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THE LOW-DIMENSIONAL HOMOLOGY OF FINITE-RANK

COXETER GROUPS

RACHAEL BOYD

Abstract. We give formulas for the second and third integral homology of an
arbitrary finitely generated Coxeter group, solely in terms of the corresponding
Coxeter diagram. The first of these calculations refines a theorem of Howlett,
while the second is entirely new and is the first explicit formula for the third
homology of an arbitrary Coxeter group.

1. Introduction

Given a Coxeter group W with finite generating set S and corresponding sys-
tem (W,S), denote the associated Coxeter diagram by DW (see Definitions 2.1
and 2.6).

In this paper, variations on this diagram are defined, and Theorems A and B
below calculate the second and third integral homology for any finite rank Coxeter
group W , in terms of zeroth and first cellular homologies of these new diagrams,
considered as cell complexes in their own right.

Throughout this paper we will always denote the cyclic group Z/nZ as Zn.
Previously it was known that first and second homology groups of a Coxeter group
were isomorphic to Zri2 , where ri = rankZ2(Hi(W ;Z)) and both r1 and r2 are
known. The computation of H1(W ;Z) is a straightforward computation of the
abelianisation. The computation of H2(W ;Z) is due to Howlett [How88]. A paper
of Ihara and Yokonuma [IY65] gives results for the second cohomology of certain
finite Coxeter groups, with coefficients in C∗. These results agree with Howlett’s
theorem for the groups in question.

Theorem A below gives a refinement of Howlett’s theorem by introducing a
naturality statement. The method of proof is new and uses a spectral sequence
argument. Theorem B is the first explicit formula for H3(W ;Z) and extends the
same method. This method could be extended to produce computations of higher
homologies, the drawback being that the differentials in the spectral sequence be-
come more difficult to handle as the homological degree increases. Terms that we
use while stating our results below will be defined in Section 2.

1.1. Second homology. Given a diagram D, let E(D) and V (D) be the set of
edges and set of vertices of D respectively. Let DW be the Coxeter diagram corre-
sponding to Coxeter system (W,S). Then V (DW ) = S and to every pair s 6= t ∈ S
there is an associated label m(s, t) ∈ N ∪∞.

Definition 1.1. We introduce three new diagrams: Dodd, Deven and D••.
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• Let Dodd be the diagram with V (Dodd) = S and

e(s, t) ∈ E(Dodd) ⇐⇒ m(s, t) is odd.

• Let Deven be the diagram with V (Deven) = S and

e(s, t) ∈ E(Deven) ⇐⇒ 2 6= m(s, t) is even.

• Let D•• be the diagram with

V (D••) = {{s, t} | s, t ∈ S, m(s, t) = 2}

e({s1, t1}, {s2, t2}) ∈ E(D••) ⇐⇒ s1 = s2 and m(t1, t2) is odd.

Theorem A. Given a finite rank Coxeter system (W,S), there is a natural iso-
morphism

H2(W ;Z) ∼= H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

where in the first and final term of the right-hand side the diagrams are considered
as 1-dimensional cell complexes.

Remark 1.2. Computing the rank of the right-hand side recovers Howlett’s the-
orem [How88].

Consider the category where the objects are Coxeter systems and the morphisms
are full inclusions (Definition 2.11), then group homology acts as a functor to the
category of abelian groups. The right-hand side of the isomorphism in Theorem A
assigns to a Coxeter diagram DW the three new diagrams Dodd, Deven and D••
and furthermore assigns to these diagrams an abelian group. The total outcome
is again a functor to abelian groups. Naturality says that the isomorphism of the
statement is a natural isomorphism of functors.

1.2. Third homology. To state this theorem we introduce four new diagrams.

Definition 1.3. Let DW be a Coxeter diagram corresponding to the Coxeter sys-
tem (W,S).

• Let DA2 be the diagram with

V (DA2) = {{s, t} | s, t ∈ S, m(s, t) = 3}

e({s1, t1}, {s2, t2}) ∈ E(DA2) ⇐⇒ s1 = s2 and m(t1, t2) = 2.

• Let D 2r be the diagram with

V (D 2r ) = {{s, t, u} | s, t, u ∈ S, m(s, t) = m(s, u) = 2,m(t, u) = 2r is even}

e({s1, t1, u1}, {s2, t2, u2}) ∈ E(D 2r ) ⇐⇒ t1 = t2, u1 = u2

m(s1, s2) is odd.

• Let DA3 be the diagram with

V (DA3) = {{s, t, u} | s, t, u ∈ S, m(s, t) = m(t, u) = 3 and m(s, u) = 2}

e({s1, t1, u1}, {s2, t2, u2}) ∈ E(DA3) ⇐⇒ t1 = t2, u1 = u2, m(s1, s2) = 2.

• Let D�
•• be the CW-complex formed from the diagram D•• by attaching a

2-cell to every square.
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Theorem B. Given a finite rank Coxeter system (W,S) there is an isomorphism

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕
(

⊕
3<m(s,t)<∞

Zm(s,t)

)
⊕H0(D 2r ;Z2)⊕

(
⊕

W (H3)⊆W
W (B3)⊆W

Z2

)
⊕
(
H0(DA3 ;Z2)©H0(D••;Z2)

)
⊕H1(D�

••;Z2)

where each diagram is viewed as a cell complex. In this equation, © denotes a
known non-trivial extension of H0(DA3 ;Z2) by H0(D••;Z2) fully described via an
extension matrix XW from Definition 5.40.

We note that the unpublished PhD thesis of Harris [Har06] contains an indepen-
dent computation of the third integral homology of a Coxeter group, which differs
from Theorem B in many cases.

The finite Coxeter groups were classified in the 1930s by Coxeter [Cox33]. This
classification is described in Theorem 2.7. We use Theorems A and B to calculate
the second and third integral homology of the finite Coxeter groups, and give the
results in Appendix A.

1.3. Outline of proof. Given a Coxeter system (W,S) these results arise from
the computation of the isotropy spectral sequence for a contractible CW -complex
upon which the Coxeter group W acts, called the Davis complex. Cells in the
Davis complex correspond to finite Coxeter groups that appear in W , the spherical
subgroups. These have Coxeter systems (WT , T ) where WT is a finite Coxeter
group and T ⊆ S. The set of T ⊆ S which generate spherical subgroups of a fixed
Coxeter group W is denoted S.

The isotropy spectral sequence abuts to the integral homology of W, and the E1

terms are given by the sums of twisted homologies of the spherical subgroups WT

of W , for T a given size.

E1
p,q =

⊕
T∈S
|T |=p

Hq(WT ;ZT )⇒ Hp+q(W ;Z).

For the proof of Theorem A the groups on the E1 terms and d1 differential of the
spectral sequence are simple to compute. We see there are no further differentials
that will affect the diagonal corresponding to H2(W ;Z) on the E∞ page, so the
limiting terms are equal to the E2 terms. There is only one non-zero term on the
diagonal so there are no possible extension problems and Theorem A follows.

For Theorem B, the computation of the E1 terms relies heavily on a free res-
olution for Coxeter groups, described by De Concini and Salvetti [DCS00]. The
computer algebra package PyCox [Geck12] is used (though not strictly necessary)
to complete some of the longer calculations required.

In order to apply the d1 differential to computations using this resolution, a chain
map between resolutions is computed in the required degrees. Using these tools,
the E2 page of the spectral sequence on the diagonal corresponding to H3(W ;Z) is
computed. Following this, we use a variety of techniques to prove that all further
differentials to and from this diagonal are in fact zero. This includes defining a
pairing for the isotropy spectral sequence.
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The possible extension problems arising on the limiting page at this diagonal
are treated by considering representing subgroups of W for each class and mapping
between the corresponding spectral sequences. From these computations we note
there is only one non-trivial extension and thus Theorem B follows.

1.4. Organisation of paper. We start with background on Coxeter groups and
an introduction to the Davis complex ΣW of W in Section 2. We then introduce the
isotropy spectral sequence in Section 3, and prove some associated desired results.
Following this, Section 4 proves Theorem A and Section 5 proves Theorem B.

1.5. Acknowledgements. I would like to thank my PhD advisor Richard Hep-
worth for his wonderful teaching, our many maths conversations and his uncondi-
tional support. I would also like to thank my thesis examiners Mark Grant and
Ulrike Tillmann for their careful reading and related comments and suggestions,
and Markus Szymik for helpful feedback. Finally I would like to thank the anony-
mous referee for valuable comments.

2. Coxeter groups

This expository section follows [Dav08].

Definition 2.1. A Coxeter matrix on a finite set S is a symmetric S×S matrix M
with entries m(s, t) in N ∪ {∞} for s, t in S. This matrix must satisfy m(s, t) = 1
if and only if s = t and m(s, t) = m(t, s) must be greater than 1 when s 6= t. A
Coxeter matrix M has an associated Coxeter group W , with presentation

W = 〈S | (st)m(s,t) = e〉.
We call (W,S) a Coxeter system, and we call |S| the rank of (W,S). We adopt the
convention that (W, ∅) is the trivial group.

Remark 2.2. Note that the condition m(s, s) = 1 implies that all generators of
the group are involutions i.e. s2 = e for all s in S.

Definition 2.3. Define the length function on a Coxeter system (W,S) to be the
function ` : W → N which maps w in W to the minimal word length required to
express w in terms of the generators in S. That is, we set `(e) = 0, and if w 6= e
then there exists a minimal k ≥ 1 such that w = s1 · · · sk for si in S.

Definition 2.4. For k ∈ N, define π(a, b; k) to be the word of length k, given by
the alternating product of a and b i.e.

π(a, b; k) =

length k︷ ︸︸ ︷
abab . . . .

Remark 2.5. When m(s, t) 6=∞, the relations (st)m(s,t) = e can be rewritten as

π(s, t;m(s, t)) = π(t, s;m(s, t)).

Definition 2.6. Given a Coxeter system (W,S), the associated Coxeter diagram,
denoted DW , is a labelled graph with vertices indexed by the generating set S.
Edges are drawn between the vertices corresponding to s and t in S whenm(s, t) ≥ 3
and labelled with m(s, t) when m(s, t) ≥ 4 (or ∞). When the diagram DW is con-
nected, W is called an irreducible Coxeter system.
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Theorem 2.7 (Classification of finite Coxeter groups, Coxeter [Cox33]). A Coxeter
system is finite (i.e. gives rise to a finite Coxeter group) if and only if it is the
(direct) product of finitely many finite irreducible Coxeter systems. The following is
a complete list of the diagrams corresponding to finite irreducible Coxeter systems,
and therefore classifies finite Coxeter groups.

Infinite families Exceptional groups

An (n ≥ 1) . . . F4
4

Bn (n ≥ 2) . . .
4

H3
5

Dn (n ≥ 4) . . . H4
5

I2(p) (p ≥ 5)
p

E6

E7

E8

Notation. Throughout this paper, for ease of notation we may write I2(2), I2(3)
and I2(4) instead of A1 ×A1, A2 and B2 respectively. Whenever we write I2(p)
we will specify for which p the result corresponds.

Definition 2.8. We say that a finite irreducible Coxeter group W is of type D if
its corresponding diagram is given by D, and we denote this Coxeter group W (D).

Remark 2.9. The Coxeter group of type An, or W (An), is isomorphic to the sym-
metric group Sn+1 and the Coxeter group of type I2(p), or W (I2(p)), is isomorphic
to the dihedral group D2p. Similarly, the Coxeter group of type Bn, or W (Bn), is
isomorphic to the signed permutation group Z2 o Sn and W (Dn), is isomorphic to
an index two subgroup of W (Bn), such that the signs in each permutation multiply
to +1.

2.1. Products and subgroups. Consider two Coxeter systems (U, SU ) and (V, SV )
and denote by DU t DV the diagram created by placing DU and DV beside each
other, disjointly.

