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Abstract
We report a comprehensive study of the ground-state properties of one and two bosonic
impurities immersed in small one-dimensional optical lattices loaded with a few interacting
bosons. We model the system with a two-component Bose–Hubbard model and solve the
problem numerically by means of the exact diagonalization method. We report binding energies
of one and two impurities across the superfluid (SF) to Mott-insulator transition and confirm the
formation of two-body bound states of impurities induced by repulsive interactions. In
particular, we found that an insulator bath induces tightly bound di-impurity dimers, whereas a
SF bath induces shallower bound states.

Keywords: polarons, impurities, optical lattices, exact diagonalization, Bose–Hubbard,
bipolarons
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1. Introduction

The study of impurities in quantum mediums has a long his-
tory, dating back to the introduction of the Landau–Pekar
polaron [1]. Their study is of relevance in a wide variety
of problems, ranging from high-Tc superconductivity [2] to
impurities in nuclear matter [3]. More recently, the progress
in producing ultracold atomic mixtures [4–7] has generated a
renewed interest in impurity physics. The high level of con-
trol offered by ultracold atom experiments [8, 9] allows the
study of impurities in a great variety of configurations, includ-
ing systems with bosonic or fermionic statistics, a wide range
of interaction strengths, and different dimensions.

The problem of a single impurity immersed in an interact-
ing Bose gas, i.e. the Bose polaron, has received particular
attention. Bose polarons have been achieved experimentally in
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the past decade in both one [10] and three [11–15] dimensions,
motivating extensive theoretical studies [16–33]. However,
a consistent theoretical description of Bose polarons is not
yet achieved. In particular, the bosonic nature of the medium
means that multi-body correlations play a significant role in
the regime of strong boson-impurity interactions. The effect of
these correlations can not be easily taken into account within
perturbative approaches, motivating the use of more soph-
isticated techniques, such as quantum Monte Carlo [34]. In
contrast, the classic problem of an impurity immersed in a one-
component Fermi gas, i.e. the Fermi polaron, only allows two-
body correlations, easing its description. Therefore, while the
most prominent features of Bose polarons are now well under-
stood, their behavior at finite temperatures and low dimen-
sions, the onset of bound states, among others, are not yet well
described.

Closely related to Bose polarons is the problem of two
impurities immersed in a Bose gas. This setup has started to
attract increasing theoretical attention due to the richer phys-
ics induced by the additional impurity [31, 33, 35–45]. Indeed,
it has been shown that two impurities can form bound quasi-
particles usually referred to as bipolarons, which are thought
to have a closer connection with unconventional pairing and
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high-Tc superconductors [46, 47]. The bath induces attractive
effective interactions between impurities, leading to the form-
ation of bipolarons with an average radius much smaller than
the average distance between two free impurities, generally
of the order of the inter-particle distance of the bath [35].
Moreover, these bipolarons form even in systems with purely
repulsive interactions [35]. Naturally, the study of bipolarons
is much less developed than that of single polarons.

While most theoretical studies of impurities in ultracold
atom gases have focused in homogeneous configurations, as
the ones previously mentioned, atoms can also be trapped
in optical lattices [48], providing a closer connection with
condensed-matter systems [8, 49, 50]. In particular, one-
dimensional lattices loaded with single spin impurities and a
bosonic bath have already been achieved experimentally [51],
and further developments are expected from the progress in
realizing lattice atomic mixtures [52, 53]. One particular fea-
ture of impurities loaded in optical lattices is that bosonic
baths undergo a transition from a superfluid (SF) to a Mott-
insulator (MI) phase [54]. In tight lattices where the optical
potential depth is sufficiently large to confine the system to
the lowest Bloch band [8], this SF to MI transition is natur-
ally described by the Bose–Hubbard model [55, 56]. In this
direction, Hubbard models can be straightforwardly extended
to include impurities [57], enabling the study of impurities
across the SF toMI transition [58]. It is worth pointing out that
while optical lattices do not support phonon excitations [48],
and thus the traditional picture of polarons is not fulfilled,
condensates introduce Bogoliubov phonons [59] which induce
polaron-like features in SF baths [57].

Here we are concerned with systems of impurities interact-
ing with a bath of bosons trapped in a one-dimensional optical
lattice. We consider tight lattices that can be described by a
Hubbard-like model. Hubbard models have been employed
to study different properties of impurities immersed in one-
dimensional lattice Bose baths, including their dynamics
[60–62] and correlations [63]. In particular, the binding ener-
gies of one and two fermionic impurities in one-dimensional
lattices have been recently studied with the density-matrix
renormalization group (DMRG) [64], which can be poten-
tially examined experimentally with spectroscopy measure-
ments [11]. In addition, and as an alternative to Hubbard
models, impurities in small lattices have been studied using
Hamiltonians with oscillatory potentials [65, 66], particularly
to study the effect of shallow optical potentials and entangle-
ment properties [66–68].

