Cite this: Chem. Commun., 2023, 59, 2134

Received 6th June 2022, Accepted 19th December 2022

DOI: 10.1039/d2cc03189b
rsc.li/chemcomm

Reduction chemistry yields stable and soluble divalent lanthanide tris(pyrazolyl)borate complexes \dagger

Tajrian Chowdhury, (i) ${ }^{\text {a }}$ Matthew J. Evans, ${ }^{\text {b }}$ Martyn P. Coles, (DD ${ }^{\text {b }}$ Anna G. Bailey, ${ }^{\text {a }}$ William J. Peveler, (1) ${ }^{\text {a }}$ Claire Wilson (D) ${ }^{\text {a }}$ and Joy H. Farnaby (D) *a

Abstract

Reduction of the heteroleptic $\operatorname{Ln}($ III $)$ precursors [$\left.\operatorname{Ln}(T p)_{2}(O T f)\right]$ (Tp = hydrotris(1-pyrazolyl)borate; OTf $=$ triflate) with either an aluminyl((1) anion or KC_{8} yielded the adduct-free homoleptic $\operatorname{Ln}(॥)$ complexes dimeric 1-Eu $\left[\left\{E u(T p)\left(\mu-\kappa^{1}: \eta^{5}-\mathrm{Tp}\right)\right\}_{2}\right]$ and monomeric 1-Yb [Yb(Tp) $)_{2}$. Complexes 1-Ln have good solubility and stability in both non-coordinating and coordinating solvents. Reaction of 1-Ln with $2 \mathrm{Ph}_{3} \mathrm{PO}$ yielded 1-Ln $\left(\mathrm{OPPh}_{3}\right)_{2}$. All complexes are intensely coloured and 1-Eu is photoluminescent. The electronic absorption data show the $4 f-5 d$ electronic transitions in Ln(ı). Single-crystal X-ray diffraction data reveal first $\mu-\kappa^{1}: \eta^{5}$-coordination mode of the unsubstituted Tp ligand to lanthanides in 1-Eu.

Divalent lanthanide Ln (II) ions have remarkable physical and chemical properties. ${ }^{1}$ Complexes of $\operatorname{Ln}(\mathrm{II})$ are electron-transfer reagents in important synthetic transformations. ${ }^{10,2}$ The physical properties of $\operatorname{Ln}(\mathrm{II})$ include single-molecule magnetism, ${ }^{3}$ and unique optical properties. ${ }^{4}$ Judicious choice of ancillary ligand is essential to supporting $\operatorname{Ln}(\mathrm{II})$ ions. ${ }^{5}$

The tridentate nitrogen donor scorpionate ligand hydrotris(1pyrazolyl)borate (Tp) ligand has been shown to support $\operatorname{Ln}(\mathrm{II})$ in homoleptic $\left[\operatorname{Ln}\left(\mathrm{Tp}^{\mathrm{R}}\right)_{2}\right]$ complexes where $\mathrm{Tp}^{\mathrm{R}}=3$ and/or 5-substituted-pyrazolyl. ${ }^{6}$ These $\left[\operatorname{Ln}\left(\mathrm{Tp}^{\mathrm{R}}\right)_{2}\right]$ complexes display a wide range of chemical reactivity, ${ }^{7}$ and are also useful synthons for organometallic Ln complexes, ${ }^{8}$ and heterometallic Ln and transition metal complexes. ${ }^{9}$ The $\left[\operatorname{Ln}\left(\mathrm{Tp}^{\mathrm{iPr} 2}\right)_{2}\right](\mathrm{Ln}=\mathrm{Eu}, \mathrm{Yb})$ complexes exhibit properties intermediate between Ln nitrides and metallocenes in light-emitting diodes (LEDs). ${ }^{10}$ The first molecular Eu(II)based electroluminescent thin film device was synthesised using $\left[\mathrm{Eu}\left(\mathrm{Tp}^{3,5-\mathrm{R}}\right)_{2}\right](\mathrm{R}=\mathrm{Me}) .{ }^{11}$ Recently the potential of $\left[\mathrm{Eu}\left(\mathrm{Tp}^{3-\mathrm{R}}\right)_{2}\right]$ $\left(\mathrm{R}=\mathrm{Me}, \mathrm{CF}_{3}\right)$ complexes have been demonstrated in organic LEDs (OLEDs). ${ }^{6 h}$

