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SLOPES AND SIGNATURES OF LINKS

ALEX DEGTYAREV, VINCENT FLORENS, AND ANA G. LECUONA

Abstract. We define the slope of a colored link in an integral homology sphere, associated

to admissible characters on the link group. Away from a certain singular locus, the slope
is a rational function which can be regarded as a multivariate generalization of the Kojima–

Yamasaki η-function. It is the ratio of two Conway potentials, provided that the latter makes

sense; otherwise, it is a new invariant. The slope is responsible for an extra correction term in
the signature formula for the splice of two links, in the previously open exceptional case where

both characters are admissible. Using a similar construction for a special class of tangles, we

formulate generalized skein relations for the signature.

1. Introduction

In our previous paper [DFL17], we gave a formula for the signature of the splice of two colored
links in terms of the signatures of the summands. One exceptional case, that of the characters
vanishing on the components of the links identified by the splice, was left open. The formula
does not work in this exceptional case, and the study of the defect term was the original goal
of the present paper. To do so, we introduce a new link invariant, called slope. This invariant
appears to be interesting in its own right, and we present several properties and examples.

As another development, we change the paradigm and extend the splice formula to all, not
necessarily rational, characters (see [Vir09] for the extension of the signature function).

1.1. Slopes. The slope is an isotopy invariant, defined for an oriented link K Y L, with a
distinguished component K, in an integral homology sphere S. Optionally, L may be given a
µ-coloring π0pLq � t1, . . . , µu; then, this coloring should be respected by characters ω below.
Denoting by TC a small open tubular neighborhood of a link C Ă S, we consider the inclusion

i : BTK ãÑ S r TKYL,

with a particular interest in the map induced in the first homology with the coefficients twisted
by a character ω : π1pS r Lq Ñ Cˆ. If ω satisfies the admissibility condition ωprKsq “ 1, then
the vector space H1pBTK ;Cpωqq is generated by the meridian m and preferred longitude l of K.
If the kernel of

i˚ : H1pBTK ;Cpωqq Ñ H1pS r TKYL;Cpωqq
is generated by a single vector am` bl, ra : bs P P1pCq, we define the slope of K Y L at ω via

pK{Lqpωq :“ ´
a

b
P CY8

(see Definition 3.3). Crucial is the fact that, if ω is unitary and nonvanishing (i.e., ω does not
take value 1 on any meridian of L), then pK{Lqpωq is well defined and real, possibly infinite (see
Proposition 3.6). This special case is used in our signature formula (see §1.2 below).
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For a link KYL Ă S3, the slope can be computed from the link diagram, using the Wirtinger
presentation of the group π1pS

3 r pK Y Lqq and Fox calculus (see §3.2). In general, the slope is
not determined by the combinatorial data, such as linking numbers, depending more deeply on
the group (cf. Example 3.11 of the Whitehead link and a number of examples in §3.4).

Admissible nonvanishing characters constitute an algebraic variety A˝pK{Lq Ă pCˆ r 1qµ.
Our first main result, Theorem 3.21, states that, if the Alexander polynomial ∆L is not zero,
the function K{L is rational and finite outside the zero locus of ∆L. In fact, denoting by 1 the
derivative with respect to the variable t corresponding to K, we have

pK{Lqpωq “ ´
∇1KYLp1,

?
ωq

2∇Lp
?
ωq

P CY8,

provided that this ratio makes sense, i.e., is not 0{0. (Here, ∇ is the Conway potential; we have
to use ∇ instead of ∆ to avoid the sign ambiguity, cf. Remark 3.23). At the common zeroes of
the two polynomials, the slope may still be defined, but its values are less predictable, which
makes this invariant interesting. Even if ∆L ” 0, generically the slope is still a rational function
(possibly, but not necessarily, identically 8) whose denominator is the first nonvanishing order
∆L,r (see Theorem 3.19). Our experiments with the link tables [KAT] reveal the independence of
K{L of the higher Fitting ideals (cf. Examples 3.26 and 3.27); moreover, the slope distinguishes
some links that are not distinguishable by the higher Alexander polynomials.

As an indirect consequence of Theorem 3.21, it appears that the slope can be regarded as
a multivariate generalization of the Kojima–Yamasaki η-function [KY79], defined originally for
two-component links with linking number 0 (see Corollary 3.24). Cochran [Coc85] showed that
the η-function provides a generating function of a sequence of β-invariants that corresponds to
the Sato–Levine invariants [Sat84] of successive derivatives of the links. In particular, he proved
that they are integral lifts of certain Milnor-type µ̄-invariants. In a forthcoming paper [DFL],
we study the concordance invariance of the slope and give more details on its relation to the
η-function. We also present a number of alternative methods of computing the slope, including
those in terms of Seifert surfaces and C-complexes.

1.2. The splice formula. Our first motivation for developing the slope function was an attempt
to extend the signature formula for the splice of two colored links to the exceptional case υ1 “
υ2 “ 1 that was left open in [DFL17]. Let L Ă S be the splice of two links K˚YL˚ Ă S˚, where
˚ “ 1 or 2. Given a unitary character ω˚ on L˚, denote υ˚ :“ ω˚prK˚sq, see (5.1). Then, as
shown in [DFL17], for a pair pω1, ω2q of rational unitary characters one has

σLpω
1, ω2q “ σK1YL1pυ

2, ω1q ` σK2YL2pυ
1, ω2q ` δλ1pω

1qδλ2pω
2q,

provided that pυ1, υ2q ‰ p1, 1q. (See Theorem 5.2 and §2.5 for the precise statement and definition
of the defect function δ, which is related to the signature of a generalized Hopf link and depends
on the linking numbers only.) In this paper, we consider the signature as a function on all (non
necessarily rational) characters (see also [CNT17]) and establish the splice formula in this full
generality. We mainly follow Viro’s approach [Vir09] for links in S3, extending it to integral
homology spheres and filling in a few details. .

More importantly, we extend the splice formula to the exceptional case where υ1 “ υ2 “ 1,
i.e., both characters are admissible. Then, we have well defined slopes κ˚ :“ pK˚{L˚qpω˚q, and
the formula reads (see Theorem 5.3)

σLpω
1, ω2q “ σL1pω

1q ` σL2pω
2q ` δλ1pω

1qδλ2pω
2q `∆σpκ1, κ2q,

where the correction term ∆σpκ1, κ2q P t0,˘1,˘2u depends only on the two slopes, see (5.5).
(Observe that ∆σ is the only contribution of the knots K˚ to the formula.) Geometrically, ∆σ
is the sum of two Maslov indices in Wall’s non-additivity theorem [Wal69].
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We have similar statements for the nullity ηL of the splice: plain additivity if pυ1, υ2q ‰ p1, 1q
(see Theorem 5.2) and an extra correction term ∆ηpκ1, κ2q P t´1, 0, 1, 2u as the only contribution
of K˚ in the exceptional case (see Theorem 5.3).

1.3. Tangles and skein relations. The concept of slope turns out quite fruitful in a number
of other applications. As an example, we consider the slope function for tangles in integral
homology balls with four labelled loose ends (this time, no component is distinguished). The
main application of this slope is an analogue of the skein relations for the signatures.

For a given µ-colored tangle T in B, with exterior BT , and a character ω in pCˆ r 1qµ, one
can consider the subspace

Ker
“

inclusion˚ : H1pBpBT q;Cpωqq Ñ H1pBT ;Cpωqq
‰

.

These subspaces were already introduced for colored braids and tangles in [GG05, CC], assuming
that the characters have finite order, where certain functorial properties with respect to con-
catenation were also established (see also [CC18]). In the present paper, we restrict ourselves to
tangles with four ends and observe that, for generic characters ω, the kernel has dimension one.
As in the case of links, it is then determined by a single number κT pωq P CY8, which we call
slope. We study this slope κT as a function defined on a dense Zariski open set of pCˆ r 1qµ

—including all unitary characters, at which it takes real values. Using the technics similar to
previous sections, we show that κT is the ratio (assuming that it makes sense) of the Conway
potentials of two auxiliary links obtained, roughly, by patching the loose ends of the tangle with
an overcrossing and an undercrossing (see Theorem 6.7 for the precise statement).

We define the sum T 1\T 2 Ă S of two tangles T 1 Ă B1, T 2 Ă B2, which is a link in an integral
homology sphere. Then, given a pair of unitary characters ω1, ω2 properly matching on the
boundary, we can define a character ω1 \ ω2 on T 1 \ T 2 and, hence, speak about the signature
σT 1\T2pω

1\ω2q. By Wall’s non-additivity theorem [Wal69], the signatures of the three pairwise
sums of three tangles T i Ă Bi, i P Z{3 are related as follows (see Theorem 6.9)

ÿ

iPZ{3
σT i`1\T ipω

i`1 \ ωiq “ signpκ0, κ1, κ2q.

Here, signpκ0, κ1, κ2q P t0,˘1u is a certain skew-symmetric function of the slopes of the tangles
involved, see Corollary 2.22. For rational characters, this formula could alternatively be obtained
from [CC, Theorem 1.1] and elementary properties of the Maslov index.

Applying the results to certain elementary basic tangles (see Example 6.2), we obtain a
multivariate generalization (and a four-dimensional proof) of the skein relations found in [CF08]
(see Corollary 6.11). Note that our version is also a refinement: it disambiguates the right
hand side of the relations when it does not make sense (i.e., becomes 0{0). In this case, slopes
should be computed by other means. Furthermore, using the concept of slope, we bridge the
gap between the skein relations found in [CF08], in terms of the Conway potentials, and those
that could be derived from [CC], in terms of the Maslov index.

1.4. Contents of the paper. In Section 2, we discuss several unrelated well-known subjects
used throughout the paper, our principal goal being fixing the terminology and notation. Thus,
we introduce (co-)homology with twisted coefficients, characteristic varieties, sign-determined
torsion of a CW-complex, and twisted Poincaré duality. We also discuss Wall’s non-additivity
theorem, which is our principal tool in establishing the signature formulas, and recall the termi-
nology concerning colored links and characters on the link group preserving the coloring.

Section 3 contains the construction of the slope. We study its basic properties and, at the
end, establish the rationality of the slope and its relation to the Conway potential.
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Sections 4 and 5 deal with multivariate signature: we discuss the extension of the signature
function to all, not necessarily rational, characters and prove its invariance (Section 4), and then
we state and prove the splice formula, both for signature and nullity (Section 5).

Finally, in Section 6, we construct the slope of a colored tangle, discuss its rationality and
relation to the Conway potential, and state and prove the generalized skein relations.

1.5. Acknowledgments. We would like to thank Ken Baker, Anthony Conway, David Cima-
soni, Stepan Orevkov and Enrico Toffoli for their interest in this project and the very stimulating
discussions.

During the work on this paper, the first author was partially supported by the Associate
Scheme at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste; the
second author was invited by the Thematic Trimester on Invariants in low-dimensional geometry
and topology of the CIMI Excellence Laboratory, which was held in Toulouse, France, (March–
July 2017); the third author acknowledges the invitation of the Isaac Newton Institue to the
program “Homology theories in low dimensional topology”.

2. Preliminaries

Throughout the paper, all group actions are right and by default, all modules are right.
Matrices act on row vectors by right multiplication. We use the notation Rˆ to refer to the
multiplicative group of a commutative ring R.

In this section, X will mainly be a finite CW-complex with π :“ π1pXq. In §2.4 and §2.5, we
will consider more specifically compact smooth manifolds with boundary, possibly empty; then,
the CW-decomposition is given by any smooth triangulation.

2.1. Twisted (co-)homology. Define the chain complex of right Zπ-modules C˚pX;Zπq as

the complex of cellular chains of the universal covering X̃ Ñ X, freely generated by (arbitrary)
lifts of the cells of X. For the lifts, we retain the same orientation as for the original cells. Recall
that the group ring Zπ is equipped with a canonical involutive anti-automorphism

˚ : λ “
ÿ

nigi ÞÑ λ˚ :“
ÿ

nig
´1
i .

(We use ˚ instead of ,̄ reserving the latter for the complex conjugation). Hence, any right
Zπ-module M gives rise to a left module M˚, with the Zπ-action given by λm :“ mλ˚.

For a right Zπ-module M and a left Zπ-module N , we consider the complexes

C˚pX;Mq :“ HomZπpC˚pX;Zπq,Mq, C˚pX;Nq :“ C˚pX;Zπq bZπ N

and their homology

H˚pX;Mq :“ H˚pC˚pX;Mqq, H˚pX;Nq :“ H˚pC˚pX;Nqq.

A similar construction applies to a CW-pair pX,Aq, starting with C˚pX,A;Zπq.
An important special case is that of a group ring M “ N “ ZG, with the Zπ-module

structure given by an epimorphism ϕ : π � G. Then, clearly, C˚ and C˚ are merely the (co-)
chain complexes of the G-covering of X defined by ϕ. If G is a free abelian group with a basis
t1, . . . , tµ, then ZG “ Zrt˘1

1 , . . . , t˘1
µ s is the ring of Laurent polynomials; it is an integral domain,

and we can also consider the field of fractions QpGq :“ Qpt1, . . . , tµq.
Another special case is the ring Cpωq, which is the field C regarded as a Zπ-module via a

multiplicative character ω : π Ñ Cˆ. If ω factors through a finite abelian group, ω : π � GÑ Cˆ,
the homology H˚pX;Cpωqq can be identified with the ω-isotypical component (eigenspace) of
the induced representation of G on the homology H˚pXG;Cq of the corresponding G-covering
XG Ñ X; in particular, the latter isotypical component does not depend on the choice of
an intermediate group G. Alternatively, Cpωq can be regarded as a local system on X, and
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then H˚pX;Cpωqq is the ordinary homology of X with coefficients in this local system. Similar
statements hold for cohomology and for the (co-)chain complexes. We have an obvious C-linear
isomorphism

C˚pX;Cpωqq “ HomCpC˚pX;Cpωqq,Cq
and, hence, a “universal coefficient formula”

(2.1) H˚p ¨ ;Cpωqq “ H˚p ¨ ;Cpωqq_,
were _ stands for the dual vector space. We fix the notation ω˚ and ω̄ for the dual and conjugate
characters, respectively:

ω˚ : g ÞÑ ωpgq´1, ω̄ : g ÞÑ ωpgq.

Note that Cpωq˚ “ Cpω˚q. We say that ω is a unitary character if ω̄ “ ω˚.
The following simple observations, whose utmost importance was probably first observed by

Viro [Vir09], are used throughout the paper without further reference.

Lemma 2.2. If ω ‰ 1: H1pS
1q Ñ Cˆ, then H˚pS

1;Cpωqq “ H˚pS1;Cpωqq “ 0.

Corollary 2.3. If X Ñ B is a circle bundle and a character ω : π Ñ Cˆ restricts to a nontrivial
character on the fibers, then H˚pX;Cpωqq “ H˚pX;Cpωqq “ 0.

Corollary 2.4. If X “ T 2 is a torus and ω ‰ 1, then H˚pX;Cpωqq “ H˚pX;Cpωqq “ 0.

The next corollary, although also straightforward, is used several times in the paper. Consider
a 3-manifold X decomposed into the union X “ Y Y Z of two compact submanifolds. Given a
character ω : π1pXq Ñ Cˆ, we will say that the Z-part is ω-invisible if

‚ Z is a plumbed 3-manifold, possibly with boundary, which is assumed to be a disjoint
union of tori fibered over the boundary of the core surface, away from the nodes;

‚ Y X Z is a union of whole components of the boundary BZ;
‚ ω restricts nontrivially to each fiber (“meridian”) of each circle bundle constituting Z.

