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Abstract
This paper investigates the homology of the Brauer algebras, interpreted as appropriate
Tor-groups, and shows that it is closely related to the homologyof the symmetric group.
Our main results show that when the defining parameter δ of the Brauer algebra is
invertible, then the homology of the Brauer algebra is isomorphic to the homology of
the symmetric group, and that when δ is not invertible, this isomorphism still holds in
a range of degrees that increases with n.
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1 Introduction

In this paper we study the homology of the Brauer algebra Brn(R, δ), interpreted
as appropriate Tor groups. We show that it is isomorphic to the homology of the
symmetric group if the parameter δ is invertible, and that this holds in a range of
degrees that increaseswith n for general δ. Ourmethods stem largely from the theory of
homological stability for families of groups, but with important and novel adaptations
required for the algebraic setting.

1.1 Homological stability and representation stability

Homological stability is a long-studied notion that concerns the homology and coho-
mology of sequences of groups or spaces. A sequence {Xn} of topological spaces or
groups, equipped with maps Xn−1 → Xn , is said to satisfy homological stability if for
all i the induced maps Hi (Xn−1) → Hi (Xn) are isomorphisms, when n is sufficently
large compared to i . Homological stability holds for symmetric groups [25], unordered
configuration spaces [1,9,24], the automorphism groups of free groups [16,18,19],
mapping class groups [15,21,31], diffeomorphism groups of high-dimensional mani-
folds [14], and general linear groups [8,22,30], among others. Randal–Williams and
Wahl [28] recently gave a unified approach to studying homological stability for
sequences of groups that assemble into a homogeneous category. Their theory covers
many of the known examples, and includes a systematic construction of the chain
complexes that are commonly used to prove homological stability.

In the past 10 years the closely-related concept of representation stability [7]
has emerged, with the aim of proving stability phenomena when the terms Xn in
the sequence are not simply modules or vector spaces, but representations of some
sequence of groups. In [26], the third author built a stability category, of the kind
appearing in [28], for sequences of diagram algebras: the Brauer algebras, the
Temperley–Lieb algebras, and the partition algebras. For the Brauer and partition
algebras it is shown the associated categories are symmetric monoidal. Furthermore,
for all three algebras the notion of representation stability from [7] is generalised and
proved for sequences of semisimple representations over these algebras.
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Recent work of the first two authors has demonstrated that the techniques of
homological stability can be applied to families of algebras, where homology and
cohomology are interpreted as appropriate Tor and Ext groups: for Iwahori–Hecke
algebras of type A [17] and for Temperley–Lieb algebras [3]. In [17] an adaptation of
the classic techniques was sufficient, but in [3] it was necessary to overcome a new
technical hurdle, the failure of a flatness condition required for Shapiro’s lemma to
hold. To resolve this the authors developed a new technique, which they call induc-
tive resolutions. The question of whether this technique could be adapted to prove
homological stability results for other diagrammatic algebras, such as the Brauer and
partition algebras, was posed in the introduction of [3]. In this work we answer that
question in the affirmative.

1.2 Brauer algebras

The Brauer algebra was introduced by Brauer [5] to study representations of the
orthogonal and the symplectic groups. It also arises in statistical mechanics, and,
together with its variants, has become an important object in representation theory.
Given a commutative ring R and a fixed element δ ∈ R, the Brauer algebra Brn =
Brn(R, δ) is the free R-module over the basis of all perfect matchings of the union of
the sets [−n] = {−n, . . . ,−1} and [n] = {1, . . . , n}. We visualize such a matching as
a diagram by placing n nodes on the left for the negative numbers, n nodes on the right
for the positive numbers, and connecting two nodes if they are matched. An example is
shown below for the perfect matching {{−1,−3}, {−2,−4}, {−5, 3}, {1, 5}, {2, 4}} ∈
Br5.

−1

−2

−3

−4

−5

1

2

3

4

5

Observe that a diagram has left-to-left connections if and only if it has right-to-right
connections. Given two diagrams b1 and b2, to calculate their product b1b2, we place
b1 to the left of b2 so that the nodes align. We obtain a new diagram b3 by removing
all loops in the middle and replacing each instance of a loop with multiplication by δ.
For example, if we replace k loops, then b1b2 = δkb3. Below we show a visualisation
of the multiplication in Br5.

· = = δ1 ·
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The Brauer algebra was introduced as the Schur-Weyl dual of the orthogonal group
O(m), in which case δ = m. It is also the Schur-Weyl dual of the symplectic group
Sp(2m), in which case δ = −2m (cf. [5,20]). It is closely related to other diagram
algebras, in particular the Temperley–Lieb algebra [29], in which the diagrams are
planar, and the partition algebra [23], in which the matchings on [−n] ∪ [n] are
replaced with arbitrary partitions.

By the homology of the Brauer algebra Brn(R, δ) we mean the Tor groups

TorBrn(R,δ)∗ (1,1),

where 1 denotes the trivial module consisting of a copy of R on which a diagram acts
as the identity if all nodes on the left are connected to ones on the right, or as 0 if
there are left-to-left and right-to-right connections. This is completely analogous to the
homology of a group, which is defined to be the Tor groups of the trivial module with
itself over the group ring, and is a specific instance of the homology of an arbitrary
augmented algebra [2, 2.4.4].

1.3 Results

Diagrams in which every node on the left is connected to a node on the right are called
permutation diagrams, and are in bijection with elements of the symmetric groupSn .
This gives rise to inclusion and projection maps

ι : RSn −→ Brn(R, δ) and π : Brn(R, δ) −→ RSn

where ι sends permutations to permutation diagrams, and π does the reverse, and
sends all remaining diagrams to 0. In particular, π ◦ ι is the identity map on RSn .
There are induced homomorphisms ι∗ and π∗ on homology groups for which π∗ ◦ ι∗
is again the identity, so that the homology of Sn appears as a direct summand of the
homology of Brn(R, δ).

Theorem A Suppose that δ is invertible in R. Then the homology of the Brauer algebra
is isomorphic to the homology of the symmetric group:

TorBrn(R,δ)∗ (1,1) ∼= H∗(Sn;1).

Indeed, the inclusion and projection maps

RSn
ι−→ Brn(R, δ)

π−→ RSn

induce inverse isomorphisms

TorRSn∗ (1,1)
ι∗−−→∼= TorBrn(R,δ)∗ (1,1)

π∗−−→∼= TorRSn∗ (1,1).
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It is well known that H1(S2; R) ∼= R/2R, whereas a computation using [32, 3.1.3]
shows that TorBr2(R,δ)

1 (1,1) ∼= R/2R⊕R/δR, with ι∗ andπ∗ having the evident effect.
Thus the isomorphism of Theorem A fails when δ is not invertible. Nevertheless, the
isomorphism does hold within a range of degrees, and this range of degrees increases
with n:

Theorem B The inclusion map ι : RSn → Brn(R, δ) induces a map in homology

ι∗ : Hi (Sn;1) −→ TorBrn(R,δ)
i (1,1)

that is an isomorphism in the range n ≥ 2i + 1.

An immediate consequence of Theorem B is the following corollary.

Corollary C The Brauer algebras satisfy homological stability, that is the inclusion
Brn−1(R, δ) ↪→ Brn(R, δ) induces a map

TorBrn−1(R,δ)

i (1,1) −→ TorBrn(R,δ)
i (1,1)

that is an isomorphism in degrees n ≥ 2i + 1, and this stable range is sharp. Further-
more, Brn(R, δ) and Sn have the same stable homology:

lim
n→∞ H∗(Sn;1) ∼= lim

n→∞TorBrn(R,δ)∗ (1,1).

The first part of this corollary follows by combining Theorem B with the corre-
sponding homological stability result for the symmetric groups, for which the stable
range is sharp [25]. Indeed, stability for the symmetric groups is an important ingre-
dient in our proof of Theorem B.

For the stable homology, the left hand side of this isomorphism is well known by the
Barratt-Priddy-Quillen theorem [4,11]. This situation is reminiscent of the relationship
between the Sn and the automorphism groups of free groups Aut(Fn): both families
satisfy homological stability, there is an inclusion Sn ↪→ Aut(Fn) that induces an
isomorphism in the stable range, and they have isomorphic stable homology [12,19].