[^0]In contrast to $\mathrm{Cp}^{\mathrm{R}} \operatorname{Ln}(\mathrm{II})$ chemistry $\left(\mathrm{Cp}^{\mathrm{R}}=\right.$ substituted cyclopentadienyl), the synthetic routes to $\left[\operatorname{Ln}\left(\mathrm{Tp}^{\mathrm{R}}\right)_{2}\right]$ complexes, with one exception, ${ }^{6 d}$ have always utilised $\operatorname{Ln}(\mathrm{II})$ precursors. ${ }^{6,7}$ Lanthanide chemistry of the unsubstituted Tp ligand has remained largely unexplored. Moreover the THF-adduct complexes $\left[\operatorname{Ln}(\mathrm{Tp})_{2}(\mathrm{THF})_{2}\right]$ were reported to be unstable in solution. ${ }^{6 b, 12}$ Here we report the reduction chemistry of the heteroleptic $\operatorname{Ln}($ III $)$ precursors $\left[\operatorname{Ln}(T p)_{2}(\mathrm{OTf})\right],{ }^{13}$ to synthesise stable adduct-free homoleptic $\operatorname{Ln}(\mathrm{II})$ complexes $\left[\operatorname{Ln}(\mathrm{Tp})_{2}\right]$ 1-Ln $(\mathrm{Ln}=\mathrm{Eu}, \mathrm{Yb})$, and $\mathrm{Ph}_{3} \mathrm{PO}$ adduct complexes 1-Ln $\left(\mathbf{O P P h}_{3}\right)_{2}$.

The formal reduction potentials $\left(E^{0}\right)$ of $\mathrm{Ln}^{3+} / \mathrm{Ln}^{2+}$ for $\mathrm{Ln}=\mathrm{Eu}$ -0.35 V and $\mathrm{Yb}-1.15 \mathrm{~V}$ in aqueous solution $v s$. the Normal Hydrogen Electrode (NHE) make them the most accessible $\operatorname{Ln}($ III $)$ candidates for reduction. ${ }^{14}$ Upon reduction of the parent $\operatorname{Ln}($ III $)$, the stability of these classical $\operatorname{Ln}($ II $)$ is achieved by either the attainment of half-filled 4 f orbitals in $\mathrm{Eu}(\mathrm{II})$ or full 4 f orbitals in $\mathrm{Yb}(\mathrm{II})$. It is of note that the redox potentials of $\operatorname{Ln}($ III $)$ depend on the ancillary ligand environment, for example $\left[\operatorname{Ln}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)_{3}\right](\mathrm{Ln}=\mathrm{Eu}, \mathrm{Yb})$ were recently reported to be $c a .1 \mathrm{~V}$ more difficult to reduce than their formal reduction potentials. ${ }^{15}$ There are no data in the literature for the E^{0} of $\mathrm{Ln}^{3+} / \mathrm{Ln}^{2+}$ in a Tp ligand environment, but the reduction potentials are expected to be intermediate between the above examples. We therefore explored the reduction chemistry of our $\mathrm{Ln}(\mathrm{III})(\mathrm{Ln}=\mathrm{Eu}, \mathrm{Yb})$ precursors with various reductants.

Complex 1-Yb was first isolated by reduction of $\left[\mathrm{Yb}(\mathrm{Tp})_{2^{-}}\right.$ $(\mathrm{OTf})]$ with $\left[\left\{\mathrm{K}\left[\mathrm{Al}\left(\mathrm{NON}^{\text {Dipp }}\right)\right]\right\}_{2}\right]^{16}\left(\mathrm{NON}^{\text {Dipp }}=\left\{\mathrm{O}\left(\mathrm{SiMe}_{2} \mathrm{NDipp}\right)_{2}\right\}^{2-}\right.$, Dipp $=2,6-{ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, see ESI, \dagger SIIa). This demonstrates the utility of aluminium $(\mathrm{I})^{17}$ in lanthanide reduction chemistry. However, the reaction of $\left[\mathrm{Y}(\mathrm{Tp})_{2}(\mathrm{OTf})\right]$ with $\left[\left\{\mathrm{K}\left[\mathrm{Al}\left(\mathrm{NON}^{\mathrm{Dipp}}\right)\right]\right\}_{2}\right]$ yielded the $\mathrm{Y}(\mathrm{III})$ 'ate'-salt $\left[\mathrm{Y}(\mathrm{Tp})_{2}(\mu \text {-OTf })_{2} \mathrm{~K}(18\right.$-crown- 6$\left.)\right]$ 2-Y (see ESI, \dagger SV).

