the highest predictive performance i.e.,
R2:0.9935 and MAE:0.0126 in terms of thermodynamic stability,
and accordingly, the RF gave the highest predictive performance,
that is, R2:0.9410 and MAE:0.1492 for bandgap analysis of the
lead-free halide double PSCs. Moreover, their study showed an
interesting result that XBoost performs best when considering
the thermodynamic stability and electronegativity’s linear
correlation.

Furthermore, Jialu et al.[90] demonstrated that the discovery of
double-hybrid organic–inorganic perovskites (DHOIPs) can be
accelerated by integrating ML techniques, high-throughput
screening, and DFT. In contrast to other studies, the anisotropy
of organic cations of DHOIPs was first assessed, and then the
properties were predicted using an ML technique using low-level
calculations to predict the properties of DHOIPs accurately.
From 78 400 DHOIPs, 19 promising ones with suitable bandg-
aps for solar cells were selected and verified using HSE06
calculations.

John et al.[91] investigated that bias, temperature, light, and
H2O, O2, and air pressure affected device performance and
recovery. They first talked about important studies that assess
the 3 R cycle’s capabilities of perovskites and how ML algorithms
may help determine the best values for each operating parame-
ter. They then looked at perovskite dynamics and degradation,
highlighting the difficulties in understanding this 3 R cycle.
Finally, they suggested anML paradigm with a shared knowledge

library for improving long-term performance and forecasting
device performance recovery.

3.2.3. Discovery of Solar Cells Using Natural Language Processing

In another study, a framework related to the high-throughput
synthesis of the PSCs was discussed with ML image recognition
used for automated characterization by Jeffrey et al.[92] Perovskite
single-crystal synthesis was carried out at high throughput, and
the results were identified using convolutional neural network
(CNN)-based image recognition. Also, they quickly created 96
distinct crystallization environments using a protein drop setter
and then examined the crystals. On the other hand,a CNN was
used to determine if crystals had been produced using a dataset
of 7,000 photographs. Then, a larger dataset of 25 000 photos was
employed with this classifier. The first synthesis of (3 � P LA)2P
bCl4 was then achieved after they employed ML modeling to pre-
dict the ideal conditions for synthesizing a novel perovskite sin-
gle crystal.

A study presented by Lei et al.[93] showedML techniques based
on natural language processing (NLP) to predict the properties of
solar cell materials, which were then examined using first-
principle calculations. The aim of the study was to reduce the
amount of human interaction and enable computers (without
supervision) to learn the latent knowledge about solar cell mate-
rials depending on the textual data and generate predictions
about the composition of solar cells. The first-principles calcula-
tions were used to determine the projected material’s density of
states, UV–vis absorption spectra, as well as band structures in
order to assess their suitability for photovoltaic applications.
The formula and targeted keywords for solar cells were repre-
sented as vectors in the ML process, which facilitated the success-
ful relationship extraction of the materials and their applications.
The ML model was validated using first-principles calculations
on the unusual solar cell materials included in the list, and
the projected candidates, such as AS2O5, have good electrical
and optical characteristics that are suitable for solar cell
applications.

Table 2. Literature discussing the ML for facilitating the discovery of solar cells.

230 808 HOIP, 686 orthorhom-bic GBRT, SVR, KRR Nontoxic orthorhombic-like HOIPs (free of Cd, Pb, Hg) [65]

Double chalcogenide per-ovskites, 450 alternatives ML with DFT simulations Ba2AlNbS6, Ba2GaNbS6, Ca2GaNbS6, and Ba2SnHfS6 [67]

Organic photovoltaic materials, one hot descriptor Intensive DFT simulations Design of OPVs’ prescreening possible donor and acceptor materials [68]

21 organic halide salts Supervised ML and Shapley values Phenyltriethylammonium iodide (PTEAI) [69]

3880 unknown spinels XGBoost method CaAl2O4 [70]

227 experimental dataset RF, XGBoost, LR, k-NN, SVR and MLP P C61BM and P C71 [71]

250 OSCs dataset RF model ABX3-type perovskites [72]

28 million double-perovskite - - - 17 sodium-, potassium-, and ammonium-based tin-halide perovskites [73]

N-annulated perylene sensitiz-ers MLR and QSPR model C281 [74]

Metal halide perovskites (MHPs) CNN 0.01 eV, 5 degrees, and 0.01 [75]

10 000 candidates QSPR eight promising organic dyes [76]

Lead-free halide perovskite material RF, RR, SVR, and GBRT Lead-free halide double PSC [77]

78 400 DHOIPs Integrating ML techniques 19 promising ones, HSE06 calculations [78]
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3.3. ML for Solar Cell Optimization

The focus of this section is RQ3, which involves examining the
optimization techniques used with ML algorithms to develop
optimized and reconfigurable solar cells. The technical
research articles that showed experimental work for implement-
ing the ML algorithms for discovering the optimized solar cells is
included.