It is interesting to ask whether the range n ≥ 2i + 1 in which Hi (Sn;1) and
TorBrn(R,δ)

i (1,1) are isomorphic can be improved, or whether it is sharp. Sharpness
certainly holds in the case n = 2 by the computation following Theorem A, but we
do not know what happens for n ≥ 3.

Consider the case where the ground ring R is the complex numbers C. Then RSn

is semisimple, and so the homology of Sn vanishes in positive degrees. On the other
hand Brn(C, δ) is semisimple for all n only when δ is not an integer. In the case that δ
is a nonzero integer, Theorem A shows that the homology of Brn(C, δ) still vanishes
despite the failure of semisimplicity. In the remaining case δ = 0, the homology
TorBrn(C,δ)

i (1,1) vanishes in the stable range n ≥ 2i + 1 by Theorem B, but not more
generally, at least in the case n = 2, and again we do not know what happens when
n ≥ 3.
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1.4 Method of proof

The proof of Theorem A uses an adaptation of the method of inductive resolutions
introduced in [3] for the Temperley–Lieb algebras. The method shows that if Jn ⊆
Brn(R, δ) denotes the ideal spanned by all diagrams that have at least one left-to-left
connection, then TorBrn(R,δ)

i (1,Brn(R, δ)/Jn) vanishes for i > 0, and is R for i = 0.
This property of the module Brn(R, δ)/Jn , combined with the fact that it admits the
structure of a free right Sn module, allows us to complete the proof of Theorem A
using a novel but elementary homological algebra argument.

The proof of Theorem B begins with the construction of a complex Cn of right
Brn(R, δ)modules. This complex is obtained by adapting the complexes Wn(X , A) of
[28] to the setting of Brauer algebras using the stability category developed by the third
author in [26]. We prove that Cn is highly acyclic using an intricate diagrammatical
argument that features repeated splittings and filtrations of the complexes involved.

The complexes Wn(X , A) were designed to be used in proofs of homological sta-
bility for families of groups, and one can analogously attempt to use the Cn in a
proof of homological stability for the Brn(R, δ). This is our approach, however, a
technical hurdle presents itself. The resulting spectral sequence features the groups
TorBrn∗ (1,Brn ⊗Brm1). One would like to identify these with the groups TorBrm∗ (1,1)

using Shapiro’s lemma, but that is not possible because Brn is not necessarily
flat over Brm . Instead, a variant of the previously mentioned inductive resolution
method is employed, and shows that the above Tor groups can be identified with
TorRSn∗ (1, RSn ⊗RSm 1) ∼= H∗(Sm;1). Combining all of this with homological
stability for symmetric groups allows us to complete the proof.

It is interesting to compare our work here with [3], which gave rather similar results
for the Temperley–Lieb algebras. Oversimplifying, the story of [3] is similar to the last
two paragraphs, except that instead of finding a ranges of degrees where symmetric
groups appear, one finds vanishing ranges. However, the high-connectivity proof in
[3] was much more involved than in the present paper: the symmetric groups do not
lie inside the Temperley–Lieb algebras, instead one can only find a homomorphism
from the braid group, and this homomorphism is not compatible with the basis of
diagrams, so in the end an involved algebraic argument is required. Also, [3] features
a sharpness result for the analogue of Theorem B, and we have been unable to find
such a sharpness result in this case.

1.5 Outline

In Sect. 2, we give background on the Brauer algebras and Tor functors. In Sect. 3,
we adapt the inductive resolution approach of [3] to this setting, involving a new
approach specific to Brauer algebras. In Sect. 4 we introduce and prove our alternative
to Shapiro’s Lemma, which includes the proof of Theorem A. In Sect. 5, we prove
the high connectivity result required in any homological stability proof, using the
complex built from the stability categories of [26] following [28]. We bring all our
results together in Sect. 6, where we prove Theorem B.
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2 Background

2.1 Brauer algebras

In this section we introduce background information on the Brauer algebras, which
were introduced byBrauer in 1937 [5]. Other references for Brauer algebras are [6,33].

Definition 2.1 Let R be a commutative ring and let δ ∈ R. As described in the intro-
duction, the Brauer algebra Brn(R, δ) = Brn is the R-algebra with basis given by
the diagrams of perfect matchings of [−n] ∪ [n] = {−n, . . . ,−1} ∪ {1, . . . , n}. A
perfect matching is a division of this set into n pairs. These matchings are depicted as
diagrams from n nodes (labelled by [−n] and drawn on the left) to n nodes (labelled
by [n] and drawn on the right) where pairs are connected by an arc, also called a con-
nection. Connections are defined up to isotopy. Multiplication corresponds to pasting
diagrams side by side and replacing each closed loop with a factor of δ, as illustrated in
the introduction. Elements of the Brauer algebra are therefore formal sums of diagrams
with coefficients in R.

Remark 2.2 Let U1, . . . , Un−1 and S1, . . . , Sn−1 denote the following elements of
Brn(R, δ):

Ui =

...

...

−n

−(i+1)

−i

−1

n

i+1

i

1

Si =

...

...

−n

−(i+1)

−i

−1

n

i+1

i

1

It is not hard to verify that these elements satisfy the following relations.

• Symmetric group relations

S2
i = 1 for all i

Si S j Si = S j Si S j for |i − j | = 1
Si S j = S j Si for |i − j | ≥ 2

• Temperley–Lieb relations

U 2
i = δUi for all i

UiU jUi = Ui for |i − j | = 1
UiU j = U jUi for |i − j | ≥ 2



85 Page 8 of 31 R. Boyd et al.

• Mixed relations

Ui Si = SiUi = Ui for all i
Ui S jUi = Ui for |i − j | = 1
Si S jUi = U jUi for |i − j | = 1
Ui S j Si = UiU j for |i − j | = 1
Ui S j = S jUi for |i − j | ≥ 2

Indeed, the above is a presentation of Brn(R, δ), though we will not need this fact
for the present paper.

Remark 2.3 The Si generators generate the subalgebra RSn of Brn obtained from
the inclusion ι : RSn → Brn described in the introduction. Similarly, the Ui gener-
ators generate a subalgebra of the Brauer algebra isomorphic to the Temperley–Lieb
algebra TLn(R, δ).

We now introduce the modules we will be working with.

Definition 2.4 For any n, we define the trivial Brn-bimodule 1 to be the module given
by the ring R, and upon which the generators Si act trivially and the generators Ui act
as zero. Equivalently, any diagram with a left-to-left (and therefore a right-to-right)
connection acts as zero, and any other diagram acts as 1.

Definition 2.5 For m ≤ n, we can view Brm as the subalgebra of Brn generated
by S1, . . . , Sm−1, U1, . . . , Um−1, or equivalently as the subalgebra in which the final
n − m nodes on the left are connected, by horizontal connections, to the final n − m
nodes on the right. Then, under the action of this subalgebra, Brn can be viewed as
a left Brn-module and a right Brm-bimodule, and we obtain the induced left Brn-
module Brn ⊗Brm1.

The following proposition is taken from [26], where the above inclusion of Brm ↪→
Brn is taken to be the inclusion into the final m nodes, as opposed to our convention
which uses the inclusion into the first m nodes. We adapt the statement of the propo-
sition accordingly.

Proposition 2.6 ([26, Section 2]) Brn ⊗Brm1 is a free R-module and a quotient of Brn.
In terms of diagrams a basis for this module is the set of diagrams with n nodes on

the left and n − m nodes under an m-box on the right, subject to the following two
conditions:

• Every node must either be connected to exactly one other node or to the box, and
the box must be connected to m nodes.

• Any diagram with a connection starting and ending at the box is identified with
zero.
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Some (non-)examples of diagrams representing elements of Br5 ⊗Br31 are given
below.

3
,

3
∈ Br5 ⊗Br31,

3
= 0 ∈ Br5 ⊗Br31

2.2 Tor groups and Shapiro’s lemma

We now recall the definition and functoriality of Tor groups, and Shapiro’s lemma, in
order to fix conventions and notation for later.