Our previous work on the metathesis chemistry of $\left[\operatorname{Ln}(\mathrm{Tp})_{2}(\mathrm{OTf})\right]^{13}$ had shown that elimination of $\mathrm{K}(\mathrm{OTf})$ in noncoordinating solvents was most effective, and this is also the case for the reduction chemistry. Neither clean reduction nor $\mathrm{K}(\mathrm{OTf})$ elimination could be achieved in ethereal solvents (see Fig. S68 for the crystal structure of 1-Yb(DME) co-crystallised with KOTf, DME $=1,2$-dimethoxyethane, ESI \dagger). While metallic K

Scheme 1 (a) Synthesis of $\left[\left\{E u(T p)\left(\mu-\kappa^{1}: \eta^{5}-\mathrm{Tp}\right)\right\}_{2}\right]$ 1-Eu and $\left[\mathrm{Yb}(\mathrm{Tp})_{2}\right]$ 1-Yb complexes by reduction of the $\operatorname{Ln}\left(\right.$ III) precursor complexes $\left[\operatorname{Ln}(T p)_{2}(O T f)\right]$. (b) Synthesis of bis-adduct complexes $\left[\operatorname{Ln}(T p)_{2}\left(O P P h_{3}\right)_{2}\right]$ 1-Ln $\left(\mathrm{OPPh}_{3}\right)_{2}$ ($\mathrm{Ln}=\mathrm{Eu}, \mathrm{Yb}$) by reaction of two $\mathrm{Ph}_{3} \mathrm{PO}$ with 1-Ln.
does reduce $\left[\operatorname{Ln}(\mathrm{Tp})_{2}(\mathrm{OTf})\right]$ the reaction conditions could not be adequately controlled to achieve clean formation of $\operatorname{Ln}(\mathrm{II})$. Therefore, the adduct-free divalent lanthanide complexes 1-Ln were synthesised by the reduction of $\left[\operatorname{Ln}(\mathrm{Tp})_{2}(\mathrm{OTf})\right]$ with excess KC_{8} (Scheme 1) at ambient temperature in toluene with stirring, followed by filtration and subsequent removal of volatiles in vacuo (1-Eu $\left[\left\{\mathrm{Eu}(\mathrm{Tp})\left(\mu-\kappa^{1}: \eta^{5}-\mathrm{Tp}\right)\right\}_{2}\right] 94 \%$, 1-Yb $\left.\left[\mathrm{Yb}(\mathrm{Tp})_{2}\right] 87 \%\right)$. Complexes 1-Ln have good solubility and stability in both coordinating and non-coordinating solvents. Furthermore, reaction of $1-\mathrm{Ln}$ with two equivalents of $\mathrm{Ph}_{3} \mathrm{PO}$ in toluene resulted in the isolation of the bis-adduct complexes $\mathbf{1 - L n}\left(\mathbf{O P P h}_{3}\right)_{2}\left(\mathbf{1 - E u}\left(\mathbf{O P P h}_{3}\right)_{2} 91 \%\right.$, 1-Yb $\left.\left(\mathbf{O P P h}_{3}\right)_{2} 87 \%\right)$. Elemental analyses of $\mathbf{1}-\mathbf{L n}$ and $\mathbf{1}-\mathbf{L n}\left(\mathbf{O P P h}_{3}\right)_{2}$ are consistent with their respective formulations.

No resonances were observed by NMR spectroscopy for the paramagnetic complexes 1-Eu and 1-Eu($\left.\mathbf{O P P h}_{3}\right)_{2}$, consistent with the half-filled $4 \mathrm{f}^{7}$ electronic configuration of $\mathrm{Eu}(\mathrm{II})$. The corrected Evans' method magnetic moments ($\mu_{\text {eff }}$) for 1-Eu and 1-Eu($\left.\mathbf{O P P h}_{3}\right)_{2}$ in d_{6}-benzene at room temperature were found to be in the ranges of $7.62-7.78 \mu_{\mathrm{B}}$ and 7.19-7.46 μ_{B}, respectively. These data are consistent with the calculated spin-only magnetic moment (μ_{so}) of $7.94 \mu_{\mathrm{B}}$ for $4 \mathrm{f}^{7} \mathrm{Gd}(\mathrm{III}),{ }^{18}$ and $\mathrm{Eu}(\mathrm{II})$
literature examples, for both organometallics, ${ }^{19}$ and coordination compounds. ${ }^{20}$ Complexes $\mathbf{1}-\mathbf{Y b}$ and $\mathbf{1 - Y b}\left(\mathbf{O P P h}_{3}\right)_{2}$ are full-shell $4 \mathrm{f}^{14}$ and diamagnetic as expected, with NMR data similar to $\left[\mathrm{Yb}\left(\mathrm{Tp}^{\mathrm{R}}\right)_{2}\right]$ complexes. ${ }^{6 b-d, f}$ In d_{6}-benzene the Tp-pyrazolyl protons in 1-Yb are observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy at $\delta=5.97,7.42$ and 7.67 ppm and the Tp-borohydride at $\delta=4.96 \mathrm{ppm}$, in the expected 6:6:6:2 ratio. The Tp -pyrazolyl protons are observed at very similar chemical shifts in the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 - Y b}\left(\mathbf{O P P h}_{3}\right)_{2}$.