In this work, we study one and two bosonic mobile impur-
ities immersed in small one-dimensional lattices loaded with
a bath of a few (five to eleven) interacting bosons. We
describe the system with a two-component Bose–Hubbard
model and perform exact diagonalizations (EDs) of the
Hamiltonian [69–72]. Even though ED restricts our cal-
culations to small lattices, it gives us access to a wide
range of properties while taking into account the complete
effect of correlations. As mentioned, the latter is essential to
study impurity physics due to the importance of correlations,

particularly in one-dimensional systems where fluctuations
are enhanced [73]. We perform a comprehensive study of the
ground-state properties of the impurities across a wide range
of inter-atomic interactions across the bath’s SF to MI trans-
ition, particularly the binding energies. Our results comple-
ment and bridge the gap between recent few- [65, 66] and
many-body [58, 64] calculations of Bose lattice polarons. In
the case of two impurities, we also examine the onset of di-
impurity dimer states by examining their sizes, where we find
that insulating baths induce tightly bound dimers.

This work is organized as follows. In section 2 we present
our model and technical considerations. In sections 3 and 4
we examine the problems of one and two impurities, respect-
ively. We present results for the binding energies, von Neu-
mann entropy of the bath, and correlations. We also examine
the sizes of the di-impurity bound states. Finally, in section 5
we provide conclusions and an outlook for future studies.

2. Model

2.1. Hamiltonian

We consider a tight optical lattice withM sites and loaded with
NB bath’s bosons and NI bosonic impurities which interact
through on-site potentials. In the following, the subscripts B
and I will denote the bath’s bosons and impurities, respect-
ively. We model the system in consideration with a two-
component Bose–Hubbard Hamiltonian

Ĥ= Ĥhop + Ĥint . (1)

The hopping part describes the tunneling of atoms to the
nearest neighbor sites

Ĥhop =−
∑
i

∑
σ=b,I

tσ
(
â†i,σâi+1,σ + h.c.

)
, (2)

where â†i,σ (âi,σ) creates (annihilates) a particle σ = B, I at site
i and tσ > 0 are the tunneling parameters. The interacting part
describes the on-site interactions between atoms

Ĥint =
UBB

2

∑
i

n̂B,i (n̂B,i− 1)+UBI

∑
i

n̂B,in̂I,i , (3)

where n̂i,σ = â†i,σâi,σ is the number operator and UBB and UBI

are the strengths of the boson–boson and boson-impurity inter-
actions, respectively. The boson–boson interaction is repulsive
(UBB > 0), while the boson-impurity interaction can either be
repulsive or attractive. However, we focus mostly on systems
with UBI > 0 because they show richer physics. Note that the
impurities do not interact among themselves.

In this work, we consider lattices loaded with one or two
impurities (NI = 1,2) and a bath with a unit filling (νB =
NB/M= 1). We consider that all the atoms have equal masses,
and thus tB = tI [49]. We consider lattices with five to eleven
sites and periodic boundary conditions. The latter enables us to
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better extrapolate our results to infinite lattices. Nevertheless,
we report a few results for non-periodic lattices in appendix A.
We also stress that due to the few-body nature of our calcu-
lations, any significant change of properties will necessarily
show a smooth crossover instead of a well-defined transition.

2.2. Exact diagonalization

We extract ground-state properties of Hamiltonian (1) by
means of the ED method [69, 70]. We work with the usual
Fock basis where each state corresponds to a specific distribu-
tion of the particles in the lattice

|αB,αI⟩= |nB,1, . . . ,nB,M⟩|nI,1, . . . ,nI,M⟩ , (4)

where nσ,i is the number of σ bosons in site i and
∑M

i nσ,i =
Nσ. We perform the diagonalizations with the well-known
ARPACK package [74]. From the diagonalization we extract
the ground-state energy ENI and the coefficients cαBαI of the
ground-state wavefunction

|Ψ0⟩=
∑
αB,αI

cαBαI |αB,αI⟩ , (5)

which we employ to compute the physical properties of
interest. For detailed reviews on the ED method for Bose–
Hubbard models, we refer to references [71, 72].

2.3. Experimental realization

Amany-body experimental analogue of our setup starts by pre-
paring one bosonic atomic species, such as 39K or 87Rb, into
two different hyperfine states1. The atoms need to be trapped
in a one-dimensional optical lattice, similar to recent experi-
ments with two-component bosonicmixtures [75]. To simulate
isolated mobile impurities, the experiment needs to introduce
a large population imbalance, which can be achieved by trans-
ferring atoms in one hyperfine state to the other with a radio-
frequency pulse. This approach has been used to study Bose
polarons in homogeneous gases [11].

The tight optical lattices considered in this work are real-
ized by considering optical potentials with depthsV0 much lar-
ger than the recoil energy ER = ℏ2k2/2m, where k= 2π/λ and
λ is the laser’s wavelength [8]. Indeed, lattices with V0 ≫ ER
are easily achievable by controlling the laser’s intensity [76].
In typical lattices with a laser’s wavelength of≈500–1000 nm
and a ratio of V/ER ≈ 10, the parameters examined in this
work can be realized with scattering lengths in the range
|as|=10–200a0 [77], where a0 is the Bohr’s radius.