Moreover, Figure 8 displays multiple layered internal architec-
tures of solar cells and the necessary chemical components for
creating reconfigurable solar cells. Specifically, Figure 8a depicts
the perovskite’s chemical structure with a carbon composition,
whereas Figure 8b shows the arrangement of the chemical com-
ponents in a solar cell and Figure 8c shows the various layers of a
solar cell that have been sliced for clarity in depicting the solar
cell architecture. Finally, Figure 8d showcases the outer layer of a
solar cell, including Ag, BCP, PCBM, perovskite, Poly-TPD, ITO,
and glass.

3.3.1. Donor/Acceptor Ratio for Higher PCE

Most scientific advancements in the field of materials have been
produced experimentally, frequently using one variable at a time
testing. However, neither are the properties of materials- based
systems straightforward nor related.[94] Authors in another
study,[95] claim that the optimization of OSCs has a high level
of complexity due to the high complexity and interconnectivity
of different components. Changing one component can have
an unforeseen impact on other components. Hence ML can play
a vital role in the optimization process of OSCs. They used P
DCT BT ∶ P C71 solar cell and observed the effect of donor/accep-
tor ratio, total concentration, spin speed, and additive volume on
PCE(%). The authors applied SVM using the radial basis func-
tion. They conducted two sets of experiments, where they used
optimized results of the first experiment in the second experi-
ment and found a significant increase in PCE of fabricated

devices.[35] In the first set of the experiment, only 3 out of 15 devi-
ces were above the threshold (PCE 6.3%); however, in the second,
all 13 devices produced PCE above the threshold.

3.3.2. Conductivity Optimization of Solar Cells

SVM regression was used in another study[96] for the optimization
of p �CZS/n- Si, p – CZS/pþn � Si heterogeneous solar cells.
SVM was implemented with a radial-based function using
Scikit-learn[97] in python. They used tenfold crossvalidation to
tackle the problem of over-fitting. They predicted the figure of
merit (FOM) from film conductivity and optical transmission in
the desired transmission range. Optimization results show that
FOM increased from 14.8 to 173μ. Furthermore, current density
increased from 11.8 to 17.9mACm�2 for p – CZS/n � Si solar
cells and from 13.8 to 18.0mACm�2 p – CZS/pþn � Si for solar
cells. The authors claimed their approach is valid for any general
application to any material synthesis process with multiple
parameters.[98]

3.3.3. Selection of Donor/Acceptor Pairs

From 2010 to 2017, 320 organic donor and acceptor pairs (het-
erojunction solar cells) were reported in the literature. These 320
donors and acceptors can make 19 912 combinations. Authors in
another study[99] applied distance-based ML techniques KNN and
SVM to optimize PCE. They provided a list of unexplored donor
and acceptor combinations that can be helpful in the future in
fabricating highly efficient solar cells. The use of back propaga-
tion neural network, deep neural network, SVM, and the random
forest is reported in another study[100] to predict highly efficient
OSCs. The dataset contained 1719 realistic donor materials of
OSCs. The authors used images, ASCII strings, and fingerprints
as input, and concluded that fingerprints with 1000 bits can pro-
vide higher conversion efficiency. The authors also proposed ten
new materials.