Let R be a commutative ring. Let A be an R-algebra, M a right A-module, and N
a left A-module. Choosing a projective (or free if we wish) resolution P∗ of M over
A, we may form the tensor product chain complex P∗ ⊗A N , and its homology is the
corresponding Tor group:

TorA∗ (M, N ) = H∗(P∗ ⊗ N ).

Now suppose that A′ is a second R-algebra, that M ′ is a right A-module, and that N ′
is a left A-module. Suppose further that there is a ring homomorphism f : A → A′, and
homomorphisms of R-modules fR : M → M ′ and fL : N → N ′ that are compatible
in the sense that

fR(ma) = fR(m) f (a) and fL(an) = f (a) fL(n)

for m ∈ M , n ∈ N and a ∈ A. Then there is an induced map

( fR, f , fL)∗ : TorA∗ (M, N ) −→ TorA′
∗ (M ′, N ′)

or simply

f∗ : TorA∗ (M, N ) −→ TorA′
∗ (M ′, N ′)

defined as follows. Choose projective resolutions P∗ of M over A and P ′∗ of M ′ over
A′. By restricting along f we may regard P ′∗ as a resolution of M ′ over A. While P ′∗
need not be projective over A, it is still acyclic, and we may therefore find a chain
map f̃ : P∗ → P ′∗ of chain complexes of A-modules, inducing fR on homology. This
induces a chain map f̃ ⊗ fL : P∗ ⊗A N → P ′∗ ⊗A′ N ′, and finally determines a map on
homology groups, which is ( fR, f , fL)∗ above. Any such f̃ is determined uniquely
up to homotopy, so that the resulting map of Tor-groups is uniquely determined.
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Shapiro’s lemma states that if G is a group and H is a subgroup of G, then the
natural map

H∗(H ;1) = TorR H∗ (1,1) −→ TorRG∗ (1, RG ⊗R H 1) = H∗(G; RG ⊗R H 1)

induced by the inclusion RH ↪→ RG and the module maps id : 1 → 1 and 1 →
RG ⊗R H 1, r �→ 1 ⊗ r , is an isomorphism. The isomorphism can be realised by
choosing a free RG-resolution Q∗ of 1, and observing that it is also a free RH -
resolution of 1, so that the induced map above is given by Q∗ ⊗R H 1 → Q∗ ⊗RG

(RG⊗R H 1), q ⊗r �→ q ⊗(1⊗r), which is itself an isomorphism of chain complexes.

3 Inductive resolutions

In this section, we will adapt the inductive resolutions of [3] to the setting of Brauer
algebras.

Definition 3.1 Suppose that X is a subset of the set {1, . . . , n}. Define JX to be the
left-ideal in Brn that is the R-span of all diagrams in which, among the nodes on the
right labelled by elements of X , at least one pair is connected by an arc.

Our aim is to prove the following theorem, which will be used in the next section
to understand the Tor groups TorBrn∗ (1,Brn ⊗Brm1).

Theorem 3.2 Let X ⊆ {1, . . . , n} and suppose that one of the following conditions
holds:

• |X | ≤ n and δ is invertible in R.
• |X | < n.

Then the groups TorBrn∗ (1,Brn /JX ) vanish in positive degrees.

The proof of this result will occupy the rest of the section. The material that follows
closely parallels [3, Section 3], with modifications to account for the passage from
Temperley–Lieb algebras to Brauer algebras. The application of Theorem 3.2 in the
next section is entirely new.

Given a, b ∈ {1, . . . , n}, we write Uab for the element of Brn represented by the
diagram in which each node on the left is joined to the corresponding node on the
right, except that nodes −a,−b on the left are joined to one another, and that nodes
a, b are joined to one another. Thus Ui i+1 is the element that we earlier denoted by
Ui .

Lemma 3.3

(a) An element β ∈ Brn has the form β = α · Uab for some α ∈ Brn if and only if β is
a linear combination of diagrams that each have an arc on the right between the
nodes labelled a and b.

(b) JX is the left-ideal of Brn generated by the elements Uab for a, b ∈ X.
(c) If a, b /∈ X, then right-multiplication by Uab preserves the left ideal JX .
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Fig. 1 The complex C(X , x)

Proof In (a), the ‘only if’ part is immediate. For the ‘if’ part, consider a diagram β in
which nodes a and b on the right are connected by an arc. Then at least one pair of
nodes on the left is connected by an arc. Left-multiplying by a permutation (which is
invertible), we may assume without loss of generality that nodes −a and −b on the
left are also connected by an arc. It is then clear that β = αUab where α is obtained
from β by replacing the arcs from ±a to ±b on each side with an arc from −a to a
and an arc from −b to b.

(b) follows immediately from (a).
For (c), Uab commutes with Ucd whenever a, b, c, d are all distinct, so that by (b)

it commutes with the generators of JX . ��
We now introduce two very similar complexes, one for each set of assumptions in

Theorem 3.2.

Definition 3.4 (The complex C(X , x)) Suppose that δ is invertible in R and that X is
a nonempty subset of {1, . . . , n}. Let x ∈ X . Define a complex C(X , x) as in Fig. 1.
Thus C(X , x) is given in degree−1 by Brn /JX , in degree 0 by Brn /JX−{x}, and in all
higher degrees by the direct sum of Brn /JX−{x,w} for w ∈ X − {x}. Each differential
is given on each direct summand by a combination of right-multiplication by elements
of Brn (these are the elements indicated on the arrows of the diagram) and a map that
extends the ideal by which we are quotienting (these are clear from the notation).

Definition 3.5 (The complex D(X , x, y)) Let X be a proper nonempty subset of
{1, . . . , n}. Let x ∈ X and let y ∈ {1, . . . , n} − X . Define a complex D(X , x, y) as in
Fig. 2. Thus D(X , x, y) is given in degree−1 by Brn /JX , in degree 0 by Brn /JX−{x},
and in all higher degrees by the direct sum of the Brn /JX−{x,w} forw ∈ X −{x}. And
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Fig. 2 The complex D(X , x, y)

as in the previous definition, each differential is given on each direct summand by a
combination of right-multiplication by an element of Brn and a map that extends the
ideal by which we are quotienting.

Wewill see shortly thatC(X , x) and D(X , x, y) are acyclic, i.e. they are resolutions
of their degree (−1) part.We call them inductive resolutions because they are resolving
a module Brn /JX in degree (−1), while in all remaining degrees they are built from
modules of the form Brn /JY for |Y | < |X |. This will facilitate the inductive proof
of Theorem 3.2 that appears at the end of the section.

Lemma 3.6 The differentials of C(X , x) and D(X , x, y) are well defined, and con-
secutive differentials compose to give 0.

Proof The differentials are well-defined because we are always right-multiplying by
an element that commutes with the ideal appearing in the domain. See Lemma 3.3(c).

In both cases the composite of differentials from degree 1 to −1 vanishes because
the elements Uxw all lie in JX .

In C(X , x) the remaining composites all vanish because each δ−1Uxw is an idem-
potent:

(δ−1Uxw)2 = δ−2U 2
xw = δ−2δUxw = δ−1Uxw

In D(X , x, y) the composite of differentials ending in degree 0 vanishes because
of the computation:

(1 − UxwUxy)Uxw = Uxw − UxwUxyUxw = Uxw − Uxw = 0.
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Fig. 3 The complex C(X , x, w)

Here the identity UxwUxyUxw = Uxw is easily verified, and generalises the familiar
identity UiUi±1Ui = Ui in the Temperley–Lieb algebra. The remaining composites
of consecutive differentials in D(X , x, y) all vanish because the element UxwUxy is
idempotent:

(UxwUxy)(UxwUxy) = Uxw(UxyUxwUxy) = UxwUxy .

��
Lemma 3.7 The complexes C(X , x) and D(X , x, y) are acyclic.

Proof We begin with the proof for C(X , x).
In degree −1 the claim is clear since Brn /JX−{x} → Brn /JX is surjective.
In degree 0, we must show that any element of JX is equal, modulo JX−{x}, to a

sum of left-multiples of the elements δ−1Uxw for w ∈ X − {x}. This is an immediate
consequence of Lemma 3.3(a).