Lemma 2.10. The diagram DU t DV defines a Coxeter group W ∼= U × V , with
diagram DW = DU tDV and generating set SW := SU ∪ SV .
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Definition 2.11. A map ι : DU→DW of Coxeter diagrams is a full inclusion
if ι : U → W is injective and for every s, t ∈ U , m(ι(s), ι(t)) = m(s, t). In this
setting we call DU a full subdiagram of DW .

Definition 2.12. Let (W,S) be a Coxeter system. For each T ⊆ S denote by WT

the subgroup of W generated by T . We call subgroups that arise in this way
parabolic subgroups.

Proposition 2.13 ([Dav08, 4.1.6.(i)]). For WT a parabolic subgroup, (WT , T ) is a
Coxeter system in its own right, and defines a full inclusion DWT

↪→ DW . Similarly,
a full inclusion corresponds to a parabolic subgroup.

The next result concerns cosets of parabolic subgroups. Let (W,S) be a Coxeter
system, and T, T ′ be subsets of S.

Lemma 2.14 ([Dav08, 4.3.1]). There is a unique element of minimal length in the
double coset WTwWT ′.

Definition 2.15 ([Dav08, 4.3.2]). We say an element w in W is (T, T ′)-reduced if
w is the shortest element in WTwWT ′ .

Remark 2.16. Given the parabolic subgroup WT in W , w in W is (T, ∅)-reduced
if `(tw) = `(t) + `(w) = 1 + `(w) for all t in T . Note that this implies w cannot be
written in such a way that it starts with any letter in T . Likewise we say w in W
is (∅, T )-reduced if `(wt) = `(w) + 1 for all t in T .

Definition 2.17. A finite parabolic subgroup is called a spherical subgroup.

Since the diagrams of parabolic subgroups appear as full subdiagrams of the
Coxeter diagram, given a Coxeter system (W,S) we identify its spherical subgroups
via occurrences of the irreducible diagrams from Theorem 2.7 in DW , and disjoint
unions of such diagrams.

Definition 2.18. Given a Coxeter stem (W,S), we denote by S the set of all
subsets of S which generate spherical subgroups of W , i.e.

S = {T ⊆ S |WT is finite}.

2.2. The Davis complex. In this section we introduce the Davis complex for a
Coxeter group.

Definition 2.19. A coset of a spherical subgroup is called a spherical coset. For a
Coxeter system (W,S) and a subgroup WT we denote the set of cosets as follows:

W/WT = {wWT |w ∈W}.
The poset of spherical cosets is denoted WS:

WS =
⋃
T∈S
{W/WT }.

where WS is partially ordered by inclusion. The group W acts on the poset WS
by left multiplication and the quotient poset is S.

Lemma 2.20 ([Dav08, 4.1.6.(iii)]). Given T and U in S and w and v in W , the
cosets wWU and vWT satisfy wWU ⊆ vWT if and only if w−1v ∈WT and U ⊆ T .
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Definition 2.21 ([Dav08, 7.2]). One can associate to a Coxeter system (W,S) a
CW-complex called the Davis complex. This is denoted ΣW and is the geometric
realisation of the poset WS. That is every spherical coset wWT is realised as a
vertex or 0-cell, and for every ordered chain of (p + 1) spherical cosets there is
a p-cell in the Davis complex:

w0WT0 ⊂ w1WT1 ⊂ w2WT2 ⊂ · · · ⊂ wpWTp

where wi is in W and Ti is in S for all 0 ≤ i ≤ p. The associated Coxeter group
W acts on the Davis complex by left multiplication on the cosets.

Definition 2.22. For every finite Coxeter group W with generating set S, one can
define a canonical representation of the Coxeter group W on Rn, where n = |S| (see
[Dav08, Section 6.12] for details). Given this representation we define the Coxeter
polytope, or Coxeter cell of W to be the convex hull of the orbit of a generic point x
in Rn under the W -action. This polytope has dimension n = |S|, and we denote
it CW . A detailed definition can be found in [Dav08, Section 7.3].

Proposition 2.23 ([Dav08, Lemma 7.3.3]). If W is a finite Coxeter group then ΣW

is homeomorphic to the barycentric subdivision of the Coxeter cell CW .

Definition 2.24. A coarser cell structure can be given to ΣW : consider only
those spherical cosets which are present as subsets of a chosen coset wWT and
denote this WS≤wWT

. The realisation of WS≤wWT
is a subcomplex of ΣW . In

fact |WS≤wWT
| ∼= |WTST | where ST denotes the set of spherical subsets of T .

Since WT is finite, the realisation of WTST is homeomorphic to the barycentric
subdivision of its Coxeter cell CWT

. Therefore the realisation is homeomorphic

to a disk, i.e. |WTST | ∼= D|T |. The cell structure on ΣW is therefore given by
associating to the subcomplex WS≤wWT

its corresponding Coxeter cell: a p-cell
where p = |T |. The 0-cells are given by cosets of the form WS≤wW∅ , i.e. the
set {wW∅|w ∈ W}, and therefore associated to elements of W (recall W∅ = {e}).
By Lemma 2.20 a set of vertices X will define a p-cell precisely when X = wWT

for T ∈ S and |T | = p. There is an action of W on the cells of ΣW given by left
multiplication, and this makes ΣW into a W -complex in the sense of [Bro82]. The
stabiliser of a p-cell wWT under this action is the finite subgroup wWTw

−1 and
upon identification of the cell wWT with CWT

this acts by reflections in the usual
way.

We use the following results concerning the Davis complex in this paper.

Proposition 2.25 ([Dav08, 8.2.13]). For any Coxeter group W , ΣW is contractible.

Lemma 2.26 ([Dav08, 7.4.4]). Suppose W and S decompose as W = U × V
and S = SU ∪ SV . Then S = SU × SW and ΣW = ΣU × ΣV is an isomorphism of
CW-complexes, provided we use the coarser cell structure.

3. The isotropy spectral sequence

We give explicit formulas for the terms on the E1 page of the isotropy spectral
sequence for the Davis complex, as well as the d1 differential, which is induced by
a transfer map. We also introduce a pairing for the isotropy spectral sequence of
the Davis complex in Section 3.2.
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3.1. Isotropy spectral sequence for the Davis Complex. We consider the
isotropy spectral sequence for a Coxeter system (W,S) and related ΣW . Recall the
definition of the isotropy spectral sequence from [Bro82][VII, Equation(7.10)]. For
more background see [Boyd18] or [Bro82].

Consider the action of W on ΣW and denote the stabiliser of a cell σ by Wσ.
Denote the orientation module of σ by Zσ. We consider the isotropy spectral
sequence for integral homology.

Lemma 3.1. Under the W -action on ΣW , a set of orbit representatives of p-cells
is

Op = {eWT | T ∈ S , |T | = p}.
The stabilizer of a cell σ = eWT is Wσ = WT and the action of an element w
of WT on Zσ is the identity if `(w) is even, or negation if `(w) is odd.

Proof. Recall that each p-cell of ΣW is represented by a spherical coset wWT

where |T | = p, and the vertices of the cell are given by the set {vW∅|v ∈ wWT }.
The group W acts by left multiplication and so we can choose the orbit represen-
tatives of p-cells to be the cosets eWT = WT where |T | = p and T is in S. The
stabiliser of a cell represented by WT is WT itself. Every element in the generating
set T of WT acts on the cell by reflection, reversing the orientation of the cell. The
action of an element of WT on the orientation module will therefore be the identity
if the element has even length, or negation if the element has odd length. �

Recall that the Davis complex is contractible (Proposition 2.25) and hence
acyclic. Then under the choices of Lemma 3.1, the isotropy spectral sequence is

E1
p,q = Hq(W ;Cp(ΣW ,Z)) =

⊕
σ∈Op

Hq(Wσ;Zσ) =
⊕
T∈S
|T |=p

Hq(WT ;ZT )⇒ Hp+q(W ;Z)

since Zσ⊗Z ∼= Zσ, which we write as ZT for the orientation module of the cell WT .
This gives E1 page as shown in Figure 1. The zeroth column only has one summand,
since only the empty set satisfies the criteria of generating a spherical subgroup
and having size zero. For the first column, note that all generators in S generate a
cyclic group of order two. Denote the subgroup generated by s in S by Ws.

We denote the d1 differential component restricted to theHq(WT ;ZT ) component
in the source and projected to the Hq(WU ;ZU ) component in the target by d1

T,U .

Proposition 3.2. The map d1
T,U is non zero only when U ⊂ T and is given by the

following transfer map:

d1
T,U : Hq(WT ;ZT ) → Hq(WU ;ZU ).

On the chain level we compute Hq(WT ;ZT ) as homology of ZT ⊗WT
FWT

for FWT

a projective resolution of Z over ZWT and we compute Hq(WU ;ZU ) as homology
of ZU ⊗WU

FWT
. Let m⊗ x be in ZT ⊗ FWT

and WU\WT be a set of coset repre-
sentatives for WU in WT . Then on the chain level the transfer map is

d1
T,U : m⊗ x 7→

∑
g∈WU\WT

m · g−1 ⊗ g · x.
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3 H3(W∅;Z∅)
d1

←− ⊕
t∈S

H3(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H3(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H3(WT ;ZT )

2 H2(W∅;Z∅)
d1

←− ⊕
t∈S

H2(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H2(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H2(WT ;ZT )

1 H1(W∅;Z∅)
d1

←− ⊕
t∈S

H1(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H1(WT ;ZT )

0 H0(W∅;Z∅)
d1

←− ⊕
t∈S

H0(Wt;Zt)
d1

←− ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

←− ⊕
T∈S
|T |=3

H0(WT ;ZT )

0 1 2 3

Figure 1. The E1 page of the isotropy spectral sequence for the
Davis complex

Proof. This proof follows the description of the d1 differential for the isotropy
spectral sequence in [Bro82, VII.8]. Recall that an orbit representative for a p-
cell is eWT for T in S and |T | = p. The set FT of cells in the image of the cellular
differential ∂(WT ) is given by cells wWU with |U | = (p−1) and wWU ⊂WT . This is
satisfied if and only if U ⊂ T and w ∈WT by Lemma 2.20. SinceWT is the stabiliser
of the cell eWT , the orbit set (FT /WT ) is given by {U ⊂ T | |U | = p − 1}, which
is a subset of Op−1. The intersection Stab(WT ) ∩ Stab(WU ) = WT ∩WU = WU

and the action of WU on ZT precisely mimics the action of WU on ZU . Therefore
it follows that

d1|Hq(WT ;ZT ) =
∑

U∈FT /WT

tT,U

where tT,U is the transfer map tT,U : Hq(WT ;ZT )→ Hq(WU ;ZU ).
Note that cycles in Hq(WT ;ZT ) are represented by chains in ZT ⊗ FWT

. Let-
ting m⊗ x be an element on the chain level yields the formula, where the transfer
map on the chain level is computed via [Bro82, III.9]. �

To compute H2(W ;Z) and H3(W ;Z) we consider the E∞ groups on the p+q = 2
(red) diagonal and the p + q = 3 (blue) diagonal of Figure 1 respectively. Entries
on the E1 page are given by summing over finite Coxeter groups with generating
set a certain size, and the classification of finite Coxeter groups from Theorem 2.7
provides a finite selection of possible groups for each size of generating set.

Lemma 3.3. Given a Coxeter system (W,S), let V ↪→ W be a parabolic sub-
group. Then there is a map of isotropy spectral sequences E(V ) → E(W ) that is
an inclusion on the E1 page.
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Proof. The inclusion j : V ↪→ W induces an inclusion WV SV ⊂ WS, hence a map
between the realisations i : ΣV ↪→ ΣW , and therefore a map

Cp(ΣV ,Z)
i∗−→ Cp(ΣW ,Z).