Diffusion-ordered NMR spectroscopy (${ }^{1} \mathrm{H} 2 \mathrm{D}-\mathrm{DOSY}$) of 1-Yb, and $\mathbf{1 - Y b}$ with 1 or 2 equivalents of $\mathrm{Ph}_{3} \mathrm{PO}$ show that $\mathbf{1 - Y b}$ is monomeric, and that in solution there is an equilibrium between $\mathrm{Ph}_{3} \mathrm{PO}$ and $\mathbf{1 - Y b}\left(\mathbf{O P P h}_{3}\right)_{x}$ (see ESI, \dagger S1.6). The resonances assigned to $\mathbf{1 - Y b}(\mathbf{O P P h})_{2}$ in the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data are therefore an equilibrium average. The phenyl protons of $\mathrm{Ph}_{3} \mathrm{PO}$, appear at $\delta=6.92,7.02$ and 7.49 ppm in the expected 12:6:12 ratio for two equivalents of $\mathrm{Ph}_{3} \mathrm{PO}$, slightly shifted from free $\mathrm{Ph}_{3} \mathrm{PO}(\delta=6.97-7.08$ and $7.72-7.82 \mathrm{ppm}$ in a $9: 6$ ratio). By ${ }^{31} \mathrm{P}$ NMR the singlet resonance at $\delta=27.63 \mathrm{ppm}$ assigned to $1-\mathrm{Yb}\left(\mathbf{O P P h}_{3}\right)_{2}$, is shifted from free $\mathrm{Ph}_{3} \mathrm{PO}(\delta=24.72 \mathrm{ppm})$. The Tp -borohydrides of both $\mathbf{1 - Y b}$ and $\mathbf{1 - Y b}(\mathbf{O P P h})_{2}$ were observed as doublet resonances at $\delta=-1.85 \mathrm{ppm}$ by ${ }^{11} \mathrm{~B}$ NMR. The pyrazolyl carbon resonances of $\mathbf{1 - Y b}$ and $\mathbf{1} \mathbf{- Y b}\left(\mathbf{O P P h}_{3}\right)_{2}$ were assigned via 2D ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC NMR experiments (see ESI \dagger). The IR spectra of 1-Ln are near-identical, with weak absorptions between 2350$2560 \mathrm{~cm}^{-1}$ assigned to the ν_{BH} of the Tp ligands. ${ }^{6 d, f, 13}$ The IR data for 1- $\mathbf{L n}\left(\mathbf{O P P h}_{3}\right)_{2}$ are consistent with 1-Ln but additionally display strong $\nu_{\mathrm{P}=\mathrm{O}}$ at $1117 \mathrm{~cm}^{-1}$. The $\nu_{\mathrm{P}=\mathrm{O}}$ is shifted from $1184 \mathrm{~cm}^{-1}$ in free $\mathrm{Ph}_{3} \mathrm{PO}$ to lower wavenumbers upon coordination to the $\operatorname{Ln}(\mathrm{II}) .{ }^{21}$

Complexes 1-Ln and 1- $\mathbf{L n}\left(\mathbf{O P P h}_{3}\right)_{2}$ are intensely coloured due to Laporte allowed $4 \mathrm{f}^{n-1}-5 \mathrm{~d}^{1}$ transitions characteristic of $\operatorname{Ln}(\mathrm{II}){ }^{22}$ The electronic absorption spectra of 1- Ln in both noncoordinating (a) and coordinating (b) solvents, and 1-Ln(OPPh $)_{2}$ in MeCN (c) are shown in Fig. 1. In toluene (Fig. 1a) or hexane (Fig. S53 and S54 in ESI \dagger) complexes 1-Ln display broad and strong absorptions ($\mathrm{Ln}=\mathrm{Eu} \varepsilon=1.45-3.67 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1} ; \mathrm{Ln}=$ $\mathrm{Yb} \varepsilon=0.68-1.93 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) in the near UV and visible, with $\lambda_{\text {max }}$ of 395 nm for 1-Eu, and $\lambda_{\text {max }}$ of 341 nm and 520 nm for $1-\mathbf{Y b}$.