Finally, we stress that while the specific few-body setup
considered here is difficult to achieve in current experiments,
there has been important progress in controlling systems with
a few atoms, especially in one dimension [78, 79]. While this
progress has been achieved mostly with fermionic atoms, fur-
ther developments are expected in the near future, which has

1 We choose the same atom to simulate equal tunnelings tB = tI, but config-
urations with tB ̸= tI can be realized with different atomic species.

motivated studies of the crossover between few- and many-
body physics [80], as in this work. We also note that trapping
techniques can achieve ring geometries [81], which can simu-
late the periodic boundary conditions considered in the main
text, and box configurations [82] as considered in appendix A.

3. One impurity

We first consider the problem of a single impurity (NI = 1).
In the following, we study the impurity’s binding energy, the
effects of the impurity on the bath, and correlations between
the bath and the impurity.

3.1. Binding energies

The impurity’s binding energy Ep corresponds to the energy
required to add one impurity to a bath [11]. It reads

Ep = E1 − (E0 +EI) , (6)

where E0 and E1 correspond to the ground-state energies of
the system with zero and one impurity, respectively, and EI is
the energy of a single free impurity. We note that even though
the rigorous picture of polarons is not fulfilled in optical lat-
tices, particularly with insulating baths, Ep is still also referred
to as the polaron energy for the close connection with Bose
polarons [58, 64].

We calculate E0 and E1 numerically with ED for finite
interaction strengths by solving the problem with NI = 0 and
NI = 1, respectively. In contrast, the energy of a free impurity
is simply EI =−2tI as a result of the dispersion relation of a
free particle in a lattice ϵI(q) =−2tI cos(qa) [49], where q is
the momentum and a is the distance between sites.

We show binding energies as a function of the boson-
impurity interaction strength UBI for selected bath’s paramet-
ers UBB/tB in figure 1. We note that the SF to MI phase
transition of the bath in the thermodynamic limit occurs at
UBB/tB ≈ 3.2–3.9 for νB = 1 [83–86]. Therefore, we can
assume that panel (a) considers a bath in the SF phase, pan-
els (c) and (d) consider baths in the MI phase, and panel
(b) considers an intermediate state2. We also stress again that
we focus primarily on repulsive boson-impurity interactions
UBI > 0, as strong attractive interactions simply collapse the
few-body system to one site, which cannot be easily connec-
ted to a many-body configuration.

We compare our results with the perturbative solution for
tB = tI and weak coupling [19, 21, 64]

Ep = E(MF)
p +E(LHY)

p , (7)

where

E(MF)
p = UBIνB , (8)

2 As mentioned, finite lattices do not show a well-defined phase trans-
ition [72]. Instead, finite lattices show a continuous crossover from an SF to a
MI phase as UBB increases.
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Figure 1. Binding energy Ep as a function of UBI/tB for νB = 1, NI = 1, and UBB/tB = 2.0 (a),4.0 (b),6.0 (c),8.0 (d). The colored lines
correspond to ED calculations for lattices with five (dotted blue), seven (dashed orange), nine (dash-dotted green), and eleven (long-dashed
red) sites. The black solid lines correspond to extrapolations to infinite lattices (10) and the underneath gray regions to the corresponding
errors (the segments without lines correspond to regions where the minimization fails). The thin black dotted and dashed lines correspond to
the MF (8) and MF+LHY solutions (7–9), respectively.

is the mean-field (MF) solution and [64]

E(LHY)
p =

U2
BI

UBB

(
1
2
− 1
π
arctan

(√
2 tB

UBBnB

))
, (9)

is a Lee-Huang-Yang (LHY)-type correction. We note that the
LHY correction is only valid for SF baths, and thus we show
it in all panels for completeness. Moreover, the MF and LHY
solutions are not valid for a collapsing system, as they model
a uniform gas.

We also provide estimations for infinite lattices by fitting
our results to the function [72]

f(M) = AM−b+C , (10)

where C provides the energy for M→∞. We find the coef-
ficient with a non-linear least squares algorithm [87]. We
stress, however, that for a few interaction strength choices,
equation (10) does not provide a good approximation for
Ep(M) if M is small (generally, if M⩽ 8). Therefore, because
we only consider lattices with five to eleven sites, the least-
square minimization can fail in some cases.

As already known from other works [64], we first note
that the energy Ep is positive for UBI > 0, and thus it requires
energy to add an impurity to the bath. In contrast, for UBI < 0
the binding energy is negative, signaling the formation of
bound states between the impurity and the bath.

