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A robust stress update algorithm for elastoplastic models without analytical 1 

derivation of the consistent tangent operator and loading/unloading estimation  2 

Dechun Lua, Yaning Zhanga, Xin Zhoua*, Cancan Sua, Zhiwei Gaob, Xiuli Dua 3 

Abstract 4 

A robust and concise implicit stress integration algorithm of elastoplastic models is presented. It does not require 5 

the loading/unloading estimation and analytical derivation operation for the stress update. First, the elastoplastic stress 6 

update problem is recast into an unconstrained minimization problem by utilizing the smooth function to bypass the 7 

loading/unloading estimation. Then, the object problem is solved by the line search method instead of the Newton 8 

method for better convergence. The consistent tangent operator is evaluated by the complex step derivative 9 

approximation without the subtraction cancellation error, which provides the quadratic convergence rate of global 10 

iteration. The rationality of the numerical consistent tangent operator is validated by the one obtained by the analytical 11 

derivation. A recently developed non-orthogonal elastoplastic (NEP) clay model is implemented using the new 12 

algorithm. The algorithm is confirmed through comparing the numerical solution and the analytical one for a cavity 13 

expansion problem. The algorithm performance is assessed based on a series of geotechnical boundary value problems. 14 

It is found that the new algorithm is more robust than the one employed by ABAQUS. The source code of the model 15 

implementation can be downloaded from https://github.com/zhouxin615. 16 
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Nomenclature 

s , σ  deviatoric stress tensor, stress tensor 

q , p  generalized shear stress, hydrostatic pressure 

cp  yield surface size 

ε , γ , 
v  total and deviatoric strain tensors, total volume strain 

p
ε , p

γ , p

v  plastic strain tensor, deviatoric plastic strain tensor, plastic volume strain 

  Poisson's ratio 

K , G , E  bulk, shear, and Young's moduli 

D  elastic stiffness tensor 

f  yield function  

 ,   compression and swelling indexes in the e-lnp plane  

0e , 
1e  initial void ratio and one at 1 kPap =  

c
, 

pc  ( )01c e = +  and ( ) ( )p 01c e  = + −  for convenience in writing. 

  vertical distance between the NCL and the CSL in the e-lnp plane 

M  slope of the critical state line in triaxial compression conditions 

N shape parameter of the elliptical yield curve 

  fractional order 

1 , I  second-order and fourth-order unit tensors 

vol
I , sym

I  volumetric and symmetric parts of I  

h  perturbation value 

d  plastic multiplier 

  merit function  

dc ,   dimensional parameter, smoothing parameter in the smoothing function  

 ,   parameters of line search method 

 , d  size and direction of search step  

 22 



1. INTRODUCTION 23 

The stress update problem of elastoplastic models is an initial value problem of the ordinary differential equations 24 

(ODEs) constrained by inequalities. The ODEs are usually transformed into algebraic equations to solve based on the 25 

explicit1,2 or implicit3-6 integral schemes. The implicit algorithm requires the Jacobian matrix in the local stress update 26 

iteration, which can be difficult to derive, especially for sophisticated soil models. But it is still preferred because it 27 

preserves the quadratic convergence rate of global iteration7-10.  28 

The most popular implicit stress updating algorithm may be the return-mapping algorithm where the operator 29 

splitting technique addresses the inequality constraints and the Newton method11 solves the nonlinear equations12. This 30 

computational paradigm is also followed by the cutting plane algorithm13 and the semi-implicit algorithm14 and has 31 

been used widely in the numerical implementation of advanced soil models15,16. But it is found that the iterations may 32 

not converge for the Newton method when the initial value is far from the final solution or the problem is highly 33 

nonlinear due to complex model formulations17,18. The loading/unloading estimation of the operator splitting technique 34 

also makes the stress update procedure more cumbersome. Therefore, attempts have been made to improve the 35 

efficiency of the implicit stress integration method. For instance, one can use the smoothing function to replace the 36 

inequality constraints19-23 or the penalty function24 to bypass loading/unloading judgment. The nonlinear equations can 37 

be solved by the homotopy method25, the line search method18,19, or the trust region method 19 instead of the Newton 38 

method. These three methods can achieve better convergence. The line search method, however, is a more cost-39 

effective manner from the perspective of conciseness. Compared with the Newton method, it only adds a one-40 

dimensional nonlinear problem about the optimal step size in search, since the trust region method requires optimizing 41 

the multidimensional search direction, and the homotopy method needs to solve homotopy equations to obtain a better 42 

initial value. Some contributions worthy of attention in this field can be found in the literature18,26,21,27,28, which initially 43 



focused primarily on constitutive models for metal materials. Theoretically, these methods should also have great 44 

potential in implementing advanced soil models with complex formulations and deserves further study. 45 

In the implicit model implementation, the derivation operation is required to determine the Jacobian matrix and 46 

the consistent tangent operator. The former is used for the solution of local nonlinear stress integral equations and the 47 

latter is used for global equilibrium iterations. The analytical derivatives of constitutive equations can be obtained 48 

easily for some simple cases, e.g., the Mises model, the Mohr-Coulomb model, and others. For elastoplastic soil 49 

models with highly nonlinear characteristics29, however, the analytical derivation operation, especially for the 50 

consistent tangent operator, has become an increasingly cumbersome and even impossible task. Numerical 51 

differentiation may be preferred to analytical derivation because it avoids tedious algebraic work and is easy to 52 

implement30. There are three practical numerical differentiation methods: the finite difference method30, the complex 53 

step derivative approximation (CSDA)31, and the Hyper-dual step derivative approximation (HDSDA)32. The essence 54 

of these methods is to expand the object function on different types of number axes and truncate the higher-order term 55 

of the Taylor series to obtain the desired derivative term. The calculation results of HDSDA are almost equivalent to 56 

those of analytical derivation, but a lot of function overloading and operator overloading are required to define the 57 

operation rules of the Hyper-dual number33. For the finite difference method, there are two kinds of numerical errors, 58 