Before proceeding to higher degrees, we consider the boundary map of C(X , x)

from degree 1 to degree 0:

⊕

w∈X−{x}
Brn /JX−{x,w}

⊕
δ−1Uxw

1

Brn /JX−{x} 0

According to Lemma 3.3(a), the image of the summand Brn /JX−{x,w} is spanned
by linear combinations of diagrams inwhich the nodes labelled x andw on the right are
connected by an arc. In any diagram, the node x on the right is connected to one other
node, and no more, so that the images of the summands Brn /JX−{x,w} for different
choices of w form a direct sum in Brn /JX−{x}. Therefore, in order to prove acyclicity
of our complex in degrees 1 and above, it will be enough to fix w ∈ X − {x} and
prove the complex C(X , x, w) shown in Fig. 3 has vanishing homology in degree 1
and above.
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Fig. 4 The complex D(X , x, y, w)

We now prove that the homology ofC(X , x, w) vanishes in degrees 1 and above. In
degree 1, suppose that we have an element α ∈ Brn that represents a cycle in degree 1,
so that αδ−1Uxw ∈ JX−{x}. Consider a diagram appearing as a summand of αδ−1Uxw

with nonzero coefficient. Since there is a factor of Uxw on the right, the diagram must
have an arc between the nodes on the right labelled x and w. And since αUxw lies in
JX−{x}, there are a, b ∈ X − {x} such that the nodes labelled a, b on the right of the
diagram are joined by an arc. Comparing the last two sentences, we see that in fact
a, b ∈ X −{x, w}, since otherwise the diagram would have two distinct arcs ending at
w, and consequently the diagram lies in JX−{x,w}. Consequently, αδ−1Uxw itself lies
in JX−{x,w}. This shows that α = α(1 − δ−1Uxw) in Brn /JX−{x,w}, so that α lies in
the image of the differential. In degrees 2 and higher exactness is immediate, thanks
to the fact that δ−1Uxw is idempotent.

Now we move on to the proof for D(X , x, y). All steps of the proof are closely
analogous to the proof above for C(X , x), with the complex D(X , x, y, w) shown
in Fig. 4 now playing the role of C(X , x, w). The only point of departure is the
proof that D(X , x, y, w) is exact in degree 1, which we prove now. In D(X , x, y, w),
suppose that we have an element α ∈ Brn that represents a cycle in degree 1, so that
αUxw ∈ JX−{x}. Just as forC(X , x, w), it follows that αUxw itself lies in JX−{x,w}. By
Lemma 3.3(c), right-multiplication by Uxy preserves the left-ideal JX−{x,w}, so that
αUxwUxy lies in JX−{x,w}. This shows that α = α(1− UxwUxy) in Brn /JX−{x,w}, so
that α lies in the image of the differential. ��

Lemma 3.8 The complexes 1 ⊗Brn C(X , x) and 1 ⊗Brn D(X , x, y) are acyclic.

Proof If A is any subset of {1, . . . , n}, then all elements of the ideal JA act as zero on
1. It follows that 1 ⊗Brn Brn /JA is isomorphic to R.

Under this isomorphism, the differentials on each summand of (1⊗Brn C(X , x))p

and (1 ⊗Brn D(X , x, y))p are given by 0 for p odd and id for p even (they act as the
indicated element in Figs. 1 and 2 would act on 1). Using this description, one sees
immediately that the complexes are acyclic. ��
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Proof of Theorem 3.2 We give the proof for C(X , x); the proof for D(X , x, y) is iden-
tical.

The proof is by induction on the cardinality of X . The cases where X has cardinality
0 or 1 are immediate because then JX = 0 and Brn /JX = Brn is free. Assume that X
has cardinality 2 or more, choose x ∈ X , and choose y /∈ X .

Let C≥0(X , x) denote the part of C(X , x) in non-negative degrees. By Lemma 3.7,
C(X , x) is acyclic, and so C≥0(X , x) is a resolution of Brn /JX . In each degree,
C≥0(X , x) is a direct sum of modules Brn /JY for Y � X . By the inductive hypoth-
esis the Tor groups of these modules vanish in positive degrees, and it follows that
C≥0(X , x) is a flat resolution of Brn /JX . Therefore Tor

Brn∗ (1,Brn /JX ) is computed
by 1 ⊗Brn C≥0(X , x), which by Lemma 3.8 is zero in positive degrees. ��

4 Replacing Shapiro’s lemma

In this section we discuss the failure of Shapiro’s lemma for Brauer algebras, we
provide a replacement for it, and we prove Theorem A.

Recall that Shapiro’s lemma states that if G is a group and H is a subgroup of G,
then the natural map

H∗(H ;1) = TorR H∗ (1,1) −→ TorRG∗ (1, RG ⊗R H 1)

is an isomorphism. The case of interest to us is the following, where m ≤ n:

σ : H∗(Sm;1) = TorRSm∗ (1,1)
∼=−−→ TorRSn∗ (1, RSn ⊗RSm 1)

In this specific case we will always denote the isomorphism by σ .
If it were possible, we would also be interested in a version of Shapiro’s lemma for

the Brauer algebra, identifying TorBrm∗ (1,1) with TorBrn∗ (1,Brn ⊗Brm1). The reason
we would like this is that the highly-connected chain complex that we will exploit
later is built out of precisely the modules Brn ⊗Brm1, as is familiar from proofs of
homological stability for families of groups. However no such version of Shapiro’s
lemma for Brauer algebras is possible, because Brn is not necessarily flat as a right
Brm-module. A concrete instance of this is given by the fact that TorBr21 (Br3,1) ∼=
(R/δR)⊕3, which shows that Br3 is not flat over Br2 when δ is not invertible. This
computation of TorBr21 (Br3,1) is obtained by considering the short exact sequence of
right Br2-modules

0 → J → Br3 → Br3 /J → 0,

where J = J{1,2,3} is the ideal spanned by diagrams with a left-to-left connection; one
can identify J and Br3 /J , and then compute their TorBr21 (−,1) using the method of
[32, 3.1.3].

This absence of Shapiro’s lemma is what prevents us from presenting a ‘traditional’
homological stability proof for Brauer algebras. However, we are able instead to use
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the inductive resolutions of the previous section to prove a ‘replacement’ for Shapiro’s
lemma, that will turn out to be just as useful, if not more.

To phrase the main result of this section, recall the inclusion and projection maps

RSm
ι−→ Brm

π−→ RSm .

These are compatible with the inclusions Brm → Brn and RSm → RSn , and also
respect the actions on the trivial module. They therefore induce the following maps of
Tor-groups.

TorRSn∗ (1, RSn ⊗RSm 1)
ι∗−→ TorBrn∗ (1,Brn ⊗Brm1)

π∗−→ TorRSn∗ (1, RSn ⊗RSm 1)

Theorem 4.1 Let n ≥ m ≥ 0. Suppose that δ is invertible in R, or that m < n. Then
the maps

ι∗ : TorRSn∗ (1, RSn ⊗RSm 1) −→ TorBrn∗ (1,Brn ⊗Brm1)

and

π∗ : TorBrn∗ (1,Brn ⊗Brm1) −→ TorRSn∗ (1, RSn ⊗RSm 1)

are mutually inverse isomorphisms.

Proof of TheoremA Taking δ invertible and m = n, the result follows immediately
using the identifications RSn ⊗RSm 1 ∼= 1 and Brn ⊗Brm1

∼= 1. ��
Theorem 4.1 will be proved after some preparatory definitions and lemmas.

Definition 4.2 For m ≤ n, let Jm be the left-ideal JX defined in Definition 3.1 for X =
{1, . . . , m}. Thus Jm is the left-ideal spanned by all diagrams that have at least one
arc among the nodes labelled 1, . . . , m on the right.

Observe that Brn is a right RSm-module, and that this module structure preserves
Jm , so that Brn /Jm becomes a right RSm-module.

Lemma 4.3 For m ≤ n, Brn /Jm is a free RSm-module.