Photoluminescence (PL) of 1-Eu is also shown in Fig. 1, in the solid-state under a UV lamp (d) and the excitation and emission spectra in toluene solution (e). Complex 1-Eu shows emission at 590 nm (λ_{Ex} of 389 nm), and the ExcitationEmission Matrix data (EEM, Fig. S61, ESI \dagger) demonstrate that the emission of 1-Eu originates only from the parity-allowed $4 f^{6} 5 d^{1}$ to $4 f^{7}$ transition of $\mathrm{Eu}(\mathrm{II})$. The PL data for 1-Eu are very similar to those reported for $\left[\mathrm{Eu}\left(\mathrm{Tp}^{3-\mathrm{CH} 3}\right)_{2}\right]^{6 h}$ and consistent with other $\left[\operatorname{Eu}\left(\mathrm{Tp}^{\mathrm{R}}\right)_{2}\right]$ examples. ${ }^{6 f-h, 10}$ The $\lambda_{\text {max }}$ and λ_{Em} values in $\left[\mathrm{Eu}\left(\mathrm{Tp}^{\mathrm{R}}\right)_{2}\right]$ complexes correlate well to the relative donorstrength of the Tp ligand. The energy of the excitation and emission from molecular Ln (II) complexes in solution follows the spectrochemical series. The energy gap between the 4 f and the 5 d reduces in magnitude as the interaction with the ancillary ligands increases $\mathrm{O}<\mathrm{N}<\mathrm{C}$, for example the data for $\left[\operatorname{Ln}\left(\mathrm{Cp}^{\mathrm{R}}\right)_{2}\right]$ are significantly red-shifted from $\left[\operatorname{Ln}\left(\mathrm{Tp}^{\mathrm{R}}\right)_{2}\right]^{22 a}$ In acetonitrile, the transition envelopes for 1-Ln (Fig. 1b) are in very similar spectral positions. In $\mathbf{1}-\mathbf{Y b}(\mathbf{M e C N})$ there is also no

Fig. 1 Overlay of the electronic absorption spectra of 1-Ln in either toluene (a) or in MeCN (b) and overlay of the electronic absorption spectra of 1- $\mathrm{Ln}\left(\mathrm{OPPh}_{3}\right)_{2}$ (c) in MeCN , all spectra recorded at room temperature. The traces are coloured in the colour of the complex. Data ($\lambda_{\max }$ and ε) are tabulated in ESI, \dagger Table S3. Photoluminescence of a solid sample of 1-Eu under a UV lamp (d). Excitation (LHS, $\lambda_{\mathrm{Em}}=590 \mathrm{~nm}$) and emission (RHS, $\lambda_{\mathrm{Ex}}=389 \mathrm{~nm}$) spectra of 1-Eu, recorded in toluene (e).
change in magnitude of molar extinction co-efficient, however, in 1-Eu(MeCN) ε decreases significantly. The increased solvent cut-off in MeCN allows for the observation of additional absorptions in the UV for 1-Ln. No spectral features in these data originate from the Tp ligand. The data for $\mathbf{1 - L n}\left(\mathbf{O P P h}_{3}\right)_{2}$ in acetonitrile are near-identical to $\mathbf{1}-\mathbf{L n}$, with the addition of the $\pi-\pi^{*}$ transitions arising of $\mathrm{Ph}_{3} \mathrm{PO}\left(\lambda_{\max }=265-272, \varepsilon=2.6-5.3 \times\right.$ $\left.10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right){ }^{23}$