In all the cases examined, for weak boson-impurity interac-
tions |UBI/tB|< 3.0 the results are roughly independent of the
lattice’s size, showing that M does not play a significant role.
Moreover, in this regime, there is a good agreement with the
MF solution, as expected. AsUBI > 0 increases, quantum fluc-
tuations become more important and thus the numerical res-
ults deviate from the MF solution. The LHY-type correction

is able to provide a good description up to UBI/tB ≈ 5.0 for
UBB/tB = 2.0,4.0, but it is ultimately unable to describe sys-
tems with stronger interactions. Note that the correction per-
form even worse than the MF solution for UBB/tB = 6.0,8.0.
As mentioned, this is expected, as equation (9) is not suit-
able for describing Mott baths. On the other hand, in the
shown attractive region there is good agreement between all
solutions. However, we do not show the collapsing region
where the comparisons with the analytical solutions are
not valid.

For strong repulsive boson-impurity interactions UBI/tB >
5.0 the binding energy shows a clear dependence on the lat-
tice’s size, with Ep decreasing as M increases. However, the
results show a nice convergence with M. Indeed, the overall
shape of Ep is already reproduced with five sites. We stress
that the obtained behavior of Ep as a function of UBI agrees
with DMRG calculations for νB = 2 [64]. We expect that the
shown extrapolations for M→∞ provide good estimations
for Ep in large lattices. However, the extrapolations should
be compared in the future with robust many-body calcula-
tions, such as with quantum Monte Carlo [88] or DMRG [89]
simulations.

Finally, to study the dependence of the binding energy
on UBB for strong repulsive boson-impurity interactions, in
figure 2 we show Ep as a function of UBB for UBI/tB = 50. As
previously shown, the energy increases with UBB. In the MI
region (UBB/tB < 3.6) the binding energy shows an approx-
imately linear dependence on UBB, whereas in the SF region
(UBB/tB > 3.6) it shows an approximately power-law depend-
ence. We also note that the extrapolation for M→∞ sug-
gests that the binding energy vanishes in the limit of a non-
interacting bath (UBB = 0), which is expected for an infinite
lattice.
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Figure 2. Binding energy Ep as a function of UBB/tB for νB = 1,
NI = 1, and UBI/tB = 50. The colored lines correspond to ED
calculations for lattices with five (dotted blue), seven (dashed
orange), nine (dash-dotted green), and eleven (long-dashed red)
sites. The black solid lines correspond to extrapolations to infinite
lattices (10) and the underneath gray regions to the corresponding
errors. The vertical dotted gray line indicates the estimated SF–MI
phase transition of the bath UBB/tB ≈ 3.6 [84].

3.2. von Neumann entropy

To study how the impurity affects the bosons, we examine the
behavior of the von Neumann entropy of the bath [72]. This is
defined as

SB =−
∑
αB

∣∣∣c(B)αB

∣∣∣2 ln ∣∣∣c(B)αB

∣∣∣2 (11)

where c(B)αB are Fock coefficients obtained by tracing out the
impurity states |αI⟩ (see equation (5)). SBmeasures the cluster-
ing of the bath in the Fock space. Indeed, SB = 0 in a complete
insulator state where the bath is described by only one Fock
state |Ψ(B)

0,MI⟩= |νB, . . . ,νB⟩. In contrast, SB is large in a SF bath
where there is a superposition of many Fock states [72].

We show SB as a function of UBB and UBI in figure 3.
We consider a lattice with nine sites, but we obtain similar
results for other values of M. For vanishing boson-impurity
interactionUBI = 0, the bath decouples from the impurity, and
therefore SB decreases significantly around the known SF–MI
transition point (horizontal line), showing the expected cros-
sover for finite lattices. Indeed, for UBB/tB < 3.6 the entropy
takes an approximately constant finite value, signaling a SF
phase [72]. In contrast, for UBB/tB > 3.6 the entropy slowly
vanishes.
SB shows a clear dependence on the boson-impurity inter-

action UBI, indicating that the bath becomes disturbed by the
impurity. As expected, the disruption is larger for stronger
boson-impurity interactions. Within the range of interactions
examined, by increasing |UBI| the entropy remains large for
a wider range of UBB (see region below the SF-MI line). Our

Figure 3. Bath’s von Neumann entropy SB for M= 9, νB = 1, and
NI = 1 as a function of UBB/tB and UBI/t. The entropy is
normalized by its maximum value in the plotted region. The
horizontal line indicates the estimated SF-MI phase transition point
of the bath UBB/tB ≈ 3.6 [84].

interpretation is that the impurity disturbs the Mott phase by
forcing the bosons to move. This delocalizes the bosons in the
bath, and thus the bath does not support a complete insulator
phase in the whole lattice. This can be expected, as a strongly-
repulsive impurity will necessarily prevent the bath to occupy
the impurity’s site. SB also vanishes for small UBB/tB and
attractive boson-impurity interactions (see upper-left corner).
This simply corresponds to the collapse of the system to one
site, where the bath is described by the few Fock states of the
type |αB⟩= |NB,0, . . . ,0⟩.