To make the ω-invisible part of X clearly seen, we will sometimes use the notation X “ Y YtZu.
Combining Corollaries 2.3 and 2.4 with the Mayer–Vietoris exact sequence, we arrive at the
following statement.

Corollary 2.5. Let X “ Y YtZu be a 3-manifold and ω : π1pXq Ñ Cˆ a character such that Z
is ω-invisible. Then the inclusion Y ãÑ X induces isomorphisms

H˚pY ;Cpωqq “ H˚pX;Cpωqq, H˚pX;Cpωqq “ H˚pY ;Cpωqq.

2.2. Characteristic varieties (see [Lib01]). Let H be a free abelian group with basis t1, . . . , tµ,
and let ϕ : π � H be an epimorphism. Any multiplicative character ω : π Ñ Cˆ that factors
through H is determined by the sequence pω1, . . . , ωµq, where ωi :“ ωptiq P Cˆ. This identifies
the group of such characters with the complex torus pCˆqµ.

The characteristic varieties VrpXq of X (related to ϕ) are defined via

VrpXq :“
 

ω P pCˆqµ
ˇ

ˇ dimH1pX;Cpωqq ě r
(

, r ě 0.

These are indeed algebraic varieties in pCˆqµ, which are nested (Vr Ą Vr`1) and depend on the
fundamental group π of X (and ϕ) only. In view of (2.9) below, each Vr is real with respect to
the standard real structure ω ÞÑ ω̄.

Let C˚ :“ C˚pX;ZHq. Since the complexes C˚bZHCpωq compute the homology H˚pX;Cpωqq
and H0pX;Cpωqq “ 0 unless ω “ 1, we have

VrpXqr 1 “ VCpErpC1{ Im B1qqr 1, r ě 0,

where EspMq Ă ZH is the s-th elementary ideal of a ZH-module M and VCpIq, I P ZH, stands
for the zero locus of the ideal I b C Ă CH in pCˆqµ “ SpecpCHq. In this identity, C˚ can be
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replaced with any complex of free ZH-modules computing the homology Hď1pX;ZHq (e.g., the
one given by the Fox calculus, cf. §3.2 below). In fact, C1{ Im B1 “ H1pX,x0;ZHq, where x0 P X
is the basepoint. Furthermore, according to [Lib01], there also are isomorphisms

VrpXqr 1 “ VCpEr´1pH1pX;ZHqqqr 1, r ě 1,

which are sometimes taken for the definition of VrpXq, which extends to any finitely generated
ZH-module. In particular, it follows that

V1pXqr 1 “ VCpAnnH1pX;ZHqqr 1.

(Recall that the ideals E0pMq and AnnM have essentially the same radical.) The irreducible
components of VrpXq of codimension ď 1 constitute the zero locus of the pr ´ 1q-st order

∆X,r´1 :“ g.c.d. Er´1pH1pX;ZHqq “ g.c.d. ErpC1{ Im B1q P ZH;

the 0-th order ∆X :“ ∆X,0 is called the multivariate Alexander polynomial of X (and ϕ).

2.3. Sign-determined torsion of CW-complexes (see [Tur02]). Let F be a field and

C˚ : Cm
Bm´1
ÝÝÑ Cm´1

Bm´2
ÝÝÑ ¨ ¨ ¨

B0
ÝÝÑ C0

a finite chain complex of finite-dimensional vector spaces over F. Suppose that C˚ is based, i.e.,
each Ci has a distinguished basis ci. Suppose that HipC˚q are also based, i “ 1, . . . ,m. Let

βipC˚q :“
ÿ

rďi

p´1qi´r dimHrpC˚q, γipC˚q :“
ÿ

rďi

p´1qi´r dimCr, |C˚| :“
m
ÿ

i“0

βipC˚qγipC˚q.

Lift the distinguished basis for HipC˚q to a sequence hi Ă Ci. Let bi Ă Ci be a sequence of
vectors such that Bi´1pbiq is a basis of Im Bi´1. Then, for each i, the concatenation Bipbi`1qhibi
is a basis of Ci. Denoting by Ti the transition matrix from Bipbi`1qhibi to the distinguished
basis ci, the torsion of C˚ is defined as

τpC˚q :“ p´1q|C˚|
m
ź

i“0

detT
p´1qi`1

i P Fˆ,

The torsion of C˚ depends on the given bases in Ci and HipC˚q, but it does not depend on the
choice of hi and bi.

Fix now an epimorphism ϕ : π � H onto a free abelian group H and consider the complex
C˚pX;QpHqq of QpHq-vector spaces. It is based (see §2.1), and the torsion τϕpXq P QpHq{˘H
of X is defined as the torsion of C˚pX;QpHqq, with the extra convention that τϕpXq “ 0 if the
complex is not acyclic, i.e., H˚pX;QpHqq ‰ 0. Here, the group ˘H Ă QpHqˆ acts on QpHq by
the multiplication, and the ambiguity is due to the non-uniqueness in the choice of the bases;
modulo this ambiguity, τϕpXq is invariant under simple homotopy equivalences and subdivisions.

The sign of the torsion can be refined if X is homologically oriented, i.e., equipped with a
distinguished orientation v of the space H˚pX;Rq “

À

iě0HipX;Rq. The orientation and order
of the cells in X̃ induce an orientation and order of those of X, and thus a distinguished bases for
C˚pX;Rq. Choose bases hi of HipX;Rq so that the basis h0h1 ¨ ¨ ¨hdimX of H˚pX;Rq is positive
with respect to v, let τ0pXq “ ˘1 be the sign of the torsion τpC˚pX;Rqq P Rˆ, and set

τϕpX, vq “ τ0pXq ¨ τϕpXq.

The sign-determined torsion τϕpX, vq P QpGq{H depends only on pX, vq and ϕ. In the forthcom-
ing sections, X is a 3-manifold and its torsion is a topological and simple homotopy invariant.
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2.4. Poincaré duality (see [Wal99]). Throughout this section, X is a smooth compact con-
nected oriented manifold. Then, according to [Wal99, §2], pX, BXq is a simple Poincaré pair of
dimension n :“ dimX in the following sense: there is a simple chain homotopy equivalence

DX : C˚pX;Zπq Ñ Cn´˚pX, BX;Zπq,

well defined up to chain homotopy; in particular, for any integer r and any right Zπ-module M ,
there is a canonical Poincaré duality isomorphism

(2.6) DX : HrpX;Mq
–
ÝÑ Hn´rpX, BX;M˚q.

Furthermore, each connected component of the boundary BX is a simple Poincaré complex of
dimension pn´ 1q, and the following diagram commutes

(2.7)

HrpX;Mq
i˚

ÝÝÝÝÑ HrpBX;Mq

DX

§

§

đ

– DBX

§

§

đ

–

Hn´rpX, BX;M˚q
B

ÝÝÝÝÑ Hn´1´rpBX;M˚q,

where i : BX ãÑ X is the inclusion and, for each component Y Ă BX, we regard M as a Zπ1pY q-
module via the inclusion homomorphism π1pY q Ñ π. (We ignore the technicality related to the
choice of the basepoints as we will mainly work over the commutative rings of the form ZH1pXq.)

If M “ Cpωq for a character ω : π Ñ Cˆ, then, in view of (2.1), the Poincaré duality in X
and BX can be restated in the form of isomorphisms

(2.8)
Hn´rpX, BX;Cpω˚qq “ HrpX;Cpωqq_,
Hn´1´rpBX;Cpω˚qq “ HrpBX;Cpωqq_,

and (2.7) means that the map B : Hn´rpX, BX;Cpω˚qq Ñ Hn´1´rpBX;Cpω˚qq is the adjoint of
the inclusion homomorphism i˚ : HrpBX;Cpωqq Ñ HrpX;Cpωqq.

If n “ 2r is even and the character ω is unitary, the first homomorphism in (2.8) composed
with the C-anti-linear isomorphism

(2.9) H˚p ¨ ;Cpωqq Ñ H˚p ¨ ;Cpω̄qq

gives rise to a sesquilinear form

(2.10) ˝ : αb β ÞÑ xα, β̄y on HrpX;Cpωqq,

called the intersection index ; it is Hermitian if r is even and skew-Hermitian if r is odd. In the
former case, the signature signωpXq of (2.10) is called the twisted signature of X. Certainly,
in the special case ω “ 1 we obtain the ordinary signature signpXq “ sign1

pXq. The notion of
signature extends also to open manifolds of the form X̄ r BX̄, where X̄ is compact.

By (2.7), the kernel Ker B of the intersection index form is

HrpX;CpωqqK “ Im
“

i˚ : HrpBX;Cpωqq Ñ HrpX;Cpωqq
‰

.

In particular, if BX “ ∅ or, more generally, H˚pBX;Cpωqq “ 0, this form is nondegenerate.
Consider now the case of n “ 2r ` 1 odd and let

(2.11) ZrpX;Cpωqq :“ Ker
“

i˚ : HrpBX;Cpωqq Ñ HrpX;Cpωqq
‰

“ Im
“

B : Hr`1pX, BX;Cpωqq Ñ HrpBX;Cpωqq
‰

,

where the equality follows from the exact sequence of pair pX, BXq. Since BX is a closed manifold,
Poincaré duality induces a perfect pairing

(2.12) HrpBX;Cpωqq bHrpBX;Cpω˚qq Ñ C
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which, composed with (2.9), coincides with the intersection index

(2.13) ˝ : αb β ÞÑ xα, β̄y on HrpBX;Cpωqq

if ω is unitary. Combining these observations, we arrive at the following statement.

Lemma 2.14. Given a multiplicative character ω : π Ñ Cˆ, one has

ZrpX;Cpωqq “ ZrpX;Cpω˚qqK

with respect to (2.12). If ω is unitary, then ZrpX;Cpωqq “ ZrpX;CpωqqK with respect to (2.13).
In particular, in this case one has dimZrpX;Cpωqq “ 1

2 dimHrpBX;Cpωqq.

In the next statement, which is an immediate consequence of Lemma 2.14, we change the
notation X ÞÑW and BX ÞÑ BW :“ X.

Corollary 2.15. Assume that a closed oriented 4k-manifold X is the boundary BW of a compact
p4k ` 1q-manifold W . Then

signωpXq “ 0

for each unitary character ω on X which extends to a unitary character on W .

2.5. Signatures and additivity (see [Wal69]). Consider a compact connected oriented 4-
manifold N and assume that N :“ N1 YX0 N2, where N1, N2 are manifolds with boundaries

BN1 – X1 YT ´X0, BN2 – X0 YT ´X2

and X0, X1, X2, in turn, are 3-manifolds with common boundary

T :“ BX0 “ BX1 “ BX2.

Consider the C-vector spaces Ai :“ Z1pXi;Cq Ă V :“ H1pT ;Cq, i “ 0, 1, 2, see (2.11), and let

W :“
A0 X pA1 `A2q

pA0 XA1q ` pA0 XA2q
.

By Lemma 2.14, these spaces are Lagrangian with respect to the intersection index form ˝ of
the closed surface T . Hence, ˝ induces a nondegenerate Hermitian form f on W : it is given by

fpa0, a
1
0q :“ a0 ˝ a

1
1, where a10 ` a

1
1 ` a

1
2 “ 0 and a1i P Ai.

Theorem 2.16 (Wall [Wal69]). In the above notation, one has

signpNq “ signpN1q ` signpN2q ´ sign f.

Remark 2.17. As mentioned in [Wal69] (and follows easily from the proof), the conclusion of
Theorem 2.16 holds as well for the twisted signature. Pick a unitary character ω : H1pNq Ñ Cˆ
and denote by the same letter the restriction of ω to the other spaces involved. Then, the
signature formula reads

signωpNq “ signωpN1q ` signωpN2q ´ sign f,

where the form f is defined as above, using the Lagrangian subspaces Z1pXi;Cpωqq.

In the rest of this section, we discuss various forms of Wall’s correction term sign f in the
important special case where dimV “ 2. Let ϕ : V bV Ñ C be a nondegenerate skew-Hermitian
form; we abbreviate ϕpa, bq “ a ˝ b and ϕpa, aq “ a2. The form iϕ is nondegenerate Hermitian;
hence, signpiϕq takes values ˘2 or 0. In the former case, V has no nontrivial isotropic vectors;
thus, we assume that signpiϕq “ 0. In this case, V has a standard symplectic basis, i.e., a basis
m, l with the property that

m2 “ l2 “ 0, m ˝ l “ ´1.
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Fixing such a basis, we can parametrize the directions (1-subspaces) in V by assigning to a
subspace Cpam` blq its slope

(2.18) κ :“ ´
a

b
P CY8 “ P1pCq.

The following statement is immediate.

Lemma 2.19. A direction in V is isotropic if and only if its slope is real : κ P RY8.

In other words, isotropic directions constitute a circle P1pRq in the sphere P1pCq “ PpV q of all
directions. This circle RY8 has a canonical orientation, viz. the one that restricts to the order
on R. (Since the group SLp2,Cq of isometries of V is connected, this orientation does not depend
on the choice of a standard basis.) The Lagrangian subspaces in V have dimension 1; hence, the
correction term sign f in Wall’s formula becomes a function of three isotropic directions Cai,
i “ 0, 1, 2, or, equivalently, three slopes κi P RY8. We will use the notation

sign f “ signpa0, a1, a2q “ signpκ0, κ1, κ2q P t0,˘1u.

Lemma 2.20. One has

signpa0, a1, a2q “ sg
“

pa0 ˝ a1qpa1 ˝ a2qpa2 ˝ a0q
‰

.

In particular, the function sgpa0, a1, a2q is skew-symmetric.

Proof. Note that both sides of the identity in the statement remain unchanged if any of ai is
replaced with αiai, αi P Cˆ. If A1 “ A2, both sides vanish. Otherwise, the pair pa1, a2q can be
rescaled to a standard symplectic basis for V , i.e., we can assume that a1 ˝ a2 “ ´1. Then W
is generated by a0 “ β1a1 ` β2a2 and, assuming β1, β2 real, one has fpa0, a0q “ ´β1β2, which
is equal to the product in the right hand side. �

Corollary 2.21. One has signpa0, a1, a2q “ 0 if and only if at least two of the three directions
coincide. Otherwise, signpa0, a1, a2q “ 1 if and only if the cyclic order pa0, a1, a2q agrees with
the canonical orientation of the circle of isotropic directions.

Corollary 2.22. Given a triple κ0, κ1, κ2 P RY8, one has

signpκ0, κ1, κ2q “ sg
“

pκ0 ´ κ1qpκ1 ´ κ2qpκ2 ´ κ0q
‰

if κ0, κ1, κ2 ‰ 8,

signp8, κ1, κ2q “ signpκ1, κ2,8q “ signpκ2,8, κ1q “ sgpκ2 ´ κ1q.

To make the last formula valid even if one or both of κ1,2 is 8, we extend the sg function via

sg x “

$

’

&

’

%

0, if x “ 0 or 8,

1, if x ą 0,

´1, if x ă 0

and agree to disambiguate 8´8 to 0 in its argument.

In a sense, the last formula in Corollary 2.22 agrees with the general expression, which gives
us sg

“

´82pκ1 ´ κ2q
‰

; but then, it disagrees with our definition of sg. For this reason, we prefer
to disambiguate expressions involving 8 explicitly.
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2.6. Colored links. Typically, given an oriented link L Ă S in an integral homology sphere S,
we denote by TL :“ TubL a small open tubular neighborhood of L and let X :“ S r TL. For a
component C Ă L, we denote by BCX the intersection of BX with the closure of TC . The group
H1pBCXq “ H1pBTCq is generated by a meridian mC and preferred longitude `C , viz. the one
unlinked with C; we call `C a Seifert longitude.