namely the truncation error and the rounding error dominated by subtraction cancellation error. The former can be 59 

reduced effectively with a small perturbation value (i.e., differential step size), but the latter will increase with the 60 

decrease of the perturbation value. It is often a prerequisite for the successful application of the finite difference method 61 

to determine an optimal perturbation value34. There is no subtraction cancellation error for the CSDA due to the 62 

absence of subtraction operation. On the other hand, the operation rules of the complex number have been added to 63 



mainstream programming languages. Therefore, the CSDA makes it possible for the concise and robust 64 

implementation of constitutive models.  65 

This study aims to propose a robust and concise stress update algorithm to reduce the complexity in the implicit 66 

numerical implementation of advanced elastoplastic models and to improve its computational efficiency. The root of 67 

complexity is that the implicit algorithm needs to calculate the Jacobian matrix of nonlinear equations and consistent 68 

tangent stiffness, in which tedious derivative operations are required for complex elastoplastic models. Therefore, the 69 

proposed algorithm uses the CSDA method with high precision to obtain numerical derivatives instead of analytical 70 

derivatives. The loading/unloading estimation for the elastoplastic stress update problem is bypassed by using smooth 71 

functions. On the other hand, the main reason for limiting the computational efficiency of implicit algorithms is that 72 

the Newton method requires a small load step to ensure the convergence of the solution under strong nonlinear 73 

conditions. In the proposed algorithm, the line search strategy will be used to improve the computational efficiency of 74 

the algorithm, in which a larger load increment step is allowed. This paper is organized as follows: Section 2 gives the 75 

implicit integral scheme of the NEP clay model by the Backward Euler method. In Section 3, the complete stress 76 

update procedure is given. Section 4 is devoted to the determination of consistent tangent operator from the analytical 77 

and numerical perspectives, where different numerical schemes are discussed and compared. In Section 5, the 78 

robustness and accuracy of model implementation are assessed and validated by a series of boundary problems.  79 

2. NON-ORTHOGONAL ELASTOPLASTIC (NEP) CLAY MODEL  80 

The elastoplastic models with the non-orthogonal flow rule have piqued an increasing interest in modelling the 81 

mechanical behaviour of geomaterials in recent years, in which some salient material properties (e.g., the dilatancy35,36, 82 

strain hardening/softening37, and state-dependence38) can be captured by the fractional derivative. A potential function 83 

is not required because the direction of plastic flow is given by the fractional gradient of the yield function39. Though 84 



these models show excellent predictive capability for different soils40,41, no research has been done on the numerical 85 

implementation. A NEP clay model established by Liang et al.35 is employed for the algorithm validation because the 86 

consistent tangent operator and Jacobian matrix of this model can be analytically derived due to its relative simplicity.  87 

2.1 Brief review of the model concept 88 

The NEP clay model is developed based on the modified Cam-clay (MCC) model42. The basic equations of both 89 

models are presented in Table 1. They have the same elastic law and hardening law. The elastic stiffness matrix is 90 

expressed as 91 

 
1

2
3

K Kr
 

=  + −  
 

1 1 1 1D I   (1) 92 

where I  and 1  denote the fourth-order and second-order unit tensors, respectively. ( ) ( )1.5 1 2 1r  = − +  and   93 

is Poisson's ratio. The bulk modulus K  depends on the hydrostatic pressure p :  94 

 K c p=   (2) 95 

where ( )01c e = + , 0e  denotes the initial void ratio. The parameters  and  in Table 1 are the swelling and 96 

compression indexes of soil in isotropic consolidation conditions, respectively. The calibration method for  and  is 97 

presented in Section 2.2.  98 

In the NEP clay model, the fractional gradient 
f p f q

p q

 

 

    
+ 

    σ σ
 of the yield function f  is used as the 99 

plastic flow direction. q  and   represent the generalized shear stress and fractional order, respectively. In general, 100 

the Riemann-Liouville fractional derivative operator is employed. 
f

p








 and 

f

q








 are expressed as follows: 101 

 
( ) ( )

12 2

c

2

2

(1 ) 3 2

p pf q p

p p N

 

    

−−
= + −

  −  −  −
  (3) 102 
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( )
( )

2
c

2

2

3 1

 

  

− −
= +

  −  −

p p pf q

q N q
  (4) 103 

where ( )   is the gamma function, cp  is the yield surface size. More details can refer to the literature35,36,43. 104 



The NEP clay model uses a different yield function (See Table 1) in which the ratio of vertical and horizontal 105 

axes of the elliptic yield curve at the meridian plane is defined by the parameter N. Based on the volume change 106 

condition 
p

vd 0 =  at the critical state and Eq. (3), the relationship between parameters  and N is obtained by: 107 

 2N M = −   (5) 108 

where the parameter M  (= q/p) is the critical state stress ratio in triaxial compression conditions. It should be 109 

emphasized that the shape of the yield curve is controlled by the parameter N, however, in the NEP clay model, N is 110 

not an independent material parameter and can be determined by  and M (Eq. (5)). Therefore, for a given parameter 111 

M, the change of  value will cause the change of N, leading to the change of the shape of the elliptical yield curves, 112 

as shown in Fig. 1 (a). From the perspective of model performance, the stiffness and dilatancy behaviour for different 113 

clays can be captured by an appropriate   value as shown in Fig. 1 (b).  114 

Table 1 Basic evaluation equations of two models 115 

Basic equations  MCC model NEP clay model 

Hooke's law ( )pd : d d= −σ ε εD  ( )pd : d d= −σ ε εD  

Hardening law 
p0

c c v

1
d d

e
p p 

 

+
=

−
 

p0

c c v

1
d d

e
p p 

 

+
=

−
 

Flow rule  
pd d

f p f q

p q


    
= + 

    
ε

σ σ
 

pd d
f p f q

p q

 

 