For further analysis, we examine the condensate fraction
of the bath in appendix B. We also stress that the results of
figure 3 should not be extrapolated to large lattices where there
can be a large distance between bosons and the impurity, par-
ticularly the collapsing region.

3.3. Two-body correlations

To analyze the distribution of the atoms within the lattice, we
examine the reduced two-body correlation function [63]

C(2)
i,σ ′σ =

⟨ψ0|â†i,σ ′ âi,σ ′ â†0,σâ0,σ|ψ0⟩
⟨ψ0|â†i,σ ′ âi,σ ′ |ψ0⟩

, (12)

where the denominator is a normalization constant. C(2)
σ ′σ

measures the average number of bosons of species σ ′ at site
i per each boson of species σ at a fixed site i= 0. Note
that because the lattice is periodic, the choice of site i= 0 is
arbitrary.

We show C(2)
BI as a function of UBI in figure 4 for both a

weak (a) and strong (b) boson–boson repulsion. The overall
behavior of C(2)

BI is similar in both panels. For UBI < 0 the
correlations increase around i= 0 as the impurity attracts the
bosons. Indeed, in this region the system shows multi-body
bound states, a signature feature of attractive impurities in
bosonic baths [20]. Moreover, for the lattices considered here,
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Figure 4. Two-body correlations C(2)
BI as a function of UBI/tB and lattice site i for νB = 1 and NI = 1. In panel (a) we consider a superfluid

bath with UBB/tB = 2.0 and in panel (b) we consider an insulator bath with UBB/tB = 8.0. We consider lattices with M= 11.

we start finding signatures of collapse forUBI <−UBB, where
the strong boson-impurity interaction tightly binds the rest of
the bath to one site. In contrast, as UBI > 0 increases, the cor-
relations vanish around i= 0, showing that it is not favorably to
have bosons and the impurity at the same site. This phase sep-
aration between the bath and the impurity is naturally expec-
ted for strong boson-impurity repulsion.

The point of separation between the bath and the impur-
ity depends on UBB. Indeed, we observe that for νB = 1 and
tB = tI, the separation occurs approximately at UBI ≈ UBB.
From a MF argument, the separation simply occurs when the
boson-impurity repulsion surpasses the boson–boson repul-
sion. However, we again stress that we are not able to locale
a well-defined transition due to working with finite small lat-
tices. Therefore, the precise point of phase separation should
be studied in the future with more sophisticated many-body
approaches.

Finally, it is worth noting that, for large UBI > 0, while
in panel (a) the correlations vanish smoothly around i= 0, in
panel (b) the correlations vanish abruptly. This is because the
bath in panel (b) is in an insulator phase. Therefore, it is not
favorable for the bath’s bosons to move, fixing the impurity to
a single site. In contrast, the SF bath in panel (a) still allows the
impurity to move around i= 0, even for large boson-impurity
repulsion. We further discuss this behavior in appendix A,
where we examine the average occupations of particles in non-
periodic lattices.

4. Two impurities

We now turn our attention to the problem of two impurities
(NI = 2). We perform an analogous study to that of section 3,
with the addition of an examination of the sizes of the induced
di-impurity bound states.

4.1. Binding energies

We first examine the binding energy of the two impurities,
which is defined as [37, 64]

Ebp = E2 − 2E1 +E0 , (13)

where E0, E1, and E2 are the ground-state energies of the sys-
temwith zero, one, and two impurities, respectively.We calcu-
late all these energies numerically. In addition, and similarly
to the case with one impurity, Ebp is also commonly referred
to as the bipolaron energy [64].

We show binding energies as a function of the boson-
impurity interaction strength for selected bath’s parameters
in figure 5. We show results from ED and extrapolations
to M→∞ obtained from fit (10). In contrast to the one-
impurity case, and as also shown by DMRG calculations for
νB = 2 [64], the energy is always negative. This signals the
formation of bound states for both attractive and repulsive
boson-impurity interactions UBI. This is of course expected
for attractive interactions. As with one impurity, for attractive
UBI, the system forms the expected multi-body bound states.
In contrast, for repulsive interactions UBI > 0, two impur-
ities form di-impurity bound states due to the onset of an
induced attractive impurity-impurity interaction [35]. We fur-
ther characterize these di-impurity dimers in the following
subsections.

As with one impurity, the binding energy shows a weak
dependence onM for weak boson-impurity interactions, while
it shows a noticeable dependence on M for large UBI. How-
ever, the dependence on M changes between weak and strong
UBI > 0. Indeed, in the cases examined Ebp decreases with
increasing M for small UBI, while Ebp increases with M for
largeUBI. This means that the di-impurity dimer becomes less
bound in large lattices with a strong boson-impurity repulsion.
Nonetheless, Ebp still shows a nice convergence withM, which
enables us to extrapolate our results to infinite lattices (black
lines).