Proof Brn /Jm has basis consisting of the diagrams that have no arc between any
two nodes in {1, . . . , m}. In fact, Sm acts freely on this basis. This follows from the
observation that multiplying such a diagram with a permutation in Sm results again
in a diagram with no arc between any two nodes in {1, . . . , m} and the stabilizer of
any such diagram is only the trivial permutation. ��
Lemma 4.4 For m ≤ n, there is an isomorphism of left Brn-modules

Brn /Jm ⊗RSm 1 ∼= Brn ⊗Brm1

under which (b + Jm) ⊗ r ∈ Brn /Jm ⊗RSm 1 corresponds to b ⊗ r ∈ Brn ⊗Brm1.
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Proof It is sufficient to check that the correspondence described in the statement is a
well-defined map in each direction. This holds because elements of RSm act as the
identity on 1 while elements of Jm act as 0, and because Brm is spanned by RSm and
Jm . ��

Now recall from Theorem 3.2 that, under the hypotheses of Theorem 4.1,

TorBrn∗ (1,Brn /Jm) =
{
1 if ∗ = 0

0 if ∗ > 0
.

Proof of Theorem 4.1 Since π∗ ◦ ι∗ is the identity map, it is sufficient to show that ι∗
is an isomorphism. To do this, we will directly construct an isomorphism

	 : TorBrn∗ (1,Brn ⊗Brm1)
∼=−→ H∗(Sm;1).

and show that the composite

H∗(Sm;1)
σ−→∼= TorRSn∗ (1, RSn ⊗RSm 1)

ι∗−→ TorBrn∗ (1,Brn ⊗Brm1)
	−→∼= H∗(Sm;1)

is the identity map.
Let us construct the map 	. Let P∗ be a free Brn-resolution of 1. Then the domain

of 	 is the homology of the chain complex P∗ ⊗Brn Brn ⊗Brm1, and Lemma 4.4 gives
us an isomorphism

θ : P∗ ⊗Brn Brn ⊗Brm1
∼=−−→ P∗ ⊗Brn Brn /Jm ⊗RSm 1.

Since P∗ ⊗Brn Brn /Jm computes TorBrn∗ (1,Brn /Jm), Theorem 3.2 shows that
P∗ ⊗Brn Brn /Jm is a Sm-resolution of 1. And since P∗ is a free Brn-resolution and
Brn /Jm is a free Sm-module, P∗ ⊗Brn Brn /Jm is in fact a free Sm-resolution of 1.
Therefore P∗⊗Brn Brn /Jm ⊗RSm 1 is a chain complexwhose homology is H∗(Sm;1).
Let 	 be the map induced by θ .

We now show that the composite 	 ◦ ι∗ ◦ σ is the identity map. If we choose a
projective RSn-resolution Q∗ of 1, then σ is given on the chain level by

Q∗ ⊗RSm 1 → Q∗ ⊗RSn RSn ⊗RSm 1, q ⊗ r �→ q ⊗ 1 ⊗ r .

If we choose a chain map ι̃ : Q∗ → P∗ that lies over the identity map on 1 and
respects the inclusion ι : RSn → Brn , then ι∗ is represented by the chain map

Q∗ ⊗RSn RSn ⊗RSm 1 → P∗ ⊗Brn Brn ⊗Brm1, q ⊗ x ⊗ r �→ ι̃(q) ⊗ ι(x) ⊗ r .

Finally, we described 	 explicitly on the chain level in the last paragraph. Now we
can verify that 	 ◦ ι∗ ◦ σ is given on the chain level by

Q∗ ⊗RSm 1 → P∗ ⊗Brn Brn /Jm ⊗RSm 1, q ⊗ r �→ ι̃(q) ⊗ (1 + Jm) ⊗ r .
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This map is obtained by applying − ⊗RSm 1 to the map

Q∗ → P∗ ⊗Brn Brn /Jm q �→ ι̃(q) ⊗ (1 + Jm).

But this is amapof projective RSm-resolutions of1, lying above the identitymapon
1, and respecting the module structure. It is therefore a chain homotopy equivalence,
and the same therefore holds for our chain-level representative of 	 ◦ ι∗ ◦ σ . This
completes the proof. ��

5 High connectivity

In this section, we introduce a chain complex built from the induced modules
Brn ⊗Brm1 of Proposition 2.6. This chain complex is analogous to the chain com-
plexes used in Randal–Williams–Wahl [28] when considering the stability category
CBr from [26]. Furthermore, as generically required for a homological stability proof,
we show that this is highly acyclic.

5.1 The chain complex

Definition 5.1 For n a non-negative integer, we define the chain complex Cn = (Cn)∗
of Brn-modules as follows. The degree p part (Cn)p is non-zero in degrees−1 ≤ p ≤
n − 1, where it is given by

(Cn)p = Brn ⊗Brn−(p+1)1.

So in degree −1 it follows that (Cn)−1 = Brn ⊗Brn1
∼= 1. For 0 ≤ p ≤ n − 1 the

degree p differential ∂ p is given by the alternating sum

∂ p =
p∑

i=0

(−1)i d p
i : (Cn)p −→ (Cn)p−1.

where algebraically, the map d p
i for 0 ≤ i ≤ p is given by

d p
i : Brn [Brn−(p+1)]1 −→ Brn [Brn−p]1

x ⊗ r �→ (x · Sn−p+i−1 · · · Sn−p) ⊗ r .

In terms of diagrams, elements in degree p can be described as in Proposition 2.6,
i.e. as diagrams with an (n − (p + 1))-box at the top right. The map d p

i first connects
the (n − p + i)-th node of the right hand side of the diagram with the (n − p)-th node
(the top node under the box) and then extends the box over this node, corresponding
to the (n − (p +1))-box growing by one node to form an (n − p)-box. In other words,
if the nodes below the (n − (p + 1))-box are labelled 0, . . . , p from top to bottom,
then d p

i lifts up node i and plugs it into the box.
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Examples of the action of the maps d p
i when n = 5 and p = 2 are shown below.

d2
2

⎛

⎜⎜⎜⎜⎜⎝

2
⎞

⎟⎟⎟⎟⎟⎠
=

3

, d2
1

⎛

⎜⎜⎜⎜⎜⎝

2
⎞

⎟⎟⎟⎟⎟⎠
=

3

d2
0

⎛

⎜⎜⎜⎜⎜⎝

2
⎞

⎟⎟⎟⎟⎟⎠
=

3

, d2
0

⎛

⎜⎜⎜⎜⎜⎝

2
⎞

⎟⎟⎟⎟⎟⎠
=

3

= 0

Remark 5.2 The complex Cn is analogous to the semisimplicial set defined in Randal–
Williams–Wahl [28], using the symmetric monoidal category CBr introduced by the
third author in [26]. However we do not exploit this analogy, as our numbering system
opposes that of [26].

Lemma 5.3 (Cn)∗ is a chain complex. That is, the boundary maps of (Cn)∗ satisfy
∂ p−1 ◦ ∂ p = 0.

Proof We show that iterated differentials vanish, by observing that if p ≥ 1 and
0 ≤ j < k ≤ p, then the composite maps d p−1

j d p
k , d p−1

k−1 d p
j : (Cn)p → (Cn)p−2

coincide. It follows that ∂ p−1 ◦ ∂ p = 0. We have

d p−1
j d p

k (x ⊗ r) = [x · (Sn−i+k−1 · · · Sn−i ) · (Sn−i+ j · · · Sn−i+1)] ⊗ r

and

d p−1
k−1 d p

j (x ⊗ r) = [x · (Sn−i+ j−1 · · · Sn−i ) · (Sn−i+k−1 · · · Sn−i+1)] ⊗ r .

By repeated use of the braiding relations on the Sm , these maps coincide. (For a
more detailed proof compare with [3, Lemma 4.8].) ��

The rest of this section is devoted to proving that this chain complex is highly
acyclic, which is made precise in the following theorem.

Theorem 5.4 Hi (Cn) = 0 for i ≤ n−3
2 .

To prove this theorem, we introduce a number of decompositions, filtrations, and
chain isomorphisms, which eventually reduce the theorem to high acyclicity of the
complex of injective words.
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5.2 A decomposition and a filtration

We first observe that for a single diagram, corresponding to a monomial in Brn , the
number of left-to-left connections (which is equal to the number of right-to-right
connections) is invariant under the differential ∂ . This is because the number of left-
to-left connections remains invariant under multiplication by any Si , and under the
operation of extending the box over a new node.