Figure 8. The figure displays multiple layered internal architectures of solar cells and the necessary chemical components for creating reconfigurable solar
cells. Specifically, a) the perovskite’s chemical structure with a carbon composition Reproduced with permission.[139] Copyright 2023, MDPI. b) the arrange-
ment of the chemical components in a solar cell, Reproduced with permission.[148] Copyright 2021, Wiley-VCH GmbH. c) the various layers of a solar cell that
have been sliced for clarity in depicting the solar cell architecture Reproduced with permission.[140] Copyright 2021, Springer Nature, and d) the outer layer of
a solar cell, including Ag, BCP, PCBM, Perovskite, Poly-TPD, ITO, and glass Reproduced with permission.[141] Copyright 2020, Elsevier.
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3.3.4. Stability Optimization

Stability is a good indicator of the life span of a solar cell. Multiple
parameters can affect the stability of OSCs. Authors in another
study[101] optimized these parameters using sequential minimal
optimization regression on a dataset obtained from the website
of Danish Technical University (DTU).[102] Authors have pre-
sented shortlisted layer-wise materials with the highest weights
in sequential minimal optimization regression. These materials
are the most influential materials governing the stability and per-
formance of OPV devices.[103]

3.3.5. Copper Content Optimization in CdTe Solar Cells

Cu is essential in CdTe solar cells as back contact and doping
agent. Diffusion depth optimization of Cu resulted from diffu-
sion annealing, and cool down in the fabrication of CdTe solar
cell was reported in another study.[104] ANN predicts data gener-
ated from software simulation using the Keras library in python.
ANN was fed with temperature and duration of diffusing process
time. Results show that the predicted and actual depths are only
0.009μm apart.

3.3.6. Optimization of Diode Model for Solar Cell Simulations

A bioinspired modified spotted hyena optimization algorithm
was implemented in another study,[105] to compare one diode
model, two diode modes, and three diode model solar cells in
MATLAB. The authors obtained I-V and P-V curves. They found
that the three-diode model is the most accurate model.

3.3.7. Optimization of Spray Plasma Processing

Optimization is a common theme in materials research when
synthesizing a particular material or determining the ideal proc-
essing conditions to obtain the desired attribute. The difficulties
emerge from the fact that there are several parameters whose
weights might influence the outcomes. Additionally, gathering
experimental data takes time and money. Authors in ref. [106],
presented the work of ref. [107], where BO was used to optimize
the rapid plasma process. The authors used six different param-
eters as input that affect PCE: linear speed of pray, substrate tem-
perature, the flow rate of precursor, gas flow rate into plasma
nozzle, the height of plasma nozzle, and plasma duty cycle, while
some other parameters were kept constant such as precursor for-
mulation, concentration, etc. The optimization result showed
that PCE increased from 15% to 17 %.

3.4. ML for the Efficient Fabrication of Solar Cells

Most research articles cover various ML algorithms used to fab-
ricate PSCs effectively. However, in this section, our emphasis is
on RQ4, which examines the most optimal ML algorithms that
have proven effective in identifying efficient techniques for fab-
ricating PSCs.

PSCs are cheap to fabricate and as a result most researchers
fabricate these low-cost solar cells by trial and error. Also, fabri-
cating a solar cell consists of a large percentage of permutations

and combinations of various physical parameters such as mate-
rials used, doping layers, the thickness of the different layers,
meshing, contacts, bulkiness, etc. In addition, solutions-based
techniques for fabricating solar cells require less time to manu-
facture. However, they exhibit stability concerns. Therefore, we
review the ML methods for designing a reconfigurable PSC.

Liu et al.[108] demonstrated how ML can be used to develop a
sequential learning architecture that produces PSCs. The study
used rapid spray plasma processing (RSPP) method to develop
open-air perovskite devices and implemented various methods
for optimizing the process. The researchers achieved an effi-
ciency improvement of 18.5% by screening only 100 process sce-
narios, despite limited experimental budget. This was mainly due
to three key innovations, 1) prior experimental data was used as a
probabilistic constraint to enable flexible knowledge transfer
between experimental processes, 2) subjective human observa-
tions and ML insights were combined when selecting the next
experiments, and 3) an adaptive strategy that used BO was
employed to identify the region of interest before conducting
local exploration for high-efficiency devices. These innovative
approaches enabled the researchers to rapidly identify the opti-
mal conditions for producing PSCs and resulted in a significant
improvement in efficiency.

Another research article presented by Vincent et al.[109] dis-
cussed a quick and simple tool for identifying the primary losses
in PSCs. To comprehend the light intensity dependency of the
open-circuit voltage and how it relates to the main recombination
mechanism, their model used large-scale drift- diffusion simu-
lations. The ML algorithm was developed using more than
2 million simulations and resulted in a prediction accuracy of
up to 82%.