The meridian mC is oriented so that mC ˝ `C “ 1 with respect to the orientation of BTC
induced from TC .

The group H1pXq is the free abelian group generated by the classes mC of the meridians of
the components C Ă L, and the coloring gives rise to an epimorphism

(2.23) ϕ : π1pXq Ý� H1pXq Ý� H :“
µ
à

i“1

Zti

sending mC to ti whenever C Ă Li. Thus, we usually consider the character torus pCˆqµ,
confining ourselves to the characters ω “ pω1, . . . , ωµq that factor through H.

Definition 2.24. A character ω “ pω1, . . . , ωµq is nonvanishing if ωi ‰ 1 for all i.

The characteristic varieties, orders, and Alexander polynomial of the colored link L are defined
as those of X and ϕ, see §2.2, and we use the notation VrpLq :“ VrpXq, ∆L,r :“ ∆X,r, etc.

Since H˚pBX;Cpωqq “ 0 for any nonvanishing character ω, one has H˚pX, BX;Cpωqq “
H˚pX;Cpωqq; hence, by Poincaré duality (2.8), the restricted characteristic variety

V˝r pLq :“ VrpLq X pCˆr 1qµ

is invariant under the automorphism ω ÞÑ ω˚. It follows that, modulo units pZHqˆ, the greatest
common divisor ∆˝r of the defining ideal of the closure of V˝r`1pLq is invariant under the involutive

automorphism pt1, . . . , tµq ÞÑ pt´1
1 , . . . , t´1

µ q; hence, so is the order ∆L,r, which differs from ∆˝r
by a number of factors of the form pti ´ 1q.

Let, further, v be the orientation of H˚pX;Rq given by the basis consisting of 1 P H0pX;Rq,
the meridians mC P H1pX;Rq of the components C Ă L (in some order), and the classes
rBCXs P H2pX;Rq of all but the last component (in the same order). Then, according to [Tur02],
up to units pZHqˆ one has

τϕpX, vq “

#

∆L if µ ą 1,

∆L{pt1 ´ 1q if µ “ 1.

Hence, as shown above,

τϕpX, vqpt
´1
1 , . . . , t´1

µ q “ p´1qntν11 . . . tνµµ τϕpX, vqpt1, . . . , tµq

for some integers ν1, . . . , νµ, where n is the number of components of L. The Conway potential
function of the colored link L is defined as the symmetric renormalization of τϕ:

(2.25) ∇Lpt1, . . . , tµq :“ ´tν11 . . . tνµµ τϕpX, vqpt
2
1, . . . , t

2
µq.

The Conway function of L is that of the maximal coloring; all others are obtained from the
maximal one by the specialization H1pXq� H, cf. (2.23).

Definition 2.26. The nullity of a µ-colored link L Ă S at a nonvanishing character ω is

(2.27) ηLpωq :“ dim H1pX;Cpωqq.

We extend η to all characters via ηLpωq :“ ηL1pω
1q, where ω1 is obtained from ω by removing all

components ωi “ 1, and L1 is obtained from L by removing the corresponding components Li.
Occasionally, we consider also the literal extension given by (2.27); then, it is denoted by η̃L.
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Remark 2.28. In several other definitions below, we use the same strategy as in Definition 2.26,
i.e., we define a certain quantity qLpωq for nonvanishing characters and extend it to the whole
character torus by patching the components of L on which ω vanishes. The “literal” extension,
if any, is then denoted by q̃L. The principal reason for this approach is Corollary 2.5: if there are
too many boundary components with nontrivial homology, we loose control over the situation
(cf. §4.4) and sometimes cannot even assert that the quantity in question is well defined.

A p1, µq-colored link is a p1 ` µq-colored link K Y L in S in which the knot K is the only
component (considered distinguished) given the distinguished color 0. In addition to the space
X “ SrL and epimorphism (2.23), we will also consider the complement X̄ :“ Sr pKYLq and
epimorphism

(2.29) ϕ̄ : π1pX̄q Ý� H1pX̄q Ý� H̄ :“ Zt‘H

sending the meridian m :“ mK to the generator t :“ t0. We use the notation

(2.30) `kpK,Lq :“ pλ1, . . . , λµq P Zµ, λi :“ `kpK,Liq, i “ 1, . . . , µ

for the linking vector of K Y L.

3. Slopes

In this section we define the main character of this article: the slope of a link in a homology
sphere, which is a function defined on (a part of) the character torus and taking values in CY8.
We start with the definition of this new invariant and its first properties. We then show how
to compute it via the Fox calculus and, in some special cases, via closed braids. We continue
the section by proving that the slope is mainly a rational function, whose poles are determined
by the Alexander invariants of the link. Then, we show that in a Zariski dense open set, it is
determined by certain Conway potential functions. Finally, we present a list of examples.

3.1. Definition and first properties. Consider a p1, µq-colored link K Y L Ă S.

Definition 3.1. A character ω Ă pCˆqµ of π1pS r Lq is admissible if ωprKsq “ 1. The variety
of admissible characters is denoted

ApK{Lq “
 

ω P pCˆqµ
ˇ

ˇ ωλ “ 1
(

,

where λ :“ `kpK,Lq is the linking vector, see (2.30).

Note that an admissible character ω restricts to the trivial character on H1pBKX̄q. If λ “ 0,
then ApK{Lq “ pCˆqµ; otherwise, leting N :“ g.c.d.pλq and ν :“ λ{N , the irreducible over Q
components of ApK{Lq are the zero sets of the cyclotomic polynomials Φdpω

νq, d | N . Since all
varieties are defined over Z, for each component A Ă ApK{Lq and each r ě 0, the complement
Ar VrpLq is either empty or dense in A.

Example 3.2. If L has one component with lkpK,Lq “ λ, then ApK{Lq “ t1, ζ, ζ2, . . . , ζλ´1u,
where ζ is any primitive root of 1 of order λ. If L has two components, with lkpK,Lq “ p1, λq,
then ApK{Lq “ tpωλ, ω´1q; ω P Cˆu.

We will mainly consider the variety of nonvanishing admissible characters

A˝pK{Lq :“ ApK{Lq X pCˆr 1qµ.

Let ω P A˝pK{Lq. Since ω is nonvanishing, we have H˚pBLX̄;Cpωqq “ 0 and, since ω is also
admissible,

H1pBX̄;Cpωqq “ H1pBKX̄;Cpωqq “ H1pBKX̄;Cq.
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The latter isomorphism is canonical up to a multiplicative constant, commutes with (2.9), and
takes (2.12) and (2.13) to forms that are congruent to, respectively, the bilinear and sesquilinear
extensions of the intersection index form on H1pBKX̄q. Hence, we have well-defined subspaces

Zpωq “ ZKYLpωq :“ Z1pX̄;Cpωqq Ă H1pBKX̄;Cq,

see §2.4, which have the following properties:

Zpω̄q “ Zpωq, Zpω˚q “ ZpωqK.

Let m, l be the meridian and Seifert longitude of K, forming a basis of H1pBKX̄;Cpωqq “ C2.

Definition 3.3. Let ω P A˝pK{Lq and assume that dimZpωq “ 1, i.e., Zpωq is generated by a
single vector am` bl for some ra : bs P P1pCq. Then, the slope of K Y L at ω is the quotient

pK{Lqpωq :“ ´
a

b
P CY8.

In agreement with Remark 2.28, we extend Z and K{L to all admissible characters ω P ApK{Lq
by patching the components of L on which ω vanishes. The literal extension makes no sense.

Example 3.4 (generalized Hopf links). Recall that a generalized Hopf link Hm,n is obtained
from the ordinary Hopf link V̄ Y Ū by replacing V̄ and Ū by, respectively, m and n close parallel
copies. Assume m ą 0 and take for K one of the V -components. Then, the slope κ of Hm,n at
any nonvanishing character is

κ “

#

0 if n “ 0 or m ą 1,

8 otherwise.

Indeed, if n “ 0, then lK bounds a disk, and if m ą 1, then lK is homotopic to the longitude of
any other V -component, which vanishes in the twisted homology. However, if m “ 1 and n ą 0,
then the meridian mK is homotopic to the longitude of any of the U -components.

The following statements are immediate consequences of Poincaré duality.

Proposition 3.5. If the slope at a character ω P ApK{Lq is well defined, then so are the slopes
at ω̄, ω˚, and ω̄˚, and one has

pK{Lqpω˚q “ pK{Lqpωq, pK{Lqpω̄q “ pK{Lqpω̄˚q “ pK{Lqpωq.

Furthermore, the slope does not change if the orientation of K is reversed.

Proposition 3.6. If ω P ApK{Lq is a unitary character, then the slope pK{Lqpωq is well defined
and, moreover, is real : pK{Lqpωq P RY8.

Proof. The slope is well defined due to the last statement in Lemma 2.14; it is real due to
Proposition 3.5. �

Proposition 3.7. The slope at a character ω P A˝pK{Lq is well defined if and only if the two
inclusion homomorphisms H1pK;Cpζqq Ñ H1pX;Cpζqq, ζ “ ω or ω˚, are either both trivial or
both nontrivial. The slope is finite, pK{Lqpωq P C, if and only if the two homomorphisms are
both trivial.

Proof. By the Mayer–Vietoris exact sequence, the homomorphism H1pK;Cpζqq Ñ H1pX;Cpζqq
is trivial if and only if Zpζq contains an element of the form l ` κm, κ P C (and, in particular,
Zpζq ‰ 0). Thus, the statement follows from the duality given by Lemma 2.14. �

Corollary 3.8. The slope is well defined and finite on ApK{Lqr V1pLq.
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Remark 3.9. As follows from Proposition 3.7, for each character ω, the existence of the slope
pK{Lqpωq and its finiteness depend only on the conjugacy class realized by K in the fundamental
group π1pS r Lq. However, the slope itself (when finite) is a more subtle invariant of K Y L.

Proposition 3.10. If K is contained in a ball B disjoint from L, then pK{Lqpωq “ 0 for any
character ω P ApK{Lq.

Proof. Any admissible character restricts to the trivial character on π1pB rKq, and the image
of l vanishes already in H1pB rK;Cpωqq “ H1pB rK;Cq. �

3.2. Fox calculus. We illustrate how the slope can be computed by means of the Fox calculus
from a presentation of the fundamental group π1pX̄q of the link complement, together with the
classes m, l P π1pX̄q of the meridian and Seifert longitude of K. In the case of links in S3, both
pieces of data can be derived from the link diagram. Indeed, for the group one can choose the
Wirtinger presentation, where meridians are the generators. For l, we trace a curve C parallel
to K and such that `kpK,Cq “ 0; then, starting from the segment corresponding to the chosen
meridian of K and moving along C in the positive direction, we write down the corresponding
generator (or its inverse) each time when undercrossing positively (respectively, negatively) the
diagram of K Y L. Thus, let

m, l P π1pX̄q “
〈
x1, . . . , xp

ˇ

ˇ r1, . . . , rq
〉
,

F :“ xx1, . . . , xpy, and let Λ :“ ZH, where H is the abelianization of F . Since we consider
abelian coverings only, we can specialize Fox derivatives to maps B{Bxi : F Ñ Λ. Consider the
complex of Λ-modules

S˚ : S2
B1
ÝÑ S1

B0
ÝÑ S0 ÝÑ 0,

where

S2 “

q
à

i“1

Λri, S1 “

p
à

i“1

Λdxi, S0 “ Λ

and dxi stands for a formal generator corresponding to xi. The “differential” of a word w P F is

dw :“
p
ÿ

i“1

Bw

Bxi
dxi P S1;

then, letting

B1 : ri ÞÑ dri, B0 : dxi ÞÑ pthe image of xi in H Ă Λq,

we obtain a complex computing the homology Hď1 of the H-covering of X̄.
Now, pick an admissible nonvanishing character ω P A˝pK{Lq and consider the specialization

S˚pωq :“ S˚ bΛ Cpωq. Then, it is straightforward that

Zpωq “ Ker
“

H1pBKX;Cpωqq “ Cm‘ Cl in˚
ÝÑ S1pωq{ Im B1pωq

‰

,

where the inclusion homomorphism in˚ is the specialization of m ÞÑ dm, l ÞÑ dl. (Note that, by
the assumption that ω P A˝pK{Lq, this homomorphism lands into Ker B0pωq.) Computing the
above kernel in the basis m, l, we can also compute the slope, whenever it is defined.

Example 3.11 (the Whitehead link). Consider the p1, 1q-colored Whitehead link K YL. Since
`kpK,Lq “ 0, we have A˝pK{Lq “ S1 r 1. The standard presentation of π1pX̄q (derived from
the Wirtinger representation) is

π1pX̄q “ xm,m1, l | rm, ls “ 1, l “ m1m
´1m´1

1 mm´1
1 m´1m1my,

where m and m1 are the meridians of K and L, respectively, and l is a Seifert longitude of K. We
can further specialize Λ to the group ring ZH1pX̄q “ Zrt˘1, t˘1

1 s, sending the generators m, m1,
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and l to t, t1, and 1, respectively. Then, denoting by x, y the two relations in the presentation
above, we have

dx “ pt´ 1qdl, dy “ dl ´ t´1p1´ t1qp1´ t
´1
1 qdm´ p1´ t´1qp1´ t´1

1 qdm1.

The specialization at a character ω P A˝pK{Lq means sending t1 ÞÑ ω and t ÞÑ 1, so that the
image Im B1pωq is generated by dl ´ p1´ ωqp1´ ω´1qdm. We conclude that

pK{Lqpωq “ p1´ ωqp1´ ω´1q.

The algorithm outlined in this section and using the Wirtinger representation of the knot
group was implemented in GAP [GAP15] and used to compute uni- and multivariate slopes of
all links with up to eleven crossings (see [KAT]). We observed quite a few interesting examples,
some of which are mentioned in §3.4.

3.3. Closed braids. As another example we consider a p1, 1q-colored link K Y L Ă S3, where
L is the closure of a braid β P Bn and K is its axis. Since `kpK,Lq “ n, nonvanishing admissible
characters are n-th roots of unity ω ‰ 1.

By the assumption, S3 rK is fibered over the circle S1, and the fibers Dt are open disks that
can all be chosen transversal to L. Let D˝ :“ D0 rL, so that Bn acts on the free group π1pD

˝q.
We fix a geometric basis α1, . . . , αn for π1pD

˝q and denote by σ1, . . . , σn´1 the corresponding
Artin generators of Bn. Let deg : π1pD

˝q Ñ Z and deg : Bn Ñ Z be the homomorphisms given
by the exponent sum with respect to the chosen bases.

Let Λ :“ Zrt˘1s be the ring of integral Laurent polynomials. Recall that the (reduced) Burau
representation is the homomorphism Bn Ñ GLpn´ 1,Λq given by the induced Bn-action on the

homology An :“ H1pD̃
˝q of the infinite cyclic covering D̃˝ Ñ D˝ corresponding to deg, regarded

as a Λ-module via the deck translation. Algebraically, An “ Ker deg {rKer deg,Ker degs, and t
acts on the class rhs of an element h P Ker deg via rhs ÞÑ rα1hα

´1
1 s. As a Λ-module, An is freely

generated by the vectors

ei :“ rαi`1α
´1
i s, i “ 1, . . . , n´ 1;

letting ej “ 0 for j ď 0 or j ě n, one has

σi : ei´1 ÞÑ ei´1 ` tei, ei ÞÑ ´tei, ei`1 ÞÑ ei ` ei`1,

(It is understood that σi : ej ÞÑ ej whenever |i´ j| ą 1.)
Since the action of Bn preserves the degree, for any pair α P π1pD

˝q and β P Bn we have a
well defined projection tα, βu :“ pαβq ¨ α´1 P An. It has the following simple properties:

(3.12)
tα, β1β2u “ tα, β1uβ2 ` tα, β2u for α P π1pD

˝q and β1, β2 P Bn,
tα, β´1u “ ´tα, βuβ´1 for α P π1pD

˝q and β P Bn.