    
= + 

    
ε

σ σ
 

Yield function ( )2 2 2

cf q M p p p= + −  ( )2 2 2

cf q N p p p= + −  

Karush-Kuhn-Tucker conditions d 0,  0, d 0f f   =  d 0,  0, d 0f f   =  

Model parameters M ,  ,  ,   M ,  ,  ,  ,   

 116 



 

 

(a) (b) 

Fig. 1 NEP clay model: (a) yield curves; (b) stress-strain curves. 117 

2.2 Parameter calibration and model validation 118 

It can be seen from Table 1 that the NEP clay model has 5 material parameters, i.e., M, , ,  and , among 119 

which the calibration methods of parameters M, ,  and  can refer to the MCC model. Only one more material 120 

parameter  is added for the NEP clay model. Although the literature35 has provided the detailed parameter calibration 121 

method of the NEP clay model, a brief review is necessary for the calibration method to facilitate the numerical 122 

application of the NEP clay model. First, the parameter ( )6sin 3 sinM  = −  can be determined by the internal 123 

friction angle   in triaxial compression conditions. In the isotropic consolidation compression test, the swelling index 124 

 and compression index  can be determined by the slopes of swelling line (SWL: 
S lne e p= − ) and normally 125 

consolidated line (NCL: lnNe e p= − ) in the e-lnp plane, as shown in Fig. 2 (a). For the parameter calibration of , 126 

it is necessary to measure the vertical distance   between the critical state line (CSL) and the NCL in e-lnp space. 127 

It can be seen from Fig. 2 that   is exactly equal to the plastic void ratio pe  caused by the triaxial compression 128 

path 
0 0A A : 129 

 ( )
0

ln xp

p
 

 
 = −  

 
  (6) 130 

where 
0xp p  can be obtained by substituting stress point ( )0 0,p Mp  into the yield function: 131 

M
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0

1xp M

p N
= +   (7) 132 

Substituting Eqs. (5) and (7) into Eq. (6), the parameter  can be determined by: 133 

 
1

2

exp 1



 

= −
 

− 
− 

  (8) 134 

  

(a) (b) 

Fig. 2 Determination of parameter : (a) e-lnp plane; (b) p-q plane. 135 

In what follows, the drained triaxial compression test of Fujinomori clay (F-clay) reported in literature44 and the 136 

undrained triaxial compression test of Boston blue clay (BB-clay) reported in literature45 are used to demonstrate the 137 

performance of NEP clay model. The material parameters are determined by the test data provided in the literature and 138 

the parameter calibration method mentioned above, as presented in Table 2. The test data of F-clay and the predicted 139 

curves of NEP clay model ( = ) are illustrated in Fig. 3 (a), in which the results predicted by the MCC model 140 

( = ) are also presented. The prediction results from these two models finally reach the same stress ratio because 141 

the M-value for the two models is the same. However, the NEP clay model better describes the stress-strain behaviours 142 

of clay before the critical state, and reflects the deformation characteristics of soil with different stiffness by 143 

introducing fractional order  . Fig. 3 (b) shows the model predictions and test data under undrained conditions, where 144 

a  is the axial strain. Comparing with the MCC model, the NEP clay model can more reasonably capture the strength 145 

and deformation characteristics of BB-clay under undrained conditions. The reason is that under undrained conditions, 146 

O 0ln p ln xp ln p
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ee
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e

p
  =  = −

ln1

Se



O

q

p( )0 0 ,0A p

( )0 0 0,A p Mp q
M

p
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the stress path predicted by the model is influenced by the pore pressure which is closely associated with the volume 147 

change of soil, as shown in Fig. 3 (c). The NEP clay model can more reasonably describe the dilatancy law of soil by 148 

selecting a suitable  -value.  149 

Table 2 Material parameters of the NEP clay model 150 

Material parameters ( )01 e +  ( )01 e +     

F-clay 0.0444 0.0047 0.3 1.36 1.23 

BB-clay 0.0883 0.0173 0.1 1.35 1.47 

 151 

 

(a) 

  

b) (c) 

Fig. 3 Model validation for: (a) F-clay; (b) stress-strain curve of BB-clay; (c) stress path of BB-clay. 152 

 153 

Data of F-Clay

MCC model

NEP clay model

1 /%
3 %


1
/

3
-1

 v
/%

196 kPap =

ε %a

q
/p

0

Data of BB-Clay

MCC model

NEP clay model

0p p

q
/p

0

Data of BB-Clay

MCC model

NEP clay model



2.3 Stress integral equations of the model 154 

Table 1 presents the basic equations of the model defined in the form of the ODEs. In the model implementation, 155 

the ODEs need to be discretized into the algebraic equations for the time interval  1,  n nt t +
. Based on the Backward 156 

Euler method, the control equations of NEP clay model are given by： 157 

 

( )

1 1 1 1

1 1 1

1 1 1 1

p

c, 1 c, p v, 1

1 1 1 1

:

exp

0,  0, 0

n n n n

n n n n

n n n n

n n n

n n n n

f p f q

p q

p p c

f f

 

 




 

+ + + +

+ + +

+ + + +

+ +

+ + + +

      
= +  −  +   

       


= 


    =

σ σ ε
σ σ

Dc

  (9) 158 

where ( ) ( )p 01c e  = + − . ( ),K G=D D  is the secant elastic stiffness tensor. The secant bulk modulus K  is: 159 

 ( )e

v,  1e

v,  1

exp 1n

n

n

p
K c +

+

 =  −
 

  (10) 160 

where e

v,  1n+  represents elastic volume strain increment and e p

v,  1 v,  1 v,  1n n n+ + + =  −  . Eq. (9) contains 8 equality 161 

equations and 2 inequality constraints. The number of stress integral equations can be simplified to reduce the difficulty 162 

of the solution. The stress tensor 1n+σ  can be decomposed into its isotropic part and deviatoric part: 163 

 1 1 1n n np+ + += +σ 1 s   (11) 164 

where 1n+s  is the deviatoric stress tensor. 1np +  and 1n+s  can be expressed as follows: 165 

 ( )p

1 1 v, 1 v, 1

1
:

3
n n n n np p K  + + + += = +  − σ 1   (12) 166 

 p

1 1 12 ( )n n n nG+ + += +  − s s γ γ   (13) 167 

where G rK=  represents the secant shear modulus, 1n+γ  and 
p

1n+γ  denote the total deviatoric strain increment 168 

and its plastic part. p

v, 1n +  and 
p

1n+γ  are expressed by: 169 
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P   (15) 171 



where the fourth-order projection tensor P  is determined by 3= − 1 1P I . Substituting Eq. (15) into Eq. (13), 172 

one can get the expression for 1n+s : 173 
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where  175 
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  (17) 176 

Substituting Eq. (14) into Eq.(12) and considering Eq. (16), the update formulas of 1np +  and 1nq +  can be 177 

obtained to replace that of 1n+σ  in Eq. (9).  178 
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Finally, the implicit stress integral equations of the NEP clay model can be simplified in the following form: 181 
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  (20) 182 

where Eq. (20) contains only 4 equalities. Comparing with Eq. (9) containing 8 equalities, the number of nonlinear 183 

equations is significantly reduced. 184 

3. UNCONSTRAINED IMPLICIT STRESS UPDATE BASED ON THE LINE SEARCH METHOD 185 

Eq. (20) is non-smooth due to the existence of KKT conditions, i.e., Eq. (20)4, where the inequality constraints 186 

mean that the nonlinear equations cannot be solved directly. In the operator splitting technique, the "elastic prediction", 187 

i.e., ( )1 1, :trial

n n nK G+ += + σ σ εD , is conducted to estimate loading and unloading states of material to address the 188 

inequality constraints. If 1

trial

n+σ  is within the current yield surface, i.e., ( )1 0trial

nf + σ , the stress update follows the 189 

elastic Hooke's law and no plastic strain occurs in this step. On the other hand, if 1

trial

n+σ  exceeds the current yield 190 



surface, i.e., ( )1 0trial

nf + σ , Eq. (20) is solved by using 
1 0nf + =  instead of Eq. (20)4. The stress gradually iterates 191 

back from 1

trial

n+σ  to the true stress point. The solving process is also known as the "plastic correction". The 192 

loading/unloading estimation is required at each increment step, which increases the complexity of the model 193 

implementation. To this end, the KKT conditions in Eq. (20)4 are replaced equivalently by the Fischer-Burmeister 194 

smooth function19.  195 
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  (21) 196 

where ( )
3

d 1, :n nc K G += + σ εD  and 20.5FTOL =  are the parameters in the smoothing function Eq. (21)4. 197 

FTOL  is the allowable error for judging the convergence of solutions of nonlinear equations. Fig. 4 shows that the 198 

smooth curve will gradually approximate KKT conditions as the parameter   decreases. There is no need for the 199 

loading/unloading estimation in solving Eq. (21). The calculation results exactly satisfy the KKT conditions when the 200 

solution of Eq. (21) converges. 201 

 202 

Fig. 4 Fischer-Burmeister smooth function. 203 

By utilizing the smooth function, the elastoplastic stress update problem can be recast into a minimization problem: 204 
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The decline of the merit function   can be achieved by the iterative search in multi-dimensional space: 206 

      
1k k kk

+
= +x x d   (23) 207 

where  d  denotes the search direction, which is usually determined by the Newton direction 208 

  ( ) ( ) 
1 kk

k

−

= −   d f x f x  to provide the quadratic convergence rate of local stress update iteration, where k denotes 209 

the iteration number in the local stress update. ( )f x  is the Jacobian matrix of nonlinear equations defined by Eq. 210 

(20), which can be calculated by the numerical differentiation. Appendix A also provides the analytical expression of 211 

( )f x .   is the step size. The most essential task for the line search technique is to optimize the step size k  to 212 

achieve the maximum benefit of minimizing k  under a given search direction  
k

d , which will further produce a 213 

one-dimensional sub problem to find k . 214 

  ( )1
min    

k

n
 

+
+x d   (24) 215 

However, the exact minimization of Eq. (24) may be computationally expensive and is usually unnecessary. k  216 

is thus updated by a more practical iterative formula with Goldstein's condition: 217 
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  (25) 218 

where the initial value of   is set to 1. The updated step size 1

k

j +  needs to be greater than a minimum value to 219 

avoid too small a benefit:  220 
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  (26) 221 

where the algorithm parameters   and   are recommended as 410−  and 0.146. Eqs. (25) and (26) essentially 222 

provide an inexact line search strategy, in which the step size for a given descent direction  
k

d  is not a value that 223 

minimizes  ( )1

k

n
 

+
+x d , but an acceptable range, as shown in Fig. 5. Finally, the complete stress update procedure 224 

of the NEP clay model is demonstrated in Fig. 6.  225 



 226 

Fig. 5 Inexact line search method. 227 

 228 

Fig. 6 Algorithm flow of a numerical implementation of the NEP clay model. 229 
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4. CONSISTENT TANGENT OPERATOR 230 

The consistent tangent operator of NEP clay model is given by the analytical derivation and the numerical 231 

differentiation, respectively. The latter can be easily extended to the implicit calculation of other non-orthogonal 232 

models or elastoplastic models.  233 

4.1 Analytical evaluation 234 

The consistent tangent operator can be expressed by: 235 
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  (27) 236 

Taking the derivatives of both Eq. (12) and Eq. (16) over 1n+ε , one can obtain:  237 
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where ( )*

1

e

v, 1exp
n n nK c p c + +=  . 240 
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c, 1

1

n

n

p +

+



ε
 can be derived by taking Eq. (9)3 with respect to 

1n+ε :  243 
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There are four unknowns (i.e., 
1 1n np + + ε , 

1 1n n+ + s ε , 
c, 1 1n np + + ε , and 

1 1n n + + ε ) in Eqs. (28), (29), 245 

and (32). An additional constraint is needed to close the equations involving unknowns. The total differential of Eq. 246 