We also show the dependence of the binding energy on
UBB for large boson-impurity repulsion in figure 6. Ebp

decreases with increasing UBB, showing that the di-impurity
dimer becomes more bound for larger boson–boson repul-
sion, as shown previously. In addition, we observe a slight
change in the behavior of Ebp around the SF to MI trans-
ition, with an approximately linear dependence on UBB in the
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Figure 5. Binding energy Ebp as a function of UBI/tB for νB = 1, NI = 2, and UBB/tB = 2.0 (a),4.0 (b),6.0 (c),8.0 (d). The colored lines
correspond to ED calculations for lattices with five (dotted blue), seven (dashed orange), nine (dash-dotted green), and eleven (long-dashed
red) sites. The black solid lines correspond to extrapolations to infinite lattices (10) and the underneath gray regions to the corresponding
errors (the segments without lines correspond to regions where the minimization fails).

Figure 6. Binding energy Ebp as a function of UBB/tB for νB = 1,
NI = 2, and UBI/tB = 50. The colored lines correspond to ED
calculations for lattices with five (dotted blue), seven (dashed
orange), nine (dash-dotted green), and eleven (long-dashed red)
sites. The black solid lines correspond to extrapolations to infinite
lattices (10) and the underneath gray regions to the corresponding
errors. The vertical dotted gray line indicates the estimated SF–MI
phase transition of the bath UBB/tB ≈ 3.6 [84].

MI phase, similarly to what we observe with one impurity
(see figure 2).

4.2. Di-impurity sizes

To further examine the formation of bound di-impurity dimers,
we study their sizes by calculating the mean average distance
between the two impurities [66],

⟨rbp⟩/a= ⟨Ψ0| |iI,1 − iI,2| |Ψ0⟩ , (14)

where a is the distance between neighboring sites and iI,N is the
position of impurity N= 1,2. Note that the distance between
sites needs to correctly account for the periodic boundary
conditions.

We show the distance between impurities ⟨rbp⟩ as a func-
tion of UBI in figure 7. The distance reaches its max-
imum value for vanishing boson-impurity interactionUBI = 0,
while it decreases with increasing |UBI|. The distance at
UBI = 0 simply corresponds to the average separation between
two free particles in a lattice with M sites. Therefore,
⟨rbp⟩ depends strongly on M around UBI ≈ 0. In contrast,
⟨rbp⟩ shows a clear convergence with increasing M for
large |UBI|.

The distance between impurities rapidly vanishes for
UBI < 0 in all the cases examined, consistent with the col-
lapse of the particles to one site and the formation of a single
multi-body bound state. On the other hand, ⟨rbp⟩ converges to
finite values for largeUBI > 0. Nonetheless, ⟨rbp⟩ converges to
values smaller than the lattice spacing a, signaling the form-
ation of bound states between the two impurities. As we fur-
ther examine in section 4.4, for UBI > 0 the impurities do not
bind with the bath, and thus this corresponds only to a two-
body dimer state between the two impurities. Furthermore,
⟨rbp⟩ converges to smaller values asUBB/tB increases, suggest-
ing that a stronger boson–boson repulsion induces a stronger
effective attraction between impurities. Therefore, the impur-
ities becomemore bound for increasingUBB. This is consistent
with the increasing of |Ebp| with UBB > 0 reported in figure 5.
We also note that similar results for ⟨rbp⟩ have been reported
in [66] for lattices with five sites.

Finally, in figure 8 we show ⟨rbp⟩ as a function of UBB

for large boson-impurity repulsion. As previously shown, the
distance between impurities decreases with increasing UBB.
Indeed, while in an SF bath there is a finite average distance
between the two impurities, in a MI bath this distance van-
ishes. This means that for large UBB > 0 the two impurities

7
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Figure 7. Average distance between two impurities ⟨rbp⟩ as a function of UBI/tB for νB = 1, NI = 2, and UBB/tB = 2.0 (a),4.0 (b),6.0 (c),
8.0 (d). The colored lines correspond to ED calculations for lattices with five (dotted blue), seven (dashed orange), nine (dash-dotted green),
and eleven (long-dashed red) sites.

Figure 8. Average distance between two impurities ⟨rbp⟩ as a
function of UBB/tB for νB = 1, NI = 2, and UBI/tB = 50. The
colored lines correspond to ED calculations for lattices with five
(dotted blue), seven (dashed orange), nine (dash-dotted green), and
eleven (long-dashed red) sites. The vertical dotted gray line indicates
the estimated SF–MI phase transition of the bath UBB/tB ≈ 3.6 [84].

form tightly bound dimers, with the two impurities localized
in the same site. In contrast, for small UBB > 0 the impurit-
ies form shallower bound states. Once again, this is consistent
with the behavior of Ebp reported in figure 6. We further dis-
cuss the origin of this behavior in section 4.4.