We have the following diagram:

E1
p,q(V ) // E1

p,q(W )

Hq(V ;Cp(ΣV ,Z))
Hq(j∗;i∗) //

∼=
��

Hq(W ;Cp(ΣW ,Z))

∼=
��⊕

U∈SV
|U |=p

Hq(WU ;ZU ) //
⊕

T∈S
|T |=p

Hq(WT ;ZT )

where the dotted map is induced by the map on p-cells on the central row. Every
spherical subgroup of V is also a spherical subgroup of W , corresponding to a
map between the p-cells represented by these spherical subgroups. Therefore the
dotted map is an inclusion of summands. Since the d1 differential is defined via
the transfer map on each summand, all d1 differentials in E(V ) will map under the
inclusion to the same differential in E(W ). The inclusion on the E1 page therefore
induces a map of spectral sequences on further pages. �

3.2. Pairings on the isotropy spectral sequence. We consider a pairing of
spectral sequences, for use in Section 5.6. We follow [May13] and recall Section
4 on products. For filtered complexes A, B and C, if a pairing A ⊗ B → C is
a morphism of filtered complexes, i.e. if FpA · FqB ⊂ Fp+qC, then this induces a
morphism of spectral sequences

Er(A⊗B)→ Er(C).

Combining this with the Künneth map Er(A) ⊗ Er(B) → Er(A ⊗ B) (which is
induced by the Künneth map on homology on the E1 page) defines a pairing

φ : Er(A)⊗ Er(B)→ Er(C)

which satisfies the Leibniz formula for differentials, i.e. for x in Er(A) and y
in Er(B) the pairing satisfies

drC(φ(x⊗ y)) = φ(drA(x)⊗ y) + (−1)deg(x)φ(x⊗ drB(y)).

For finite Coxeter groups WU and WV , let WX = WU×WV where X := U tV as
in Section 2.1. For the remainder of this section we fix the following notation: letWI

be the Coxeter group corresponding to I ∈ {V,U,X}. Let SI be the generating set
of WI and let SI be S for the Coxeter system (WI , I) (see Definition 2.18). Let ΣI

be the Davis complex ΣWI
and F I be a projective resolution of Z over ZWI .

Let E(I) denote the isotropy spectral sequence for WI . Then E(I) is the spectral
sequence related to the double complex F I ⊗C(ΣI ,Z) (see [Bro82, VII.7]). Denote
the double complex by Ip,q and the associated total complex TI. Then the spectral
sequence E(I) has corresponding filtration

Fp((TI)n) =
⊕
i≤p

In−i,i.



THE LOW-DIMENSIONAL HOMOLOGY OF FINITE-RANK COXETER GROUPS 11

Lemma 3.4. The product map WU × WV → WX determines a map on chain
complexes

Ci(ΣU ,Z)⊗ Cj(ΣV ,Z)→ Ci+j(ΣX ,Z).

Proof. The product map induces a map of posets

WUSU ×WV SV → WXSX
(uWTU , vWTV ) 7→ uv(WTUtTV ).

This in turn induces a map on their realisations ΣU × ΣV → ΣX , which is the
map giving the decomposition ΣX = ΣU ×ΣV in Lemma 2.26. Consider Ci(ΣI ,Z)
and note that p-cells of ΣI are represented by cosets wWT where T ∈ SI . Given
an i-cell of ΣU represented by uWT1 and a j-cell of ΣV represented by vWT2 we
use the above poset map and define an (i+ j)-cell of ΣX represented by uvWT1tT2 .
This gives a pairing Ci(ΣU ,Z)⊗ Cj(ΣV ,Z)→ Ci+j(ΣX ,Z). �

Proposition 3.5. The map

Φ : Er(U)⊗ Er(V )→ Er(X)

induced by the pairings FUk ⊗F Vl → FXk+l and Ci(ΣU ,Z)⊗Cj(ΣV ,Z)→ Ci+j(ΣX ,Z),
gives a pairing of spectral sequences, under which the differentials satisfy the Leibniz
formula.

Proof. We apply the hypothesis of [May13, Section 4] and show that the map
TU ⊗ TV → TX is a morphism of filtered complexes. We have on the nth level
that

Fp((TI)n) =
⊕
i≤p

In−i,i =
⊕
i≤p

F In−i ⊗ Ci(ΣI ,Z)

for I in {U, V,X}. Since WU ×WV = WX , there is a pairing FUk ⊗ F Vl → FXk+l

(e.g. FX = FU ⊗ F V [Bro82, V.1.1]). Putting this together with the pairing
Ci(ΣU ,Z)⊗ Cj(ΣV ,Z)→ Ci+j(ΣX ,Z) from Lemma 3.4 gives

Fp(TU) · Fq(TV ) ⊂ Fp+q(TX)

as required in [May13].
�

Theorem 3.6. Under the decomposition on the E1 page of the spectral sequence

E1
p,q(I) = Hq(F

I
∗ ⊗WI

Cp(ΣI ,Z)) ∼=
⊕
Ī∈SI
|Ī|=p

Hq(WĪ ;ZĪ)

the pairing of Proposition 3.5 induces a pairing Φ∗, given by the Künneth map
when restricted to individual summands

Φ∗ : Hq(WŪ ;ZŪ )⊗Hq′(WV̄ ;ZV̄ )
×→ Hq+q′(WŪ ×WV̄ ;ZŪ ⊗ZV̄ )

∼=→ Hq+q′(WX̄ ;ZX̄).

It follows that the differentials in the isotropy spectral sequence for the Davis com-
plex satisfy a Leibniz formula with respect to the pairing Φ∗.
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Proof. We now consider this pairing under the decomposition on the E1 page of
the isotropy spectral sequence:

E1
p,q(I) = Hq(F

I
∗ ⊗WI

Cp(ΣI ,Z)) ∼=
⊕
Ī∈SI
|Ī|=p

Hq(WĪ ;ZĪ)

described in [Bro82][VII]. Under this decomposition the above isomorphism re-
stricted to a single summand on the right is given by the following map ι∗, induced
by inclusion ι : F T∗ ⊗WT

Cp(ΣT ,ZT )→ FW∗ ⊗W Cp(ΣW ,Z).

Hq(F
T
∗ ⊗WT

Cp(ΣT ,ZT ))
ι∗ // Hq(F

W
∗ ⊗W Cp(ΣW ,Z))

Hq(WT ;ZT ) // Hq(F
W
∗ ⊗W Cp(ΣW ,Z)).

If a Coxeter group WX arises as a product WX = WU ×WV , then the pairing Φ,
along with the E1 decomposition for each group gives the following diagram.(

E1
p,q(U)

⊗
E1
p′,q′(V )

) Φ // E1
(p+p′),(q+q′)(X)

(
Hq(F

U
∗ ⊗WU

Cp(ΣU ,Z))
⊗

Hq′(F
V
∗ ⊗WV

Cp′(ΣV ,Z))
) Φ // Hq+q′(F

X
∗ ⊗WX

Cp+p′(ΣX ,Z))

( ⊕
Ū∈SU
|Ū |=p

Hq(WŪ ;ZŪ )
⊗

∼=⊕ι∗

OO

⊕
V̄ ∈SV
|V̄ |=p′

Hq′(WV̄ ;ZV̄ )
)

∼=⊕ι∗

OO

Φ∗ //
⊕

X̄∈SX
|X̄|=p+p′

Hq+q′(WX̄ ;ZX̄).

∼=⊕ι∗

OO

The isomorphisms are induced by the component-wise inclusions given by ι∗ on
each summand. The map Φ∗ is defined such that the diagram commutes, i.e. it is
induced by Φ and the two vertical isomorphisms. On each summand of the bottom
left factor it is given by the composite

Hq(WŪ ;ZŪ )⊗Hq′(WV̄ ;ZV̄ )
×→ Hq+q′(WŪ ×WV̄ ;ZŪ ⊗ ZV̄ )

∼=→ Hq+q′(WX̄ ;ZX̄)

where here X̄ := Ū t V̄ . Here the first map is given by the homology cross product
[Bro82, V.3], and the second map is due the fact that if WŪ ×WV̄ = WX̄ then the
orientation modules satisfy ZŪ ⊗ ZV̄ ∼= ZX̄ . This map is precisely the Künneth
map on homology. Extending this component-wise definition to the tensor product
of the summations gives the map Φ∗ that lifts to the map Φ on the top row. �

4. Calculation of H2(W ;Z)

From Section 3.1, the isotropy spectral sequence for (W,S) has E1 page as
in Figure 1, and the E∞ page will give filtration quotients of H2(W ;Z) on the
p + q = 2 diagonal. We compute the diagonal on the E2 page and note that no
further differentials affect this diagonal, so the result follows.

It the following let (W,S) be a Coxeter system and E1
p,q := E1

p,q(W ) be the E1

terms of the isotropy spectral sequence for the Davis complex of (W,S).
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Proposition 4.1. The terms E1
0,2 and E1

1,1 are zero.

Proof. We have E1
0,2 = H2(W∅;Z∅) = 0, since W∅ is the trivial group. The E1

1,1

term is given by

E1
1,1 = ⊕

t∈S
H1(Wt;Zt),

where the non-trivial group element t acts by negation. Then H1(Wt;Zt) = 0
follows from taking the standard projective resolution for a cyclic group of order 2
and these coefficients. �

4.1. Homology at E1
2,0. Recall that

E1
2,0 = ⊕

T∈S
|T |=2

H0(WT ;ZT ).

From Proposition 4.1, this will be the only contributing group to the p + q = 2
diagonal on the E∞ page. We start by computing E2

2,0, which is given by the
homology of the following sequence

⊕
t∈S

H0(Wt;Zt) ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

oo ⊕
T∈S
|T |=3

H0(WT ;ZT ).
d1
oo

Recall that the d1 differential is given by the transfer map defined in Proposition 3.2.

Lemma 4.2. For all T in S such that |T | > 0, H0(WT ;ZT ) = Z2.

Proof. The zeroth homology is given by the coinvariants of the coefficient mod-
ule ZT under the group action. Since in our case each group generator acts as
multiplication by −1 we compute homology to be the group Z2. �

For X ∈ S, let 1X be the generator for the summand H0(WX ,ZX) of E1
p,0.

Lemma 4.3. When U is a subset of T , the transfer map for the bottom row of the
spectral sequence is

d1
T,U : H0(WT ;ZT ) = Z2 → H0(WU ;ZU ) = Z2

1T 7→
{

0 if |WT |/|WU | is even
1U if |WT |/|WU | is odd.

Proof. From [Bro82, III.9.(B)], the transfer map acts on coinvariants as

d1
T,U : H0(WT ;ZT ) = Z2 → H0(WU ;ZU ) = Z2

1T 7→
∑

g∈WU\WT

g · 1U =
∑

g∈WU\WT

1U

since g · 1 = ±1 is in the class of 1 in ZU/WU . Noting that we are mapping into Z2

and the number of entries in the sum is |WT |/|WU | completes the proof. �

Lemma 4.4. When U has cardinality 1 and T = {s, t} has cardinality 2 the transfer
map d1 restricted to the T summand is given by

d1|H0(WT ;ZT )(1T ) =

{
1s + 1t if m(s, t) odd
0 if m(s, t) even.
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Proof. Note that |Wx| = 2 for all x in S and since W{s,t} is isomorphic to a dihedral
group, |W{s,t}| = 2×m(s, t). Apply Lemma 4.3 to compute the differential. �

Definition 4.5. We say that a Coxeter group with generating set T = {s, t, u} is
of type X if if WT = W (I2(p))×W (A1) and p ≥ 3 is odd, i.e. DWT

has the form:

s

p odd

t u
.

Lemma 4.6. If T = {s, t, u} then d1 restricted to the H0(WT ;ZT ) summand is

d1|H0(WT ;ZT )(1T ) =

{
1{s,u} + 1{t,u} if WT is of type X
0 otherwise.

Proof. There are a finite number of Coxeter diagrams that may represent WT ,
given by Theorem 2.7. The order of these groups and their rank two subgroups is
documented in the table below, where p ≥ 2.

WT DW |WT | |W{s,t}| |W{s,u}| |W{t,u}|
W (A3)

s t u
24 6 4 6

W (D3)
s

4
t u

48 8 4 6

W (H3)
s

5
t u

120 10 4 6

W (I2(p))×W (A1)
s
p

t u
4p 2p 4 4

Calculating |WT |/|WT ′ | for T ′ ⊂ T in each of these cases and applying Lemma 4.3
completes the proof. �

Proposition 4.7. The homology at E1
2,0 is given by

H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

where the diagrams are as defined in Definition 1.1 and are viewed as 1-dimensional
complexes.