In their research, Xabier et al.[110] used big data to dis-cover
OSC materials, such as non- fullerene acceptors and low-
bandgap donor-based polymers. They examined computational
methods for selecting promising chemicals from online libraries
and outlined key high-throughput experimental screening and
characterization techniques for OSCs. Their work achieved
unparalleled data generation rates, enhancing big data prepared-
ness, and applied ML algorithms to identify quantitative
structure–activity relationships and extract molecular design
insights for OPV.

Aaron et al.[111] combined design of experiments (DOE) and
ML approaches to optimize small-molecule OPV cells based
on DRCN5T donors and nonfullerene acceptors like ITIC, IT-
M, and IT-4 F. They determined the optimal experimental proc-
essing parameters for PCE using ML-generated PCE landscape
maps. Cagla et al.[112] investigated the influence of manufactur-
ing materials, deposition techniques, and storage conditions on
the stability of 404 organolead halide PSCs using a dataset from
181 publications. They employed association rule mining and
decision tree-based ML methods for their analysis.

Nahdia et al.[113] proposed a method to analyze the material
and device performance including the experimental, modeling,
and ML techniques. Moreover, they also included various
manufacturing conditions for the measurement of device perfor-
mance by providing a set of electrical as well as electronic device
characteristics that result in a large and efficient improvement
for the respective solar energy harvesting devices. Following, they
considered some of the key mechanical properties such as
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annealing temperature, surfactant selection, and charge carrier
dynamics in OSCs. Similarly, another study presented by
Bart et al.[114] consisted of the predictions that are related to the
bandgap of organic crystal structures using the ML techniques.
The two cutting-edge models combined yield a MAE of 0.388 eV,
or 13% of the average bandgap of 3.05 eV, for the ensemble. The
bandgap for 260 092 materials in the Crystallography Open
Database (COD) is predicted using the trained models.

Fan et al.[115] presented the ML-assisted designing and fabri-
cation of solar cells. The elements can be divided into four sub-
categories: data measurement, material properties, optimization
of device architectures, and optimization of fabrication pro-
cesses. The typical types of ML techniques discussed involve
ANN, GA, PSO, SA, RF, etc. Among them, ANN and GA are
the two ML techniques that are most frequently used.

4. Open Research Issues and Future Outlook

In this section, we highlight some of the key insights that the
authors have notably found interesting and consecutively, pres-
ent the future outlook of the potential research incorporating ML
and the discovery of new materials to develop re- configurable
solar cells. In addition, this section also includes the limitations
and pitfalls of the ongoing research that need to be addressed for
developing efficient, robust, and stable solar cell architectures.

According to our review, few articles were published in the
domain of using ML for fabricating solar cells. Furthermore,
our study revealed that input data was clustered around PSCs,
OSCs, and hybrid solar cells. Furthermore, most research used
the ANN, GBRT, XGBoost, EXTR, LR, DTR, KNN, RF, SVM,
SVR, GPR, and BO algorithms to determine output characteris-
tics such as cost, PCE, the accuracy of the ML model, loss func-
tion, and error. Lastly, ML was used for optimizing the following
solar cell parameters: donor/acceptor ratio, conductivity, donor/
acceptor materials, stability optimization, copper content optimi-
zation, and spray plasma processing.

4.1. Limitations

Although there are numerous advantages of using ML for solar
cell discovery, there are several open issues. From our systematic
review, we came across multiple challenges that need to be
addressed with regard to the discovery of new low-cost solar cells.
Key among these challenges are as follows.

4.1.1. Vulnerability of the Input Data

As previously mentioned, the majority of low-cost solar cells are
fabricated by trial and error in a research environment, leading to
high vulnerability in terms of input data.[116] There- fore, as a
necessary step, all the ML algorithms should undergo model val-
idation.[117] Another key issue is data scarcity in the field of data-
driven solar materials science.[118] Also, text mining and picture
recognition are too considered as solutions for overcoming these
primary problems involving poor quantity and quality of the
datasets.[119]

4.1.2. Stability of Thin-Film Solar Cells

One of the key concerns in designing low-cost solar cells in the
real environment is the stability of organic, inorganic, and hybrid
solar cells due to the different compositions of chemical compo-
nents. These solar cells are very unstable and have a short life
period.[120] Previously, studies have shown that solar cell effi-
ciency and stability are inversely proportional. Additionally,
addressing the critical aspects of stability such as thermal, mois-
ture, and chemical composition is essential[121]