(20)4 can yield:  247 
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From Eqs. (28), (29), (32), and (33), 1
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where the coefficients  254 
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Substituting Eqs. (34) and (35) into Eq. (27), the consistent tangent operator is obtained analytically as follows: 256 
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where 1

1

n

n

+

+





σ

ε
 will degenerate into that of the MCC model presented in the literature 19 in the case of 1 = . 258 

4.2 Numerical evaluation 259 

Section 4.1 has provided the analytic consistent tangent operator. It can be observed that it is a cumbersome task 260 

to derive analytically the consistent tangent operator for the elastoplastic model with highly nonlinear characteristics. 261 

The verbose and complex expressions also make programming and code debugging more difficult. Therefore, the 262 

numerical evaluation is recommended from the perspective of implementation difficulty. In what follow, the CSDA is 263 

used to evaluate the derivatives of stress integral equations. As a comparison, the central difference method (CDM) 264 

and forward difference method (FDM) are also presented.  265 



In the FDM, the derivative of ( )f x  at the interesting point x is obtained by the Taylor expansion of ( )f x h+  266 

on the real number axis: 267 

 ( ) ( ) ( )
( ) ( )2 3

...
2! 3!

f x h f x h
f x h f x f x h

 
+ = + + + +   (40) 268 

where h denotes a smaller perturbation value. Assuming the truncation error terms can be neglected, one can yield: 269 

 ( )
( ) ( )

( )
f x h f x

f x O h
h

+ −
 = +   (41) 270 

where ( )O h  indicates that the FDM has first-order accuracy. Following a similar procedure. The Taylor expansion 271 

of ( )f x h−  on the real number axis can yield: 272 

 ( ) ( ) ( )
( ) ( )2 3

...
2! 3!

f x h f x h
f x h f x f x h

 
− = − + − +   (42) 273 

From Eqs. (40) and (42), the approximation of ( )f x  based on the CDM is obtained by: 274 

 ( )
( ) ( )

( )2

2

f x h f x h
f x O h

h

+ − −
 = +   (43) 275 

There are two numerical errors in Eqs. (41) and (43). One is the truncation error which decreases with the 276 

decrease of h. The other is the rounding off error caused by representing real numbers with floating-point numbers of 277 

finite digits. It is worth emphasizing that the subtraction operation of two very close numbers will cause a significant 278 

subtractive cancellation error which is a special case of rounding off error and increases with the decrease of h. The 279 

error distribution of the finite difference method with the perturbation is shown in Fig. 7 (a). In the CSDA47, the Taylor 280 

series expansion is conducted on both the real number and imaginary number axes: 281 

 ( ) ( ) ( )
( ) ( )2 3

...
2! 3!

f x h f x h
f x h f x f x h

 
+ = + − − +

i
i   (44) 282 

where i  denotes the imaginary number ( 2 1= −i ). The approximation formula of ( )f x  with second-order 283 

accuracy can be obtained by the division operation of the imaginary part of Eq. (44) as follows:  284 

 ( )
( )

( )2
f x h

f x O h
h

+   = +
iI

  (45) 285 

where  I  is used to extract the imaginary part of the argument. The approximation formula in Eq. (45) can be 286 

easily extended to multi-dimensional cases as follows: 287 

 
( )

( )2i i

i

i i

f hf
O h

x h

 +  
= +



x eiI
  (46) 288 



where ix  denotes ith component of x . ie  and ih  denote ith unit vector and the perturbation value in ith direction. 289 

It can be found that there is no subtraction operation in the CSDA. Therefore, there is no subtraction cancellation error 290 

and the rounding off error is bounded. On the other hand, the truncation error can be reduced by decreasing the 291 

perturbation value. In theory, there is no lower bound for the perturbation value in the CSDA31. Fig. 7 (b) demonstrates 292 

the error distribution of CSDA with the perturbation.  293 

  

(a) (b) 

Fig. 7 Errors change with the perturbation h: (a) FDM/CDM; (b) CSDA.. 294 

The derivative of ( ) ( ) ( )2cos 1 sinf x x x = +   at 3x =  is calculated as an example to further demonstrate 295 

the characteristics of three numerical schemes. The numerical examples are run on MATLAB 2020a. The range of the 296 

perturbation value h is [10-16, 10-1]. Fig. 8 (a) shows the change of relative total error with the perturbation value, in 297 

which the double-precision computation is conducted and the lower limit of relative total error is set to eps = 2.2204e-298 

16 (double floating-point relative accuracy). It is clear that, at the beginning of decreasing perturbation, the decline 299 

rate of the relative total error of CSDA and CDM is approximately the same and faster than that of FDM since CSDA 300 

and CDM are second-order accuracy schemes while FDM is first-order accuracy scheme. With the further decrease of 301 

perturbation, the relative total errors of CDM and FDM begin to increase due to the presence of subtractive cancellation 302 

error while in the CSDA any perturbation value lower than 10-8 gives rise to a relative error near eps. A clearer contrast 303 

can be found in Fig. 8 (b), in which the precision of the variables is set to 100 bits. Therefore, it can be approximately 304 

considered that there is no rounding off error in the calculation results and the total error equals the truncation error. 305 
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The results depicted in Fig. 8 (b) show the decline rate of the relative truncation error of the three schemes is completely 306 

consistent with their accuracy orders of the numerical differentiation method. By subtracting the truncation error from 307 

the total error, one can obtain the change of the rounding off error dominated by the subtractive cancellation error with 308 

the perturbation, as shown in Fig. 8 (c). It is clear that the relative rounding off error of CSDA is maintained near eps 309 

owing to the lack of the subtractive cancellation error but the relative rounding off errors of CDM and FDM increase 310 

with decreasing perturbation. The CSDA provides a more robust numerical derivation scheme than the finite difference 311 

methods.  312 

 

(a) 

  

(b) (c) 