Definition 5.5 Fix 0 ≤ k ≤ �n/2�. Let C (k)
n = (C (k)

n )∗ be the subcomplex of the chain
complexCn with basis at degree p consisting of those diagrams in (Cn)p which have k
left-to-left connections.

Thus we can decompose Cn as

Cn = C (0)
n ⊕ C (1)

n ⊕ · · · ⊕ C (�n/2�)
n .

Proposition 5.6 Hi (C
(k)
n ) = 0 for all i ≤ n − k − 2.

Assuming the above proposition we prove Theorem 5.4 as a consequence.

Proof of Theorem 5.4 If i ≤ n−3
2 as in the statement of Theorem 5.4, then

i ≤
⌊

n − 3

2

⌋
= n −

⌊n

2

⌋
− 2 ≤ n − k − 2

for all 0 ≤ k ≤ � n
2 �. Then, by the decomposition of Cn into the C (k)

n ,

Hi (Cn) =
�n/2�⊕

k=0

Hi (C
(k)
n )

vanishes by Proposition 5.6. ��
We are left to prove Proposition 5.6. Observe that if there are k left-to-left connec-

tions in a diagram, it follows that there are k right-to-right connections. However, on
the right hand side of a diagram in (Cn)p there is a (n − (p + 1))-box, and so the
right-to-right connections are split into two sets: singular nodes connected to the box
and pairs of nodes connected to each other and not connected to the box. We exploit
this in a filtration of (C (k)

n )∗.
Definition 5.7 For each 0 ≤ k ≤ �n/2�, we define a filtration

F0C (k)
n ⊆ F1C (k)

n ⊆ · · · ⊆ FkC (k)
n

of C (k)
n as follows. The j th level Fj C

(k)
n is generated by diagrams with at most j

right-to-right connections that are not connected to the box. Note that this is indeed a
filtration, since the defining criterion is invariant under ∂ . This is due to the observation
that the boundary map can only decrease the number of right-to-right connections not
connected to the box.
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Proposition 5.8 The filtration quotient Fj C
(k)
n /Fj−1C (k)

n is highly acyclic: its homol-
ogy vanishes in degrees i ≤ n − k − 2 + j .

The proof of this result will be given later. Assuming it for the time being, we may
prove Proposition 5.6:

Proof of Proposition 5.6 By Proposition 5.8, the homology of the filtration quotient
Fj C

(k)
n /Fj−1C (k)

n vanishes in degrees ∗ ≤ n − k − 2 for all j . The same then holds

for C (k)
n itself, either by considering the spectral sequence associated to the filtration,

or by considering the long exact sequences associated to the short exact sequences
0 → Fj−1C (k)

n → Fj C
(k)
n → Fj C

(k)
n /Fj−1C (k)

n → 0. ��

5.3 Injective words with separators

Our goal is now to prove Proposition 5.8. We will do this at the end of this section by
identifying the filtration quotients in terms of yet another family of complexes, which
we introduce now.

Definition 5.9 (Injective words with separators) Let X be a finite set and let k ≥ 0.
An injective word on X with k separators is a word with letters taken from the set
X � {|} consisting of X and the separator |, where each letter from X appears at most
once, and where the separator appears exactly k times. When k = 0, then these are
simply the injective words on X .

Example 5.10 For example, if X = {a} and k = 2, then the possible words are:

|| ||a |a| a||

And if X = {a, b} and k = 1, then the possible words are:

| |a a| |b b| |ab a|b ab| |ba b|a ba|

Definition 5.11 (The complex of injective words with separators) Let X be a finite set,
let s ≥ 0, and let R be a commutative ring. The complex of injective words with s
separators is the R-chain complex W (s)

X concentrated in degrees −1 ≤ p ≤ |X | − 1,

and defined as follows. In degree p, (W (s)
X )p has basis given by the injective words

on X with s separators with (p + 1) letters from X . Thus such a word a ∈ (W (s)
X )p

has length s + p + 1. Let r = s + p and a = a0a1 · · · ar . The boundary operator
∂ p : (W (s)

X )p → (W (s)
X )p−1 is defined by the rule

∂ p(a0a1 · · · ar ) =
r∑

i=0

(−1)i a0 · · · âi · · · ar

subject to the condition that if the omitted letter is a separator, then the corresponding
term is omitted (or identified with 0). In other words, the boundary is the signed sum
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of the words obtained by deleting the letters that come from X and not deleting any
separators, but with signs determined by the position of the deleted letter among all
letters including the separator:

∂ p(a0a1 · · · ar ) =
∑

ai ∈X

(−1)i a0 · · · âi · · · ar

Example 5.12 If we take X = {a, b} and s = 1, then the elements a|b and |ba both
live in degree 1, and their boundaries are

∂1(a|b) = |b + a| and ∂1(|ba) = −|a + |b.

Lemma 5.13 W (s)
X is a chain complex. That is, ∂ p−1 ◦ ∂ p = 0.

Proof If ai , a j ∈ X are distinct letters of a word a0 · · · ar ∈ (W (s)
X )i , with i < j , then

a0 · · · âi · · · â j · · · ar appears in ∂ p−1∂ p(a0 · · · ar ) with coefficient

(−1)i+( j−1) + (−1) j+i = 0.

��
Proposition 5.14 W (s)

X is highly acyclic: Hi (W (s)
X ) = 0 for i ≤ |X | − 2.

Proof We prove the statement by induction on s. The base case s = 0 is the usual
acyclicity statement for the complex of injective words, first proved by Farmer [10].

Let s ≥ 1 and assume the result holds true for (s − 1). We introduce a filtration
Fj W (s)

X which at level j is generated by words a0 · · · ar in which a separator appears
among the letters a0, . . . , a j , or equivalently, in at least one of the positions 0, . . . , j .

Then the filtration quotient Fj W (s)
X /Fj−1W (s)

X is the chain complex defined like W (s)
X ,

but with basis consisting of words in which the first separator appears in position j ,
and whose differential omits letters taken from X that appear after position j .

Next we introduce a degree − j chain map

�∗ : Fj W (s)
X /Fj−1W (s)

X −→
⊕

x

W (s−1)
X−x

where x ranges over all injective words on X with exactly j letters (and no sep-
arators), and X − x denotes the set obtained by deleting the letters of x from
X . Observe that if a0 · · · ar is a basis element of (Fj W (s)

X )p/(Fj−1W (s)
X )p then

a0 · · · ar = (a0 · · · a j−1)|(a j+1 · · · ar ) where a0 · · · a j−1 is an injective word on X
with no separators, and a j+1 · · · ar is an injective word of degree p − j on X − x with
s − 1 separators. Then �∗ is defined by

�p(a0 · · · ar ) = (−1)( j+1)pa j+1 · · · ar ∈ W (s−1)
X−(a0···a j−1)

.

It is straightforward to see that �∗ is both a chain map and an isomorphism.
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Since the homology of each W (s−1)
X−x vanishes in degrees ∗ ≤ |X − x| − 2 = |X | −

j − 2, it follows that the homology of Fj W (s)
X /Fj−1W (s)

X vanishes in the same range.

The same therefore holds for W (s)
X itself, either by considering the spectral sequence

associated to the filtration, or by considering the long exact sequences associated to
the short exact sequences 0 → Fj−1W (s)

X → Fj W (s)
X → Fj W (s)

X /Fj−1W (s)
X → 0. ��

5.4 Identifying the filtration quotients

Recall fromDefinition 5.5 thatC (k)
n ⊆ Cn is the subcomplex spanned by diagrams that

have precisely k left-to-left connections, and from Definition 5.7 that Fj C
(k)
n ⊆ C (k)

n
is the subcomplex spanned by diagrams that have at most j right-to-right connections
that are not connected to the box. Our aim now is to prove Proposition 5.8, which
states that the filtration quotients Fj C

(k)
n /Fj−1C (k)

n are highly acyclic. We will do this
by identifying the filtration quotients in terms of complexes of injective words with
separators.