Proof. Consider the calculations of the transfer maps in Lemmas 4.4 and 4.6, and
observe the following splitting:
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⊕
t∈S

H0(Wt;Zt) ⊕
T∈S
|T |=2

H0(WT ;ZT )
d1

oo ⊕
T∈S
|T |=3

H0(WT ;ZT )
d1

oo

⊕
T={s,t}
m(s,t)=2

H0(WT ;ZT )

⊕
⊕

WT type X
H0(WT ;ZT )

d1
oo

?�

OO

⊕
T={s,t}

m(s,t)6=2 even

H0(WT ;ZT )

⊕

⊕
t∈S

H0(Wt;Zt) ⊕
T={s,t}
m(s,t) odd

H0(Wt;Zt).
d1

oo

Calculating the homology of the top row in turn gives a splitting

coker
(

⊕
WT type X

H0(WT ,ZT )
d1

→ ⊕
T={s,t}
m(s,t)=2

H0(WT ;ZT )
)

⊕
⊕

T={s,t}
m(s,t)6=2 even

H0(WT ;ZT )

⊕
ker
(

⊕
T={s,t}
m(s,t) odd

H0(WT ;ZT )
d1

→ ⊕
t∈S

H0(WT ;ZT )
)
.

We now define an isomorphism ε = ε1 ⊕ ε2 ⊕ ε3 from these three groups, to the
three groups in the statement of the proposition:

H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2).

The map between the first groups is as follows:

ε1 : coker
(

⊕
WT type X

H0(WT ,ZT )
d1

→ ⊕
T={s,t}
m(s,t)=2

H0(WT ;ZT )
)
→ H0(D••;Z2)

1{s,t} 7→ [{s, t}],

where [{s, t}] is the generator for the summand of H0(D••;Z2) corresponding to
the connected component containing {s, t}.

Recall from Lemma 4.6 that the transfer map on summands H0(W{s,t,u};ZT )

is given by d1(1{s,t,u}) = 1{s,u} + 1{t,u} if WT is of type X. Therefore gener-
ators of H0(WT ;ZT ) for triples of type X get mapped to sums of generators
of H0(WT ;ZT ) corresponding to commuting pairs. These are exactly vertices
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of D••, and a triple of type X gives the corresponding edge of D••. Therefore
the map ε1 is well defined and moreover it is an isomorphism.

For Z2[E(Deven)], let {s, t} be the basis element corresponding to the edge be-
tween s and t, and note that edges only exist if m(s, t) is even and greater than 2.
Then ε2 is the isomorphism defined by

ε2 : ⊕
T={s,t}

m(s,t)6=2,even

H0(WT ;ZT ) → Z2[E(Deven)]

1{s,t} 7→ {s, t}.
For H1(Dodd;Z2), note that Dodd has no 2-cells, so H1(Dodd;Z2) is the kernel

of the cellular differential ∂ : C1 → C0, where C1 = Z2[E(Dodd)], C0 = Z2[S],
and ∂({s, t}) = s + t. Recall from Lemma 4.4 that the transfer map is given on
summands H0(W{s,t};ZT ) = Z2 by d1(1{s,t}) = 1s + 1t if m(s, t) is odd. Therefore
we define a chain map:

⊕
T={s,t}
m(s,t) odd

H0(WT ;ZT ) → Z2[E(Dodd)]

1{s,t} 7→ {s, t}
and this map induces an isomorphism ε3 between homologies. �

4.2. Proof of Theorem A.

Theorem 4.8. Given a finite rank Coxeter group W with diagram DW , recall from
Definition 1.1 the definition of the diagrams D••, Dodd and Deven. Then there is a
natural isomorphism

H2(W ;Z) = H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2)

where in the first and final term of the right-hand side the diagrams are viewed as
cell complexes.

Proof. The p + q = 2 diagonal of the isotropy spectral sequence in Figure 1 gives
filtration quotients of H2(W ;Z) on the E∞ page. The E2 page has only one non-
zero term on this diagonal:

E2
2,0H0(D••;Z2)⊕ Z2[E(Deven)]⊕H1(Dodd;Z2).

All differentials dr for r ≥ 2 with source or target the E2,0 position either originate
at, or map to a zero group. Therefore the p + q = 2 diagonal on the limiting
E∞ page is given by the diagonal on the E2 page. Since there is only one non
zero group on the diagonal, there are no extension problems and this group gives
H2(W ;Z) as required. �

5. Calculation of H3(W ;Z)

Recall the isotropy spectral sequence for the Coxeter group W has E1 page as
shown in Figure 1 in Section 3.1, and the E∞ page gives H3(W ;Z) (up to extension)
on the p+ q = 3 diagonal.

In Section 5.1 the free resolution for finite Coxeter groups by De Concini and
Salvetti [DCS00] is introduced and the chain map between resolutions is computed
in Section 5.2. Using these tools, we compute the E2 page of the spectral sequence
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on the p + q = 3 diagonal. Following this, Section 5.6 proves that all further
differentials to and from this diagonal are zero. The possible extension problems
arising on the limiting page at this diagonal are treated and discussed in Section 5.7
and all of these computations are fed into the proof of Theorem B in Section 5.8.

5.1. Free resolution for Coxeter groups. In [DCS00], De Concini and Salvetti
introduce a free resolution of Z over ZW for a finite Coxeter group W . We use
this throughout this section to calculate the low dimensional homologies of finite
Coxeter groups that appear as summands in the E1 entries of the spectral sequence.

Definition 5.1. Let (W,S) be a Coxeter system for a finite Coxeter group W .
Let (C∗, δ∗) be the chain complex with Ck the free ZW module with basis ele-
ments e(Γ). Here Γ is a flag of subsets of the generating set S with cardinality k,
that is Γ in Sk where:

Sk := {Γ = (Γ1 ⊃ Γ2 ⊃ · · · ) | Γ1 ⊂ S,
∑
i≥1

|Γi| = k}.

For τ in Γi, let W
Γi\{τ}
Γi

be the set of minimal left coset representatives of WΓi\{τ}
in WΓi . Then δk : Ck → Ck−1 is ZW -linear and defined on basis elements by

(1) δke(Γ) =
∑
i≥1

|Γi|>|Γi+1|

∑
τ∈Γi

∑
β∈WΓi\{τ}

Γi

β−1Γi+1β⊂Γi\{τ}

(−1)α(Γ,i,τ,β)βe(Γ′)

where the flag Γ′ in Ck−1 is given by

Γ′ := (Γ1 ⊃ · · · ⊃ Γi−1 ⊃ (Γi\{τ}) ⊃ β−1Γi+1β ⊃ β−1Γi+2β ⊃ · · · )

and the exponent α(Γ, i, τ, β) is defined below. The differential is well defined from
Lemma 2.14. We choose an ordering for the set of generators S and let σ(β,Γk) be
the number of inversions, with respect to this ordering, in the map Γk → β−1Γkβ.
We let µ(Γi, τ) be the number of generators in Γi which are less than or equal to
τ in the ordering on S. Then the exponent is described by the following formula:

α(Γ, i, τ, β) = i · `(β) +

i−1∑
k=1

|Γk|+ µ(Γi, τ) +

d∑
k=i+1

σ(β,Γk).

During this proof we adopt the convention that the generators are always ordered
alphabetically (e.g. s < t < u). We also denote the generator corresponding to
a flag of length d, (Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γd) by ΓΓ1⊃Γ2⊃···⊃Γd , where we omit the
set notation for each Γi. For example Γs, Γs⊃s, or Γs,t⊃s (which corresponds to
Γ = {s, t} ⊃ {s}).

Theorem 5.2 ([DCS00]). The chain complex (C∗, δ∗) from Definition 5.1 is a free
resolution of W over ZW .

Example 5.3. We give an example of the resolution for finite Coxeter groups with
one generator S = {s}, from C3 to C0.

C3 = 〈Γs⊃s⊃s〉
δ3=(s−1) // C2 = 〈Γs⊃s〉

δ2=(1+s) // C1 = 〈Γs〉
δ1=(s−1) // C0 = 〈Γ∅〉
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The differential from Γs to Γ∅ is given by the following formula, noting that coset
representatives of W∅ in Ws are e and s. We recall the formula for δk(e(Γ)) from
Equation (1).

δ1(Γs) =
∑
β=e,s

(−1)α(Γs,1,s,β)βΓ∅ = (s− 1)Γ∅

where we compute

α(Γs, 1, s, e) = 1`(e) +

0∑
k=1

|Γk|+ µ(s, s) = 0 + 0 + 1 = 1

α(Γs, 1, s, s) = 1`(s) +
0∑

k=1

|Γk|+ µ(s, s) = 1 + 0 + 1 = 2.

Similarly the differential δ2 : C2 → C1 is given by

δ2(Γs⊃s) =
∑
β=e,s

(−1)α(Γs⊃s,2,s,β)βΓs = (1 + s)Γs

where we compute

α(Γs⊃s, 2, s, e) = 2`(e) +

1∑
k=1

|Γk|+ µ(s, s) = 0 + 1 + 1 = 2

α(Γs⊃s, 2, s, s) = 2`(s) +
1∑

k=1

|Γk|+ µ(s, s) = 2 + 1 + 1 = 4.

Finally, the differential δ3 : C3 → C2 is given by

δ3(Γs⊃s⊃s) =
∑
β=e,s

(−1)α(Γs⊃s⊃s,3,s,β)βΓs⊃s = (s− 1)Γs⊃s

where we compute

α(Γs⊃s⊃s, 3, s, e) = 3`(e) +

2∑
k=1

|Γk|+ µ(s, s) = 0 + 2 + 1 = 3

α(Γs⊃s⊃s, 3, s, s) = 3`(s) +
2∑

k=1

|Γk|+ µ(s, s) = 3 + 2 + 1 = 6.

Definition 5.4. Define p(s, t; j) to be the alternating product of s and t of length
j, ending in an s (as opposed to π(s, t; j) which is the alternating product starting
in an s) i.e.

p(s, t; j) =

length j︷ ︸︸ ︷
. . . sts .

Example 5.5. Consider the resolution for finite Coxeter groups with two gener-
ators S = {s, t}, from C3 to C0 and with m(s, t) finite. Then the formulas for
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differentials which do not follow from the previous example are:

δ2(Γs,t) =

m(s,t)−1∑
j=0

(−1)j+1p(s, t; j)Γt +

m(s,t)−1∑
g=0

(−1)g+2p(t, s; g)Γs

δ3(Γs,t⊃s) =

{
(1− p(t, s;m(s, t)− 1))Γs⊃s − (1 + s)Γst if m(s, t) even

Γs⊃s − p(s, t;m(s, t)− 1)Γt⊃t − (1 + s)Γst if m(s, t) odd

δ3(Γs,t⊃t) =

{
(−1 + p(s, t;m(s, t)− 1))Γt⊃t − (1 + t)Γst if m(s, t) even

−Γt⊃t + p(t, s;m(s, t)− 1)Γs⊃s − (1 + t)Γst if m(s, t) odd

Recall we wish to compute homologies of finite Coxeter groups WT with twisted
coefficients ZT , in which the action of the generators on ZT is given by negation. To
calculate the twisted homologies we tensor the resolution with Z under the group
action. We show this in the case of our two examples.

Example 5.6. We consider the resolution of Example 5.3 tensored with Z under
the group action:

Z ⊗
Ws

C3

= 〈1⊗ Γs⊃s⊃s〉

δ3=(−2)//
Z ⊗
Ws

C2

= 〈1⊗ Γs⊃s〉
δ2=(0)//

Z ⊗
Ws

C1

= 〈1⊗ Γs〉
δ1=(−2)//

Z ⊗
Ws

C0

= 〈1⊗ Γ∅〉.