Fig. 8 Change of relative errors with the perturbation value: (a) relative total error; (b) relative truncation error; (c) 313 

relative rounding off error. 314 



Based on the presented CSDA, the numerical Jacobian matrix of Eq. (20) can be easily obtained without 315 

cumbersome derivation. To numerically calculate the consistency tangent operator, however, the non-orthogonal stress 316 

integral equations usually need to be expressed in the following more general form: 317 
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  (47) 318 

Taking the total differential of Eq. (47) with independent variables 1n+σ , 1n+ε , 
c, 1np +

, and 1n + , one can yield:  319 
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where the Jacobian matrix of Eq. (47) can be solved by the numerical evaluation. After transposition and matrix 321 

inversion operations, one can obtain:  322 

  c c c

1

c

c

c

1 11

c 1

d d d0 0

d 0 0 0 0 0

0 0 0 0 0d

p p p

n nn

n

f f f

p
f

f f f
p

p

f f f

p

  








−

+ ++

  

+

   
 

           
          

= −   =      
                    

 
    

σ σ σ

σ

σ
εσ ε ε

A
σ

σ

  (49) 323 

where the consistent tangent operator is determined by extracting 6×6 upper-left block matrix of  A . 324 

5. NUMERICAL VALIDATION 325 

The NEP clay model can degenerate into the MCC model under the condition of 1.0 = . In this case, the 326 

accuracy of model implementation can be validated by the analytical solutions of the MCC model in a cylindrical 327 

cavity expansion problem. The robustness of model implementation can be also assessed by comparison with the MCC 328 

model that is available in the ABAQUS software. In what follows, the accuracy and performance of the presented 329 



model implementation are validated and evaluated. The influence of perturbation value on the numerical stability is 330 

also investigated. In particular, the ability of the model implementation to address the coupling geotechnical problem 331 

is also assessed by a pile foundation bearing capacity test under the undrained condition. These computations were 332 

made on Intel® Core(TM) i5-6200U processor 2.3 GHz processor running on a 64-bit Windows 10 operating system. 333 

5.1 Cylindrical cavity expansion 334 

The cylindrical cavity expansion is a typical axisymmetric problem, as shown in Fig. 9(a), and thus its 335 

mathematical description can be transformed into ODEs, which makes it possible to obtain the analytical solution to 336 

the problem. With the aid of scientific computing software Mathematica, Chen and Abousleiman have given the 337 

undrained48 and drained49 exact solutions of the MCC model in the case of cylindrical cavity expansion, which provides 338 

a valuable benchmark for the verification of the stress update results of the critical state models. Fig. 9(b) shows the 339 

simplified finite element model where the eight-node axisymmetric elements (CAX8) and the corresponding pore 340 

pressure elements (CAX8P) are employed respectively for the drained and undrained cases. It should be noted that the 341 

displacement of the right boundary in 1-direction is constrained in the undrained case and is free in the drained case. 342 

The initial state of soil and model parameters48 are presented in Table 3 and Table 5. In particular, the permeability of 343 

soil and water weight are set to 32.3 10  m s−  and 310 kN m 50 for the undrained case, respectively. The total 344 

analysis time of 0.001 s  is used to approximate undrained loading conditions. Fig. 10 shows the calculation results 345 

of the cylindrical cavity expansion problem under drained and undrained conditions, respectively. The over 346 

consolidation ratios (OCR) of examples is set to 10. It is clear that the numerical solution from the model 347 

implementation is in good agreement with the analytical solution. 348 

Table 3 Initial state of soil in the cylindrical cavity expansion problem 349 

OCR 0r  
0  

0z  
0p  

0q  
0e  

10 144 144 72 120 72 0.802 

Undrained case: permeability: 32.3 10  m s− , water weight: 310 kN m . 

 350 



 351 

(a) 

 

(b) 

Fig. 9 Cylindrical cavity expansion example: (a) problem schematic; (b) simplified finite element model and mesh. 352 

 
 

(a)  (b) 

Fig. 10 Comparison between analytical and numerical solutions: (a) undrained condition; (b) drained condition. 353 
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5.2 Conventional triaxial compression test 355 

From the analysis results of Section 3.2, the computational accuracy of numerical differentiation methods depends 356 

heavily on the perturbation value. The inappropriate perturbation value may destroy the quadratic convergence when 357 

the consistent tangent operator is evaluated by numerical differentiation. In this subsection, the influence of 358 

perturbation value on the performance of numerical consistent tangent operator is assessed by an example of 359 

conventional triaxial compression demonstrated in Fig. 11. The model parameters of soil are tabulated in Table 5. The 360 

initial stress state of 
1 2 3 100 kPa  = = =  is employed. The vertical displacement of 0.7m is loaded on the top 361 

surface of cylinder with 14 equal incremental steps to ensure that the soil can reach the critical state. The generalized 362 

shear stress vs. axial strain and the stress path of the examples are depicted in Fig. 12, where 1.0 =  is considered. .  363 

 
 

(a)  (b) 

Fig. 11 Summary of conventional triaxial compression test: (a) problem schematic; (b) finite element mesh. 364 

vertical displacement 0.7m

1 m

0.5 m

3 constant =



 
 

(a) (b) 

Fig. 12 Simulation result of conventional triaxial compression test: (a) stress path; (b) generalized shear stress vs. axial 365 

strain. 366 

Table 4 reports the total number of global iterations for the 14 steps and CPU time required by the numerical 367 

consistent tangent operator with the different perturbations. It is worth emphasizing that the CPU time and global 368 

iterations are 38.1s and 39 for the analytical derivation case. In the case of 210h − , the numerical consistent tangent 369 

operators obtained by three numerical methods require more global iteration steps than the analytical consistent tangent 370 

operator or have encountered failure in the global iteration, which shows that the truncation error caused by too large 371 

perturbation value has seriously distorted the numerical solution. In the case of 10 310 10h− −  , the analytical 372 

derivation and numerical differentiation schemes both have about the same amount of global iterations, which indicates 373 

that the numerical consistent tangent operator obtained by FDM, CDM, and CSDA all achieve quadratic convergence. 374 