To begin, observe that the filtration quotient Fj C
(k)
n /Fj−1C (k)

n has basis in degree p
consisting of diagrams which have an (n − (p + 1))-box on the right, k left-to-left
connections and k right-to-right connections, of which exactly j are not connected to
the box. In more detail, such diagrams have the following properties:

• On the left, the diagram has n nodes.
• There are precisely k left-to-left connections.
• On the right, the diagram has an (n − (p + 1))-box, together with (p + 1) nodes.
• There are exactly j right-to-right connections that do not connect to the box, and
a further k − j right-to-right connections that connect a node to the box. (There
are k left-to-left connections, so there are also k right-to-right connections.)

• Thus (k − j) + 2 j = k + j of the right-hand nodes are part of right-to-right
connections.

• The remaining (p+1)−(k + j) right-hand nodes are therefore connected to nodes
on the left.

Example 5.15 Here is an example of a diagram in Fj C
(k)
n /Fj−1C (k)

n for n = 8, k = 2
and j = 1, lying in degree p = 5.

2
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Observe the k = 2 left-to-left connections, the k = 2 right-to-right connections,
the j = 1 right-to-right connection that does not involve the box, the k + j = 3 nodes
involved in right-to-right connections, and the (p + 1) − (k + j) = 3 nodes on the
right that are connected to nodes on the left.

Definition 5.16 A diagram in the basis of (Fj C
(k)
n /Fj−1C (k)

n )p determines a tuple

(X , P, Y , a)

consisting of the following data:

• A subset X ⊆ [n] of cardinality n − 2k.
• A partition P of [n] − X into k disjoint pairs.
• An ordered set Y of cardinality k + j , with 2 j of its elements divided into disjoint
pairs. This is regarded as an isomorphism class of such ordered sets with pairing.

• An injective word with k + j separators a, of degree p − (k + j), on the set X .

The diagram determines the tuple as follows:

• X ⊆ [n] is the set of nodes on the left that are part of left-to-right connections.
• P is the partition of [n] − X determined by the left-to-left connections.
• Y is the set of nodes on the right that are part of right-to-right connections, either
to other nodes or to the box, with the pairing obtained from the right-to-right
connections that do not involve the box.

• a is the injective word of length p + 1 obtained as follows. If the i-th node on the
right is part of a right-to-right connection, then the i-th letter of a is a separator. If
the i-th node on the right is part of a left-to-right connection, then the i-th letter
of a is the element of X at the left-hand end of that connection.

Example 5.17 Continuing from Example 5.15, the tuple (X , P, Y , a) associated to our
previous diagram is depicted below:

21

4

6

7

2

3

5

8

1

7

4

X P Y a = |17||4

Thus X consists of all left-hand nodes that are part of left-to-right connections, and
P is the pairing obtained from the left-to-left connections on the remaining left-hand
nodes. We have equipped X and P with the labelling obtained by labelling the nodes



The homology of the Brauer algebras Page 25 of 31 85

from top to bottom, in order to indicate that X is a subset of [n] = [8] and that P
is a pairing on the complement of X . Next, Y consists of the nodes that are part of
right-to-right connections, equipped with the pairing obtained from the right-to-right
connections that do not involve the box.We have not labelledY , in order to indicate that
it is only the isomorphism type of Y , as an ordered set with pairing, which is recorded.
Finally, a is drawn by writing the ends of right-to-right connections as a horizontal
bar (separator), together with the nodes that are the right-hand ends of left-to-right
connections, labelled by the element at the left-hand end of the relevant connection.
Rotating this by 90 degrees gives us the word a, in this case a = |17||4. Note that the
letter 6 ∈ X does not appear in a. This is because in the original diagram, node 6 on
the left is connected to the box.

Finally, observe that we can completely rebuild the original diagram from the tuple
(X , P, Y , a). First, P allows us to recover all left-to-left connections. Next, matching
Y to the separators of a allows us to recover the nodes on the right, together with
the right-to-right connections between the nodes. Finally, right-hand nodes that are
labelled by an element of X are then equipped with a left-to-right connection to that
element, and any remaining right-hand nodes are then connected to the box.

Definition 5.18 The discussion above allows us to define a map

∗ : Fj C
(k)
n /Fj−1C (k)

n −→
⊕

(X ,P,Y )

W (k+ j)
X

of degree−(k + j), where the direct sum is indexed by all tuples (X , P, Y ) of the form
considered in Definition 5.16. The map p is defined as follows: Take a diagram D

in the basis of (Fj C
(k)
n /Fj−1C (k)

n )p, determine the associated tuple (X , P, Y , a) as in

Definition 5.16, and then define∗(D) to be a in the summand W (k+ j)
X corresponding

to (X , P, Y ).

Lemma 5.19 ∗ is a chain map.

Proof Wesuggest that the reader keep inmind thediagram fromExample5.17 through-
out this proof.

First, we claim that the triple (X , P, Y ) associated, via ∗, to a basis diagram D
in (Fj C

(k)
n /Fj−1C (k)

n )p is preserved in all diagrams appearing in the boundary of D.
Recall fromDefinition 5.1 that the boundarymap ∂ p sends a diagram to the alternating
sum of the diagrams obtained as follows: work through the nodes on the right of the
diagram, and in each case move the node into the box. This clearly does not change
the left-hand end of the diagram, and therefore all of the diagrams in the boundary
have the same X and P associated to them. If the node that is moved into the box was
part of a right-to-right connection with another node, then the resulting diagram has
fewer right-to-right connections between nodes, and therefore vanishes in the quotient
(Fj C

(k)
n /Fj−1C (k)

n )p. If the node that is moved into the box was part of a right-to-right
connection with the box, then after moving it into the box, the resulting diagram has
a loop at the box, and therefore again vanishes. The last two sentences show that,
under the boundary map, the nodes that are part of the right-to-right connections do
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not change, and neither does the data of which are connected to the box and which are
not. In other words, the diagrams in the boundary have the same Y associated to them.

The above paragraph demonstrates that Fj C
(k)
n /Fj−1C (k)

n splits as a direct sum
indexed by the triples (X , P, Y ). It now suffices to show that the assignment that sends
a diagram with fixed (X , P, Y ) to the corresponding injective word with separators
a respects the boundary map. But this is clear: moving the end of a left-to-right
connection into the box corresponds exactly to deleting one of the non-separator
letters from a. ��
Lemma 5.20 ∗ is an isomorphism.

Proof We work in degree p. The domain of ∗ has a basis consisting of the diagrams
in degree p, while the range has basis consisting of all 4-tuples (X , P, Y , a) of the
kind appearing in Definition 5.16, and the effect of ∗ is to send a diagram to the
associated tuple. It therefore suffices to show that the assignment that sends a basis
diagram to a 4-tuple is a bijection.

To see this, we construct an inverse assignment as follows. We again recommend
that the reader keeps the diagram of Example 5.17 in mind at this point. Given a tuple
(X , P, Y , a), we build a basis diagram, as follows. First, P allows us to recover all
left-to-left connections on [n]. Next, we use the letters of a— including the separators
— as the right-hand nodes of our diagram. We then replace the separators, in order,
with the elements of Y (which is linearly ordered), adding connections according to the
pairing on Y , and connecting any unpaired elements of Y to the box. The unconnected
nodes on the right are then the non-separators of a, which are in fact distinct elements
of X ; adding the corresponding left-to-right connections then completes the diagram.

The assignment described in the last paragraph is indeed an inverse to the one
described in the first paragraph, and this completes the proof. ��

Using the isomorphism ∗, we can subsequently prove Proposition 5.8.

Proof of Proposition 5.8 Wewish to show that the homology of Fj C
(k)
n /Fj−1C (k)

n van-
ishes in degrees i ≤ n − k − 2 + j . By Lemma 5.20, there is a chain isomporphism
of degree −(k + j) between this chain complex and

⊕
(X ,P,Y ) W (k+ j)

X , where in this
direct sum the sets X all have cardinality n − 2k. By Proposition 5.14, the homology
of the W (k+ j)

X all vanish in degrees i ≤ |X | − 2 = n − 2k − 2, so that the homology

of Fj C
(k)
n /Fj−1C (k)

n vanishes in degrees i ≤ n −2k −2+ (k + j) = n − k −2+ j . ��

6 Proof of Theorem B

In this section, we prove Theorem B. Recall that this states that the inclusion ι :
RSn ↪→ Brn induces maps

Hi (Sn;1) −→ TorBrni (1,1)

that are isomorphisms for n ≥ 2i + 1.
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Recall the inclusion and projection maps

RSn
ι−→ Brn

π−→ RSn,

which satisfy π ◦ ι = id. These induce maps of Tor-groups

TorRSn (1,1)
ι∗−→ TorBrn (1,1)

π∗−→ TorRSn (1,1)

that again satisfy π∗ ◦ ι∗ = id, so that ι∗ is injective. It is therefore enough to show
that ι∗ is surjective.