The solid-state molecular structures of 1-Eu (a), 1-Yb (b), 1-Yb(THF) (c), and 1-Eu($\left.\mathbf{O P P h}_{3}\right)_{2}$ (d) are shown in Fig. 2. The structures of $1-\mathrm{Eu}(\mathbf{T H F})_{2}$ are shown in Fig. S63 and S64 and 1- $\mathbf{Y b}\left(\mathbf{O P P h}_{3}\right)$ in Fig. S69 ($\mathrm{ESI} \dagger$). Important structural metrics are tabulated in the ESI \dagger (see S4), data comparison in Table S4 and crystallographic information in Table S5. The $\mathrm{Ln}-\mathrm{N}\left(\kappa^{3}-\right.$ Tp), ${ }^{6 a, d_{s} f, 10} \mathrm{Eu}-\left(\eta^{5}-\mathrm{Tp}\right),{ }^{24} \mathrm{Ln}-\mathrm{O}(\mathrm{THF}),{ }^{1 a, b}$ and $\mathrm{Ln}-\mathrm{O}\left(\mathrm{OPPh}_{3}\right)^{21 c, 23}$ bond distances in 1-Ln, 1-Ln $(\mathbf{T H F})_{x}$ and 1-Ln $\left(\mathbf{O P P h}_{3}\right)_{x}(\mathrm{Ln}=\mathrm{Eu}$, $x=2 ; \mathrm{Yb}, x=1$) fall within the expected ranges. All data are consistent with the lanthanide contraction ${ }^{25}$ and the increase in ionic radius upon reduction from Ln (III) to $\operatorname{Ln}\left(\right.$ II). ${ }^{13}$ In the absence of coordinating solvents, complex 1-Eu (a) is an unusual example of a dimeric structure, whereas complex 1-Yb (b) is monomeric as expected. ${ }^{6 a, c, d, f}$ In 1-Eu (a) each $\mathrm{Eu}(\mathrm{II})$ is bound by a $\kappa^{3}-\mathrm{Tp}$ ligand and an $\mu-\kappa^{1}: \eta^{5} \mathrm{Tp}$ ligand. The $\mu-\kappa^{1}: \eta^{5}$ binding mode has been seen in Eu(II) pyrazolyl complexes, ${ }^{24}$ but this is the first example of $\mu-\kappa^{1}: \eta^{5} \mathrm{Tp}$ binding with bridging of lanthanide metal centres. ${ }^{6 f-h, d, 10}$ In 1-Eu a significantly longer bond distance is observed for $\mathrm{Eu}-\mathrm{N}\left(\mu-\kappa^{1}: \eta^{5}-\mathrm{Tp}\right)$. Either dissolution in THF of 1-Ln or the addition of $2 \mathrm{Ph}_{3} \mathrm{PO}$ to 1-Ln in toluene, and recrystallisation resulted in single-crystals of the Lewis base adduct complexes 1-Ln(THF) $)_{x}$ (c) or $\mathbf{1 - L n}\left(\mathbf{O P P h}_{3}\right)_{x}$ (d) $(\mathrm{Ln}=\mathrm{Eu}, x=2 ; \mathrm{Yb}, x=1)$. Complexes $1-\mathrm{Ln}(\mathrm{THF})_{x}$ and 1-Ln $\left(\mathrm{OPPh}_{3}\right)_{x}$ are all monomeric, with two axial κ^{3}-coordinated Tp ligands bound to each Ln metal centre, and either one (Yb) or two (Eu) adduct molecules bound in the equatorial plane. In the single-crystal of $\mathbf{1 - Y b}\left(\mathbf{O P P h}_{3}\right)$ the binding of one $\mathrm{Ph}_{3} \mathrm{PO}$ ligand is attributed to the specific crystallisation conditions.

(c)

(d)

Fig. 2 Crystal structures of 1-Eu (a), 1-Yb (b), 1-Yb(THF) (c), 1-Eu(OPPh $)_{2}$ (d). Hydrogen atoms and lattice solvent molecules omitted for clarity and pyrazolyl carbon atoms of Tp, backbone carbon atoms of THF, phenyl carbon atoms of $\mathrm{Ph}_{3} \mathrm{PO}$ displayed in wireframe. Displacement ellipsoids drawn at 50% probability. Data and crystallographic information can be found in the ESI, \dagger S4 and Tables S4, S5.

Reduction of $\operatorname{Ln}($ III $)$ in $\left[\operatorname{Ln}(T p)_{2}(\mathrm{OTf})\right]$ has been demonstrated to be an excellent route to $\operatorname{Ln}(\mathrm{II})$ in $\left[\operatorname{Ln}(\mathrm{Tp})_{2}\right](\mathrm{Ln}=\mathrm{Eu}, \mathrm{Yb})$. The binding strength in combination with ability of the unsubstituted Tp ligand to bridge, bend and flex, results in very stable and soluble Ln (II) complexes. Enabling in turn the collection of both solid-state and solution-state spectroscopic data. Highlights include the direct observation of the effect of solvent on $4 f-5 d$ electronic transitions in $\operatorname{Ln}(\mathrm{II})$, PL from $\mathrm{Eu}(\mathrm{II})$ and first example of $\mu-\kappa^{1}: \eta^{5} \mathrm{Tp}$ binding to lanthanides. Exploration of the chemistry of $\left[\operatorname{Ln}(\mathrm{Tp})_{2}\right]$ is ongoing in our laboratory, and we anticipate future study of the chemical and physical properties of these Ln (II) complexes.