With the further decrease of h, the CSDA still remains convergent, the global iterations of the other two difference 375 

methods increase again, and even the global calculation encounter failure when 1210h −  for the FDM and 1310h −  376 

for CDM. The reason is that the increasing subtractive cancellation error caused by the decrease of h has resulted in 377 

the distortion of the numerical consistent tangent operator again, which further spoils the convergence of global 378 

iteration. From the results presented in Table 4, it is observed that CSDA is superior to other numerical differentiation 379 

methods in numerical stability. Finally, an additional case denoted by full CSDA is also presented in Table 4, where 380 

both the consistent tangent operator and the Jacobian matrix are evaluated by the CSDA. 381 
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Table 4 Computational overhead of different numerical schemes 382 

h 

Number of global iterations  CPU time / s  

FDM CDM CSDA Full CSDA FDM CDM CSDA Full CSAD 

100 failure failure failure failure failure failure failure failure 

10-1 56 56 failure failure 98.3 100.1 failure failure 

10-2 55 47 47 failure 95.4 86.4 84.3 failure 

10-3 36 38 39 failure 69.4 73.5 72.4 failure 

10-4 38 40 39 42 72.1 76.1 72.0 194.7 

10-5 39 39 39 40 73.0 74.9 71.9 166.0 

10-6 40 39 40 40 74.4 75.6 73.5 162.2 

10-7 40 39 42 39 74.4 75.5 76.8 159.9 

10-8 40 39 39 42 75.0 74.4 72.1 169.8 

10-9 39 40 39 41 73.8 75.8 72.2 165.0 

10-10 39 43 42 40 72.8 80.6 76.4 162.1 

10-11 47 42 40 39 86.6 79.4 74.4 159.5 

10-12 failure 58 39 40 failure 103.0 71.6 161.0 

10-13 failure failure 39 40 failure failure 71.9 161.9 

10-14 failure failure 41 40 failure failure 74.6 160.2 

10-15 failure failure 40 39 failure failure 73.8 156.6 

10-16 failure failure 39 39 failure failure 71.3 157.5 

It can be found that the full CSDA consumes more CPU time than CSDA because the full CSDA involves more 383 

numerical evaluation of derivatives. In addition, the convergence of full CSDA is worse than that of CSDA when the 384 

perturbation value is large. The reason is that the truncation error of the numerical solution obtained by the full CSDA 385 

will not only influence the convergence of the global solution but also influence the convergence of local iteration by 386 

the Jacobian matrix. Whereas, the full CSDA will make the model implementation extremely simple because there is 387 

no need for any analytical derivative evaluation for both the consistent tangent operator and Jacobian matrix. In the 388 



practical application, the simple derivative terms in the two can be analytically derived to reduce the computational 389 

overhead. 390 

In what follows, the convergence behaviour of the proposed algorithm on the global level is investigated in the 391 

cases of  = 1.0 and 0.9. Fig. 13 shows the changing law of logarithm normalized largest residual force with the global 392 

iteration number, where the numerical consistent tangent operator obtained by the CSDA and the analytical consistent 393 

tangent operator are compared. The global iterations number of each load step is almost less than 4 due to the global 394 

quadratic convergence of consistent tangent operator. In addition, the convergence behaviours of the numerical 395 

consistent tangent operator is almost the same as that of the analytical one, which shows that the proposed algorithm 396 

based on the CSDA can avoid tedious derivative operation while ensuring the global quadratic convergence. 397 

  

(a) (b) 

Fig. 13 Convergence behaviour at the global equilibrium iteration: (a)  = 1.0; (b)  = 0.9. 398 

5.3 Strip foundation under inclined load 399 

In what follows, the convergence of the model implementation under large load increment input is investigated 400 

by comparing it with the default MCC model of ABAQUS. The analytical Jacobian matrix and consistent tangent 401 

operator are used to objectively evaluate the gain from the line search method on the algorithm's convergence. The 402 

target example is a strip foundation under an inclined load. Fig. 14 presents boundary conditions and finite element 403 

mesh of example. The elastic model and NEP clay model are adopted for the strip foundation and soil, respectively. 404 
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20 MPaE =  and 0.3 =  are chosen for the elastic model. The total weight of soil is set to 319 kN m . The material 405 

parameters of NEP clay model51 are presented in Table 5. The preload of top surface is 9kPa at the geostatic step. Then, 406 

the top surface of foundation is subjected to an inclined displacement load (
1 -0.8 mU =  and 

1 -0.2 mU = ). The total 407 

analysis time of 1 s  and the initial time increment size of 0.01 s  are chosen. The size of subsequent time increments 408 

is determined by the ABAQUS default step control strategy.  409 

 

(a) 

 

(b) 

Fig. 14 Strip foundation: (a) model geometry; (b) finite element mesh. 410 

The numerical results from the UMAT and the ABAQUS default algorithm are presented in Fig. 15. The UMAT 411 

uses less than half as much CPU time as the ABAQUS default algorithm on the premise that the simulation results are 412 
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almost the same. The reason is that the line search method has a stronger convergence than the Newton method. 413 

Therefore, a larger load step input is allowed for the presented model implementation than the ABAQUS default 414 

algorithm.  415 

  

(a) (b) 

Fig. 15 Comparison between ABAQUS default algorithm and the presented numerical implementation with 416 

1.0 = : (a) reaction force vs. displacement; (b) change in time increment.  417 

Furthermore, the influence of fractional order  on the mechanical response of strip foundation example are 418 

investigated, where the cases of  = 0.3, 0.6, 1.0, 1.4, and 1.7 are considered, as shown in Fig. 16. During the initial 419 

loading period, the reaction force-displacement curves with the different –values almost coincide. With the increase 420 

of displacement load, the reaction force of the foundation top surface is smaller with a higher –value due to that the 421 

stiffness of clay decreases as   increases. This means that the NEP clay model may provide an effective tool for 422 

numerical analysis of geotechnical problems of clay with different stiffness. On the other hand, the calculation results 423 

with the different –values also demonstrate that the proposed algorithm is not only applicable to MCC model ( = 424 