Here the differentials are calculated as follows:

δ3(1⊗ Γs⊃s⊃s) = 1⊗ ((s− 1)Γs⊃s) = −2(1⊗ Γs⊃s)

δ2(1⊗ Γs⊃s) = 1⊗ ((1 + s)Γs) = 0

δ1(1⊗ Γs) = 1⊗ ((s− 1)Γ∅) = −2(1⊗ Γ∅).

Example 5.7. We consider the computations of differentials in Example 5.5 and
upon tensoring with Z under the group action, this gives the following differentials:

δ2(1⊗ Γs,t) = −m(s, t)(1⊗ Γt) +m(s, t)(1⊗ Γs)

δ3(1⊗ Γs,t⊃s) =

{
2(1⊗ Γs⊃s) if m(s, t) even

1⊗ Γs⊃s − 1⊗ Γt⊃t if m(s, t) odd

δ3(1⊗ Γs,t⊃t) =

{
−2(1⊗ Γt⊃t) if m(s, t) even

−1⊗ Γt⊃t + 1⊗ Γs⊃s if m(s, t) odd.

5.2. Collapse map. In this section we define a chain map, which we call the
collapse map, between De Concini and Salvetti’s resolution for a finite Coxeter
group W , and for a subgroup WT [DCS00].

Recall that in the isotropy spectral sequence for the Davis complex, the d1 dif-
ferential has the form of a transfer map, given in Proposition 3.2. In the following
sections we calculate these twisted homology groups using the De Concini and Sal-
vetti resolution. Upon applying the transfer map to a generator of H∗(WT ;ZT ),
the image will be in terms of the resolution for the group WT . However we require
the image to be in terms of the resolution for WU and so we apply the collapse
map in the appropriate degree to achieve this.
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We first recall the following lemmas from [GP00]. Recall from Definition 2.4
that π(a, b; k) is defined to be the word of length k, given by the alternating product
of a and b.

Lemma 5.8 (Deodhar’s Lemma, [GP00, 2.1.2] ). For (W,S) a Coxeter system,
let WT be a spherical subgroup of a finite Coxeter group W , let v be (T, ∅)-reduced
(Definition 2.15) and let s be in S. Then either vs is (T, ∅)-reduced or vs = tv for
some t in T .

Lemma 5.9 ([GP00, 1.2.1]). If s, u are in S, m(s, u) is finite, and w in W sat-
isfies `(ws) < `(w) and `(wu) < `(w) then it follows w = w′(π(s, u;m(s, u)))
where w′ is (∅,W{s,u})-reduced.

Definition 5.10. Denote the De Concini - Salvetti resolution for (W,S) by (C∗, δ∗)
and for the subgroup (WT , T ) by (D∗, δ∗). We define the collapse map in degree i
to be the WT -equivariant linear map fi : Ci → Di for 0 ≤ i ≤ 2 as shown below.

δ3 // C2
δ2 //

f2

��

C1
δ1 //

f1

��

C0
δ0 //

f0

��

Z

δ3 // D2
δ2 // D1

δ1 // D0
δ0 // Z.

As a Z[W ] module, C∗ has basis given by e(Γ), so as a Z[WT ] module, C∗ has
basis given by v · e(Γ), for v a (T, ∅)-reduced element of W . We therefore define fi
on v · e(Γ) and extend the map linearly and WT -equivariantly. By Lemma 5.8
for s ∈ S, vs is either (T, ∅)-reduced or vs = tv for some t in T . This gives us the
cases in each definition.

f0(vΓ∅) = Γ∅,

f1(vΓs) =

{
0 vs is (T, ∅) reduced

Γt vs = tv for t ∈ T

f2(vΓs⊃s) =

{
0 vs is (T, ∅) reduced

Γt⊃t vs = tv for t ∈ T

f2(vΓsu) =

{
Γtr vs = tv and vu = rv for t, r ∈ T
0 otherwise.

The remainder of this section is devoted to proving that f∗ is a chain map.

Lemma 5.11. The following square commutes:

C0
δ0 //

f0

��

Z

D0
δ0 // Z.

Proof. Let w in W . For each basis element wΓ∅, the square is given by
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wΓ∅
δ0 //

_

f0

��

Z

f0(wΓ∅)
δ0 // Z.

Since f0 is defined WT -equivariantly, if w = w′v for w′ in WT and v a (T, ∅)-reduced
element then from Definition 5.10

f0(wΓ∅) = f0(tvΓ∅) = t · f0(vΓ∅) = tΓ∅.

It follows since δ0 maps all generators to 1 that the square commutes. �

Lemma 5.12. The following square commutes

C1
δ1 //

f1

��

C0

f0

��
D1

δ1 // D0.

Proof. Since all maps are WT -equivariant, we need only consider the square on
generators multiplied by a (T, ∅)-reduced element v. We recall the image of δ1

from Example 5.3.

vΓs
δ1 //

_

f1

��

v(s− 1)Γ∅_

f0

��
f1(vΓs)

δ1 // f0(v(s− 1)Γ∅).

Here thetwo cases for the element vs, given by Lemma 5.8, give the following cases
for f0, from Definition 5.10:

f0(v(s− 1)Γ∅) =

{
0 vs (T, ∅) reduced

(t− 1)Γ∅ vs = tv.

This is precisely the image of f1(vΓs) from Definition 5.10, under the differential δ1.
Therefore the square commutes. �

For s and u in S, consider the following three cases, given by Lemma 5.8:

(1) Neither vs or vu are (T, ∅)-reduced, that is vs = tv and vu = rv for t and
r in T .

(2) One of vs and vu is (T, ∅)-reduced, without loss of generality let vs = tv
and vu is (T, ∅)-reduced.

(3) Both vs and vu are (T, ∅)-reduced.

Recall from Definition 5.4 that p(s, u;m) is the alternating product of s and u of
length m ending in s.
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Lemma 5.13. We have that

f1

(
v
(∑m(s,u)−1

j=0 (−1)j+1p(s, u; j)Γu +
∑m(s,u)−1

g=0 (−1)g+2p(u, s; g)Γs
))

=


δ2(Γtr) in Case (1)

0 in Case (2)

0 in Case (3).

Proof. For Case (1), since f1 acts WT -equivariantly,

f1(v(p(s, u; j)Γu)) = f1(p(t, r; j)vΓu) = p(t, r; j)(f1(vΓu)) = p(t, r; j)Γr

and similarly f1(vp(u, s; g)Γs) = p(r, t; g)Γt. Furthermore, m(t, r) = m(s, u) since

π(t, r;m(s, u))v = vπ(s, u;m(s, u)) = vπ(u, s;m(s, u)) = π(r, t;m(s, u))v,

and by right multiplication by v−1, π(t, r;m(s, u)) = π(r, t;m(s, u)), so m(t, r) is a
divisor of m(s, u). Applying a similar argument in reverse gives m(s, u) is a divisor
of m(t, r), and so m(s, u) = m(t, r). Therefore since f1 acts linearly, we have

f1

v(m(s,u)−1∑
j=0

(−1)j+1p(s, u; j)Γu +

m(s,u)−1∑
g=0

(−1)g+2p(u, s; g)Γs
)

=

m(t,r)−1∑
j=0

(−1)j+1p(t, r; j)Γr +

m(t,r)−1∑
g=0

(−1)g+2p(r, t; g)Γt = δ2(Γtr).

For Case (2), we first prove that if vs = tv and vu is (T, ∅)-reduced, it fol-
lows v(π(u, s; k)) is also (T, ∅)-reduced for all 2 ≤ k ≤ m(s, u) − 1. Note that
since vs = tv, from Lemma 5.8 `(vs) > `(v). Suppose v(π(u, s; k)) is not (T, ∅)-
reduced and choose minimal k for which this is the case. Then for some q in T
it follows v(π(u, s; k)) = qv(π(u, s; k − 1)) and so w = v(π(u, s; k)) satisfies the
hypothesis of Lemma 5.9, that is `(wu) < `(w) and `(ws) < `(w). Therefore

w = w′π(u, s;m(s, u))) = v(π(u, s; k)).

By right multiplication by (π(u, s; k))−1 we have v = w′p(s, u;m(s, u)− k). There-
fore v satisfies `(vs) < `(v), but this contradicts vs = tv. Therefore v(π(u, s; k)) is
also (T, ∅)-reduced for all 2 ≤ k ≤ m(s, u)− 1. Computing f1 it follows:

f1(v(p(s, u; j)Γu)) =


f1(v(π(u, s; j)Γu)) = 0 j is even, j 6= m(s, u)− 1

t · f1(vπ(u, s; j − 1)Γu) = t · 0 = 0 j is odd, j 6= m(s, u)− 1

f1(vπ(u, s;m(s, t)− 1)Γu) = Γt j = m(s, u)− 1 and is even

t · f1(vπ(u, s;m(s, t)− 2)Γu) = t · 0 j = m(s, u)− 1 and is odd

and similarly

f1(vp(u, s; g)Γs) =



f1(vΓs) = Γt g = 0

t · f1(vπ(u, s; g − 1)Γs) = t · 0 = 0 g is even, g /∈ {0,m(s, u)− 1}
f1(vπ(u, s; g)Γs) = 0 g is odd, g 6= m(s, u)− 1

t · f1(vπ(u, s;m(s, t)− 2)Γs) = t · 0 = 0 g = m(s, u)− 1 and is even

f1(vπ(u, s;m(s, t)− 1)Γs) = Γt g = m(s, u)− 1 and is odd
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so it follows in the setting of Case (2) we have

f1

v(m(s,u)−1∑
j=0

(−1)j+1p(s, u; j)Γu +

m(s,u)−1∑
g=0

(−1)g+2p(u, s; g)Γs
)

=

{
Γt + (−1)m(s,t)−1+2Γt = 0 if m(s, u) even

Γt + (−1)m(s,u)−1+1Γt = 0 if m(s, u) odd.

For Case (3), if both vs and vu are (T, ∅)-reduced, by the same argument as in
Case (2), v(π(u, s; k)) and v(π(s, u; k)) are also (T, ∅)-reduced for 2 ≤ k ≤ m(s, u).
Computing f1 in the setting of Case (3) gives:

f1

v(m(s,u)−1∑
j=0

(−1)j+1p(s, u; j)Γu +

m(s,u)−1∑
g=0

(−1)g+2p(u, s; g)Γs
) = 0.

�

Lemma 5.14. The following square commutes

C2
δ2 //

f2

��

C1

f1

��
D2

δ2 // D1.

Proof. Since all maps are WT -equivariant, let v be a (T, ∅)-reduced element and
consider the square on generators left-multiplied by v. We recall the image of δ2

from Example 5.5. We must consider both forms of generators of C2:

vΓs⊃s
δ2 //

_

f2

��

v(1 + s)Γs_

f1

��
f2(vΓs⊃s)

δ2 // f1(v(1 + s)Γs)

vΓs,u
δ2 //

_

f2

��

v
(∑m(s,u)−1

j=0 (−1)j+1p(s, t; j)Γu

+
∑m(s,u)−1

g=0 (−1)g+2p(u, s; g)Γs
)

_

f1

��

f2(vΓs,u)
δ2 // f1

(
v
(∑m(s,u)−1

j=0 (−1)j+1p(s, u; j)Γt

+
∑m(s,u)−1

g=0 (−1)g+2p(u, s; g)Γs
))
.

Computing f1(v(1 + s)Γs) we have

f1(v(1 + s)Γs) =

{
0 vs is (T, ∅) reduced

(1 + t)Γt vs = tv.

This is precisely the image of f2(vΓs⊃s) from Definition 5.10, under the differen-
tial δ2. Therefore the left hand square commutes.