Pick ω “ ξr :“ expp2πir{nq ‰ 1. A standard computation shows that, for X̄ “ S3 r pK YLq
with L the closure of β, we have

(3.13) H1pX̄;Cpωqq “
`

An bΛ Cpωq
˘

{pβ ´ 1q.

The image l P H1pX̄;Cpωqq of the longitude of K is the projection of the class of the element
α1 . . . αn homotopic to BD˝; it is easily computed by the Reidemeister–Schreier method:

(3.14) l “
ÿ

1ďiďjďn´1

ωjei.

To compute the class of the meridian m, we identify H1pX̄;Cpωqq with the ω-eigenspace of t in
the homology of the n-fold covering X̃ Ñ X̄. Represent m by a loop γ P π1pS

3 r Kq, which
we identify with its lift to π1pX̃q, and pick an element α P π1pD

˝q, d :“ degα ‰ 0 mod n. The
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homology class of γtd is represented by αγα´1. On the other hand, γ´1αγ “ αβ P π1pX̄q.
Hence, pωd ´ 1qm “ tα, βu and, assuming that ωd ‰ 1 and specializing at t “ ω,

(3.15) m “
1

ωd ´ 1
tα, βupωq.

In particular, it follows that (3.15) is independent of α. Formally, tα, βu cannot be computed
within the framework of the Burau representation: it is an additional piece of data. In practice,
we usually let α “ α1 and compute tα1, βu inductively, using (3.12) and the obvious identities

(3.16) tα1, σ1u “ te1, tα1, σiu “ 0 for i ą 1.

According to Proposition 3.6, in the space H1pX̄;Cpωqq given by (3.13) there is exactly one
nontrivial relation am` bl “ 0 between the vectors m, l given by (3.15) and (3.14), respectively.
Moreover, this relation can be chosen to have real coefficients. (We do not know an algebraic
proof of these facts.) Thus, we have well defined class functions

β ÞÑ κrpβq :“ ´
b

a
“
“

pK{Lqpξrq
‰´1

P RY8, r “ 1, . . . , n´ 1.

(Note that we define κr as the inverse of the slope. This choice is motivated by the somewhat
better properties of this invariant in the realm of closed braids, see, e.g., Proposition 3.18.)

Numeric experiments reveal rather irregular behaviour of κ: it may take rational or irrational
values (e.g., κrpβq “

3
5 ´

1
5 pξr`ξ

´1
r q for β “ σ1σ2σ3σ4σ1σ2 P B5), and it may take value 8 (e.g.,

for β “ σ´1
2 σ1 P B3). Below are a few further observations concerning these class functions.

Corollary 3.17 (of (3.15)). If β has an invariant element α P π1pD
˝q of degree d ą 0 (e.g., if

β P Bd ˆ Bn´d Ă Bn), then κrpβq “ 0 whenever rd ‰ 0 mod n.

Proposition 3.18. Let β P Bn and p P Z. Then, for any 0 ă r ă n, one has:

(1) κrpβ
pq “ pκrpβq;

(2) κrpβ∆2q “ κrpβq ´ 1;
(3) κrppσ1 . . . σn´1q

pq “ ´p{n.

(Here, ∆ P Bn is the Garside element, so that ∆2 is the generator of the center of Bn).

Proof. For (1), assume that p ą 0; the proof for p “ ´1 and, hence, for p ă 0 is very similar.
From (3.12), it follows that tα, βpu “ tα, βuυ, where υ :“ 1`β` . . .`βp´1. On the other hand,
βp ´ 1 “ pβ ´ 1qυ, and there remains to apply the element υ P Λ to the relation

am` bl “ 0 mod pβ ´ 1q,

cf. (3.13), computing the value κrpβq “ ´b{a. Here, l and m are the elements of An bΛ Cpξrq
given by (3.14) and (3.15) (with ω “ ξr), respectively; this determines the action of υ. One
should also observe that l is Bn-invariant, as so is ρ :“ rBD˝s “ α1 . . . αn, whence lυ “ pl.

For Statement (2), recall that the action of ∆2 on π1pD
˝q is the conjugation by ρ´1 and,

since deg ρ “ n, this action is identical on An bΛ Cpωq. Then, since l is the image of ρ, we have
tα1,∆

2u “ ρ´1α1ρα
´1
1 ÞÑ p1´ ωql and, by (3.15) and (3.12), the new meridian is m´ l.

For Statement (3), just recall that ∆2 “ pσ1 . . . σn´1q
n and use (1) and (2). �

3.4. Rationality and Conway functions. In this section, we discuss the rationality of the
slope as function of ω and its relation to the Conway function. We illustrate the results with a
number of examples, postponing the proofs till the next two sections.

Throughout the section, K Y L Ă S is a fixed p1, µq-colored link.

Theorem 3.19 (see §3.5). Pick a component A Ă ApK{Lq and let r be the minimal integer
such that ∆L,r|A ‰ 0, i.e., A r Vr`1pLq is dense in A. Denote by R the coordinate ring of A
and fix a normalization of ∆L,r. Then, either
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(1) there exists a unique polynomial ∆A P R such that

pK{Lqpωq “
∆Apωq
∆L,rpωq

holds for each character ω P A˝ r Vr`1pLq, or
(2) the slope pK{Lqpωq “ 8 is well defined and infinite at each character ω in a certain

dense Zariski open subset of A.

Case (2) cannot occur if r “ 0, i.e., if ∆L|A ‰ 0, cf. Theorem 3.21 below.

Remark 3.20. The slope pK{Lqpωq at a character ω P AX Vr`1pLq does not need to be given
by the rational function in Theorem 3.19(1), even if the latter admits an analytic continuation
through ω.

In the next theorem, as well as in several other statements below, we need to evaluate the
Conway potential at the radical

?
ω :“ p

?
ω1, . . . ,

?
ωµq, which is not quite well defined. We use

the convention that one of the values of each radical is chosen and used consistently throughout
the whole formula; then, the nature of the formula guarantees that the result is independent of
the initial choice.

Theorem 3.21 (see §3.6). For a p1, µq-colored link K Y L Ă S, denote ∇1 :“
B

Bt
∇KYL. Then,

for a character ω P ApK{Lq, one has

pK{Lqpωq “ ´
∇1p1,

?
ωq

2∇Lp
?
ωq
P CY8,

provided that the expression in the right hand side makes sense, i.e., ∇1p1,
?
ωq and ∇Lp

?
ωq do

not vanish simultaneously. In particular, the slope is well defined in this case.

Theorem 3.21 is inconclusive if ∇Lp
?
ωq “ ∇1p1,

?
ωq “ 0: just as in the freshman calculus,

the indeterminate form 0{0 should be resolved by other means. Note also that, even in the case
of p1, 1q-coloring (univariate polynomials), l’Hôpital’s rule does not apply! We illustrate this
phenomenon in Examples 3.28 and 3.29 below; in a sense, cf. also Example 3.4.

Remark 3.22. The mysterious polynomial 1
2∇

1 in the statement can be understood as follows:

if ω is admissible, then ∇KYLp1,
?
ωq “ 0, i.e., ∇KYLpt,

?
ωq “ pt ´ t´1qRptq for a certain

Laurent polynomial R P Crt˘1s, and we substitute t “ 1 to the residual factor R.

Remark 3.23. Theorem 3.21 can almost be restated in terms of the Alexander rather than
Conway polynomials, thus avoiding the radicals: the slope is the only monomial multiple of the
ratio

˘
∆1KYLp1, ωq

∆Lpωq

satisfying Proposition 3.5, i.e., such that pK{Lqpω˚q “ pK{Lqpωq. Unfortunately, this simple
description misses one vital bit of information —the sign!.

As an indirect consequence of Theorem 3.21, we have that the slope is a multivariate gener-
alization of the Kojima-Yamaski η-function [KY79].

Corollary 3.24. Let K Y L be a two component p1, 1q-colored link such that `kpL,Kq “ 0.
Then, for any ω P S1 r 1 such that ∆Lpωq ‰ 0, the η-function and the slope coincide at ω.

Corollary 3.24 follows from the formula in [Jin88] (first suggested in [KY79, Theorem 1]),
computing the η-function in terms of the Alexander polynomials of K Y L and L. The main
theorem in [Jin88] is stated with the sign ambiguity (cf. our Remark 3.23), and the reader is told
that the sign can be determined via Bailey’s presentation matrix of the first homology group of
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the universal abelian cover of S3 r L. It is worth noticing that the slope is defined in the more
general context of links with non-zero linking number. In the restricted case of two component
links, it is defined at each root of unity of order lkpK,Lq, see Example 3.2. Besides, it may
contain certain extra information at the roots of ∆L. (Neither [KY79] nor [Jin88] suggest any
clue on the value of the η-function at the zeroes of the denominator.)

Example 3.25 (the Whitehead link). Let KYL be the p1, 1q-colored Whitehead link. We have
∇KYLpt, t1q “ pt´ t

´1qpt1 ´ t
´1
1 q and ∇Lpt1q “ 1{pt1 ´ t

´1
1 q. Hence, for any ω P Cˆ,

pK{Lqpω1q “ ´p
?
ω1 ´

?
ω1
´1
q2 “ p1´ ω1qp1´ ω

´1
1 q,

which agrees with Example 3.11. This example illustrates also the independence of the ratio in
Theorem 3.21 of the choice of

?
ω.

Example 3.26 (equal Alexander polynomials). Let K YL1YL2 and K 1YL11YL
1
2 be the links

L11n353 and L11n384 (see [KAT]), respectively. Both have 11 crossings and 3 components, and
their Alexander polynomials are equal:

∆KYL “ ∆K1YL1 “ pt2 ´ 1qpt´ 1q3pt1 ´ 1q, ∆L “ ∆L1 “ 0, ∆L,1 “ ∆L1,1 “ 1,

so that Theorem 3.21 is inconclusive. Since `kpK,Lq “ `kpK 1, L1q “ p0, 0q, one has A˝pK{Lq “
A˝pK 1{L1q “ pS1 r 1q2, and a direct computation using the link diagrams (cf. §3.2) gives us, for
any ω :“ pω1, ω2q P pCˆq2, up to the common normalizing factor ´pω1ω2q

´1,

pK{Lqpωq “ pω1ω
2
2 ` ω

2
1 ´ 4ω1ω2 ` ω

2
2 ` ω1q, pK 1{L1qpωq “ pω1 ´ 1qpω1ω

2
2 ´ 1q.

Thus, the slope can distinguish links with equal Alexander polynomials. (Here and in the next
example, since the first nonvanishing order ∆L,1 is identically 1, the slope is given by a Laurent
polynomial on the whole torus pCˆq2, see Theorem 3.19.)

Example 3.27 (vanishing Alexander polynomial). Let KYL1YL2 be the link L11n396 in [KAT]
with 11 crossings and 3 components. Both polynomials ∆KYL and ∆L vanish identically, and
hence Theorem 3.21 fails. One has `kpK,Lq “ p0, 0q and A˝pK{Lq “ pCˆq2. A direct computa-
tion using the link diagrams (cf. §3.2) gives us, for any ω :“ pω1, ω2q P pCˆq2,

pK{Lqpωq “ ´pω1ω2 ´ 1q2{ω1ω2.

Furthermore, the first non-trivial orders are ∆KYL,1 “ pt´ 1qpt2 ´ t` 1q and ∆L,1 “ 1. These
last two examples suggest that the slope is independent of the higher order Fitting ideals.

Example 3.28 (l’Hôpital’s rule). Consider the family of two component algebraically split links
KYL described in the left diagram of Figure 1. The knot L Ă S3 depends on two parameters: a
stands for an odd number of half crossings between the two bands, while c stands for an arbitrary
number of full crossings between the two strands. The sign of these two parameters determines
whether the crossings are positive or negative. In the right diagram of Figure 1 the case a “ 3
and c “ 6 is shown. Setting b :“ pa ´ 1q{2, we obtain that the Seifert matrix for the Seifert
surface F in Figure 1 is given by

Θ “

„

0 b` 1
b c



,

and the roots of ∆L are ω˘ :“ p1 ` 1{bq˘1. The component K in Figure 1 is the unknot, and
the parameters x and y on the left diagram stand for the linking numbers between K and the
fixed generators for H1pF q, depicted in the figure to the right. In Figure 1, x ď 0 and y ě 0;
changing the direction of the twisting of K around the bands, one can obtain the other signs.
We denote λK :“ px, yq P Z2. (In fact, K does not need to be an unknot: the computation via

http://katlas.math.toronto.edu/wiki/L11n353
http://katlas.math.toronto.edu/wiki/L11n384
http://katlas.math.toronto.edu/wiki/L11n396


18 ALEX DEGTYAREV, VINCENT FLORENS, AND ANA G. LECUONA

ca

L

K

x y

F

Figure 1. The diagram to the left shows the oriented two component alge-
braically split link KYL of Example 3.28. The one to the right shows the knot
L with parameters a “ 3 and c “ 6.

Seifert surfaces, which will be explained in [DFL], only makes use of the linking homomorphism
H1pF q Ñ Z, α ÞÑ `kpα,Kq, i.e., of λK .)

Computing the slope (see [DFL]), we obtain

pK{Lqpωq “ ´
ωxp2by ` y ´ cxq

pωb´ b´ 1qpωb` ω ´ bq

for ω ‰ 1, ω˘. Let λ` :“ p2b` 1, cq and λ´ :“ p0, 1q. Further analysis using [DFL] shows that

(1) if λK ‰ 0, λ˘, then pK{Lqpω˘q “ 8 “ limωÑω˘pK{Lqpωq;
(2) if λK “ 0, then pK{Lqpωq “ 0 for all ω P Cˆr 1;
(3) if λK “ λ˘, then pK{Lqpωq “ 0 for all ω P Cˆr t1, ω˘u. However, in this case we have

dimZpω˘q “ 2 and dimZpω¯q “ 0, i.e., the slopes pK{Lqpω˘q are not defined, even
though limωÑω˘pK{Lqpωq “ 0, (cf. Remark 3.20).

Now, we can consider a connected sum L1 of two copies of L, so that the new Seifert matrix is
Θ‘Θ, and choose K 1 so that the linking homomorphism is represented by λK :“ λ`‘λ´. Then,
pK 1{L1qpωq “ 0 on ω P Cˆr t1, ω˘u and pK 1{L1qpω˘q “ 8, whereas limωÑω˘pK{Lqpωq “ 0.

In the previous example, the “special” characters ω˘ are not unitary. The next one is more
advanced, although slightly less explicit.

Example 3.29 (l’Hôpital’s rule again). Consider the two-component link L10a39 (see [KAT]).
Taking for K the unknotted component, we have

∇KYL “ ´pt´ t
´1qpt1 ´ t

´1
1 qpt21 ´ 1` t´2

1 q2, ∇L “ pt
2
1 ´ 1` t´2

1 q2{pt1 ´ t
´1
1 q,

so that
pK{Lqpωq “ p

?
ω ´

?
ω
´1
q2 “ ´p1´ ωqp1´ ω´1q

(cf. Example 3.25) unless ∆Lpωq “ 0, i.e., ω “ ω˘ :“ p1˘i
?