The authors acknowledge the University of Glasgow for funding and the EPSRC ECR Capital Award Scheme (EP/S017984/1). WJP acknowledges the Royal Society (RGS\R2\192190) for funding. The authors also acknowledge the awards of a College of Science and Engineering PhD Scholarship to TC, and a Victoria University of Wellington PhD Scholarship to MJE.

Conflicts of interest

There are no conflicts to declare.

Notes and references

1 (a) J. C. Wedal and W. J. Evans, J. Am. Chem. Soc., 2021, 143, 18354-18367; (b) H. M. Nicholas and D. P. Mills, in Encyclopedia of Inorganic and Bioinorganic Chemistry, ed. R. A. Scott, John Wiley \& Sons, Ltd, 2017, pp. 1-10; (c) F. Nief, Dalton Trans., 2010, 39, 6589; (d) M. N. Bochkarev, Coord. Chem. Rev., 2004, 248, 835-851.

2 M. Szostak and D. J. Procter, Angew. Chem., Int. Ed., 2012, 51, 9238-9256.
3 W. Zhang, A. Muhtadi, N. Iwahara, L. Ungur and L. F. Chibotaru, Angew. Chem., Int. Ed., 2020, 59, 12720-12724.
4 (a) T. C. Jenks, A. N. W. Kuda-Wedagedara, M. D. Bailey, C. L. Ward and M. J. Allen, Inorg. Chem., 2020, 59, 2613-2620; (b) J. Jiang, N. Higashiyama, K.-I. Machida and G.-Y. Adachi, Coord. Chem. Rev., 1998, 170, 1-29; (c) R. M. Diaz-Rodriguez, D. A. Gálico, D. Chartrand, E. A. Suturina and M. Murugesu, J. Am. Chem. Soc., 2022, 144, 912-921.
5 S. Schulz, Chem. - Eur. J., 2010, 16, 6416-6428.
6 (a) G. H. Maunder, A. Sella and D. A. Tocher, J. Chem. Soc., Chem. Comтип., 1994, 885-886; (b) Â. Domingos, J. Marçalo, N. Marques, A. P. D. Matos, A. Galvão, P. C. Isolani, G. Vicentini and K. Zinner, Polyhedron, 1995, 14, 3067-3076; (c) J. Takats, J. Alloys Compd., 1997, 249, 52-55; (d) A. C. Hillier, Zhang, G. H. Maunder, S. Y. Liu, T. A. Eberspacher, M. V. Metz, R. McDonald, Â. Domingos, N. Marques, V. W. Day, A. Sella and J. Takats, Inorg. Chem., 2001, 40, 5106-5116; (e) A. Momin, L. Carter, Y. Yang, R. McDonald, S. Essafi, F. Nief, I. Del Rosal, A. Sella, L. Maron and J. Takats, Inorg. Chem., 2014, 53, 12066-12075; (f) M. Kühling, C. Wickleder, M. J. Ferguson, C. G. Hrib, R. McDonald, M. Suta, L. Hilfert, J. Takats and F. T. Edelmann, New J. Chem., 2015, 39, 7617-7625; (g) H. Qi, Z. Zhao, G. Zhan, B. Sun, W. Yan, C. Wang, L. Wang, Z. Liu, Z. Bian and C. Huang, Inorg. Chem. Front., 2020, 7, 4593-4599;
(h) G. Zhan, L. Wang, Z. Zhao, P. Fang, Z. Bian and Z. Liu, Angew. Chem., Int. Ed., 2020, 59, 19011-19015.
7 (a) J. Takats, X. W. Zhang, V. W. Day and T. A. Eberspacher, Organometallics, 1993, 12, 4286-4288; (b) X. Zhang, G. R. Loppnow, R. McDonald and J. Takats, J. Am. Chem. Soc., 1995, 117, 7828-7829; (c) A. C. Hillier, S.-Y. Liu, A. Sella and M. R. J. Elsegood, Inorg. Chem., 2000, 39, 2635-2644; (d) A. C. Hillier, A. Sella and M. R. J. Elsegood, J. Organomet. Chem., 2002, 664, 298-305; (e) Â. Domingos, I. Lopes, J. C. Waerenborgh, N. Marques, G. Y. Lin, X. W. Zhang, J. Takats, R. McDonald, A. C. Hillier, A. Sella, M. R. J. Elsegood and V. W. Day, Inorg. Chem., 2007, 46, 9415-9424; (f) M. Kühling, R. McDonald, P. Liebing, L. Hilfert, M. J. Ferguson, J. Takats and F. T. Edelmann, Dalton Trans., 2016, 45, 10118-10121.
8 (a) I. Lopes, G. Y. Lin, A. Domingos, R. McDonald, N. Marques and J. Takats, J. Am. Chem. Soc., 1999, 121, 8110-8111; (b) G. Lin, R. McDonald and J. Takats, Organometallics, 2000, 19, 1814-1816.