The bottom right entry of the right hand square is given in Lemma 5.13. This
is precisely the image of f2(vΓs,u) from Definition 5.10, under the differential δ2.
Therefore the right hand square commutes. �

Proposition 5.15. The maps f0, f1 and f2 in Definition 5.10 form part of a chain
map f• : C• → D•.
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Proof. This is a consequence of Lemmas 5.11, 5.12 and 5.14, which show that all
the required squares commute. �

In the following sections the tools we have developed are utilised to compute
the E2 terms of the isotropy spectral sequence for the Davis complex. When
a proof is omitted, this is due to the fact it is a straightforward calculation of
homology. All omitted proofs can be found in [Boyd18, Appendix B].

Lemma 5.16. For r ≥ 1, we have E1
0,r = Hr(W∅;Z∅) = 0.

It follows that the E1
0,3 term of the diagonal is zero on the E∞ page.

5.3. Homology at E1
1,2. We use the De Concini - Salvetti resolution [DCS00] and

the transfer (Proposition 3.2) and collapse (Definition 5.10) maps to compute the
differentials for the following section of the spectral sequence:

0 = H2(W∅;Z∅) ⊕
t∈S

H2(Wt;Zt)
d1
oo ⊕

T∈S
|T |=2

H2(WT ;ZT ).
d1

oo

Let Wt and WT be as in the above sequence, and T = {s, t}

Lemma 5.17. In terms of the De Concini - Salvetti resolution, the homologies in
the above sequence are H2(Wt;Zt) = Z2, generated by 1⊗ Γt⊃t, and

H2(WT ;ZT ) =

{
Z2 ⊕ Z2 if m(s, t) is even

Z2 if m(s, t) is odd,

generated by 1⊗Γs⊃s and 1⊗Γt⊃t when m(s, t) is even, with these generators being
identified when m(s, t) is odd.

Lemma 5.18. For u in T , d1
T,u is given by

d1
T,u : H2(W{s,t};ZT ) → H2(Wu;Zu)

1⊗ Γs⊃s 7→ 1⊗ Γu⊃u

if m(s, t) is odd, and the zero map if m(s, t) is even.

Proof. We apply the transfer map from Proposition 3.2 to the generator(s) of
H2(W{s,t};ZT ) followed by the degree two collapse map f2 from Definition 5.10. �

Proposition 5.19. The E2
1,2 entry of the isotropy spectral sequence for (W,S) is

given by H0(Dodd;Z2).

Proof. On the E1 page we compute homology of the sequence

0 ⊕
t∈S

Z2
d1

oo ⊕
T∈S

T={s,t}
m(s,t) even

(Z2 ⊕ Z2) ⊕
T∈S

T={s,t}
m(s,t) odd

Z2
d1

oo

The left hand map is the zero map and the right hand map is defined via Lemma 5.18.
Applying the splitting technique as in the proof of theH2(W ;Z) calculation (Propo-
sition 4.7), gives homology equal to H0(Dodd;Z2) as required. �
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5.4. Homology at E1
2,1. The E1 page at E1

2,1 has the following form:

⊕
t∈S

H1(Wt;Zt) ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

oo ⊕
T∈S
|T |=3

H1(WT ;ZT ).
d1
oo

Proposition 5.20. The first homology H1(WT ;ZT ) is as follows for finite WT with
T = {s, t, u}. Generators are given by the De Concini - Salvetti resolution for WT :
we set

α = (1⊗ Γs)− (1⊗ Γt) and β = (1⊗ Γs)− (1⊗ Γu).

WT DWT
H1(WT ;ZT ) Generator

W (A3)
s t u

Z3 α

W (B3)
s

4
t u

Z2 α = β

W (H3)
s

5
t u

0

W (I2(p))×W (A1)
p ≥ 2 s

p

t u
Z2 ⊕ Z2 if p is even

Z2 if p is odd
α, β if p is even
β if p is odd

Proposition 5.21. When T = {s, t}, H1(WT ;ZT ) = Zm(s,t) with generator in the
De Concini - Salvetti resolution given by γ = 1⊗ Γs − 1⊗ Γt.

Proposition 5.22. Let s in S. Then H1(Ws;Zs) = 0.

We now introduce some notation. If Hi(WT ;ZT ) only has one generator, then
we represent that generator in the E1

p,q summation of homologies by drawing the

diagram DWT
. We represent d1|Hi(WT ;ZT ) by drawing a map from the diagram DWT

to the diagrams representing generators in the image of d1|Hi(WT ;ZT ), with signs
and scalar multiplication as required. In some cases Hi(WT ;ZT ) has either zero or
two generators, but in these cases there are non non-zero differentials.

Proposition 5.23. The non-zero differentials on the E1 page at E1
2,1 are given as

in the diagram below.

⊕
t∈S

H1(Wt;Zt) ⊕
T∈S
|T |=2

H1(WT ;ZT )
d1

oo ⊕
T∈S
|T |=3

H1(WT ;ZT )
d1

oo

s t
	

t u s t u

�oo

s u
⊕

t u s
p odd

t u

�oo

Proof. This proof involves calculating the differential d1 via the transfer and col-
lapse maps. This can be calculated by hand, but we use Python and the PyCox
package [Geck12]. These calculations can be found in [Boyd18, Appendix B]. �
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Proposition 5.24. Recall from Definition 1.3 the diagrams D•• and DA2. Then
the E2

2,1 entry of the isotropy spectral sequence for (W,S) is given by

H0(D••;Z2)⊕H0(DA2 ;Z3)⊕
(

⊕
m(s,t)>3, 6=∞

Zm(s,t)

)
.

Proof. Consider the d1 differentials at E2
2,1, given in Proposition 5.23, and apply

the splitting technique as in Proposition 4.7. �

5.5. Homology at E1
3,0.

Lemma 5.25. The non-zero d1 differentials at E1
3,0 are given by the following maps

⊕
T∈S
|T |=2

H0(WT ;ZT ) ⊕
T∈S
|T |=3

H0(WT ;ZT )
d1

oo ⊕
T∈S
|T |=4

H0(WT ;ZT )
d1

oo

⊕
T∈S
|T |=2

Z2 ⊕
T∈S
|T |=3

Z2
d1

oo ⊕
T∈S
|T |=4

Z2
d1

oo

t u
+

s u s
p odd

t u

�oo

s t u
+

t u v s t u v

�oo

q even

t u v
+

s
q even
u v s

p odd q even

t u v

�oo
q odd

t u v
+

s
q odd
u v

+

s
p odd

t v
+

s
p odd

t u

 s
p odd q odd

t u v

�oo

Proof. Lemma 4.6 gives the image of the left hand map. To compute the right hand
map we consider the index of spherical subgroups, by Lemma 4.3. Computing the
index of each subgroup as in Lemma 4.6 gives non-zero maps as required. �

Proposition 5.26. Recall from Definition 1.3 the diagrams D�
••, D 2r and DA3.

Then the E2
3,0 of the isotropy spectral sequence for (W,S) is given by

E2
3,0 = H1(D�

••;Z2)⊕H0(D 2r ;Z2)⊕H0(DA3 ;Z2)⊕
(

⊕
W (H3)⊆W
W (B3)⊆W

Z2

)
.

Proof. Splitting the d1 differentials of Lemma 5.25 as in Proposition 4.7, we can
equate the homology of the sequence in Lemma 5.25 to the components on the
right-hand side above. �

5.6. Further differentials are zero. Recall the isotropy spectral sequence for
the Davis complex associated to a Coxeter system (W,S), given in Figure 1. Then
on the p+ q = 3 diagonal the spectral sequence has E2 page as shown in Figure 2.

The E∞ page of this spectral sequence gives us filtration quotients for H3(W ;Z)
on this diagonal. The arguments in this section shows that all possible further
differentials to and from this diagonal are zero. Since the spectral sequence is first



THE LOW-DIMENSIONAL HOMOLOGY OF FINITE-RANK COXETER GROUPS 27

3 0 · · ·

2 0 A ? · · ·

1 0 0 B ? · · ·

0 Z ? ? C ?

0 1 2 3 4

A = H0(Dodd;Z2)

B = H0(D••;Z2)⊕H0(DA2 ;Z3)⊕
(

⊕
m(s,t)>3,6=∞

Zm(s,t)

)
C = H1(D�

••;Z2)⊕H0(D 2r ;Z2)⊕H0(DA3 ;Z2)⊕
(

⊕
W (H3)⊆W
W (B3)⊆W

Z2

)
.

Figure 2. The E2 page of the isotropy spectral sequence for the
Davis complex of a Coxeter system (W,S).

quadrant from Figure 2 there are only 3 possible further differentials that may
affect the p+ q = 3 diagonal:

(1) d2 : E2
3,1 → A (2) d2 : E2

4,0 → B (3) d3 : E3
4,0 → E3

1,2.

We first prove two lemmas which will reduce the cases for which we compute
differentials originating at Er4,0 in cases (2) and (3). Let WA and WB be non-trivial
finite groups, and the size of their generating sets SA and SB sum to 4. Denote
the isotropy spectral sequence for WA ×WB by E(A×B). Then the E1

4,0 term in
the spectral sequence is

E1
4,0 = H0(WA ×WB;ZAtB).

Lemma 5.27. With notation as above, the possible d2 and d3 differentials origi-
nating at Er4,0, for r = 2 or r = 3, in the spectral sequence E(A×B) are zero.

Proof. By the Künneth theorem for group homology (see e.g. [Bro82]) we have the
short exact sequence:

0→
⊕
i+j=k

Hi(WA;ZA)⊗
Z
Hj(WB;ZB)

×→ Hk(WA ×WB;ZAtB)

→
⊕

i+j=k−1

TorZ1 (Hi(WA;ZA), Hj(WB;ZB))→ 0

since ZA ⊗ ZB ∼= ZAtB. When k = 0 the torsion term is zero, hence

H0(WA;ZA)⊗Z H0(WB;ZB)
∼=→ H0(WA ×WB;ZAtB).
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By Theorem 3.6 there is a pairing

Φ∗ : E(A)⊗ E(B)→ E(A×B)

which is given on individual summands of the E1 terms by the Künneth map.
Since E1

4,0(A×B) has only one summand, Φ∗ is given by the Künneth map above,

which is an isomorphism. Let | SA |= α and | SB |= β and recall α+ β = 4. Then
under the pairing Φ∗ all cycles in E1

4,0(A×B) correspond to a pair of cycles:

E1
α,0(A)⊗ E1

β,0(B)
∼=→ E1

4,0(A×B).

It follows that all d1 differentials from E1
4,0(A × B) are described via the Leib-

niz rule by differentials from E1
α,0(A) and E1

β,0(B). Therefore the kernel of d1

from E1
4,0(A×B) is given by a pairing of elements in the kernel of d1 from E1

α,0(A)

and the kernel of d1 from E1
β,0(B), and so the Künneth map is onto on the E2

page:
E2
α,0(A)⊗ E2

β,0(B)→ E2
4,0(A×B)

and the d2 differentials from E2
4,0(A × B) are again defined via the Leibniz rule.

Since α and β are both less than 4, the d2 differentials in E(A) and E(B) arise
at E2

p,0 where p < 4. But all possible targets of a d2 differential from such an

E2
p,0 are zero (consider Figure 2). Thus the further differentials mapping from

E2
4,0(A×B) are zero.

The d2 differential with target E2
4,0(A × B) originates at a 0 group, since the

spectral sequence is first quadrant. Since the d2 with source E2
4,0(A × B) is also

zero, E2
4,0(A × B) = E3

4,0(A × B). By a similar argument E2
α,0(A) = E3

α,0(A)

and E2
β,0(B) = E3

β,0(B). It follows that the Künneth map is also onto on the E3

page and therefore by the same argument as the d2 case, the d3 differential origi-
nating at E3

4,0(A×B) is zero. �

Lemma 5.28. Consider a differential d2 or d3 originating from a summand in Er4,0
for r = 2 or r = 3. If the corresponding cycle at the E1

4,0 term occurs in a

summand H0(WA×WB;ZAtB), for WA and WB non-trivial subgroups of W , then
the d2 or d3 differential is zero.