3q{2 is a primitive 6-th root of unity.
A separate computation using §3.2 shows that pK{Lqpω˘q “ 8 instead of the “predicted” ´1.
Similarly, for L10n36 one has K{L ” 0 except pK{Lqpω˘q “ 8.

Example 3.30 (non-vanishing linking numbers). Consider the link L10n85 (see [KAT]) with
three (trivial) components C1 Y C2 Y C3 ordered and oriented so that

`kpC1, C2q “ 1, `kpC1, C3q “ 0, `kpC2, C3q “ 2.

http://katlas.math.toronto.edu/wiki/L10a39
http://katlas.math.toronto.edu/wiki/L10n36
http://katlas.math.toronto.edu/wiki/L10n85
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We have

∇ “ pt´1
2 ´ t2qpt

2
1t
´1
2 t3 ` t

´2
1 t2t

´1
3 ´ t21t

´1
2 t´1

3 ´ t´2
1 t2t3 ´ 2t´1

2 t3 ´ 2t2t
´1
3 ` t´1

2 t´1
3 ` t2t3q

for the Conway potential of C1YC2YC3. There are three possible choices for the distinguished
component K (where we keep the colors 1, 2, 3, making one of them distinguished and showing
the corresponding value ti “ 1 in bold):

(1) If K “ C1 and L “ C2 Y C3, then `kpK,Lq “ p1, 0q and ApK{Lq “ t1u ˆ t1u ˆ Cˆ. In
view of Remark 2.28, the slope pK{Lq is defined by patching the component C2, and we
have pK{Lqp1, ωq “ pC1{C3qpωq “ 0 since C1 Y C3 is the trivial link.

(2) If K “ C2 and L “ C1 Y C3, then `kpK,Lq “ p1, 2q and

ApK{Lq “ tpω2,1, ω´1q |ω P Cˆu.

We have ∆L “ 0 and ∆L,1 “ 1. Moreover, ∇12pu,1, u´1{2q “ 2u´5{2pu` 1qpu2´ u` 1q2,

whose roots are the 3-rd roots of ´1, i.e., ´1 and ´ξ˘1
3 . At u “ 1, the character stops

being nonvanishing: C1 needs to be patched, and the slope of the resulting link L4a1 at
ω “ ´1 is given by Proposition 3.18. The slopes at u “ ´ξ˘1

3 are computed directly, as
in §3.2. We obtain

pK{Lqpω2, ω´1q “

$

’

&

’

%

0, if ω “ 1,

´2, if ω3 “ ´1,

8, otherwise.

(3) If K “ C3 and L “ C1 Y C2, then `kpK,Lq “ p0, 2q and ApK{Lq “ Cˆˆ t´1, 1u ˆ t1u
consists of two components. For all ω P Cˆ we have pK{Lqpω, 1q “ pC3{C1qpωq “ 0 as
in case (1), whereas pK{Lqpω,´1q “ 2pω ´ 3` ω´1q is given by Theorem 3.21, since L
is the positive Hopf link and ∇L “ 1 (cf. also case (2) for the value at p1,´1q).

A number of other examples are given by the univariate specialization of the slopes of many
table links with three or more components. We have observed all sorts of behaviour of K{L at
unitary roots of ∆L: continuity, infinite value vs. finite limit, finite value vs. infinite limit, etc.

3.5. Proof of Theorem 3.19. After a sequence of elementary collapses preserving BKX̄, we
can assume that X̄ “ S r pK Y Lq is a 2-complex. Furthermore, the CW-decomposition of the
torus BKX̄ can be chosen standard, with a single 0-cell e0, two 1-cells m, l representing the
meridian and longitude, respectively, and a 2-cell k2. Consider the complexes

S̄˚ :“ C˚pX̄;Rq Ă S˚ :“ C˚pX;Rq.

Since they are generated by lifts of the cells to the corresponding coverings, we retain the same
orientation and notation as for the original cells of X̄ and X. By the construction of A and R,
both m and l are cycles in S̄˚. Furthermore, S1 “ S̄1 and the image B1S2 differs from B1S̄2 by
an extra generator m “ B1e

2 (for some extra 2-cell e2). Thus, we have the class

rls P H1pX;Rq Ă H1pX,x0;Rq “ S̄1{pB1S̄2 `Rmq,

where x0 P X is the basepoint. The R-module H1pX,x0;Rq gives rise to a coherent sheaf H
on A, so that H1pX,x0;Rq “ ΓpA;Hq, which restricts to a locally free sheaf (aka vector bundle)
over Ar Vr`1pLq: the fiber over ω is H1pX,x0;Cpωqq, which has constant rank pr ` 1q. Hence,
a section s of H is in the torsion submodule TorsRH1pX,x0;Rq if and only if the support of s
is contained in AX Vr`1pLq.

We consider separately two cases.
Case (1): rls P TorsRH1pX,x0;Rq. For any character ω P A˝rVr`1pLq, there is a polynomial

p P R such that ppωq ‰ 0 and prls “ 0 in H1pX,x0;Rq. This means that pl “ p̃m mod B1S̄2 for

http://katlas.math.toronto.edu/wiki/L4a1
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some p̃ P R and, specializing at ω, we obtain a nontrivial relation ppωql “ p̃pωqm in H1pX̄;Cpωqq;
in particular, dimZpωq ě 1. Repeating this argument for ω˚ (recall that Vr`1pLq is symmetric,
at least away from the divisors ωi “ 1), we conclude that the slope at ω is well defined and the
relation above is the only one, yielding

pK{Lqpωq “
p̃pωq

ppωq
.

This identity holds on the dense set tω P A˝ | ppωq ‰ 0u; in particular, p̃ P R is uniquely
determined by p. Any two rational functions obtained in this way coincide on a dense set;
hence, their reduced forms are equal, and altogether these functions give rise to a rational
function on A˝ r Vr`1pLq. The denominator of this common fraction must divide the order
∆L,r “ g.c.d. Er`1pH1pX,x0;ZHqq.

Case (2): rls R TorsRH1pX,x0;Rq. In this case, the zero set Z Ă ArVr`1pLq of rls regarded
as a section of the restricted vector bundle H is a proper Zariski closed set; by Proposition 3.7,
the dense Zariski open subset as in the statement is A˝ r pVr`1pLq Y Z Y Z˚q, where we let
Z˚ :“ tω˚ |ω P Zu.

The last statement of the theorem follows from Corollary 3.8. �

3.6. Proof of Theorem 3.21. As in the proof of Theorem 3.19, after elementary collapses
preserving BKX̄, we assume that X̄ is a 2-complex and that the CW-decomposition of BKX̄ has
a single 0-cell e0, two 1-cells m, l representing the meridian and longitude, respectively, and a
2-cell k2. We also assume that e0 is the only 0-cell of X̄ and that the meridian mC of one fixed
component C Ă L is represented by a 1-cell mi. Denoting by r the number of 2-cells, the number
of 1-cells is r` 1. (Recall that χpX̄q “ 0.) We require that the lift of each 1-cell e1 starts at the
chosen lift of e0, and we order the resulting bases of C̄˚ :“ C˚pX̄;ZH̄q as follows:

(3.31) te0u Ă C̄0, tm, l, . . . ,miu Ă C̄1, tk2, . . .u Ă C̄2.

The same vectors form a basis for S̄˚ :“ C̄˚ bZH̄ QpH̄q.
Up to the same simple homotopy equivalence, the space X is obtained from X̄ by adjoining

an extra 2-cell e2 bounded by m and an extra 3-cell e3 filling the torus TK . Besides, the passage
from ZH̄ to ZH is the specialization of the coefficients at t “ 1. To respect the order, the
generator e2 is to be inserted right after k2; thus, the distinguished bases for C˚ :“ C˚pX;ZHq
are

(3.32) te0u Ă C0, tm, l, . . . ,miu Ă C1, tk2, e2, . . .u Ă C2, te3u Ă C3.

We orient and lift e2 and e3 so that B2e
3 “ k2 and B1e

2 “ m.
First, assume that ω P A˝pK{Lq. Let b2 :“ tk2, . . .u be the chosen basis for S̄2, see (3.31).

With appropriate orientation and lift of k2, the matrix of B1 has the form

(3.33)

„

1´ ϕ̄plq t´ 1 0 0
a b M c



,

where M is a certain pr´1qˆpr´2q-matrix, a, b, c are certain column vectors of dimension r´1,
and 0 is the trivial row vector of dimension pr ´ 2q. The vector B0pmiq “ pti ´ 1qe0 ‰ 0 forms
a basis for S̄0. It follows that the complex S̄˚ is acyclic if and only if B1pb2qmi is a basis for S̄1,
i.e., if the determinant D1 of the matrix

(3.34) T1 :“

»

–

1´ ϕ̄plq t´ 1 0 0
a b M c
0 0 0 1

fi

fl
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does not vanish. Then, letting b0 “ ∅ and b1 “ tmiu in §2.3, we obtain

τϕ̄pX̄qpt, t1, . . . , tµq “
´pt´ 1qdetra |M s ´ pϕ̄plq ´ 1qdetrb |M s

ti ´ 1
.

Specializing this at pt, ωq (and thus letting ϕ̄plq “ 1), we arrive at

τϕ̄pX̄qpt, ωq “ ´
pt´ 1qdetra |M spt, ωq

ωi ´ 1
, τ 1ϕ̄pX̄qp1, ωq “ ´

detra |M sp1, ωq

ωi ´ 1
.

A similar computation, using the bases (3.32) and matrices

B1 :

»

–

0 0 0 0
1 0 0 0
a b M c

fi

fl

t“1

, T1 “

»

–

1 0 0 0
a b M c
0 0 0 1

fi

fl

t“1

instead of (3.33) and (3.34) gives us

τϕpXqpωq “
detrb |M sp1, ωq

ωi ´ 1
,

no matter whether C˚pX;QpHqq is acyclic or not.
Now, in order to compute the slope, we consider the complex C˚pX̄;Cpωqq, which is merely

C˚pX̄;ZH̄q specialized at p1, ωq; we assume this specialization till the end of the computation.
Clearly, a linear combination am` bl represents a class in Zpωq if and only if it is in the image
of B1, which is given by (3.33), i.e., essentially, by ra |b |M | cs, as the first row vanishes under
the specialization. For a finite slope κ, we need ´κm` l P Im B1; clearly, κ “ ´x ¨ a, where x is
a solution to the overdetermined linear system

x ¨ rb |M | cs “ r1 |0 | 0s.

If τϕpXqpωq ‰ 0, then detrb |M s ‰ 0 and, disregarding the last column c, we see that Zpωq
contains at most one vector as above, with κ given by Cramer’s rule

(3.35) κ “ ´r1 |0s ¨ rb |M s´1 ¨ a “ ´
detra |M s

detrb |M s
“
τ 1ϕ̄pX̄qp1, ωq

τϕpXqpωq
;

in particular, dimZpωq ď 1. Replacing ω with the dual character ω˚ and repeating the same
argument, we conclude that also dimZpω˚q ď 1; hence, both slopes are well defined and κ “
pK{Lqpωq is given by (3.35).

If τϕpXqpωq “ 0 but τ 1ϕ̄pX̄qp1, ωq ‰ 0, i.e., detrb |M s “ 0 and detra |M s ‰ 0, then, arguing
as above and searching for vectors m´ κl P Zpωq, we conclude that κ “ 0, i.e., the slope is well
defined and equals 8.

To complete the proof, we need to take into account the ambiguity of torsion: (3.35) was
obtained by computing both torsions in compatible distinguished bases.

First, compare the signs (assuming both torsions nonvanishing). We will use the notation
introduced in §2.3 for C˚pX;Rq and its barred counterparts for C˚pX̄;Rq Ă C˚pX;Rq. Let n be
the number of components of L and r, as above, the number of 2-cells in X̄. Clearly,

b0 “ b̄0 “ b1 “ b̄1 “ ∅, b3 “ te
3u “ c3, h0 “ h̄0 “ te

0u “ c0 “ c̄0,

so that all transition matrices except Ti, T̄i, i “ 1, 2, are the identities. We can assume that h̄1

is obtained from h1 by prepending m “ B1e
2. Similarly, we can select h2 Ă C̄2 and assume that

h̄2 is obtained by prepending k2 “ B2e
3 to h2, whereas b2 is obtained by prepending e2 to b̄2.

Then

B1pb2qh1b1 “ pmqB1pb̄2qh1, B1pb̄2qh̄1b̄1 “ B1pb̄2qpmqh1
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and, thus, detT1{det T̄1 “ p´1q|b̄2| “ p´1qr´n, whereas in dimension 2 we have

B2pb3qh2b2 “ pk
2qh2pe

2qb̄2, B2pb̄3qh̄2b̄2 “ pk
2qh2b̄2;

since, on the other hand, c2 is obtained from c̄2 by inserting e2 as the second vector, it follows
that detT2{det T̄2 “ p´1q|h2| “ p´1qn´1. Since |C˚pX;Rq| “ 1`nr´r and |C˚pX̄;Rq| “ 1`nr,
we conclude that τ0pXq “ ´τ0pX̄q, i.e., one should reverse the sign in (3.35) when switching to
the sign-determined torsions.

After passing to the sign-determined torsions, still the quotient in the right hand side of (3.35)
is only well defined up to multiplicative units H, and there is at most one renormalization of this
quotient invariant under the involution pt1, . . . , tµq ÞÑ pt´1

1 , . . . , t´1
µ q, see Proposition 3.5. The

passage to the Conway functions, through (2.25), is a way to obtain such a renormalization (cf.
also Remark 3.23).

Finally, if ω R A˝pK{Lq, we patch the sublinks Li corresponding to the vanishing components
ωi “ 1 and express the slope in terms of the Conway functions of the two smaller links obtained.
The passage to the Conway functions of the original links is immediate via the classical Torres
relations. (The original article [Tor53] deals with the Alexander polynomials, and the translation
to the Conway function case is found in [Cim04, Proposition 7].) Note that, in this last passage,
information may be lost, as we may have to multiply both functions by 0.) �

4. Multivariate signature of colored links

Classically, the 4-dimensional approach to the multivariate signature of a colored link uses
branched covers and the G-signature theorem (see, among others, [CF08, DFL17]). Viro [Vir09]
suggested an alternative construction, via regular coverings of the complement of the branching
surfaces and cobordisms arguments. This view point (cf. also [CNT17]) allows one to extend
the signature from rational characters to the whole character torus pS1 r 1qµ. In this section,
we further extend Viro’s construction to links in integral homology spheres. At the end, we also
deal with the subtleties of vanishing characters, studying the literal extension of the signature
(cf. Remark 2.28) in some special cases. We advise the reader that most results of this section
apply to unitary characters only.

4.1. Spanning pairs. Let N be a compact smooth oriented 4-manifold with boundary BN .
Recall that a compact smooth oriented surface F Ă N is said to be properly embedded if BF “
F X BN ‰ ∅ and F is transversal to BN along BF . We define a properly immersed surface
F Ă N as a finite union

Ť

i Fi of connected properly embedded surfaces Fi Ă N such that all
pairwise intersections of the components Fi are transversal, at double points, and away from the
boundary BN . By a tubular neighborhood of F in N we mean an open regular neighborhood
T :“ TF Ą F which is a union of tubular neighborhoods Ti Ą Fi.