1.0), but also NEP clay model ( ≠ 1.0). 425 
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Fig. 16 Influence of parameter  on simulation results 426 

5.4 Pile foundation bearing capacity test 427 

The last boundary problem is a pile load capacity in the undrained clay subsoil. In view of the symmetry of the 428 

problem, a quarter model as shown in Fig. 17 (a) is established to further explore the ability of the presented model 429 

implementation to address the 3D coupled problem. The bottom boundary of the analysis area is 1 times the pile 430 

diameter from the pile bottom, and the horizontal range is 20 times the pile diameter. The pile-soil interface is modelled 431 

by the frictional contact with a frictional coefficient of 0.25. The parameters of NEP clay model are presented in Table 432 

5. The pile employs the linear elastic model with 20 GPaE =  and 0.2 = . The 8 nodes brick pore pressure elements 433 

(C3D8P) is used to capture the pore pressure response of soil during pile penetration. The effective weight of soil 434 

38 kN / m  and permeability 43.6 10 m h−  are used. The numerical simulation contains two analysis steps, i.e., the 435 

geostatic equilibrium and loading analysis steps. The vertical displacement of 0.05 m  is loaded on the pile top. The 436 

initial time increment, maximum time increment, and total analysis time are set to 500 s , 50 s , and 3600 s , 437 

respectively. Fig. 17 (b) depicts the pore pressure distribution result.  438 

Fig. 18 (a) shows the reaction force-displacement curves from ABAQUS and UMAT. It is clear that when the 439 

NEP clay model degenerates into the MCC model ( = 1), the simulation results of UMAT are almost identical to 440 
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those of ABAQUS, which again verifies the current algorithm's correctness. The results under different −values are 441 

also presented in Fig. 18 (b). The difference of simulation results with different −values is very small. For the pile 442 

foundation problem, its bearing capacity mainly depends on the friction effect between the pile and soil and the 443 

undrained shear strength of soil. The change of parameter  will not affect these two. 444 

 
 

(a) (b) 

Fig. 17 Pile foundation: (a) model geometry; (b) simulation results. 445 

  

(a) (b) 

Fig. 18 Reaction force-displacement curves of pile foundation: (a) comparison between ABAQUS and UMAT; (b) 446 

influence of parameter  on simulation results. 447 
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Table 5 Material parameters of NEP clay model used for boundary value problems 448 

Boundary value problems M        
1e    

Cylindrical cavity expansion48 1.2 0.15 0.03 0.278 1.823 1.0 

Conventional triaxial compression test  1.0 0.25 0.05 0.3 1.825 0.9/1.0 

Square/Strip foundations51 0.898 0.25 0.05 0.3 1.6 0.3~1.7 

Pile foundation20 1.2 0.2 0.04 0.35 2.0 0.3~1.7 

 449 

6. CONCLUSION 450 

This paper has proposed a robust and concise implicit stress update algorithm through the combination of smooth 451 

function, line search method, and CSDA to implement the NEP clay model. In the model implementation, the smooth 452 

function replaces inequality constraints of stress integral equations to eliminate the non-smoothness. The use of the 453 

line search method makes the proposed algorithm have a better convergence in large step calculation, even for strong 454 

nonlinear cases. The CSDA was used to numerically evaluate the Jacobian matrix used in the local iteration of the 455 

model and the consistent tangent operator used in the global iteration to provide quadratic convergence. The NEP clay 456 

model has been implemented into the ABAQUS through the new algorithm. 457 

For the validation purpose, the performance of model implementation was assessed by four boundary value 458 

problems. In the cylindrical cavity expansion examples, the numerical predictions with the UMAT were in good 459 

agreement with the analytical solution, which verified the accuracy of the model implementation. Conventional triaxial 460 

compression examples under different perturbation values show that the CSDA has a better numerical robustness than 461 

the FDM and the CDM because it has no subtraction cancellation error. The strip foundation example under inclined 462 

load also indicated that the proposed algorithm has better convergence than the ABAQUS default algorithm and allows 463 



large step load calculation. As a potential application, the model implementation based on the proposed algorithm was 464 

used for the analysis of bearing capacity of the pile in the undrained clay subsoil, where the consistency of the results 465 

from the UMAT and the ABAQUS further verify the effectiveness of the model implementation in dealing with 466 

geotechnical problems. 467 

The proposed algorithm is extremely attractive for the implicit implementation of the complex elastoplastic model 468 

since there is no need for cumbersome derivative evaluation and loading/unloading estimation. Users are only required 469 

to pay attention to the construction of implicit stress integral equations. Although the numerical differentiation requires 470 

more computational overhead than the analytical derivation for the determination of the Jacobian matrix and consistent 471 

tangent operator, this additional time consumption can be reduced by using the analytical derivation to obtain simple 472 

derivative terms. 473 
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APPENDIX B. MATRIX REPRESENTATION OF TENSORS: 493 

The matrix representation of second order includes: 494 

ij i j= 1 e e , where ie  and je  denote the orthonormal bases of second-order tensor. The Kronecker delta ij  495 

can be expressed by: 496 

  1 1 1 0 0 0
T

ij =  (B1) 497 

ij i jf f   =   σ e e , where ijf    is expressed by: 498 

  11 22 33 12 23 132 2 2
T

ij

f
f f f f f f     




=            


 (B2) 499 

ij i j =  σ e e , where ij  can be expressed by: 500 
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ij i jn= n e e , where ijn  can be expressed by: 508 

  11 22 33 12 23 13
ˆ ˆ ˆ ˆ ˆ ˆ2 2 2

T

ijn n n n n n n=  (B7) 509 

The matrix representation of fourth order includes: 510 

ij kl i j k l =  =   1 1 e e e eI , where ie , je , ke , and le  are the orthonormal bases of fourth-order tensor 511 

and ij kl   can be expressed by: 512 
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