Proof. By Lemma 3.3, the inclusion of groups WA ×WB ↪→ W gives an inclusion
of spectral sequences on the E1 page E1(A × B) ↪→ E1(W ). Therefore differen-
tials mapping from cycles corresponding to the H0(WA ×WB;ZAtB) summand at
position E1

4,0 in E(W ) will be induced via this map by differentials in E(A × B).

From Lemma 5.27 the d2 and d3 differentials originating at the Er4,0 position are

zero in E(A×B). �

We therefore only need to consider differentials originating at the Er4,0 compo-

nents for r = 2 or r = 3, which correspond to H0(WT ;ZT ) summands of E1
4,0

for WT irreducible groups, namely for WT of type A4,B4,D4,F4 and H4. As in
the previous sections we denote the generator of H0(WT ;ZT ) = Z2 by DWT

.

Lemma 5.29. The d1 differentials on the E1 page at the E1
4,0 position for the sum-

mands H0(WT ;ZT ) corresponding to Coxeter groups of type A4,B4,D4,F4 and H4

are non-zero in the single case shown below
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⊕
T∈S
|T |=3

H0(WT ;ZT ) ⊕
T∈S
|T |=4

H0(WT ;ZT )
d1

oo ⊕
T∈S
|T |=5

H0(WT ;ZT )
d1
oo

s t u
+

t u v s t u v

�oo

Proof. From Lemma 5.25 we have the maps from the central groups to the left.
The finite Coxeter groups with 5 generators for which the A4,B4,D4,F4 and H4

diagrams are subdiagrams are the groups of type A5,B5,D5 and the groups created
by taking the product with A1. Recall from Lemma 4.3 that in this case d1 is
determined by the index of the subgroup. In the case of the product groups, the
index of the 4-generator subgroup is 2 and hence the transfer map is zero. The
remaining computations we compute using Python and [Geck12], though formulas
for each group size can be found in [Hum90]. In each case the index of the subgroup
is even, hence the transfer map is zero. �

Proposition 5.30. If d1 applied to a generator of a summand Hq(WT ;ZT ) on
the E1 page is identically zero on the chain level, then the higher differentials which
originate at cycles corresponding to this generator on the Er page are also zero.

Proof. The d1 differential of the isotropy spectral sequence is given by the trans-
fer map on the chain level by Proposition 3.2. In general higher differentials of
the spectral sequence for a double complex are induced by combinations of the
differentials on the chain level, and lifting on the chain level. Therefore if the d1

differential is zero on the chain level for the cycle representing a term Erp,q, then
the higher differentials will also be zero. �

Corollary 5.31. The d2 and d3 differentials originating at Er0,4 for r = 2 or r = 3

corresponding to cycles on the E1
4,0 summands for groups of type B4,D4,F4 and H4

are zero.

Proof. This is a consequence of Lemma 5.29, and Proposition 5.30, if the transfer
maps from Lemma 4.3 originating at H0(WT ;ZT ) for these groups are identically
zero on the chain level (and not just zero modulo 2). This is satisfied if, alongside
there being an even number of cosets, there are identical numbers of cosets with
odd and even length. We use Python [Geck12] and compute that there are equal
numbers of coset representatives of even and odd length for every three generator
subgroup of B4,D4,F4 and H4. �

The remaining potentially non-zero differentials originating at the Er0,4 position

for r = 2 or r = 3, correspond to cycles on the E1
4,0 summand H0(W (A4);ZT ).

Lemma 5.32. The potential d2 and d3 differentials originating at the Er0,4 position

for r = 2 or r = 3 and corresponding to cycles on the E1
4,0 summand H0(W (A4);ZT )

are zero.

Proof. If the further differentials were non zero then they would also be non zero
in the spectral sequence for W (A4) by Lemma 3.3. The E2 page for the Coxeter
group W (A4) is given by Figure 2 with

A = 0 B = Z2 ⊕ Z3 C = Z2.
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The computation of this is given in [Boyd18, Appendix B]. The third integral
homology of the symmetric group S5, which is isomorphic to W (A4), is

H3(W (A4);Z) = Z12 ⊕ Z2
∼= Z3 ⊕ Z4 ⊕ Z2

which is precisely given if the groups on the p + q = 3 diagonal of the E2 page
are the E∞ terms, or filtration quotients for H3(W (A4);Z) (there is a non-trivial
extension of Z2 by Z2 which we will discuss in the following section). Therefore no
higher differentials in or out of this diagonal can be non-zero. �

Proposition 5.33. The possible d2 and d3 differentials originating at the Er4,0
position for r = 2 or r = 3 in the spectral sequence are zero.

Proof. This is direct result of Lemma 5.28, Corollary 5.31 and Lemma 5.32. �

Lemma 5.34. Let WT and WV be non-trivial finite Coxeter groups, and the size
of their generating sets sum to 3. Then the potential d2 differential originating at
the E2

3,1 position is zero.

Proof. The group WT ×WV must be W (I2(p))×W (A1) for p ≥ 2, by the classifi-
cation of finite Coxeter groups.

When p is even, the E2 page for the Coxeter group W (I2(p))×W (A1) is given
by Figure 2 with

A = Z2 ⊕ Z2 ⊕ Z2 B = Z2 ⊕ Z2 ⊕ Zp C = Z2

which is computed in [Boyd18, Appendix B]. The third integral homology can be
computed via the Künneth formula for groups to be

H3(W (I2(p))×W (A1);Z) = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Zp ⊕ Z2 ⊕ Z2.

Similarly, when p is odd, the E2 page is given by Figure 2 with

A = Z2 ⊕ Z2 B = Z2 ⊕ Zp C = 0

and the Künneth formula gives the homology to be

H3(W (I2(p))×W (A1);Z) = Z2 ⊕ Z2p ⊕ Z2.

In both cases, the group homology calculated via Künneth is precisely given if the
groups on the p+ q = 3 diagonal of the E2 page are the E∞ terms. Therefore no
higher differentials in or out of this diagonal can be non-zero. �

Lemma 5.35. Suppose a d2 differential in the isotropy spectral sequence for W
originates at a cycle in E2

3,1 represented by a homology class in E1
3,1 of a sub-

group WT ×WV of W such that neither WT or WV is the trivial group. Then this
d2 differential is zero.

Proof. This proof mimics Lemma 5.28, using Lemma 3.3, and Lemma 5.34. �

Proposition 5.36. The possible d2 differential originating at the E2
3,1 group in the

spectral sequence is zero.

Proof. The E2
3,1 entry is calculated by computing the homology of the sequence

⊕
T∈S
|T |=2

H1(WT ;ZT ) ⊕
T∈S
|T |=3

H1(WT ;ZT )
d1
oo ⊕

T∈S
|T |=4

H1(WT ;ZT ).
d1
oo
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Recall the left hand map from Proposition 5.23. The possible d2 differential acts
on cycles in summands of the form H1(WT ;ZT ) for |T | = 3.

If d2 acts on a cycle in the summand H1(W (A3);ZT ) = Z3 (from Lemma 5.20),
it must map to zero, since the target E2

1,2 = H0(Dodd;Z2) is all 2-torsion.

If d2 acts on a cycle in the summand H1(WT ;ZT ) for WT the group W (B3)
or W (H3) it will map to zero, as the representing cycles transfer identically to zero
on the chain level by the proof of Lemma 5.23, so we apply Proposition 5.30.

Lemma 5.35 covers the final cases where the d2 acts on a cycle in the summand
H1(WT ;ZT ) for WT = W (I2(p))×W (A1) for p ≥ 2. �

5.7. Extension problems. Since all further differentials at the p+q = 3 diagonal
are zero, the E2 page shown in Figure 2 gives the limiting, or E∞, terms on this
diagonal. The spectral sequence on this diagonal converges to filtration quotients
of H3(W ;Z), so we consider possible extensions on this diagonal. That is there is
a filtration of H3(W ;Z)

F0 ⊆ F1 ⊆ F2 ⊆ F3 = H3(W ;Z)

where E∞0,3 = F0, E∞1,2 = F1/F0, E∞2,1 = F2/F1 and E∞3,0 = F3/F2. We have F0 = 0
and so E∞1,2 = F1.

Proposition 5.37. The group F1 = A = H0(Dodd;Z2) splits off as a direct sum-
mand of H3(W ;Z).

Proof. Consider a homomorphism ψ from a Coxeter group W with generating set S
to the cyclic subgroup of order two generated by t in S, which we denote Wt. If s1

and s2 in S, satisfy m(s1, s2) is odd we require ψ(s1) = ψ(s2), whereas if m(s1, s2)
is even there is no requirement on ψ. A summand of

A = F1 = H0(Dodd;Z2) =
⊕

π0(Dodd)

Z2

is represented by a vertex of DW . For the vertex t, denote the corresponding
summand of A by Z2(t). We define the homomorphism ψ from W to Wt to be zero
on all but one of the connected components of Dodd, namely the t component.

ψ : W → Wt

s 7→

{
t if s and t are in the same component of π0(Dodd)

e otherwise.

Then the map ψ induces a map ψ∗ which fits into the following diagram

Z2(t) �
� //

id
++

A �
� // H3(W ;Z)

ψ∗ // H3(Wt;Z)

Z2

where H3(Wt;Z) = Z2 is computed by noting that the E∞ page of the isotropy
spectral sequence for Wt has only the group H0(Dodd;Z2) = Z2(t) on the p+ q = 3
diagonal. The inclusion map A ↪→ H3(W ;Z) comes from the fact that A = F1 and
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so is a subgroup of H3(W ;Z). The identity isomorphism gives us that H3(W ;Z)
splits as

H3(W ;Z) = Z2(t)⊕ ker(ψ∗)

and so there are no non-trivial extensions involving the Z2(t) summand of A. Re-
peating this argument over all summands gives that there are no non-trivial exten-
sions involving A and so A = F1 splits off in H3(W ;Z), as required. �

We therefore have the filtration

0 ⊆ F1 ⊆ F2 ⊆ F3 = H3(W ;Z) = F1 ⊕ F ′3
and we let F2 = F1⊕F ′2 and F3 = F1⊕F ′3. It follows that E∞2,1 = B = F2/F1 = F ′2
and E∞0,3 = C = F3/F2 = F ′3/F

′
2, so F ′3 fits into the following exact sequence

0 // F ′2
// F ′3

// F ′3/F
′
2

// 0

0 // B // F ′3
// C // 0

i.e. F ′3 is an extension of C by B.

Lemma 5.38. There exist no non-trivial extensions between the H0(D 2r ;Z2)
summand of C and the groups at B in the spectral sequence of Figure 2.

Proof. A summand of H0(D 2r ;Z2) is represented by a vertex in D 2r corre-
sponds to an I2(2p) t A1 (p ≥ 1) subdiagram present in DW . We compute the
spectral sequence for the Coxeter group V = W (I2(2p)) ×W (A1) corresponding
to this diagram, and note that by Lemma 3.3 the inclusion of the subgroup V into
the group W induces a map of spectral sequences. Therefore if there is a trivial
extension in the spectral sequence for V corresponding to the I2(2p)tA1 summand
of H0(D 2r ;Z2), this extension will be trivial in the spectral sequence for W . This
is because the splitting of the extension sequence in E(V ) will give a splitting of
the extension sequence in E(W ), under the map of spectral sequences. The E∞

page for the Coxeter group V is given by Figure 2 with

A = Z2 ⊕ Z2 ⊕ Z2 B = Z2 ⊕ Z2 ⊕ Z2p C = Z2

which is computed in [Boyd18, Appendix B]. Therefore

H3(V ;Z) = F ′3 ⊕ F1 = F ′3 ⊕ (Z2 ⊕ Z2 ⊕ Z2)

where F ′3 is an extension of Z2 by Z2 ⊕ Z2 ⊕ Z2p.
The third integral homology of V can be computed via the Künneth formula for

groups to be

H3(W (I2(2p))×W (A1);Z) = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2p ⊕ Z2 ⊕ Z2.