Lemma 4.1. Let F “
Ť

i Fi Ă N be a properly immersed surface. Fix a tubular neighborhood
T Ą F and let W :“WF “ N r T . Then, the following three statements are equivalent :

‚ rFi, BFis “ 0 P H2pN, BN ;Qq for each index i;
‚ the inclusion homomorphism H2pW ;Qq Ñ H2pN ;Qq is an epimorphism;
‚ the meridians mi of all Fi are linearly independent in H1pW q.

Furthermore, the group H1pW q is generated by the meridians mi if and only if H1pNq “ 0.

Proof. Let B be the union of all pairwise intersections Ti X Tj , i ‰ j: it is the union of small
balls about the points of intersection of the components of F . Consider N̄ :“ N r B and let
F̄ :“ F X N̄ and T̄ :“ T X N̄ . Note that F̄ Ă N̄ is a properly embedded surface and T̄ Ą F̄
is a tubular neighborhood in the usual sense. Furthermore, up to homotopy equivalence, N̄ is
obtained from N by removing a finite set of points, i.e., a subset of codimension 4; therefore,
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the inclusion homomorphisms HnpN̄q Ñ HnpNq are isomorphisms for n “ 0, 1, 2, and so are the
homomorphisms H2pN̄ , BN̄q Ñ H2pN,B Y BNq Ð H2pN, BNq.

Consider the exact sequence of the pair pN̄ ,W q:

(4.2) ÝÑ H2pW q ÝÑ H2pN̄q
rel
ÝÑ H2pN̄ ,W q

B
ÝÑ H1pW q ÝÑ H1pN̄q ÝÑ H1pN̄ ,W q ÝÑ .

By the excision and Thom isomorphism, we have

HnpN̄ ,W q “ HnpT̄ , S̄q “ Hn´2pF̄ q

(where S̄ is the S1-bundle associated with the disk bundle T̄ Ñ F̄ ). In particular, the last term
in (4.2) vanishes, whereas the group H2pN̄ ,W q is generated by the classes di of fibers of the disk
bundles T̄i Ñ F̄i, so that Bdi “ mi. This completes the proof of the last statement, and the
second statement follows immediately.

For the first statement, there remains to observe that the homomorphism relbQ is given by
x ÞÑ

ř

ipx ˝ rF̄i, BF̄isqdi and, by Poincaré–Lefschetz duality, relbQ “ 0 if and only if all classes
rF̄i, BF̄is vanish in H2pN̄ , BN̄ ;Qq “ H2pN, BN ;Qq. �

Definition 4.3. Let L be a µ-colored link in an integral homology sphere S. A spanning pair
for pS, Lq is a pair pN,F q, where N is a compact smooth oriented 4-manifold such that BN “ S
and F “ F1 Y . . . Y Fµ Ă N is a properly immersed surface such that BFi “ Fi X BN “ Li for
all i “ 1, . . . , µ. We require in addition that H1pNq “ 0 and rFi, BFis “ 0 P H2pN, BNq for each
index i; equivalently, we require that the group H1pN r F q should be freely generated by the
meridians of the components of F .

The existence of a spanning pair for a colored link is given by [DFL17, Proposition 3.4].

Proposition 4.4. Fix a µ-colored link L Ă S, consider a spanning pair pN,F q, and let T :“ TF
be a tubular neighborhood of F in N . Then:

(1) each character on S r L extends to a unique character on N r T ;
(2) for each index i, the Seifert framing of Li extends to a framing of Fi;
(3) for each pair i ‰ j, the algebraic intersection Fi ˝ Fj equals `kpLi, Ljq.

Proof. Statement (1) is given by Lemma 4.1, since a character, both on L and on N r T , is
uniquely determined by its values on the meridians. Statements (2) and (3) follow from the
assumption that the classes rFi, BFis vanish in H2pN, BNq. �

4.2. Invariance of the signature. Fix a µ-colored link L Ă S. Given a spanning pair pN,F q,
we fix an open tubular neighborhood TF of F and let WF :“ N r TF .

Recall that, according to Proposition 4.4, any character ω on S r L extends to a unique
character on WF ; for this reason, we retain the same notation ω for the extension. In this
section, we consider unitary characters only.

Definition 4.5. The signature of a µ-colored link L Ă S is the map

σL : pS1 r 1qµ Ñ Z, ω ÞÑ signωpWF q ´ signpWF q.

Following Remark 2.28, we extend the signature function to arbitrary characters ω by patching
the components of the link on which ω vanishes. Occasionally (most notably, in the proof of
Theorem 5.3), we need to use the literal extension σ̃L of the signature, which is not very well
defined; we discuss these subtleties in Lemma 4.9 below.

In view of this definition, in the rest of the paper we mainly confine ourselves to nonvanishing
characters. Furthermore, we usually use the following alternative definition:

(4.6) σLpωq “ signωpWF q ´ signpNq;
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indeed, by Lemma 4.1, the isometry H2pWF ;Qq Ñ H2pN ;Qq is surjective and the two forms
have the same signature.

Theorem 4.7. The signature σL is independent of the choice of a spanning pair pN,F q.

Proof. The proof is essentially that of [Vir09, Theorem 2.A]; we merely fill in a few details.
Given two spanning pairs pN 1, F 1q, pN2, F 2q, consider the closed manifold N :“ N 1 YS ´N

2

and closed surface F :“ F 1 Y ´F 2 Ă N . The character ω on N 1, N2 defines a character, also
denoted by ω, on W :“ N r TF . We can assume that the tubular neighborhoods TF 1 Ă N 1 and
TF2 Ă N2 cut the same tubular neighborhood TL Ă S of L. Then, W “ W 1 YSrTL ´W

2 and,
by Theorem 2.16, we have

signpNq “ signpN 1q ´ signpN2q, signωpW q “ signωpW 1q ´ signωpW 2q.

(Indeed, in the former case, the “corner locus” T in Theorem 2.16 is empty, and in the latter
case T “ TL is the union of tori, each with nontrivial restriction of ω, so that H˚pT ;Cpωqq “ 0
by Corollary 2.4.) Thus, there remains to prove that signωpW q “ signpNq.

By the definition of spanning pair and Mayer–Vietoris exact sequence, we have H1pNq “ 0 and
rFis “ 0 P H2pNq for each component Fi of F . Since H2pXq “ Ω2pXq for any CW-complex X,
each component Fi is null-cobordant in N . Pick a cobordism, push it off to the cylinder N ˆ I,
and smoothen the result to obtain a smooth 3-manifold Di Ă N ˆ I transversal to N along the
boundary BDi “ Fi. Do this for each surface Fi and put the results in general position to obtain
an immersed 3-manifold D :“

Ť

iDi Ă N ˆ I. Let TD Ă N ˆ I be a tubular neighborhood
of D, and consider the 5-manifold U :“ pN ˆ Iqr TD. It is immediate (cf. Lemma 4.1 and the
beginning of this subsection) that H1pUq is generated by the meridians about the components Di

and, hence, ω extends to a unique character (also denoted by ω) on U ; thus, by Corollary 2.15,
we have signωpBUq “ 0. On the other hand,

BU “W YBTF BTD \´N

(where W Ă N ˆ t0u and the other copy of N is N ˆ t1u) and the manifold BTD is obtained by
gluing, along whole components of boundaries, several 4-manifolds fibered into circles. Hence,
by Theorem 2.16 and Corollary 2.3, we have signωpBTDq “ 0 and

0 “ signωpBUq “ signωpW q ´ signpNq,

as stated. (Note that H1pNq “ 0 and, hence, ω “ 1 on N ˆ t1u.) �

4.3. Previous versions of the signature. Classically, the signature was defined only for
characters of finite order, via ramified coverings, and its invariance was proved using the G-
signature theorem. We recall briefly the constructions; a more detailed exposition can be found
in [DFL17]. Let pN,F q be a spanning pair for pS, Lq and ω P pQ{Zqµ Ă pS1qµ a character of
finite order. Then, ω defines a normal covering NG Ñ N with finite abelian group G – Imω of
deck translations. Regarding H2pN

G;Cq as a CrGs-module, we consider the eigenspace

Hω
2 pN,F q :“ H2pN

G;Cq bCrGs C

and the restricted hermitian intersection form; its signature is denoted by signωpN,F q. The
next lemma asserts that the signature considered in §4.2 extends this definition from the rational
points to the whole character torus pS1 r 1qµ.

Lemma 4.8. For any spanning pair pN,F q and ω P pS1 r 1qµ of finite order, one has

σLpωq “ signωpN,F q ´ signpNq.
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Proof. Let TF be an open tubular neighborhood of F and WF :“ N r TF . By (4.6), we only
need to prove that signωpWF q “ signωpN,F q. In the notation introduced prior to the statement,
we have an isomorphism of CrGs-complexes

C˚pWF ;Zπ1pWF qq bZπ1pWF q CrGs – C˚pW
G
F ;Cq.

Hence there is an isomorphism preserving the intersection form

H2pWF ;Cpωqq – Hω
2 pWF q.

The character ω induces a branched covering TGF of the tubular neighborhood TF , branched
along F . Then NG is obtained by gluing TGF to WG

F , along parts of BTGF . The 3-manifold BTF is
a plumbing constructed from FiˆS

1, and the fibers t¨uˆS1 are meridians of the components of
L. Since ω is nonvanishing, by Corollary 2.3, TGF and WG

F are glued along bundles which have
trivial homology. By Wall’s Theorem 2.16, we obtain signωpWF q “ signωpN,F q. �

4.4. Literal extension of the signature. The following technical lemma, which is used in
the proof of Theorem 5.3, illustrates the level of difficulties that one would encounter if the
definitions of the nullity and signature were extended to arbitrary characters literally. Still, we
consider a very special case of one vanishing component only, and even in this case, the literal
extension σ̃KYLp1, ωq is not very well defined unless `kpK,Lq ‰ 0.

When dealing with spanning pairs of a p1, µq-colored link K Y L Ă S, we adopt the notation
pN,D Y F q, assuming that K “ BD and L “ BF .

Lemma 4.9. Let KYL Ă S be a p1, µq-colored link. Then, for a nonvanishing unitary character
ω P pS1 r 1qµ, one has

σ̃KYLp1, ωq “

#

σLpωq ` sgrpK{Lqpωqs if ω P A˝pK{Lq and D X F “ ∅,
σLpωq in all other cases,

η̃KYLp1, ωq “

#

ηLpωq ` 1 if ω P A˝pK{Lq and pK{Lqpωq ‰ 8,

ηLpωq in all other cases,

where σ̃KYLp1, ωq is computed using a spanning pair pN,D Y F q.

Proof. We can assume that L ‰ ∅, as otherwise both statements become the tautology 0 “ 0.
Fix a spanning pair pN,DYF q. Consider two transversal tubular neighborhoods TF Ą F and

TD – B2ˆD Ą D and introduce WDYF :“ N r pTDYTF q, WF :“ N rTF and WD :“ N rTD.
By (4.6),

σ̃KYLp1, ωq “ sign1,ω
pWDYF q ´ signN, σLpωq “ signωpWF q ´ signN,

and to prove the first statement of the lemma we will compare sign1,ω
pWDYF q and signωpWF q

using Wall’s nonadditivity theorem. The surface F meets D transversally in a collection of
m ě 0 points, and F XTD is a collection of parallel disks B1, . . . , Bm Ă TD; we denote by U the
link pB1 Y . . . Y Bmq X BTD in the 3-manifold BTD, and TU Ă BTD is its tubular neighborhood
TB1Y¨¨¨YBm X BTD. Let, further, E2

m :“ D r TB1Y...YBm , so that TD r TB1Y¨¨¨YBm – B2 ˆ E2
m.

We have

WF “WDYF Y pB
2 ˆ E2

mq,

glued along S1 ˆ E2
m, where S1 ˆ t¨u is identified to a meridian of K in WDYF .

In the rest of the proof, we assume that ω P A˝pK{Lq is admissible: otherwise, the homology
H1pBTK ;Cpωqq vanishes (see Corollary 2.4) and the proof simplifies.

Following the notation of Theorem 2.16, we have T “ BTK \ BTU and

X0 “ S1 ˆ E2
m, X1 “ pS r TKYLq Y

 

BTF XWD

(

, X2 “ TK Y
 

BTF X TD
(

,
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where shown in braces t¨u are ω-invisible parts, see the definition prior to Corollary 2.5. Since ω
is a nonvanishing character, we have H1pBTU ;Cpωqq “ 0. Since ω is also admissible, we also have
H1pT ;Cp1, ωqq “ H1pBTK ;Cp1qq “ C2. Thus, using Corollary 2.5 and ignoring the ω-invisible
parts, we can easily compute the subspaces Ai Ă H1pXi;Cp1, ωqq in Theorem 2.16:

H1pX0;Cpωqq “ H1pS
1 ˆ E2

m;Cp1, ωqq, A0 “ xmKy or xlKy,

H1pX1;Cp1, ωqq “ H1pS r TKYL;Cp1, ωqq, A1 “ ZKYLpωq “ xamK ` blKy,

H1pX2;Cp1, ωqq “ H1pTK ;Cp1qq, A2 “ xmKy,

where a, b P C and ´a{b “ pK{Lqpωq. Here, A0 “ xmKy if m ą 0 and A0 “ xlKy if m “ 0; this
space is computed exactly as in Example 3.4. (If m “ 0, we also use the obvious fact that the
Seifert framing of K extends to a framing of D, so that lK bounds a parallel copy of D.)

If m ą 0, then A0 “ A2, the correction term sign f in Theorem 2.16 vanishes (just like in the
easier case where ω is not admissible, where A0 “ A1 “ A2 “ 0), and we obtain, in both cases,

signωpWF q “ sign1,ω
pWDYF q ` signωpB2 ˆ E2

mq.

If m “ 0, the left hand side of this last expression acquires an extra summand

sign f “ signp0, κ,8q “ sg κ, κ :“ ´a{b “ pK{Lqpωq,

see Corollary 2.22. There remains to observe that E2
m is a surface with nonempty boundary and,

hence, we have H2pB
2 ˆ E2

m;Cpωqq “ H2pE
2
m;Cpωqq “ 0 and signωpB2 ˆ E2

mq “ 0.
The formula for the nullity follows from the Mayer–Vietoris exact sequence

0 ÝÑ K ÝÑ H1pBTK ;Cp1qq ÝÑ
H1pS r pK Y Lq;Cp1, ωqq ‘H1pTK ;Cp1qq ÝÑ H1pS r L;Cpωqq ÝÑ 0,

where K “ ZKYLpωq X Z1pTK ,Cp1qq “ A1 X A2. Hence, we have dimK ď 1 and dimK “ 1 if
and only if pK{Lqpωq “ 8, implying the statement. (Recall that we assume the character both
unitary and admissible and, hence, the slope is well defined.) �

5. The splice formula

Recall that the splice of two p1, µ˚q-colored links K˚ Y L˚ Ă S˚, ˚ “ 1 or 2, is defined as
follows. Denote by T˚ Ă S˚ a small tubular neighborhood of K˚ disjoint from L˚ and let
m˚, l˚ Ă BT˚ be its meridian and Seifert longitude, respectively. Then, the splice of the two
links is the pµ1 ` µ2q-colored link L :“ L1 Y L2 in the integral homology sphere

S :“ pS1 r T 1q Yϕ pS2 r T 2q,

where the gluing homeomorphism ϕ : BT 1 Ñ BT 2 takes pm1, l1q to pl2,m2q, respectively.

5.1. Statement of the splice formula. A formula for the colored signature of the splice of
two links was established in [DFL17], under some restrictions on the characters. In order to
state the general formula, we first introduce some notation.