Recall the chain complex Cn = (Cn)∗ from Definition 5.1, and recall this complex
is non-zero only when −1 ≤ ∗ ≤ n − 1. Recall from Theorem 5.4 that Hi (Cn) = 0
for i ≤ n−3

2 .

Consider the two spectral sequences associated to the double complex P∗ ⊗Brn
(Cn)∗, for P∗ a projective resolution of Brn over 1. The first spectral sequence con-
verges to zero in a range, since each Pp is projective, and therefore flat, so

E1
p,q = Hq(Pp ⊗Brn (Cn)∗) ∼= Pp ⊗Brn Hq((Cn)∗) = 0 if q ≤ n − 3

2
.

Therefore the second spectral sequence will also converge to zero in the range
p + q ≤ n−3

2 . The E1-page of this spectral sequence can be identified as follows

E1
p,q = TorBrnq (1, (Cn)p)

= TorBrnq (1,Brn ⊗Brn−p−11)

∼=
{
TorBrnq (1,1) p = −1

Hq(Sn−p−1;1) p ≥ 0.

where the final line uses Theorem 4.1. Our aim now is to identify the differentials, but
we include a theoretical Lemma first, to help us do this.

Lemma 6.1 Let G be a group, H a subgroup of G, and g ∈ G an element that commutes
with H. Right-multiplication by g induces a map RG ⊗R H 1 → RG ⊗R H 1. The
induced map on Tor groups

TorRG∗ (1, RG ⊗R H 1) −→ TorRG∗ (1, RG ⊗R H 1).

is the identity map.

Proof Let P∗ be a projective RG-resolution of 1. Then it is also a projective RH -
resolution of 1. Since g commutes with RH , the map P∗ → P∗, p �→ pg is a map of
projective RH -resolutions, over the identity map on 1. It is therefore chain-homotopic
to the identity map of P∗.

TorRG∗ (1, RG ⊗R H 1) is the homology of P∗ ⊗RG (RG ⊗R H 1), which we identify
with P∗ ⊗R H 1, and then the map in question is represented by the chain map P∗ ⊗R H
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1 → P∗ ⊗R H 1, p ⊗ r �→ pg ⊗ r . This is chain-homotopic to the identity, by the first
paragraph. ��

We now return to considering the differentials. Recall the map σ from the begin-
ning of Sect. 4, which is an isomorphism by Shapiro’s Lemma. Recall also that the
map ι∗ : TorRSn∗ (1, RSn ⊗RSm 1) → TorBrn∗ (1,Brn ⊗Brm1) induced by the inclu-
sion ι is an isomorphism by Theorem 4.1.

Lemma 6.2 Under the isomorphisms

ι∗ ◦ σ : H∗(Sn−p−1)
∼=−−→ TorBrnq (1,Brn ⊗Brn−p−11)

for p ≥ 0, the d1-differentials in the above spectral sequence are given as follows:

d1 : E1
p+1,q → E1

p,q =

⎧
⎪⎨

⎪⎩

0 p ≥ 0 even

s∗ : Hq(Sn−p−2) → Hq(Sn−p−1) p ≥ 0 odd

s∗ : Hq(Sn−1) → TorBrnq (1,1) p = −1

where s : Sn−p−2 → Sn−p−1 and s : RSn−1 → Brn are the inclusion maps.

Proof Recall that the differential of (Cn)∗ originating at (Cn)p+1 is a composite

Brn [Brn−(p+2)]1 −→ Brn [Brn−(p+2)]1 −→ Brn [Brn−(p+1)]1.

The first map is the alternating sum of the maps induced by right multiplica-
tion by the symmetric group elements σ

p+1
i := (Sn−(p+1)+i−1 · · · Sn−(p+1)) for

i = 0, . . . , p + 1. The second map extends the tensor from Brn−(p+2) to Brn−(p+1).
The d1-differential originating at E1

p+1,q is the induced composite, obtained by apply-

ing TorBrnq (1,−) to the differential of (Cn)∗.
Let p ≥ 0.Under the isomorphism ι∗, d1 becomes the entirely analogous composite

with each Br� replaced by the corresponding RS�. The first factor in the resulting
composite is, by Lemma 6.1, the alternating sum of (p + 2) identity maps, and is
therefore the identity for p odd and zero for p even. Applying the isomorphism σ

from Shapiro’s lemma now gives us the required description, where s stands for the
stabilisation map i.e. s∗ is induced by the inclusion Sn−p−2 ↪→ Sn−p−1.

Let p = −1. Then the differential of (Cn)∗ originating at (Cn)0 is simply the map

ε : Brn ⊗Brn−11 → 1, x ⊗ r �→ x · r .

The d1 differential originating at E0,q is the induced map

ε∗ : TorBrnq (1,Brn ⊗Brn−11) −→ TorBrnq (1,1).

Under the isomorphism ι∗ ◦ σ , this map is replaced with the composite ε∗ ◦ ι∗ ◦ σ .
This can be computed explicitly, and gives the result. ��
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Fig. 5 The E1 page of the spectral sequence for the double complex, with differentials labelled as per
Lemma 6.2

Theorem 6.3 In the range i ≤ n−1
2 , the inclusion map RSn−1 ↪→ Brn induces a

surjection

Hi (Sn−1;1) −→ TorBrni (1,1).

Proof Consider the spectral sequence associated to the double complex P∗ ⊗Brn (Cn)∗
as discussed above, for P∗ a projective resolution of Brn over 1. Then the E1-page of
the spectral sequence is as shown in Fig. 5. By Lemma 6.2, it will suffice to prove that
the map d1 : E1

0,q → E1−1,q is a surjection in degrees q ≤ n−1
2 .

Homological stability for the symmetric groups [25] states that the stabilisation
map

s∗ : Hi (Sm−1;1) −→ Hi (Sm;1)

is an isomorphism in the range i ≤ m−1
2 . Lemma 6.2 then tells us that the differential

d1 : E1
p+1,q → E1

p,q is an isomorphism in degrees q ≤ n−p−2
2 when p is even, and is

0 when p is odd. It then follows, exactly as in many proofs of homological stability
for the symmetric groups ([22, IV 3.1], [27, Theorem 5.1], [13, Section 3]), that from
the E2-term onwards, when q ≤ n−1

2 all remaining sources of differentials into the
(−1) column are zero.

Putting this together with the fact that the spectral sequence converges to zero in the
range p+q ≤ n−3

2 (and noting that n−3
2 = −1+ n−1

2 ) it follows that the (−1)-column
on the E2-page must be zero in the range q ≤ n−1

2 . Therefore the d1-differential into
the (−1)-column is a surjection in this range. ��
Proof of Theorem B Theorem 6.3 showed that the map

Hi (Sn−1;1) −→ TorBrni (1,1)
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that is induced by the inclusion RSn−1 ↪→ Brn is surjective when i ≤ n−1
2 . Observe

that the inclusion RSn−1 ↪→ Brn factors as RSn−1 ↪→ RSn ↪→ Brn , so that the
diagram

Hi (Sn−1;1) TorBrni (1,1)

Hi (Sn;1)

commutes by functoriality. It follows that the map

ι∗Hi (Sn;1) −→ TorBrni (1,1)

induced by the inclusion RSn ↪→ Brn is surjective in the same range i ≤ n−1
2 as

Hi (Sn−1;1) → TorBrni (1,1).
Together with injectivity of ι∗, this implies that

ι∗Hi (Sn;1) −→ TorBrni (1,1)

is an isomorphism if i ≤ n−1
2 as required. ��
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