Therefore we see that F ′3 = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2p and it follows that there is no
non-trivial extension between the H0(D 2r ;Z2) component of C and B. �

Lemma 5.39. The extension between the H0(DA3 ;Z2) summand in C and the
H0(D••;Z2) summand in B is non-trivial.
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Proof. A summand ofH0(DA3 ;Z2) is represented by a vertex ofDA3 , corresponding
to an A3 subdiagram present in DW . The E∞ page of spectral sequence for the
subgroup V = W (A3) corresponding to this diagram is given by Figure 2 with

A = Z2 B = Z2 ⊕ Z3 C = Z2

which is computed in [Boyd18, Appendix B]. Therefore

H3(V ;Z) = F ′3 ⊕ F1 = F ′3 ⊕ Z2

where F ′3 is an extension of Z2 by Z2 ⊕ Z3. Recall that V is isomorphic to the
symmetric group S4, and H3(S4;Z) = Z12 ⊕ Z2. The unique extension which will
obtain this result is the following:

0→ Z2 ⊕ Z3 → Z4 ⊕ Z3 → Z2 → 0

giving H3(V ;Z) = Z4 ⊕ Z3 ⊕ Z2 = Z12 ⊕ Z2. By Lemma 3.3 the inclusion of
subgroup V into group W gives a map of spectral sequences, under which the
extension sequence above is mapped as follows:

0 // Z2 ⊕ Z3� _

��

// Z4 ⊕ Z3

��

// Z2� _

��

// 0

0 // B // F ′3
// C // 0.

Therefore the extension in E(V ) corresponding to the A3 summand of H0(DA3 ;Z2)
is present in the spectral sequence for W . It follows that there exists a non-trivial
extension from each summand of H0(DA3 ;Z2) to H0(D••;Z2). �

Definition 5.40. For a Coxeter system (W,S), let I = π0(D••), J = π0(DA3), let
the connected component of a vertex {s, u} in π0(D••) be denoted [{s, u}] and the
connected component of a vertex {s, t, u} in π0(DA3) be denoted [{s, t, u}]. We
define the extension matrix XW to be the |I| by |J | matrix with entries

X(i, j) =

{
1 if i = [{s, u}] and j = [{s, t, u}]
0 otherwise.

Lemma 5.41. The extension of H0(DA3 ;Z2) by H0(D••;Z2) in the spectral se-
quence is completely determined by the extension matrix XW defined in Definition
5.40. The extension sequence in question is

0 // H0(D••;Z2) // Y // H0(DA3 ;Z2) // 0

0 //
⊕

π0(D••)
Z2

// Y //
⊕

π0(DA3
)

Z2
// 0.

and the entry X(i, j) of XW dictates whether the extension between the ith Z2 on
the left and jth Z2 on the right is trivial (if X(i, j) = 0) or Z4 (if X(i, j) = 1).

Proof. For two finite indexing sets I and J , the extensions of ⊕
J
Z2 by ⊕

I
Z2 are

classified by
Ext(⊕

I
Z2,⊕

J
Z2) = ⊕

I
⊕
J

Ext(Z2,Z2) = ⊕
I
⊕
J
Z2.

Under this classification, an extension is given by an I × J matrix X with en-
tries X(i, j) in Z2. The X(i, j) entry is zero if the restriction to these summands in
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the extension sequence is trivial, and 1 if the extension is the non-trivial extension
of Z2 by Z2 giving Z4.

Consider the extension sequence. By Lemma 5.39, we know that the projection
on the right to a Z2 summand [{s, t, u}] in π0(DA3) is the non-trivial extension by
the Z2 summand [{s, u}] in π0(D••). Let I = π0(D••) and J = π0(DA3), then the
matrix X is precisely XW from Definition 5.40. �

Lemma 5.42. There exist no non-trivial extensions between the

⊕
(

⊕
W (H3)⊆W
W (B3)⊆W

Z2

)
summand of C and the groups at B in the spectral sequence of Figure 2.

Proof. We recall that subdiagrams of the form H3 and B3 in DW represent these
summands of C. We compute the spectral sequence for the groups correspond-
ing to these diagrams, and compare to the third homology of the corresponding
group W (H3) or W (B3) as computed using the De Concini - Salvetti resolution
[DCS00]. Through these comparisons we observe that there are no non-trivial ex-
tensions present, as in the proof of Lemma 5.38. These calculations are in [Boyd18,
Appendix B]. �

Lemma 5.43. A class H1(D�
••;Z2) in C exists only when the spectral sequence

is calculated for a Coxeter system (W,S) for which DW has a subdiagram of the
form Y tA1 where Y is a 1-cycle in the Coxeter diagram Dodd. That is a class
in H1(D�

••;Z2) is represented in DW by a loop containing only odd edges, along
with a vertex disjoint from this loop.

Proof. Suppose vertices {t1, . . . , tk} of DW represent a 1-cycle in Dodd and the
vertex s is disjoint. Then {(t1, s), . . . , (tk, s)} represents a 1-cycle in D�

••. To
show that all classes in H1(D�

••;Z2) are represented by cycles of this form, suppose
that {(x1, y1), . . . , (xp, yp)} represents a 1-cycle in D�

••. Without loss of general-
ity, suppose x1 = x2. Since there exists an edge between (x1, y1) and (x1, y2)
in D••, m(y1, y2) must be odd. Now either x1 = x3 or y2 = y3; suppose y2 = y3. It
follows that m(x1, x3) is odd, so in DW there is a subdiagram of the form

x1

odd odd
x3 y1 y2

.

It follows in the diagram D•• there is a subdiagram

(x1, y1) (x3, y1)

(x1, y2) (x3, y2)



THE LOW-DIMENSIONAL HOMOLOGY OF FINITE-RANK COXETER GROUPS 35

and since this is a square, it is a 2-cell in D�
••. Therefore in H1(D�

••;Z2) the
cycle {(x1, y1), (x1, y2), (x3, y2), (x3, y1)} is a boundary. It follows that replac-
ing the sub-cycle {(x1, y1), (x1, y2), (x3, y2)} of {(x1, y1), . . . , (xp, yp)} with the ver-
tex {(x3, y1)} gives representatives of the same class in H1(D�

••;Z2), and the orig-
inal cycle becomes {(x3, y1), (x4, y4) . . . , (xp, yp)}. Without loss of generality, we
can now assume that x3 = x4 and we return to the start of the analysis of the
cycle. By reiterating this procedure we build a cycle equivalent, via boundaries,
to {(x1, y1), . . . , (xk, yk)} and where x1 = xi for all i. This is exactly a subdiagram
of the form Y tA1 in the Coxeter diagram DW , where Y is a loop in Dodd. �

Lemma 5.44. Let W = W (Y )×W (A1) be a Coxeter group such that Y represents
a 1-cycle in Dodd, then for some 0 < m in N

H3(W ;Z) ∼= H3(W (Y );Z)⊕ Zm2 .

Proof. By the Künneth formula for group homology,

H3(W ;Z) ∼= H3(W (Y );Z)⊕ Z2 ⊕H2(W (Y );Z)⊕H1(W (Y );Z)

and since the first and second integral homologies of any Coxeter group are all
2-torsion the result follows. �

Proposition 5.45. When W = W (Y )×W (A1) such that Y represents a 1-cycle
in Dodd, there are no non-trivial extensions between the H1(D�

••;Z2) component
in C and B.

Proof. We note that should non-trivial extensions exist, the homology H3(W ;Z)
would have at least one more summand with torsion greater than 2-torsion, in com-
parison to the the homology H3(W (Y );Z). This is due to the fact that H1(D�

••;Z2)
is zero in the spectral sequence for H3(W (Y );Z) so the extension would not occur
here. We also note that transitioning fromW (Y ) toW does not alter any non trivial
extensions in the spectral sequence for W (Y ) between the summand H0(D••;Z2)
and H0(DA3 ;Z2). From Lemma 5.44 we have that H3(W ;Z) has no summands
with higher than 2-torsion that do not also appear in H3(W (Y );Z). �

Lemma 5.46. There exist no non-trivial extensions from the H1(D�
••;Z2) compo-

nent of C to B.

Proof. A class of H1(D�
••;Z2) is represented by a subgroup with diagram of the

form DW = Y tA1 such that Y represents a 1-cycle in Dodd, by Lemma 5.43. By
Proposition 5.45 no non-trivial extensions exist between this class and B in the
spectral sequence for the representing subgroup. Therefore by similar argument to
Lemma 5.38 there are no non-trivial extensions from this class. �

5.8. Proof of Theorem B.

Theorem 5.47. Given a finite rank Coxeter system (W,S) there is an isomorphism

H3(W ;Z) ∼= H0(Dodd;Z2)⊕H0(DA2 ;Z3)⊕
(

⊕
3<m(s,t)<∞

Zm(s,t)

)
⊕H0(D 2r ;Z2)⊕

(
⊕

W (H3)⊆W
W (B3)⊆W

Z2

)
⊕
(
H0(DA3 ;Z2)©H0(D••;Z2)

)
⊕H1(D�

••;Z2)
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where each diagram is as in Definition 1.3, and viewed as a cell complex. In this
equation, © denotes the non-trivial extension of H0(DA3 ;Z2) by H0(D••;Z2) given
by the extension matrix XW in Definition 5.40.

Proof. The extension problems are solved in Lemmas 5.38, 5.39, 5.42 and 5.46.
It follows that the only non-trivial extension is the extension of H0(DA3 ;Z2) by
H0(D••;Z2), which is determined by the extension matrix XW of Definition 5.40
by Lemma 5.41.

The computation of the p+ q = 3 diagonal of the isotropy spectral sequence for
the Davis complex, alongside the solutions to these extension problems, gives the
formula for H3(W ;Z) as stated in the theorem. �

Appendix A. Table of results for finite Coxeter groups

The finite Coxeter groups were classified in the 1930s by Coxeter [Cox33]. This
classification is described in Theorem 2.7. We use Theorems A and B to calculate
the second and third integral homology of the finite irreducible Coxeter groups,
and give the results in Table 1 below. We include H1(W ;Z) for completeness.

W H1(W ;Z) H2(W ;Z) H3(W,Z)

An

n ≥ 1
Z2

0 n ≤ 2
Z2 n ≥ 3

Z2 n = 1
Z2 ⊕ Z3 n = 2

Z2 ⊕ Z3 ⊕ Z4 n = 3, 4
Z2

2 ⊕ Z3 ⊕ Z4 n ≥ 5

Bn

n ≥ 2
Z2 ⊕ Z2

Z2 n = 2
Z2 ⊕ Z2 n = 3

Z2 ⊕ Z2 ⊕ Z2 n ≥ 4

Z2
2 ⊕ Z4 n = 2

Z4
2 ⊕ Z3 ⊕ Z4 n = 3

Z5
2 ⊕ Z3 ⊕ Z2

4 n = 4
Z6

2 ⊕ Z3 ⊕ Z2
4 n = 5

Z7
2 ⊕ Z3 ⊕ Z2

4 n ≥ 6

Dn

n ≥ 4
Z2 Z2 ⊕ Z2

Z2
2 ⊕ Z3 ⊕ Z3

4 n = 4
Z2

2 ⊕ Z3 ⊕ Z2
4 n = 5

Z3
2 ⊕ Z3 ⊕ Z2

4 n ≥ 6

I2(p)
p ≥ 5

Z2 p odd
Z2 ⊕ Z2 p even

0 p odd
Z2 p even

Z2 ⊕ Zp p odd
Z2 ⊕ Z2 ⊕ Zp p even

F4 Z2 ⊕ Z2 Z2 ⊕ Z2 Z5
2 ⊕ Z2

3 ⊕ Z4

H3 Z2 Z2 Z3
2 ⊕ Z3 ⊕ Z5

H4 Z2 Z2 Z2
2 ⊕ Z3 ⊕ Z4 ⊕ Z5

E6 Z2 Z2 Z2
2 ⊕ Z3 ⊕ Z4

E7 Z2 Z2 Z2
2 ⊕ Z3 ⊕ Z4

E8 Z2 Z2 Z2
2 ⊕ Z3 ⊕ Z4

Table 1. Homology of finite Coxeter groups.
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