Let L Ă S be the splice of the p1, µ˚q-colored links K˚ Y L˚ Ă S˚, ˚ “ 1 or 2. Consider the
linking vectors λ˚ :“ `kpK˚, L˚q, see (2.30), and, for characters ω˚ P pS1qµ

˚

, denote

(5.1) υ˚ :“ ω˚prK˚sq “
µ˚
ź

i“1

pω˚i q
λ˚i “ pω˚qλ

˚

P S1 Ă Cˆ.
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Figure 2. The correction terms ∆σ (left) and ∆η (right) in Theorem 5.3. See
Remark 5.4 for further details on this figure.

Define the defect function

δλ : pS1qµ ÝÑ Z
ω ÞÝÑ ind

`
řµ
i“1 λi Logωi

˘

´
řµ
i“1 λi indpLogωiq,

where λ P Zµ, the index of a real number x is defined via indpxq :“ txu ´ t´xu P Z, and the
Log-function Log : S1 Ñ r0, 1q sends expp2πitq to t P r0, 1q. Then, the main result in [DFL17]
can essentially be stated as follows.

Theorem 5.2 (cf. [DFL17]). In the notation introduced at the beginning of the section, under
the assumption that pυ1, υ2q ‰ p1, 1q, one has

σLpω
1, ω2q “ σK1YL1pυ

2, ω1q ` σK2YL2pυ
1, ω2q ` δλ1pω

1qδλ2pω
2q,

ηLpω
1, ω2q “ ηK1YL1pυ

2, ω1q ` ηK2YL2pυ
1, ω2q.

The assumption that pυ1, υ2q ‰ p1, 1q is crucial, as [DFL17, Example 2.5] shows.
Strictly speaking, the signature formula is proved in [DFL17] only for rational characters ω˚,

i.e., such that Logω˚ P Qµ˚ . However, once the signature is defined, the extension of the formula
to the whole character torus pS1r1qµ is immediate, as Wall’s non-additivity formula still works.
(Alternatively, one can follow the proof found in §5.2 below, omitting all slope computations,
as the homology groups of all tori involved vanish.) The nullity formula, not stated explicitly
in [DFL17], follows from Corollary 2.4 and the Mayer–Vietoris exact sequence (again, cf. the
more involved case treated in §5.2).

Our goal is extending Theorem 5.2 to the special case υ1 “ υ2 “ 1. By definition, υ˚ “ 1 if
and only if ω˚ is an admissible character, i.e., there is a well defined slope κ˚ :“ pK˚{L˚qpω˚q.
These slopes give rise to an extra correction term, described in the following statement.

Theorem 5.3 (see §5.2). Consider two p1, µ˚q-colored links K˚ Y L˚ Ă S˚ as at the beginning
of the section and their splice L :“ L1YL2 Ă S. Let ω˚ Ă ApK˚{L˚q X pS1qµ

˚

be two admissible
characters (so that υ1 “ υ2 “ 1, see (5.1)), and denote κ˚ “ pK˚{L˚qpω˚q. Then

σLpω
1, ω2q “ σL1pω

1q ` σL2pω
2q ` δλ1pω

1qδλ2pω
2q `∆σpκ1, κ2q,

ηLpω
1, ω2q “ ηL1pω

1q ` ηL2pω
2q `∆ηpκ1, κ2q,

where the correction terms ∆σ,∆η P t0,˘1,˘2u are as shown in Figure 2 (see Remark 5.4).

It is worth emphasizing that, in both statements of Theorem 5.3, the knots K˚ contribute
only through the slopes: all other terms depend on the links L˚ only.
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pN2,D2 Y F 2qpN 1 rB1, F 1 X pN 1 rB1q pN,F q

Figure 3. The third diagram represents the pair pN,F q used to compute the
signature of the splice of K 1YL1 and K2YL2. This pair is obtained identifying
parts of the boundary of pN 1 rB1, F 1 X pN 1 rB1qq and pN2,D2 Y F 2).

Remark 5.4. Figure 2 shows the correction terms ∆σpκ1, κ2q (left) and ∆ηpκ1, κ2q (right) in
Theorem 5.3. The domain is the square r´8,8s2 Q pκ1, κ2q, and the curve in the figures is the
hyperbola κ1κ2 “ 1. For the term ∆σ, we have an explicit formula, which was actually found in
the course of the proof:

(5.5) ∆σpκ1, κ2q “ sg κ1 ´ sg
´ 1

κ1
´ κ2

¯

(see Corollary 2.22 for the conventions on sg); in spite of its appearance, it is symmetric in
pκ1, κ2q. Note that always

∆ηpκ1, κ2q “ |∆σpκ1, κ2q| ˘ 1.

Intuitively, this means that the matrices always differ by an extra eigenvector rather than by
the eigenvalue of a common eigenvector.

5.2. Proof of Theorem 5.3. In view of our uniform conventions on the signature, nullity, and
slope (see Remark 2.28 and the respective definitions), we can start with patching the components
of L˚ on which ω˚ vanish. Thus, from now on, we assume both characters nonvanishing.

If L˚ becomes empty (ω˚ “ 1) or was empty in the first place, we take for L˚ a small unknot
contained in a ball disjoint from K˚, endowed with its own color and arbitrary nonvanishing
unitary character; this change does not affect any of the quantities involved. (Alternatively, one
can also repeat the computation below, taking into account the difference between the slopes of
H1,0 and H1,m, m ą 0, see Example 3.4 and cf. the proof of Lemma 4.9.)

Thus, assume that L˚ ‰ ∅ and let pN˚, D˚YF˚q be a special spanning pair for pS˚,K˚YL˚q,
i.e., such that D is a disk and F XD ‰ ∅. (The existence of special spanning pairs follows from
[DFL17, Lemma 4.1] and the obvious fact that, if F ‰ ∅, one can always create an extra pair of
intersection points.) We will construct an appropriate spanning pair for pS, Lq by cut and paste
on the manifolds pN˚, D˚ Y F˚q.

The main idea is as in [DFL17], see [DFL17, Figure 4] (reproduced here as Figure 3 for
the reader’s convenience): we cut off tubular neighborhoods of D˚ (thus, passing to the literal
extension σ̃K˚YL˚p1, ω

˚q “ σL˚pω
˚q, see Lemma 4.9), fill one of the gaps with a “standard”

spanning pair for the generalized Hopf link, and attach the second manifold to the result. (If it
is Theorem 5.2 that is to be proved, the two tubular neighborhoods have already been removed
in the definition and the first step is skipped.) An important difference is the fact that, while
in [DFL17] we kept the ramification surfaces (the colored curves in Figure 3) inside the 4-
manifolds, here we need to carve them out and work with N˚ r pD˚ Y F˚q, which makes the
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description of the boundary more involved. However, the extra boundary parts acquired are
pω1, ω2q-invisible 3-manifolds and this change does not affect the computation of the homology
groups, see Corollary 2.5.

Thus, fix neighborhoods TF˚ and TD˚ “ B2 ˆD˚ and let
WD˚YF˚ “ N˚ r pTF˚ Y TD˚q. The intersection B˚1 Y ¨ ¨ ¨ YB

˚
m˚ “ F˚ X TD˚ is a collection

of parallel disks in TD˚ , and their boundary is the unlink U˚ Ă S3 “ BTD˚ with m˚ ą 0
components. Consider the generalized Hopf link Hm1,m2 “ U 1 Y U2 and orient its components
according to the signs of the intersection points F˚ XD˚. Let B “ B2 ˆB2 be a 4-ball, and let
C Ă B be two families of parallel disks, transversal to each other, so that pB,Cq is a spanning
pair for pS3, Hm1,m2q. Then,

pN,F q :“
`

WD1 YB YWD2 , pF
1 r pF 1 X TD1qq Y C Y pF 2 r pF 2 X TD2qq

˘

,

after smoothing the corners, is a spanning pair for pS, Lq (see Figure 3).
The components of F˚ induce a pµ1 ` µ2q-coloring on Hm1,m2 , and the characters ω˚ induce

a unique character ω :“ pω1, ω2q on Hm1,m2 . In the rest of the proof, we switch to ω, as all other
characters are essentially its restrictions. To compute σLpωq, we consider the manifold

W :“WD1YF 1 Y pB r TCq YWD2YF2 ,

and apply Wall’s theorem to the first two terms in the above decomposition, that is, to the
manifold

W1 :“WD1YF 1 Y pB r TCq,

for which the gluing takes place along S3 rH1,m1 .
In the notation of Theorem 2.16, we have T “ BTK1 \ BTU 1 and

X0 “ S3 rH1,m1 , X1 “ pS1 r TK1YL1q Y
 

BTF 1 X pN
1 r TD1q

(

, X2 “ pS
3 rHm2,1q Y

 

BTC
(

,

where, as usual, embraced are ω-invisible parts. Since ω1 is admissible and nonvanishing, we
also have H1pT ;Cpωqq “ H1pBTK1 ;Cp1qq “ C2, and, using Corollary 2.5 to ignore the ω-invisible
parts, we obtain the following expressions for the spaces Ai Ă H1pXi;Cpωqq in Theorem 2.16:

H1pX0;Cpωqq “ H1pS
3 rH1,m1 ;Cp1, ω1qq, A0 “ xmK1y,

H1pX1;Cpωqq “ H1pS1 r TK1YL1 ;Cpωqq, A1 “ xa
1mK1 ` b

1lK1y,

H1pX2;Cpωqq “ H1pS
3 rHm2,1;Cpω2, 1qq, A2 “ xmK2y “ xlK1y,

where ´a1{b1 “ κ1 and A0 and A2 are computed using Example 3.4. In accordance with the
settings of §2.5, the orientation on BTK1 is induced from S1 rK 1; hence, mK1 ˝ lK1 “ ´1 in T
and Corollary 2.22 yields

sign f “ signp8, κ1, 0q “ ´ sg κ1.

Applying Theorem 2.16 and subtracting signpN 1q, we arrive at

signωpW1q ´ signpN 1q “
“

signωpWD1YF 1q ´ signpN 1q
‰

` signωpB r TCq ` sg κ1

“ σL1pω
1q ` δλ1pω

1qδλ2pω
2q ` sg κ1

(see Lemma 4.9 for the first term, which is σ̃K1YL1p1, ω
1q, and [DFL17, Lemma 4.2] for the second

term, which, up to the summand ´ signpBq “ 0, is the signature of Hm1,m2 .)
Now, we use Theorem 2.16 again, this time for the decomposition W “W1YWD2YF2 . Since

ω2 is also admissible and nonvanishing, we have H1pT ;Cpωqq “ H1pBTK2 ;Cp1qq “ C2 for the
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new space T and, arguing as above and ignoring the ω-invisible parts, we obtain

H1pX0;Cpωqq “ H1pS
3 rH1,m2 ;Cp1, ω2qq, A0 “ xmK2y “ xlK1y

H1pX1;Cpωqq “ H1pS1 r TK1YL1 ;Cpωqq, A1 “ xa
1mK1 ` b

1lK1y “ xa
1lK2 ` b

1mK2y,

H1pX2;Cpωqq “ H1pS2 r TK2YL2 ;Cpωqq, A2 “ xa
2mK2 ` b

2lK2y,

where ´a˚{b˚ “ κ˚. Again, mK1 ˝ lK1 “ ´1 and, hence, mK2 ˝ lK2 “ 1, contrary to the usual
convention of §2.5. Hence, by Corollary 2.22,

sign f “ ´ sign
´

8,
1

κ1
, κ2

¯

“ sg
´ 1

κ1
´ κ2

¯

,

and

signωpW q “ signωpW1q ` signωpWD2YF2q ´ sg
´ 1

κ1
´ κ2

¯

.

To complete the proof of the signature formula, with the correction term ∆σ given by (5.5),
there remains to subtract the sum signpN 1q ` signpN2q and observe that

signpWD1 YB YWD2q “ signpN 1q ` signpN2q.

For the latter statement, one can either refer to [DFL17] or directly repeat the computation
above for the ordinary signature, when all “slopes” vanish.

For the nullity formula, consider the Mayer–Vietoris exact sequence related to

X :“ S r TL “ X 1 YX2,

where the manifolds X˚ :“ S˚rTK˚YL˚ are identified along the common boundary component
BK1X

1 – BK2X
2. We have

0 ÝÑ K ÝÑ H1pBK˚X
˚;Cp1qq ÝÑ

H1pX
1;Cpωqq ‘H1pX

2;Cpωqq ÝÑ H1pX;Cpωqq ÝÑ C ÝÑ 0,

where K “ ZK1YL1pω1q X ZK2YL2pω2q. Hence,

ηLpω
1, ω2q “ η̃K1YL1p1, ω

1q ` η̃K2YL2p1, ω
2q ` dimK ´ 1.

Clearly, dimK “ 1 if ZK1YL1pω1q “ ZK2YL2pω2q, and dimK “ 0 otherwise. Since mK1 “ lK2

and lK1 “ mK2 in the homology of BK1X
1 – BK2X

2, we have dimK “ 1 if and only if κ1 “ 1{κ2,
and there remains to apply Lemma 4.9 to relate η̃K˚YL˚p1, ω

˚q and ηL˚pω
˚q. A case-by-case

analysis gives us Figure 2, right, for which we could not find a “nice” formula. �

6. Skein relations for the signature

We conclude the paper with another illustration, viz. we develop the concept of slope for
tangles with four marked loose ends and analyze its relation to the signature.

For any tangle T with four fixed ends in a homology 3-ball B and any generic character ω in
pCˆr1qµ, we define the slope κT pωq P CY8. We show that it can be computed as the quotient
of the Conway polynomials of the links obtained by attaching to T certain elementary tangles.
Then, we define the sum of tangles and prove that the signatures of three pairwise sums of three
tangles are related by the sign (as in Corollary 2.22) of their three slopes. Finally, we use these
results to derive the conventional skein relations for the signature as in [CF08].
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Figure 4. Two views of the basic tangles τ`, τ´ and τ0.

6.1. Preliminaries. Let B be a homology 3-ball with boundary S :“ BB – S2. We fix an
oriented equator E Ă S and four points A1, . . . , A4 P E ordered according to the orientation
of E. (We number these points cyclically, so that Ai`4 “ Ai. In other words, the index takes
values in Z{4.)

Definition 6.1. A tangle is a smooth compact oriented submanifold T Ă B of dimension 1 such
that

‚ T is transversal to the boundary S;
‚ T X S “ tA1, A2, A3, A4u, and
‚ T has incoming branches at A1, A2 and outgoing branches at A3, A4.

Similarly to links, a µ-coloring on T is a surjective function π0pT q Ñ t1, . . . , µu.

Two tangles T and T 1 are equivalent if there exists an orientation preserving homeomorphism
pB, T q Ñ pB1, T 1q taking E to E1 (respecting the orientation) and Ai to A1i, i P Z{4.

Given a tangle T Ă B, we let BT “ B r TubT and S˝ :“ S r tA1, A2, A3, A4u. Let n be the
number of components of T . Then, we have H1pBT q – Zn, and a character ω : H1pBT q Ñ Cˆ
is determined by its values ωi ‰ 1 on the meridians mi about the components Ti Ă T . If T is
colored, we assume that ω takes equal values on the meridians of the components having the same
color. We denote by Bω the restriction of ω to the boundary sphere S˝. It is uniquely determined
by the restrictions ωris of ω to the meridian about Ai, i P Z{4. Obviously, ωr1sωr3s “ ωr2sωr4s.
In fact, each of ωr1s, ωr2s equals one of ωr3s, ωr4s and vice versa.