4.3. von Neumann entropy

We now examine the impact of the two impurities on the bath.
In figure 9 we show the bath’s von Neumann entropy SB (see
section 3.2) in the presence of two impurities. We observe a
similar behavior to that induced by only one impurity (see
figure 3). An increasing |UBI| disturbs the insulator phase,

Figure 9. Bath’s von Neumann entropy SB for M= 9, νB = 1, and
NI = 2 as a function of UBB/tB and UBI/tB. The entropy is
normalized by its maximum value in the plotted region. The
horizontal line indicates the estimated SF–MI phase transition point
for bath UBB/tB ≈ 3.6 [84].

increasing the region with a large SB. Similarly, for strong
attractive boson-impurity interaction (top left corner of the
figure) the system simply collapses to one site. However, with
the additional impurity, there is a greater impact on the bath,
as expected.

Within the same range of parameters, figure 9 shows a
noticeably smaller full insulator region than that with one
impurity (figure 3). Similarly, the collapsing region is lar-
ger with two impurities, showing the impact of the additional
impurity. This pattern is expected to continue for more impur-
ities, which could be examined in future studies.

As with one impurity, we provide an additional discussion
in terms of the condensate fraction in appendix B.

4.4. Three-body correlations

In the following we examine the reduced correlations, in ana-
logy to the study presented in section 3.3. However, because

8
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Figure 10. Three-body correlation C(3)
IIB as a function of the lattice

sites i and j for νB = 1, and NI = 2. In panels (a), (c), (e) we
consider a superfluid bath with UBB/tB = 2.0 and in panels
(b), (d), (f) we consider an insulator bath with UBB/tB = 8.0.
We consider lattices with M= 11. We show results for UBI/tB =
−2.0 ((a), (b)), 4.0 ((c), (d)), 8.0 ((e), (f)).

we now consider two impurities, in the following we examine
the reduced three-body correlation function

C(3)
ji,σ ′ ′σ ′σ =

⟨ψ0|â†j,σ ′ ′ âj,σ ′ ′ â†i,σ ′ âi,σ ′ â†0,σâ0,σ|ψ0⟩
⟨ψ0|â†0,σâ0,σ|ψ0⟩

. (15)

Similar to the interpretation of C(2) (equation (12)), C(3)
σ ′ ′σ ′σ

measures the average number of bosons of species σ ′ ′ at site
j and of species σ ′ at sites i for each boson σ at site i= 0.

To examine the behavior of the two impurities around the
bath’s bosons, we show the correlations C(3)

IIB in figure 10 for
weak (left panels) and strong (right panels) boson–boson inter-
actions.We note that for attractive boson-impurity interactions
(top panels), the correlations are larger at i= j= 0, show-
ing that the bath’s bosons attract both impurities to one site.
As expected, for strong UBI < 0, large correlations at i= j=
0 signal the collapse of the system and the formation of a
multi-body bound state. In contrast, for large repulsive boson-
impurity interactions (bottom panels), the correlations vanish
around i= j= 0. This means that for UBI > 0 the impurities
are repelled by the bath, forming only a two-body bound state.
As with one impurity, the impurities become phase-separated
from the bath.

Figure 11. Three body correlation C(3)
BBI as a function of the lattice

sites i and j for νB = 1, and NI = 2. In panels (a), (c), (e) we
consider a superfluid bath with UBB/tB = 2.0 and in panels
(b), (d), (f) we consider an insulator bath with UBB/tB = 8.0.
We consider lattices with M= 11. We show results for UBI/tB =
−2.0 ((a), (b)), 4.0 ((c), (d)), 8.0 ((e), (f)).

To examine the behavior of the bath’s bosons around the
impurities, we also show C(3)

BBI in figure 11. We observe that
for attractive boson-impurity interactions, the correlations are
larger around i= 0 and j= 0, signaling again the forma-
tion of bound states between the impurities and the bosons.
This is similar to what we observe with one impurity in
figure 4 for UBI < 0. In contrast, as the boson-impurity repul-
sion increases, the correlations vanish around i= 0 and j= 0,
showing that the di-impurity dimer is phase-separated from
the bath.

Similar to what we observe in figure 4, in figure 11(e) there
is smooth change in C(3) around i= 0 and j= 0, whereas in
panel (f) there is a sharp transition between vanishing and
finite correlations. As expected, in an insulator bath (f) the cor-
relations are roughly constant for i ̸= 0 and j ̸= 0. Therefore,
we can conclude that, for strong boson-impurity repulsion,
an insulator bath induces tightly bound di-impurity dimers
because it is not favorable for the bath’s bosons to move. In
contrast, a SF bath enables the impurities to form shallower
bound states. We further discuss this behavior in appendix A
where we examine the average occupation of particles in non-
periodic lattices.
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5. Conclusions

In this work, we provided a comprehensive study of ground-
state properties of one and two bosonic impurities immersed
in a one-dimensional Bose lattice bath. We employed an
ED method for small lattices, which enabled us to capture
the complete effect of fluctuations in the regime of strong
interactions.