4.1.3. Unreliable Forecasts

A significant concern when using ML algorithms in solar cell
discovery is the potential for imprecise predictions and results
from the ML models.[122] Generally, ML algorithms provide con-
fidence intervals for the estimated and anticipated values related
to solar cells. However, the predicted values for the discovery of
solar cells seem to approach up to a maximum of 95% using the
GPR and BO using the probability distribution, which some-
times proves to result in the poor fabrication of solar cells.
Therefore, the ML models’ prediction models need to be classi-
fied properly to avoid such discrepancies.[123]

4.1.4. Rigorously Fabricating Solar Cells in Labs

The researchers are rigorously fabricating solar cells depending
upon the hit and trial methods, which waste a lot of time, resour-
ces, and materials. In addition, if the researchers follow the same
procedure in the upcoming years, it is noted that it will further
delay the discovery of new materials used to fabricate solar
cells.[124] Moreover, using the permutation and combinations
of different layers, electrical characteristics, and other com-
ponents required to design the solar cells and fabricate solar cells
in the laboratory will lead to other consequences which can be
avoided with the use of ML techniques and AI integration.[125]

4.1.5. Data Scarcity and Ineffective Data Analysis

First, it is noted from the study that there is a lack of data avail-
ability and, thus, poor data analysis. Second, it is advised to inte-
grate feature engineering, modeling, and domain technical
expertise to increase the effectiveness of the created ML model.
In parallel, validation experiments should be run to verify
the analytical outcomes of the ML model, such as the high-
performing prediction candidate. Only a few research studies
have used experiments to validate their forecasted materials.[126]

4.2. Future Outlook

The future goals and prospective outlook for discovering new
low-cost solar cells are mentioned below. Initially, there was a
large room for data collection and monitoring to provide input
to ML models. Moreover, the extracted data needs feature scaling
and data-prepossessing to be used effectively in ML algorithms.
Therefore, an appropriate data selection technique must be used
to interpolate or extrapolate the data depending on various
dependent and independent variables in feature selection. In
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addition, since ML and AI techniques have recently gained sig-
nificant importance, adversarial robust ML techniques will play a
vital role in forecasting and predicting the design of solar cell
architectures.[82,127–130]

Moreover, ML can aid in predicting the performance of solar
cells, leading to the development of dependable and cost- effec-
tive solar cells. By predicting the performance of solar cells before
production, manufacturers can save resources and avoid produc-
ing poorly performing cells. Additionally, ML is being utilized to
create new materials for cost-effective solar cells. By analyzing
large amounts of data from various sources, ML can identify
materials with desired characteristics for solar cells, reducing
the cost and time spent on experimentation and speeding the
process of developing new materials.

Since low-cost solar cell fabrication in a research laboratory is
cheap, most researchers tend to retrospectively appreciate the per-
formance of their design after first fabricating the solar cell by trial
and error. Instead, we believe it ismore beneficial to perform these
predictions using robust ML algorithms, which will help design
and fabricatemore efficient solar cells. Adopting this approach will
expedite the solar cell design process. There is also space for
research related to the generalized explanations of data extraction
and interpretation and to achieve more accurate ML models. In
general, the accuracy of the ML model depends on the input data.
Researchers across the globe should target to extract sufficient data
and make it available online to help the scientific community dis-
cover low-cost, high-performance solar cells.

5. Conclusions

In conclusion, this comprehensive review evaluated a broad
range of ML techniques for optimizing the performance of
low-cost solar cells for miniaturized electronic devices. We short-
listed 58 research articles from a pool of 18 380 research publi-
cations that met our inclusion criteria and aimed to answer our
research questions. Our review indicates that a significant pro-
portion of research focuses on data-driven approaches and ML
techniques for discovering low-cost solar cells, with a third of
publications targeting ML algorithms in the fabrication process.

Our systematic review suggests that ML techniques have the
potential to accelerate the discovery of new solar materials and
architectures. Future research can expand on these findings
by exploring and developing new ML techniques for solar cell
optimization. Additionally, it is essential to address the scalability
and sustainability of low-cost solar cell technologies to enable
large-scale commercialization. Ultimately, the application of
ML techniques in solar energy can revolutionize the industry
and pave the way for a cleaner and more sustainable future.
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