Example 6.2. The basic tangles τ˘, τ0 Ă B3 are the three tangles shown in Figure 4 (“inside”
and “outside” views). These tangles can be described as the intersection of a link undergoing a
skein transformation with a small neighborhood of the relevant crossing of the diagram.

Convention 6.3. We assume that two branches of the tangle connect A1 to A3 and A2 to A4.
If the tangle is colored, we denote the two colors (that may coincide) assigned to theses branches
by ´ and `. Therefore, we assume that

ω´ :“ ωr2s “ ωr4s ‰ 1, ω` :“ ωr1s “ ωr3s ‰ 1.

The other convention ωr1s “ ωr4s ‰ 1 and ωr2s “ ωr3s ‰ 1 can be treated similarly.

Up to homotopy equivalence, the punctured sphere S˝ has a CW-decomposition shown in
Figure 5 (where the sphere is cut along a “geographic” meridian): there are two 2-cells (about
each of the poles), eight 1-cells ai, bi, and four 0-cells Bi, i P Z{4. We choose the lifts of the
cells so that, for i P Z{4, with coefficients in Cpωq,

Bai “ Bi ´Bi´1, Bbi “ ωrisεiBi ´Bi´1,

where ε1 “ ε2 “ ´1 and ε3 “ ε4 “ 1. We define

c̃´ :“ b1 ` ω
´1
` a2 ` ω

´1
` b3 ` a4 c̃` :“ a1 ` b2 ` ω

´1
´ a3 ` ω

´1
´ b4.
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North

South

B1 B2 B3 B4

a1
a2 a3 a4

b1 b2 b3 b4

E

Figure 5. The CW-decomposition of S˝.

Lemma 6.4. For any unitary character ω as in Convention 6.3, the cycles

c´ :“ p1´ ω´1
´ q

´1 ¨ c̃´ c` :“ p1´ ω´1
` q

´1 ¨ c̃`

form a standard symplectic basis of H1pS
˝;Cpωqq “ C2, in the sense of §2.5. Furthermore, the

chain c˘ bounds a 2-cell in Bτ˘ (see Example 6.2 and Figure 4).

Note that pc´, c`q is a basis for H1pS
˝;Cpωqq, and will be used as such, for any character ω

as in Convention 6.3. However, it is a symplectic basis only if ω is unitary, as otherwise we do
not have a well-defined intersection index.

Proof of Lemma 6.4. We compute the intersections in the maximal abelian covering of S˝ and
specialize the result at ω. Since ω˘ ‰ 1 and the space S˝ has homotopy type of a wedge of three
circles, we have

dimH1pS
˝;Cpωqq “ 2.

The oriented loops c̃´ and c̃` could also be defined as the lifts of the cells of S˝:

b1 ` a2 ` b3 ` a4 a1 ` b2 ` a3 ` b4

starting at the chosen lift of B4. They are in general position and intersect in four points (with
signs according to the orientations):

pb1 ` a2 ` b3 ` a4q X pa1 ` b2 ` a3 ` b4q “ t´B4, B1,´B2, B3u.

Since ωpa1 ´ b1q “ ω´1
` , ωpa2 ´ b2q “ ω´1

´ , and ωpa3 ´ b3q “ ω`, we obtain

c̃´ ˝ c̃` “ ´1` ω´1
` ´ ω´1

` ω´1
´ ` ω´1

´ “ ´p1´ ω´1
´ qp1´ ω

´1
` q.

Hence c´ ˝ c` “ ´1. Since c̃´ and c̃` are represented in the covering by honest loops, which can
be moved off, both classes and their multiples c´, c` are isotropic; thus, the latter constitute a
standard symplectic basis of H1pS

˝;Cpωqq “ C2.
Using the relations a1 ` a2 ` a3 ` a4 “ b1 ` b2 ` b3 ` b4 “ 0, one sees that c̃˘ can be defined

as the lift of h˘pa4 ` b4 ` a1 ` b1q where h˘ is a positive or negative (from the south pole) half
twist exchanging A1 and A2. This shows that c̃˘ bounds a 2-cell in Bτ˘ . �
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6.2. Slope of a tangle. Fix a tangle T Ă B and consider a character ω as in Convention 6.3.
Then, by Corollary 2.5 and Lemma 6.4, there are canonical isomorphisms

H1pBBT ;Cpωqq “ H1pS
˝;Cpωqq “ C2

and, as in §3.1, we can introduce the subspace

Zpωq :“ ZT pωq :“ Ker
“

inclusion˚ : H1pS
˝;Cpωqq Ñ H1pBT ;Cpωqq

‰

.

Definition 6.5. Suppose that ω is nonvanishing and dimZpωq “ 1, i.e. Zpωq is generated by
a vector u´c´ ` u`c`. Then the slope of T at ω is the quotient

κT pωq :“ ´
u´
u`

P CY8.

As before, we extend κT to all characters by patching the components of the tangle on whose
meridians ω takes value 1. Recall that we always assume that ω˘ ‰ 1 (see Convention 6.3).

Propositions 3.5 and 3.6 and their proofs extend to κT literally; in particular, if ω is a unitary
character, then κT pωq is well-defined and real (possibly infinite).

The sum T 1 \ T 2 of two tangles T 1 Ă B1 and T 2 Ă B2 is the link T 1 Y´T 2 in the homology
sphere S :“ B1 YB ´B2, where the attaching homeomorphism ϕ : S1 Ñ S2 restricts to an orien-
tation preserving homeomorphism E1 Ñ E2 taking A1i to A2i for each i “ 1, . . . , 4. If the tangles
are colored, we also ask the gluing to respect the colors ´ and `. Then, the result is a colored
link in S, and ´ and ` become ordinary colors.

Example 6.6. Consider a link in the sphere S3 and denote by L the tangle obtained by removing
a small neighborhood of a crossing of its diagrams. Then, the sums L˚ :“ L\ τ˚ with the basic
tangles (see Example 6.2) are the usual links L˘ and L0 involved in a skein relation.

Theorem 6.7. Fix a tangle T Ă B and consider a character ω as in Convention 6.3, so that ω
extends to the links L˘ :“ T \ τ˘ (see Example 6.6). If the polynomials ∇L˘p

?
ωq do not vanish

simultaneously, then the slope κT pωq is well defined and one has

κT pωq “
∇0p

?
ω`q

∇0p
?
ω´q

¨
∇L`p

?
ωq

∇L´p
?
ωq
P CY8,

where ∇0ptq “ pt´ t
´1q´1 is the Conway potential of the unknot.

Similarly to Theorem 3.21, the statement is inconclusive if ∇L´p
?
ωq “ ∇L`p

?
ωq “ 0.

Example 6.8. The sums of the basic tangles (see Example 6.2 and Figure 4) are as follows:

‚ τ´ \ τ´ and τ` \ τ` are the Hopf links (up to orientation),
‚ τ´ \ τ` “ τ` \ τ´ is the trivial link with two components,
‚ τ´ \ τ0 “ τ` \ τ0 is the unknot.

Hence, by Theorem 6.7, at any nonvanishing character, we have

κτ´ “ 8, κτ` “ 0, κτ0 “ 1,

where the latter slope is defined only on the diagonal ω´ “ ω`.

Proof of Theorem 6.7. As in §3.6, assume that the character ω nonvanishing. A crucial obser-
vation is the fact that, up to homotopy equivalence, the complement of L˘ is obtained from BT
by attaching a single 2-cell k˘ along the cycle c̃˘ (see Lemma 6.4). We proceed exactly as in the
proof of Theorem 3.21, computing and comparing the torsions of the two links L˘. Let X˘ be
the complement of TubL˘ in S “ BYB3. Up to homotopy equivalence, the CW -decomposition
of X˘ is partially given as follows

C0 “ tB1, B2, B3, B4u, tc̃´, c̃`, a1, b1, a2, b2, a3, b3, a4, b4, . . . u Ă C1, tk˘, . . . u Ă C2.
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Then, we fix the following bases for C˚pX˘;Cpωqq:

c0 :“ B1, B2, B3, B4, c1 :“ c̃´, c̃`, . . . , a1 ´ b1, a2 ´ b2, a3 ´ b3, a4 ´ b4, c2 :“ k˘, . . . .

(These bases are not quite as in the definition of the torsion. However, they differ from cellular
ones by a transition matrix in C1 that is common to X´ and X`. Thus, our choice would not
affect the ratio of the two torsions.)

The vectors

B0pai ´ biq “ p1´ ωris
εiqBi, i “ 1, . . . , 4,

constitute a basis for C0. The complex C˚pX˘;Cpωqq is acyclic if and only if

B1pc2q, a1 ´ b1, a2 ´ b2, a3 ´ b3, a4 ´ b4

is a basis for C1. The homomorphisms B1 in X´ and X` are given by certain matrices of the
form

„

1 0 0
a b M



,

„

0 1 0
a b M



,

respectively, where M is a certain matrix and a, b, are column vectors, also common for X´
and X`. Thus, the two complexes are acyclic if and only if neither of the two determinants
vanish, and then we have

τϕpX`qpωq

τϕpX´qpωq
“ ´

detra |M s

detrb |M s
.

Now, a linear combination p1 ´ ω´1
´ q

´1u´c̃´ ` p1 ´ ω´1
` q

´1u`c̃` represents a class in Zpωq if
and only if it is in the image of B1 in the complex C˚pBT ;Cpωqq, which is given by ra |b |M s. If
the slope κ is finite, we are looking for a vector of the form ´κ̃c̃´ ` c̃` P Im B1, where

κ̃ :“
p1´ ω´1

` q

p1´ ω´1
´ q

κ “
∇0p

?
ω´q

∇0p
?
ω`q

κ.

Clearly, if such a vector exists, then κ̃ “ ´x ¨ a, where x is a solution to the linear system

x ¨ rb |M s “ r1 |0s.

If τϕpX´qpωq ‰ 0, then detrb |M s ‰ 0 and κ̃ can be computed by Cramer’s rule:

κ̃ “ ´r1 |0s ¨ rb |M s´1 ¨ a “ ´
detra |M s

detrb |M s
“
τϕpX`qpωq

τϕpX´qpωq
,

so that there is at most one solution. As in §3.6, replacing ω with ω˚, we conclude that the
slope is well defined and given by the expression above. If τϕpX´qpωq “ 0, but τϕpX`qpωq ‰ 0,
the same argument with X˘ interchanged shows that the slope is well defined and equal to 8.

The passage from τϕ to ∇ and verification of the sign is immediate (cf. §3.6). �

6.3. The skein relations. Let T 1 and T 2 be a pair of colored tangles such that the sum T 1\T 2

is well-defined. Clearly, any pair of characters ω1, ω2 on T 1, T 2 such that Bω1 “ Bω2 gives rise
to a character on T 1 \ T 2; we denote the latter by ω1 \ ω2.

Theorem 6.9. Consider three tangles T i Ă Bi, i P Z{3, and three characters ωi on Bi r T i as
in Convention 6.3 such that Bωi “ constpiq ( i.e., all three characters have the same restriction
to the common boundary sphere S). Then, denoting κi :“ κT ipω

iq, one has
ÿ

iPZ{3
σT i`1\T ipω

i`1 \ ωiq “ signpκ0, κ1, κ2q

(see Corollary 2.22 for the definition of sign).
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Theorem 6.9 could be derived directly from [CC, Theorem 1.1]. The short proof given below,
although using essentially the same argument, fits better the framework of our paper.

Remark 6.10. Changing the indices p0, 1, 2q to pnothing, 1, 2q, one can rewrite the conclusion
of Theorem 6.9 in the following, less symmetric, form:

σT\T 1pω \ ω
1q ` σT 1\T2pω

1 \ ω2q “ σT\T2pω \ ω
2q ´ signpκ, κ1, κ2q.

It is, essentially, this identity that is actually proved below.

Proof of Theorem 6.9. Since the orientation of T 2 is reversed in the definition, the operation
T 1 \ T 2 is skew-symmetric, i.e., for any colored tangles T 1, T 2 and character ω1, ω2 such that
the operation is well-defined, we have

σT 1\T2pω
1 \ ω2q “ ´σT2\T 1pω

2 \ ω1q.

This observation justifies Remark 6.10 and, in the latter form, the identity is an immediate
consequence of Wall’s Theorem 2.16. Indeed, if pN1, F1q is a spanning pair for T 1\T and pN2, F2q

is a spanning pair for T \T 2, then a spanning pair for T 1\T 2 is pN,F q :“ pN1, F1qYB pN2, F2q.
The three characters ω, ω1, ω2 define a common character ω̃ on B Y B1 Y B2, which extends
uniquely to N1 r F1 and N2 r F2, and there remains to apply Theorem 2.16. The few technical
details related to removing TubFi, i “ 1, 2, are filled in as in §5.2, using Corollary 2.5; we leave
this exercise to the reader. �

The following corollary generalizes and refines [CF08, Theorem 5.1].

Corollary 6.11. Let L˘, L0 Ă S3 be colored links involved into the skein relation at a crossing of
the diagram, and denote by L Ă B3 the tangle obtained by removing a small tubular neighborhood
of the crossing (see Example 6.6). Pick a unitary character ω P pS1 r 1qµ on L˘ and, contrary
to the usual convention, fix

?
ω so that Im

?
ω˘ ą 0. Then,

σL`pωq ´ σL´pωq “ sg κLpωq “ sg

ˆ

∇L`p
?
ωq

∇L´p
?
ωq

˙

.

If ω´ “ ω`, then also

σL˘pωq ´ σL0pωq “ sgpκLpωq
¯1 ´ 1q “ ˘ sg

ˆ

i ¨
∇L˘p

?
ωq

∇L0
p
?
ωq

˙

.

In both case, the second expression makes sense if at least one of the two Conway potentials does
not vanish; in this case, we assert, in particular, that the argument of sg is real.

Proof. Let T “ L, T 2 “ τ`, and T 1 “ τ´ or τ0 in Theorem 6.9. Since τ` \ τ´ and τ˘ \ τ0 are
trivial links/knots (see Example 6.2), their signature is 0 and, hence, letting κ :“ κT pωq, from
Theorem 6.9 and Example 6.8 we have

σL`pωq ´ σL´pωq “ signpκ,8, 0q “ sg κ,

σL`pωq ´ σL0pωq “ signpκ, 1, 0q “ sgpκp1´ κqq “ sgpκ´1 ´ 1q.

To relate these expressions to the Conway potentials, we use Theorem 6.7 and the following
simple observation: if ξ P S1, the difference ξ ´ ξ´1 “ 2i Im ξ makes a predictable contribution
to the sign. In view of our choice of

?
ω˘, this completes the proof of the first formula. For the

second one, we employ the classical skein relation (letting ξ :“
?
ω` “

?
ω´)

∇L`p
?
ωq ´∇L´p

?
ωq “ pξ ´ ξ´1q∇L0p

?
ωq,
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which implies

κ´1 ´ 1 “
∇L´p

?
ωq

∇L`p
?
ωq
´ 1 “

∇L´p
?
ωq ´∇L`p

?
ωq

∇L`p
?
ωq

“ pξ´1 ´ ξq
∇L0

p
?
ωq

∇L`p
?
ωq
P RY8

and, since Im ξ ą 0,

sgpκ´1 ´ 1q “ sg

ˆ

´i
∇L0

p
?
ωq

∇L`p
?
ωq

˙

“ sg

ˆ

i
∇L`p

?
ωq

∇L0p
?
ωq

˙

.

The computation for σL´pωq ´ σL0
pωq is similar. �
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