9 (a) A. C. Hillier, S. Y. Liu, A. Sella, O. Zekria and M. R. J. Elsegood, J. Organomet. Chem., 1997, 528, 209-215; (b) A. C. Hillier, A. Sella and M. R. J. Elsegood, J. Organomet. Chem., 1999, 588, 200-204.

10 M. Suta, M. Kühling, P. Liebing, F. T. Edelmann and C. Wickleder, J. Lumin., 2017, 187, 62-68.

11 C. P. Shipley, S. Capecchi, O. V. Salata, M. Etchells, P. J. Dobson and V. Christou, Adv. Mater., 1999, 11, 533-536.

12 M. A. J. Moss, R. A. Kresinski, C. J. Jones and W. J. Evans, Polyhedron, 1993, 12, 1953-1955.
13 T. Chowdhury, S. J. Horsewill, C. Wilson and J. H. Farnaby, Aust. J. Chem., 2022, 75, 660-675.

14 (a) L. J. Nugent, R. D. Baybarz, J. L. Burnett and J. L. Ryan, J. Phys. Chem., 1973, 77, 1528-1539; (b) L. R. Morss, Chem. Rev., 1976, 76, 827-841.
15 M. T. Trinh, J. C. Wedal and W. J. Evans, Dalton Trans., 2021, 50, 14384-14389.
16 (a) R. J. Schwamm, M. D. Anker, M. Lein and M. P. Coles, Angew. Chem., Int. Ed., 2019, 58, 1489-1493; (b) M. D. Anker and M. P. Coles, Angew. Chem., Int. Ed., 2019, 58, 18261-18265.
17 J. Hicks, P. Vasko, J. M. Goicoechea and S. Aldridge, Angew. Chem., Int. Ed., 2021, 60, 1702-1713.
18 D. F. Evans, J. Chem. Soc., 1959, 2003-2005.
19 (a) T. D. Tilley, R. A. Andersen, B. Spencer, H. Ruben, A. Zalkin and D. H. Templeton, Inorg. Chem., 1980, 19, 2999-3003; (b) M. H. Kuiper and H. Lueken, Z. Anorg. Allgem. Chem., 2007, 633, 1407-1409.
20 J. Garcia and M. J. Allen, Eur. J. Inorg. Chem., 2012, 4550-4563.
21 (a) F. A. Cotton, R. D. Barnes and E. Bannister, J. Chem. Soc., 1960, 2199-2203; (b) A. G. Matveeva, A. V. Vologzhanina, E. I. Goryunov, R. R. Aysin, M. P. Pasechnik, S. V. Matveev, I. A. Godovikov, A. M. Safiulina and V. K. Brel, Dalton Trans., 2016, 45, 5162-5179; (c) R. D. Bannister, W. Levason, M. E. Light and G. Reid, Polyhedron, 2018, 154, 259-262; (d) R. D. Bannister, W. Levason and G. Reid, Chemistry, 2020, 2, 947-959; (e) G. B. Deacon, G. D. Fallon, C. M. Forsyth, B. M. Gatehouse, P. C. Junk, A. Philosof and P. A. White, J. Organomet. Chem., 1998, 565, 201-210.

22 (a) T. C. Jenks and M. J. Allen, in Modern Applications of Lanthanide Luminescence, ed. A. de Bettencourt-Dias, Springer International Publishing, Cham, 2021, pp. 67-92; (b) M. Suta and C. Wickleder, J. Lumin., 2019, 210, 210-238.

23 A. W. G. Platt, Coord. Chem. Rev., 2017, 340, 62-78.
24 (a) C. C. Quitmann, V. Bezugly, F. R. Wagner and K. MüllerBuschbaum, Z. Anorg. Allgem. Chem., 2006, 632, 1173-1186; (b) J. Hitzbleck, G. B. Deacon and K. Ruhlandt-Senge, Eur. J. Inorg. Chem., 2007, 592-601.
25 (a) R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751-767; (b) R. E. Cramer, J. M. Rimsza and T. J. Boyle, Inorg. Chem., 2022, 61, 6120-6127.

[^0]: ${ }^{a}$ School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK. E-mail: Joy.Farnaby@glasgow.ac.uk
 ${ }^{b}$ School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
 \dagger Electronic supplementary information (ESI) available. CCDC 2161063-2161071 and 2195976. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d2cc03189b