We found that our calculations correctly describe the
regime of strong interactions, which is not accessible by
MF calculations. We examined binding energies of one and
two impurities across the SF and MI phases of the bath
and found that our results are consistent with related works.
Similarly, we examined the sizes of the di-impurity bound
states in repulsive systems with two impurities and found
that these decrease with increasing boson-impurity repulsion.
Indeed, we found that a strongly-repulsive bath induces tightly
bound di-impurity dimers, whereas a weakly-repulsive bath
induces shallower bound states. We concluded that an insu-
lator bath necessarily induces tightly-bound dimers because it
is not favorable for the bath’s bosons to tunnel to neighboring
sites.

In the future, we intend to study impurities in larger one-
and two-dimensional Bose lattice baths by performing Monte
Carlo [88] and DMRG [89] simulations. This will enable us
to test our conclusions in many-body scenarios and comple-
ment recent perturbative studies [58]. We also intend to study
impurities immersed in lattices loaded with spin 1/2 fermi-
ons and two-component bosons. We expect these more com-
plex baths will induce richer physics, similar to the richer
behavior observed by analogous studies in homogeneous
gases [90–92].
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Appendix A. Average occupations in open lattices

In this appendix, we examine lattices with open (non-periodic)
boundary conditions to complement the results of the main
text. We study the average occupation of species σ per site i,

⟨ni,σ⟩= ⟨Ψ0|â†i,σâi,σ|Ψ0⟩ . (A.1)

We show the average occupations of the bath’s bosons and
impurities in figure A1. We show occupations for lattices
with one impurity (left panels) and two impurities (right pan-
els). For weak boson-impurity repulsionUBI < UBB, the bath’s
bosons can occupy the entire lattice, as expected. In contrast,
for strong boson-impurity repulsion, the bath’s bosons can-
not occupy the same site as the impurities, forcing the impur-
ities to move to the boundaries of the lattice. This behavior
has already been reported in shallow open lattices with five
sites [66] and in related studies of impurities trapped in one-
dimensional harmonically confined Bose gases [93]. Natur-
ally, this behavior simply corresponds to the phase separation
discussed in sections 3.3 and 4.4. Indeed, we find that the
approximate point of phase separation is consistent with that
observed for periodic lattices.

In the case of two impurities, one relevant difference
between the weakly- and strongly-repulsive bath is that for
UBB/tB = 2 the two impurities can occupy the two sites at the
boundary of the lattice (see the right region in (g)), while for
UBB/tB = 8 the two impurities occupy a single site (see the
right region in panel (h)). This is consistent with the behavior
observed in periodic lattices (see figure 8), where an insulating
bath induces tightly bound di-impurity states, while a super-
fluid bath induces shallower bound states. We also note that
analogous occupation profiles have been reported with small
open lattices in [66].
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Figure A1. Average boson (upper panels) and impurity (bottom panels) occupation per site ⟨ni,σ⟩ (σ = B, I) as a function of UBI/tB and
lattice site i for νB = 1, NI = 1 (a,b,e,f), 2 (c,d,g,h), and UBB/tB = 2.0 (a,c,e,g), 8.0 (b,d,f,h). We consider lattices with M= 11.

Figure B1. Bath’s condensate fraction Ωc,B for M= 9 and νB = 1 as a function of UBB/tB and UBI/t. We show results for systems with one
impurity (a) and two impurities (b). The horizontal lines indicate the estimated SF–MI phase transition point of the bath UBB/tB ≈ 3.6 [84].

Appendix B. Condensate fraction

To complement the results shown in 3.2 and 4.3, in the follow-
ing we examine the impact of the impurities on the condens-
ate fraction of the bath Ωc,B = λM/NB. Here λM is the largest
eigenvalue of the bath’s one-body density matrix [71]

ρ
(B)
ij = ⟨Ψ0|â†i,Bâj,B|Ψ0⟩ , (B.1)

where |Ψ0⟩ corresponds to a solution given by equation (5).
Even though condensation and superfluidity are related but dif-
ferent phenomena, Ωc can be used to identify the phase of a
Bose–Hubbard model within ED calculations. [71]. Indeed, in
theMI phaseΩc,B ≈ 0 as particles necessarily occupy different
Bloch states. In contrast, in the SF phase particles can populate
the lowest state and thus Ωc,B ≈ 1 [94].

We show condensate fractions of baths interacting with one
and two impurities in figure B1. As expected, the behavior
of the entropy maps onto that of the condensate fraction.
Indeed, for vanishing UBI, the condensate fraction notice-
ably decreases for UBB/t> 3.6, signaling the SF to MI trans-
ition [71]. In addition, and similarly to what we reported
in the main text, finite boson-impurity interactions with an
increasing |UBI| disturb the insulator phase, resulting in smal-
ler regions with Ωc,B ≈ 0. Note that, once again, the transition

is better defined with two impurities. In addition, the condens-
ate fraction also signals the collapse of the system (upper left
corners in both panels), where Ωc vanishes, as expected.
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